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Abstract

We characterize time-consistent dynamic risk measures.
In discrete time in context of uncertainty, we canonically associate

a class of probability measures to any dynamic risk measure when the
filtration comes from a process bounded at each time. Dynamic risk
measures are conditional risk measures on a bigger space.

In continuous time, we characterize time consistency, studying com-
position of conditional risk measures. Using sufficient conditions for
time consistency, and BMO martingales, we construct new families of
time-consistent dynamic risk measures. Some are continuous general-
izing those coming from BSDE. Others are with jumps.
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Introduction

In recent years there has been an increasing interest in methods defining the
risk of a financial position. Artzner et al [1] have introduced the concept of
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coherent risk measures on a probability space. More recently Föllmer and
Schied [17], [18] and [19], have addressed a more general issue, defining the
notion of monetary measure of risk, not necessarily coherent and in a more
general context, that of uncertainty where no probability measure is given
a priori.

Several authors have then extended the notion of monetary risk measures
to a conditional or dynamic setting.

In a continuous time dynamic setting F. Delbaen [8] has fully charac-
terized the coherent dynamic risk measures and in particular proved that
the time consitency for coherent dynamic risk measures is equivalent to
the condition of m-stability. Other works concerning a time continuous
dynamic setting are usually based on the Backward Stochastic Differential
Equations (B.S.D.E.) approach called also conditional “g”-expectation. Im-
portant works along these lines are by Peng [24] and [25], Coquet et al. [7],
Rosazza Gianin [20], and Barrieu and El Karoui [3].

There are several approaches in a discrete time setting. All these ap-
proaches assume that a filtered probability space (Ω,F , (Fn)n∈IN , P ) is given
in advance and therefore that the probability P is known. For these ap-
proaches see for example F. Riedel [26] and Cheredito et al [6] where the
notion of time-consistency is studied.

In Bion-Nadal [5] and Detlefsen and Scandolo [11] a new notion of con-
ditional risk measures is introduced. The case of continuous convex condi-
tional risk measures defined on probability spaces is studied by Detlefsen
and Scandolo [11]. In [5] we have studied the more general case of convex
conditional risk measures not necessarily continuous and in a context of un-
certainty. Indeed, as pointed out by Avellaneda [2], it is important to deal
with situations where the probability measure (and even its class) is not
fixed in advance.

In this paper we study the dynamic risk measures (ρs,t)s≤t both in dis-
crete time and in continuous time.

In section 1 starting from the conditional risk measures and their repre-
sentation in terms of a set of probabilities and of a penalty function as in [5],
we study the composition rule of conditional risk measures. We characterize
the relation ρ1,3 = ρ1,2(−ρ2,3) in terms of a stability property of the set of
probability measures (similar to the m stability property of F. Delbaen [8])
and of a cocycle condition on the penalty function.

In section 2 we study dynamic risk measures on a measurable filtered
space (Ω,F , (Fn)n∈IN ) in a discrete time setting. We do it in a context
of uncertainty (i.e. whithout fixing in advance a probability). When the
filtration is the natural filtration of a IRl valued process bounded at each
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time, we associate canonically a class of probability measures to any dynamic
risk measure continuous from below. We prove also that the dynamic risk
measures in discrete time are equivalent to conditional risk measures on a
bigger space.

In section 3 we study dynamic risk measures in a continuous time set-
ting, on a probability space. Using the results of section 1, we characterize
the time consistency (∀r ≤ s ≤ t ρr,t = ρr,s(−ρs,t)) by necessary and suf-
ficient conditions on the set of probabilities (stability) and on the minimal
penalty functions (cocycle condition). When the dynamic risk measure is
constructed from a family of probability measures and a penalty function
(in general there is no reason for this penalty function to be the minimal
one), we get sufficient conditions for the dynamic risk measure to be time-
consistent: stability of the set of probability measures, locality and cocycle
condition on the penalty function.

Using these sufficient conditions, we construct new classes of explicit
examples of time-consistent dynamic risk measures:

Starting with any finite family of BMO orthogonal continuous martin-
gales we construct classes of time-consistent dynamic risk measures. In the
particular case of independent Brownian motions stopped in T we obtain
that way the dynamic risk measures coming from B.S.D.E.

We are also able to construct similar classes of time-consistent dynamic
risk measures starting from BMO martingales which are no more continuous
(in that case we have a condition on the BMO norms). We thus get dynamic
risk measures with jumps.

1 Conditional risk measures

1.1 Some recalls on convex conditional risk measures

In this part we recall some important notions and results of [5]. Let Ω be a
set. Consider a σ-algebra G. We denote EG the set of all bounded real valued
(Ω,G) measurable maps. We consider that the set of all financial positions
X is EG . X is then a Banach space.

We consider a sub σ-algebra F of G and we assume that a probability
measure P is given on (Ω,F).

From a financial point of view, the sub σ-algebra F can represent the
partial information accessible for an investor and it is natural to assume
that there is a well known probability on (Ω,F).

The definition of a risk measure conditional to a probability space is as
follows [5]:
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Definition 1 A mapping

ρF : X → L∞(Ω,F ,P)

is a normalized risk measure conditional to the probability space (Ω,F ,P) if
it satisfies the following conditions:

i) monotonicity: for all X,Y ∈ X if X ≤ Y then ρF (Y ) ≤ ρF (X) P a.s.
ii) translation invariance: for all Y ∈ EF , for all X ∈ X ,

ρF (X + Y ) = ρF (X) − Y P a.s.

iii) multiplicative invariance: for all X ∈ X , for all A ∈ F ,

ρF (X1A) = 1AρF (X) P a.s.

Definition 2 i) A risk measure conditional to a probability space (Ω,F ,P)
is a mapping

ρF : X → L∞(Ω,F ,P)

such that ρF − ρF (0) is a normalized conditional risk measure
ii) A convex conditional risk measure is continuous from below if:
For every increasing sequence Xn of elements of X converging to X, the

decreasing sequence ρF (Xn) converges to ρF (X) P a.s..

To each risk measure ρF conditional to the probability space (Ω,F ,P) we
associate its acceptance set:

AρF = {X ∈ X / ρF (X) ≤ 0 P a.s.}

The most important results on conditional risk measures are the theo-
rems of representation:

We recall here the theorem of representation of convex risk measures,
continuous from below, conditional to a probability space. This representa-
tion theorem will be crucial for the study of dynamic risk measures.

Theorem 1 Let ρF be a convex risk measure defined on (Ω,G) conditional
to the probability space (Ω,F , P ).

Assume that ρF is continuous from below then for all X ∈ X

ρF (X) = ess maxQ∈M((EQ(−X|F) − αm(Q)) (I)
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where αm(Q) = ess sup{Y ∈AρF
}(EQ(−Y |F) and M is the set of probability

measures on (Ω,G) whose restriction to F is equal to P and such that for
each Q ∈ M, αm(Q) is essentially bounded.

In the following we refer to this representation as the usual representa-
tion.

Remark 1 When we assume that a probability P is given on (Ω,G) we
define a conditional risk measure on L∞(Ω,G, P ) as a risk measure ρF con-
ditional to the probability space (Ω,F , P ) such that

ρF (X) = ρF (Y ) P a.s. if X = Y P a.s.

In that case in the theorem of representation the set M is a set of prob-
ability measures on (Ω,G) absolutely continuous with respect to P whose
restriction to F is equal to P .

Remark 2 In case of complete uncertainty ( no probability is given even on
F) a risk measure on (Ω,G) conditional to (Ω,F) is a mapping from EG to
EF satisfying the same equalities and inequality as in definition 1 but exactly
instead of P.a.s.

For the various theorems of representation (for example when the risk
measures are no more continuous from below), we refer to [5].

1.2 Properties of the penalty function

Definition 3 Consider a function α defined on a set M of probability mea-
sures on (Ω,G) with values into L∞(Ω,F , P ).

We say that α is local if ∀A ∈ F ∀(Q1, Q2) ∈ M2.
If EQ1

(X1A|F) = EQ2
(X1A|F) P.a.s. ∀X ∈ EG, then 1Aα(Q1) =

1Aα(Q2) P.a.s.

Proposition 1 i) Consider a risk measure on (Ω,G) conditional to (Ω,F , P ).
The penalty function αm is local.

ii) For every probability measure Q on (Ω,G), αm(Q) is (P.a.s.) the
limit of an increasing sequence fn = EQ(−Xn|F) for some Xn ∈ AρF

Proof:
i) αm(Q) = Pess sup{Y ∈AρF

}(EQ(−Y |F))
∀A ∈ F , 1Aα

m(Q) = ess sup{Y ∈AρF
}(EQ(−Y 1A|F)) The local property

of αm follows.
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ii) It is enough to prove that for Q fixed, the set {EQ(−X|F);X ∈ AρF}
is a lattice upward directed.

Let (Y,Z) ∈ (AρF )2 Let B = {ω ∈ Ω / EQ(−Y |F)(ω) > (EQ(−Z|F)(ω)}.
From the bifurcation property of AρF , it follows that X = Y 1B + Z1(Ω−B)

is in AρF and EQ(−X|F) = max(EQ(−Y |F), EQ(−Z|F)).
Q.e.d.

1.3 Composition of conditional risk measures

Consider three σ-algebras F1 ⊂ F2 ⊂ F3 on a space Ω.

Proposition 2 Assume that ρ2,3 is a risk measure on (Ω,F3) conditional
to (Ω,F2) and ρ1,2 a risk measure on (Ω,F2) conditional to (Ω,F1)

Then ρ(X) = ρ1,2(−ρ2,3(X)) defines a risk measure on (Ω,F3) condi-
tional to (Ω,F1).

There is no difficulty in the verification of this proposition. We also have
the same proposition for conditional risk measures on probability spaces.

Now there is a natural question:
Given three risk measures (ρi,j)(1≤i<j≤3) on (Ω,Fj) conditional to (Ω,Fi),

how can we characterize the equality ρ1,3(X) = ρ1,2(−ρ2,3(X)) ∀X either in
terms of acceptance sets or using the penalty functions?

The following theorem gives the answer to this question in the case where
a probability measure P is given on F3 and assuming that the conditional
risk measures are continuous from below. This theorem will be crucial for
the study of dynamic risk measures (in continuous time).

Theorem 2 Consider ρi,j convex risk measures continuous from below on
(Ω,Fj , P ) conditional to (Ω,Fi, P ). Consider the usual representation

ρi,j(X) = ess maxQ∈Mi,j
(EQ(−X|Fi) − αm

i,j(Q)) Denote M̃i,j the
set of all probability measures Q on Fj absolutely continuous with respect
to P whose restriction to Fi is equal to P . Mi,j = {Q ∈ M̃i,j / α

m
i,j(Q) ∈

L∞(Ω,Fi, P )}.
Ai,j is the acceptance set of ρi,j.
The following properties are equivalent:
i)ρ1,3(X) = ρ1,2(−ρ2,3(X)) P.a.s. ∀X ∈ EF3

(set of bounded F3 measur-
able maps)

ii) A1,3 = A1,2 + A2,3

iii) (Mi,j)1≤i<j≤3 satisfy the following stability property:
∀Q ∈ M2,3, ∀R ∈ M1,2 there exists S ∈ M1,3 such that

∀f ∈ EF3
, ES(f |F1) = ER(EQ(f |F2)|F1) P.a.s. (II)
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and the penalty function αm satisfies the cocycle condition:
∀S ∈ M1,3 ∀R ∈ M1,2 ∀Q ∈ M̃2,3 satisfying the relation (II), αm

2,3(Q)
is R integrable and αm

1,3(S) = ER(αm
2,3(Q)|F1) + αm

1,2(R) P.a.s..

Proof of the theorem:
- i) implies ii)
let X ∈ A1,3 ρ1,3(X) ≤ 0 Denote Z = X + ρ2,3(X). By translation

invariance, ρ2,3(Z) = 0 so Z ∈ A2,3 ρ1,2(X − Z) = ρ1,2(−ρ2,3(X)) ≤ 0 So
X − Z ∈ A1,2. Hence A1,3 ⊂ A1,2 + A2,3.

Conversely Let Y ∈ A1,2, Z ∈ A2,3. ρ1,3(Y + Z) = ρ1,2(−ρ2,3(Z) + Y ).
As Z ∈ A2,3, −ρ2,3(Z) + Y ≥ Y and by hereditary property of A1,2 [5],

−ρ2,3(Z) + Y ∈ A1,2 and hence, Y + Z ∈ A1,3.
Thus ii) is proved.
- ii) implies iii)
Let Q ∈ M2,3 and R ∈ M1,2 Q|F2

= P , R << P and R|F1
= P .

Define the probability measure S on (Ω,F3) by S(A) = ER(EQ(1A|F2)). S
is absolutely continuous with respect to P and its restriction to F1 is equal
to P and S satisfies (II)

For every X ∈ A1,3, X = Y + Z (Y ∈ A1,2, Z ∈ A2,3)
ES(−X|F1) = ER(−Y |F1) +ER(EQ(−Z|F2)|F1)
so ES(−X|F1) ≤ αm

1,2(R) +ER(αm
2,3(Q)|F1).

This proves that αm
1,3(S) is P essentially bounded, so S ∈ M1,3 and that

αm
1,3(S) ≤ ER(αm

2,3(Q)|F1) + αm
1,2(R). Consider now S ∈ M1,3, R ∈ M1,2,

Q ∈ M̃2,3 satisfying the relation (II), as above we get that αm
1,3(S) ≤

ER(αm
2,3(Q)|F1) + αm

1,2(R).
Prove now the converse inequality. Let Y ∈ A1,2 and Z ∈ A2,3.
ER(−Y |F1) +ER(EQ(−Z|F2)|F1) = ES(−Y − Z|F1) it follows that
∀Z ∈ A2,3 (ER(EQ(−Z|F2)|F1)) + αm

1,2(R) ≤ αm
1,3(S).

From proposition 1, αm
2,3(Q) is the limit of an increasing sequence

fn = EQ(−Zn|F2) for some Zn ∈ A2,3 bounded from below by −||f1||∞.
Then ER(αm

2,3(Q)) is the limit of the increasing sequence ER(EQ(−Zn)) As
A2,3 ⊂ A1,3, we get ER(αm

2,3(Q)) ≤ αm
1,3(S). Now as αm

2,3(Q) is R integrable,
it follows from [10] chapitre II that ER(αm

2,3(Q)|F1) is the limit a.s. of
ER(EQ(−Zn|F2)|F1)). Then ER(αm

2,3(Q)|F1) + αm
1,2(R) ≤ αm

1,3(S). Q.e.d.
- iii) implies i)
Let X ∈ EF3

. From the theorem of representation, there is a probability
measure R ∈ M1,2 and a probability measure Q ∈ M2,3 such that

ρ1,2(−ρ2,3(X)) = ER(ρ2,3(X)|F1) − αm
1,2(R)

= ER(EQ(−X|F2) − αm
2,3(Q)|F1) − αm

1,2(R)
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Applying hypothesis iii) we get the existence of a probability measure
S ∈ M1,3 such that ρ1,2(−ρ2,3(X)) = ES(−X|F1) − αm

1,3(S).
From the representation of ρ1,3 it follows that ρ1,2(−ρ2,3(X)) ≤ ρ1,3(X).
We have to prove the converse inequality.
From theorem of representation applied to ρ1,3, we get R ∈ M1,3 such

that ρ1,3(X) = ER(−X|F1) − α1,3(R).
Let A = {ω ∈ Ω / (EP (dR

dP
|F2)(ω) > 0} Define now the probability

measure Q on (Ω,F3) by

Q(B) = EP (((
( dR

dP
)

EP ( dR
dP

|F2)
)1A + 1(Ω−A))1B).

Q is absolutely continuous with respect to P and the restriction of Q to
F2 is equal to P i.e. Q ∈ M̃2,3. For every f bounded F3 measurable,

ER(EQ(f |F2)|F1) = EP ((EP (dR
dP

|F2)(
( dR

dP
)

EP ( dR
dP

|F2)
)1A + 1(Ω−A))f |F1)

= EP (dR
dP

)1Af |F1) = EP (dR
dP

)f |F1). Indeed, ( dR
dP

)1(Ω−A) ≥ 0 and its
conditional expectation with respect to F2 is 0 so it is 0 P.a.s.

So ER(EQ(f |F2)|F1) = ER(f |F1) ∀f ∈ EF3
.

From hypothesis iii), αm
1,3(R) = ER(αm

2,3(Q)|F1) + αm
1,2(R)

and then ρ1,3(X) ≤ ρ1,2(−ρ2,3(X)) ∀X ∈ EF3
.

So i) is proved.

Remark 3 1) The equivalence of i) and ii) is also proved by Cheridito et
al [6].

2) The condition iii) is a generalization of the m-stability property of
Delbaen [8]. Here there is a cocycle condition on the penalty (in the case
of [8] the risk measures where coherent so the penalty was equal to 0).

The preceding theorem cannot be generalized to the case where the penalty
function α is not equal to αm; however we can prove that there are sufficient
conditions on the penalty functions (α)i,j in order to have the equality:
ρ1,3(X) = ρ1,2(−ρ2,3(X)) P.a.s.∀X ∈ EF3

.
Consider three σ-algebras F1 ⊂ F2 ⊂ F3 on a space Ω. Consider a

probability measure P on (Ω,F3).
Consider a set M of probability measures on F3 equivalent to P .

Theorem 3 Assume that M satisfies the 2 stability properties:
i) m-stability:
For every Q ∈ M, for every R ∈ M, there is S ∈ M such that

∀f ∈ EF3
, ES(f |F1) = ER(EQ(f |F2)|F1) P.a.s.

ii) stability by bifurcation:
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∀(Q1, Q2) ∈ M2, ∀A ∈ Fi (i = 1 or i = 2), there is Q ∈ M such that

EQ(f |Fi) = EQ1
(f1A|Fi) +EQ2

(f1(Ω−A)|Fi) P.a.s.

iii) Assume that the penalty function α is such that for all 1 ≤ i < j ≤ 3
ess supQ∈M(−αi,j(Q)) is bounded P a.s. Assume that the penalty function
is local and satisfies the cocycle condition:

if (Q,R, S) ∈ (M)3 are such that

∀f ∈ EF3
, ES(f |F1) = ER(EQ(f |F2)|F1) P.a.s.

then α1,3(S) = ER(α2,3(Q)|F1) + α1,2(R) P.a.s..
Then the risk measures ρi,j on (Ω,Fj , P ) conditional to (Ω,Fi, P ) defined

by
ρi,j(X) = Pess supQ∈M{EQ(−X|Fi)) − αi,j(Q)}

satisfy the composition rule:

ρ1,3(X) = ρ1,2(−ρ2,3(X)) P.a.s. ∀X ∈ EF3
.

Proof:
As ess supQ∈M(−αi,j(Q)) is bounded , ρi,j is a well defined conditional

risk measure. We want to adapt the proof of iii) implies i) in the preceding
theorem.

The new difficulty here is that the ess sup is no more essentially attained.
- First using the stability by bifurcation of M, we prove that for X fixed,

{EQ(−X|Fi) − αi,j(Q) /Q ∈ M} is a lattice upward directed.
Indeed for every (Q1, Q2) ∈ (M)2 consider
A = {ω ∈ Ω / EQ1

(−X|Fi)(ω)−αi,j(Q1) > EQ2
(−X|Fi)(ω)−αi,j(Q2)}

From bifurcation property, there is Q ∈ M such that
∀f EQ(−f |Fi) = EQ1

(−f1A|Fi) +EQ2
(−f1(Ω−A)|Fi)

From the local property of αi,j, 1Aαi,j(Q) = 1Aαi,j(Q1) and
1Ω−Aαi,j(Q) = 1Ω−Aαi,j(Q2) So
EQ(−X|Fi) − αi,j(Q) = max(EQ1

(−X|Fi) − αi,j(Q1), EQ2
(−X|Fi) −

αi,j(Q2))
- So for X fixed, there is a sequence Rn ∈ M such that ρ1,2(−ρ2,3(X)) is

the increasing limit of ERn(ρ2,3(X)|F1)−α1,2(Rn), and a sequence Qk ∈ M
such that ρ2,3(X) is the increasing limit of EQk

(−X|F2) − α2,3(Qk).
As ρ2,3(X) is essentially bounded, for all n, ERn(ρ2,3(X)|F1)−α1,2(Rn)

is a.s. the increasing limit of ERn(EQk
(−X|F2) − α2,3(Qk)|F1) − α1,2(Rn).
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Using the m stability of M and the cocycle condition, this proves the in-
equality:

ρ1,2(−ρ2,3(X)) ≤ ρ1,3(X) P.a.s.
Conversely, for every X ∈ EF3

, there is a sequence Rn of probability
measures in M such that ρ1,3(X) is the increasing limit of ERn(−X|F1) −
α1,3(Rn).

ERn(−X|F1)−α1,3(Rn) = ERn(ERn(−X|F2)|F1)−ERn(α2,3(Rn)|F1)−
α1,2(Rn).

It follows that ρ1,3(X) ≤ ρ1,2(−ρ2,3(X)) P.a.s.
Q.e.d.
From the proof of this theorem, we also obtain the following result:

Proposition 3 Consider a set Mi,j of probability measures on Fj equiva-
lent to P whose restriction to Fi is equal to P . Consider a penalty function
αi,j which assigns to each element of Mi,j an element of L∞(Ω,Fi, P ). As-
sume that ess supQ∈Mi,j

(−αi,j(Q)) is essentially bounded.
Assume that the Mi,j satisfy the following stability conditions: For every

Q ∈ M2,3, for every R ∈ M1,2, there is S ∈ M1,3 such that

∀f ∈ EF3
, ES(f |F1) = ER(EQ(f |F2)|F1) P.a.s. (II)

and also for all S ∈ M1,3, there are Q ∈ M2,3 and R ∈ M1,2 such that (II)
is satisfied.

Assume that every Mi,j satisfies the stability by bifurcation with respect
to Fi. Assume that the penalty function is local and satisfies the following
cocycle condition: if (Q,R, S) ∈ (M2,3 ×M1,2 ×M1,3) are such that

∀f ∈ EF3
, ES(f |F1) = ER(EQ(f |F2)|F1) P.a.s.

then α1,3(S) = ER(α2,3(Q)|F1) + α1,2(R) P.a.s..
Then the ρi,j = ess supQ∈Mi,j

{EQ(−X|Fi)) − αi,j(Q)} satisfy also the
composition rule.

2 Discrete time dynamic risk measures in uncer-

tain context

2.1 Probability measure associated to a dynamic risk mea-

sure

We consider a space Ω and a numerable increasing family of σ-algebras Fn

on Ω such that F0 is the trivial σ-algebra (F0 = {∅,Ω}). Denote F = UFn.
We don’t assume that a probability measure is given a priori.
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Definition 4 A dynamic risk measure on (Ω,F , (Fn)n∈IN) is a family
((ρn,n+1)n∈IN) where ρn,n+1 is a convex risk measure on (Ω,Fn+1) con-

ditional to (Ω,Fn).

Proposition 4 Let n < m. Consider a dynamic risk measure as in the pre-
ceding definition. Then the relation ρn,m = ρn,n+1o(−ρn+1,n+2)..o(−ρm−1,m)
defines a risk measure on (Ω,Fm) conditional to (Ω,Fn). The family (ρn,m)
is time-consistent; i.e. ∀n < m < r ρn,r = ρn,mo(−ρm,r).

Remark 4 This notion of time-consistency first appeared in the work of
Peng [25].

Theorem 4 Let (Fn)n∈IN∗ be the natural filtration of a finite family of real
valued measurable processes (X j)1≤j≤k such that ∀j Xj

0 = 0 and ∀j ∀n Xj
n

is bounded. F0 is the trivial σ-algebra.
To every dynamic risk measure (ρn,n+1)n∈IN such that for all n ∈ IN ,

ρn,n+1 is continuous from below, is canonically associated a probability mea-
sure P on F = UFn and a dynamic risk measure ((ρn,n+1)n∈IN ) on the
filtered probability space (Ω,F , (Fn)n∈IN , P ) such that, for A ∈ Fn+1,

P (A) = 0 iff ρn,n+1(λ1A) = ρn,n+1(0) P a.s. ∀λ ∈ IR and ρn,n+1(X) =
ρn,n+1(X) P.a.s.

The equivalence class of P is thus uniquely determined by (ρn,n+1)n∈IN .

In order to prove this theorem, we prove first the following lemma.

Lemma 1 Let ρF be a convex risk measure defined on (Ω,G) conditional to
(Ω,F , P ), continuous from below. Let ρ̃F = ρF − ρF (0).

Consider any representation of ρ̃F of the kind
ρ̃F (X) = ess maxQ∈M((EQ(−X|F) − α(Q)) P a.s.

where M is a set of probability measures Q on (Ω,G) whose restriction to
F is equal to P and such that α(Q) is bounded (P a.s.) (such representations
exist from theorem 1).

Then (Q(A) = 0 ∀Q ∈ M) iff (ρ̃F (λ1A) = 0 P a.s. ∀λ ∈ IR).

Proof:
Assume that Q(A) = 0 ∀Q ∈ M. Then
ρ̃F (λ1A) = ess maxQ∈M((EQ(−λ1A)|F) − α(Q)) = ρ̃F(0) = 0 P.a.s.
Conversely assume that ρ̃F (λ1A) = 0 P a.s. ∀λ ∈ IR.
If there is Q ∈ M such that Q(A) > 0. Then EQ(1A|F) 6= 0 (and

EQ(1A|F) ≥ 0). So there is ε > 0 such that P (Bε) > 0 where Bε = {ω ∈
Ω/EQ(1A|F)(ω) ≥ ε} (Bε ∈ F).

11



Let λ < 0. EQ(−λ1A1Bε |F) − α(Q)1Bε ≥ −λε1Bε − α(Q)1Bε

α(Q)1Bε is bounded (P a.s.). So there is λ < 0 such that
EQ(−λ1A1Bε |F) − α(Q)1Bε > 1Bε P a.s.
It follows that 1Bε ρ̃F (λ1A) 6= 0 P.a.s. and thus we get a contradiction.
So for every Q ∈ M, Q(A) = 0.
Q.e.d.

Lemma 2 Assume that G is the σ-algebra generated by the bounded appli-
cation X = (Xi)1≤i≤l on Ω with values into (IRl,B) ( B being the Borelian
σ-algebra). For every set of probability measures Q on (Ω,G), there is a
probability measure Q̃ (unique up to equivalence) such that ∀A ∈ G Q̃(A) =
0 iff ∀µ ∈ Q µ(A) = 0.

Denote A the norm closed unital Banach subalgebra of EG generated by
the Xi. This algebra is separable. From Dunford et al [14] the unit ball
of its dual is metric compact for the weak* topology. So the weak* closure
of {(Eµ)|A ;µ ∈ Q} is metric compact . It has a numerable dense subset

(EQj
)j∈IN∗. Q̃ =

∑
j∈IN∗

Qj

2j . is a probability measure on (Ω,G). Consider
µ ∈ Q and A ∈ G such that µ(A) > 0. By definition of G, there is a
Borelian B ∈ B such that A = X−1(B). Denote ν the image of µ by X.
ν(B) = µ(A) > 0. ν is a Borel measure on IRl so it is regular. There is
f ≥ 0 continuous with compact support , f ≤ 1B such that

∫
f(t)dν(t) > 0

i.e.
∫
f(X(s))dµ(s) > 0. Now f(X) is an element of A It follows that there

is j such that
∫
f(X(s))dQj(s) > 0. So Qj(A) > 0 and Q̃(A) > 0.

This proves an implication. The converse implication is trivial. The
unicity of Q̃ up to equivalence follows easily.

Proof of the theorem
We prove by recursion on n ∈ IN the existence of the probability P on

(Ω,Fn).
F0 = {∅,Ω}. So there is a unique probability on it.
Assume that we have proved the existence of a probability P on (Ω,Fn)

satisfying the required conditions. Consider the risk measure on EFn+1
con-

ditional to (Ω,Fn, P ) defined by ρ̃n,n+1(X) = ρn,n+1(X) − ρn,n+1(0) P.a.s.
Consider Qn+1 the set of probability measures on (Ω,Fn+1) whose restric-
tion to Fn is equal to P associated to the usual representation of ρ̃n,n+1.
Applying lemma 2 to Qn+1 and then lemma1 this gives a probability mea-
sure Pn+1 on (Ω,Fn+1) satisfying the required conditions.
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2.2 A discrete time dynamic risk measure as a single condi-

tional risk measure

We prove now that a discrete time dynamic risk measure can be viewed as a
single conditional risk measure on a bigger measurable space. Furthermore,
the 2 points of view are equivalent.

We consider a space Ω and a numerable increasing family of σ-algebras
Fn on Ω such that F0 is the trivial σ-algebra (F0 = {∅,Ω}). We don’t
assume that a probability measure is given a priori.

Denote now Ω̃ = Ω × IN and F̃ the σ-algebra generated by the sets
Ai × {i} where Ai ∈ Fi. Denote also F̃s the shifted algebra generated by
the sets Ai × {i} where Ai ∈ Fi−1.

Proposition 5 There is a canonical bijection between the dynamic risk
measures ρn,n+1 on (Ω,F , (Fn)n∈IN ) and the convex risk measures on (Ω̃, F̃)
conditional to (Ω̃, F̃s).

Proof:
- Let ρn,n+1 a dynamic risk measure.
Define Ψ((ρn,n+1)) = ρ on (Ω̃, F̃) by ρ(f)(ω, i) = ρi−1,i(fi)(ω) where

fi(ω) = f(ω, i).
For every open set U in IR ρ(f)−1(U) = Ui∈IN({ω/ρi−1,i(fi)(ω) ∈ U} ×

{i} = Ui∈INAi × {i} where Ai is Fi−1 measurable. So ρ(f) is (Ω̃, F̃s) mea-
surable.

f is F̃s measurable iff for each i, fi is Fi−1 measurable; so the translation
invariance property of ρ follows from the translation invariance property of
the ρi−1,i for every i.

Monotonicity and convexity of ρ easily follow from the same properties
of the ρi−1,i.

The multiplicative invariance property of ρ follows from the fact that
each subset F̃ (resp F̃s) measurable can be written Ui∈INAi ×{i} where Ai

is Fi (resp Fi−1 )measurable. So ρ is a convex risk measure conditional to
(Ω̃, F̃s).

- Conversely consider a convex risk measure ρ on (Ω̃, F̃) conditional to
(Ω̃, F̃s). To each application Fi measurable f associate f̃ defined on Ω̃ by
f̃(ω, j) = 0 if j 6= i and f̃(ω, i) = f(ω).

ρi−1,i(f) = (ρ(f̃))i defines a convex risk measures on (Ω,Fi) conditional
to (Ω,Fi−1). The map Φ defined by Φ(ρ) = (ρi−1,i)i∈I is the converse of Ψ.

Corollary 1 When a probability P is given on F , define the probability P̃
on F̃ by: P̃ (Ui∈INAi × {i}) =

∑
i∈IN

1
2i+1P (Ai). There
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is a canonical bijection between the set of dynamic risk measures on a fil-
tered probability space (Ω,F , (Fn)n∈INP ) and the set of convex risk measures
on (Ω̃, F̃ , P̃ ) conditional to (Ω̃, F̃s, P̃ ).

Corollary 2 Assume that the σ-algebras Fn are as in theorem 4 To every
convex risk measure ρ on (Ω̃, F̃) conditional to (Ω̃, F̃s) continuous from
below is canonically associated a class P of probability measure on (Ω,F)
such that ρ is a convex risk measure on (Ω̃, F̃ , P̃ ) conditional to (Ω̃, F̃s, P̃ )
. Considering such a conditional convex risk measure is then equivalent to
considering a dynamic risk measure continuous from below, on the filtered
probability space (Ω,F , (Fn)n∈INP ).

Proof:
It results from theorem 4, proposition 5 and the fact that the continuity

from below of ρ is equivalent to the continuity from below of each ρn,n+1.

3 Continuous time dynamic risk measures on a

probability space

3.1 Time consistency for continuous time dynamic risk mea-

sures

We consider a probability space (Ω,F , P ) and an increasing family (Ft)t∈IR+

of sub-σ-algebras of F such that F = Ut∈IR+(Ft).

Definition 5 A dynamic risk measure on (Ω, (F t)t∈IR+, P ) is a family
(ρs,t)0≤s≤t of convex risk measure on (Ω,Ft, P ) conditional to (Ω,Fs, P ).

Definition 6 A dynamic risk measure is time consistent if

∀r < s < t ρr,t = ρr,s(−ρs,t)

For each ρs,t continuous from below, consider the usual representation (I).
Using the same notations as in theorem 2 ,we prove the following character-
ization of the time consistency:

Theorem 5 Consider a dynamic risk measure ρs,t continuous from below.
For each ρs,t consider its usual representation.

The following properties are equivalent:

14



i)The dynamic risk measure ρs,t is time consistent.
ii) The acceptance sets As,t satify the following additive property:

∀r < s < t Ar,t = Ar,s + As,t

iii) The sets of probability measures (Ms,t) satisfy the following stability
property:

∀r < s < t ∀Q ∈ Ms,t, ∀R ∈ Mr,s there exists S ∈ Mr,t such that

∀f ∈ EFt , ES(f |Fr) = ER(EQ(f |Fs)|Fr) P.a.s.

and the penalty function satisfies the cocycle condition:
∀S ∈ Mr,t ∀R ∈ Mr,s ∀Q ∈ M̃s,t satisfying the relation (II), αm

s,t(Q) is
R integrable and then αm

r,t(S) = ER(αm
s,t(Q)|Fr) + αm

r,s(R) P.a.s.

Proof:
This theorem follows from the theorem 2 of composition for the condi-

tional risk measures.

Corollary 3 Consider (gs,t)0≤s<t a family of stictly positive bounded Fs-
measurable functions such that ln(gs,t) is essentially bounded. Consider the
entropic dynamic risk measure defined as follows:

Let 0 ≤ s ≤ t. For every X ∈ EFt

ρs,t(X) = ess inf{Y ∈ EFs / E(e[−α(X+Y )]|Fs) ≤ gs,t}
= 1

α
[lnE(e−αX)|Fs) − ln(gs,t)}.

Then ρs,t(X) = ess maxQ∈Ms,t(EQ(−X|Fs) − αm
s,t(Q))

with αm
s,t(Q) = 1

α
(EP (ln(dQ

dP
)dQ

dP
|Fs) − ln(gs,t)).

The entropic dynamic risk measure is time consistent if and only if the
functions gs,t are F0 measurable and satisfy the relation ∀0 ≤ r ≤ s ≤
t ln(gr,t) = ln(gr,s) + ln(gs,t) a.s. In particular if we assume that there is
a strictly positive real valued continuous function h such that ∀(s, t) gs,t =
h(t − s) then the associated dynamic risk measure is time-consistent if and
only if there is a real number λ such that gs,t = eλ(t−s).

Proof:
The study of the conditional risk measure associated to a loss function

and the computation of the penalty function is done in details in [5], sec-
tion 5.

In particular in the case of the loss function l(x) = eαx, this gives the
conditional entropic risk measure and the penalty function is αm

s,t(Q) =
1
α
(EP (ln(dQ

dP
)dQ

dP
|Fs) − ln(gs,t)).

∀r < s < t ∀Q ∈ Ms,t, ∀R ∈ Mr,s There is a probability measure
S ∈ Mr,t such that ∀f ∈ EFt , ES(f |Fr) = ER(EQ(f |Fs)|Fr)
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Its Radon Nikodym derivative is dS
dP

= dQ
dP

dR
dP

, and then

ER(αm
s,t(Q)|Fr) + αm

r,s(R) = 1
α
[EP (dR

dP
(EP (dQ

dP
ln(dQ

dP
)|Fs)|Fr)

+(EP (dR
dP
ln(dR

dP
)|Fr) −EP (dR

dP
ln(gs,t)|Fr) − ln(gr,s)].

As dR
dP
ln(dR

dP
) is Fs measurable, as E( dQ

dP
|Fs) = 1 and dS

dP
= dQ

dP
dR
dP

, it
follows that

ER(αm
s,t(Q)|Fr)+α

m
r,s(R) = αm

r,t(S)+ 1
α
[ln(gr,t)−ln(gr,s)−EP (dR

dP
ln(gs,t)|Fr)].

Hence the dynamic risk measure is time consistent if and only if
[ln(gr,t) − ln(gr,s) − [EP (dR

dP
ln(gs,t)|Fr) = 0 P.a.s. for every probability

measure R ∈ Mr,s It follows that ln(gs,t) has to be Fr measurable for
every r so it is F0 measurable and then the risk measure associated to
the family of F0) measurable maps gs,t is time consistent if and only if
∀0 ≤ r ≤ s ≤ t ln(gr,t) = ln(gr,s) + ln(gs,t) a.s..

The end of the proof is just the application of a classical result.
Q.e.d.
The dynamic entropic risk measure is also considered in [3] and in [11]

in both cases only when gs,t = 1 ∀(s, t) and in the second paper only in a
discrete time setting. In both cases the time-consistent property is verified.

Corollary 4 Let p > 1 Consider the loss function l(x) = xp

p
ifx ≥ 0

l(x) = 0 else.
Consider (gs,t)0≤s<t a family of positive bounded Fs-measurable map.
The associated dynamic risk measure is defined as follows:
Let 0 ≤ s ≤ t. For every X ∈ EFt

ρs,t(X) = ess inf{Y ∈ EFs / E(l(−X − Y )|Fs) ≤ gs,t Pa.s.}
Then the penalty function is

αm
s,t(Q) = (pgs,t)

1

pEP [(dQ
dP

)q|F ]
1

q (q is the conjugate of p)
And this dynamic risk measure is not consistent if gs,t 6= 0 P.a.s..

Proof:
The computation of the penalty function is done in [5] section 5. The non

consistency when gs,t 6= 0 P.a.s.is then an easy consequence of the formula.
Strict monotonicity: This property was first introduced by S. Peng for

the conditional g-expectations in the lectures “Applications of BSDE in
finance” given at IHP in Paris in March 2005.

Definition 7 We say that the dynamic risk measure is strictly monotone if
∀t ∀(X,Y ) ∈ E2

Ft
if X ≥ Y and ρ0,t(X) = ρ0,t(Y ) then X = Y a.s.

As in the case of conditional g expectations, if the dynamic risk measure
is strictly monotone then the time consistency has only to be checked for
r = 0. More precisely:
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Proposition 6 Assume that the normalized dynamic risk measure is strictly
monotone. Assume that ∀0 < s < t ρ0,t = ρ0,s(−ρs,t)

Then the dynamic risk measure is time-consistent.

Proof: Let 0 < r < s < t. Let X ∈ EFt . Denote Y = −ρr,t(X) and
Z = −ρr,s(−ρs,t(X)).Let A ∈ Fr

ρ0,r(1AZ) = ρ0,r((−ρr,s(−ρs,t(1AX)))) = ρ0,s((−ρs,t(1AX)))
= ρ0,t(1AX) = ρ0,r((−ρr,t(1AX))) = ρ0,r(1AY ).
Let A = {ω ∈ Ω/Y (ω) > Z(ω)} A is Fr measurable. From the strict

monotonicity it follows that A is a negligeable set. So Y ≤ Z a.s. The
converse inequality is proved in the same way. So Y = Z a.s.

The following theorem is very important for the construction of exemples
of time-consistent dynamic risk measures.

Theorem 6 Consider a family Q of probability measures on (Ω,F) all
equivalent to P . For all 0 ≤ r < s < t

Assume that Q satisfies the 2 stability properties:
i) m-stability:
For every Q ∈ Q, for every R ∈ Q, there is S ∈ Q such that

∀f ∈ EFt , ES(f |Fr) = ER(EQ(f |Fs)|Fr) P.a.s.

ii) stability by bifurcation:
∀(Q1, Q2) ∈ Q2, ∀A ∈ Fr there is Q ∈ Q such that ∀f ∈ Fs,

EQ(f |Fr) = EQ1
(f1A|Fr) +EQ2

(f1(Ω−A)|Fr) P.a.s.

iii) Assume that the penalty function α is such that for all s, t,
ess supQ∈Q(−αs,t(Q)) is essentially bounded. Assume that α is local and
satisfies the cocycle condition: if (Q,R, S) ∈ (Q)3 are such that

∀f ∈ EFt , ES(f |Fr) = ER(EQ(f |Fs)|Fr) P.a.s.

then αr,t(S) = ER(αs,t(Q)|Fr) + αr,s(R) P.a.s.
Then the dynamic risk measure (ρs,t)0≤r<s<t defined by

ρs,t(X) = Pess supQ∈Q{EQ(−X|Fs)) − αs,t(Q)}

is time-consistent.

This theorem is just an application of the corresponding theorem 3 for
the composition of conditional risk measures.

To construct time-consistent dynamic risk measures, we will also use the
following lemma:
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Lemma 3 To each family Q1 of probability measures all equivalent to a
probability P we can associate a minimal set of probability measures Q both
m-stable and stable by bifurcation. It is the set of probability measures Q such
that there is a subdivision 0 = t0 < t1 < ...tn and for each i ∈ {0, ...n} there
are disjoint Fti measurable sets Ai,j, UjAi,j = Ω and probability measures
Qi,j ∈ Q1 such that

(dQ
dP

)ti+1

(dQ
dP

)ti
=

∑
j

(
dQi,j

dP
)ti+1

(
dQi,j

dP
)ti

1Ai,j
and ∀t > tn

(dQ
dP

)t

(dQ
dP

)tn
=

∑
j

(
dQn,j

dP
)t

(
dQi,j

dP
)tn

1An,j
(III)

where (dQ
dP

)t means E(dQ
dP

|Ft)

Proof: Denote Q̃ the set of probability measures whose Radon Nikodym
derivative satisfies (III). It is easy to verify that Q̃ ⊂ Q and that Q̃ is
m-stable.

Furthermore if Q1 and Q2 are in Q̃ and A is Fr measurable we can
construct a new subdivision (si)0≤i≤m containing r adapted to both Q1 and
Q2. Consider Q such that ( dQ

dP
)r = (dQ1

dP
)r and for s > r,

( dQ
dP

)s

( dQ
dP

)r
=

(
dQ1
dP

)s

(
dQ1
dP

)r

1A +
(

dQ2
dP

)s

(
dQ2
dP

)r

1Ω−A . Then Q ∈ Q̃ and ∀s > r, ∀f ∈ Fs,

EQ(f |Fr) = EQ1
(f1A|Fr) + EQ2

(f1(Ω−A)|Fr) P.a.s. so Q̃ is stable by
bifurcation.

3.2 Dynamic risk measure associated to a family of BMO

continuous martingales

For continuous BMO martingales we refer to the book of Kazamaki [21].
Consider a filtered complete probability space (Ω,F , P, (Ft)0≤t≤∞) satis-

fying the usual hypothesis. Let (Mt,Ft) be a uniformly integrable martingale
with M0 = 0 For 1 ≤ p <∞, let

||M ||BMOp = sup
S

||E[|M∞ −MS |
p|FS ]

1

p ||∞

the sup being taken over all stopping times S.
There is then a positive constant Kp such that for any uniformly inte-

grable continuous martingale:

||M ||BMO1
≤ ||M ||BMOp ≤ Kp||M ||BMO1

(IV )

Recall the following definition of the BMO martingales.
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A uniformly integrable continuous martingale Mt is a BMO continuous
martingale if ||M ||BMO1

<∞.
It is proved in Kazamaki [21] theorem 2.3. that if Mt is a continuous

BMO martingale, then E(M) is a uniformly integrable martingale (where
E(M)t = exp(Mt −

1
2 < M >t).

Definition 8 A family M of martingales on (Ω,F , P ) is stable if:
∀ 0 ≤ s, ∀(M,N) ∈ M2, ∀A ∈ Fs, (M̃)t defined by (M̃)t = (Nt −

Ns)1A + (Mt −Ms)1Ω−A + Ms for s < t and (M̃ )t = Mt for t ≤ s is a
martingale in M.

Remark: The set of continuous martingales on (Ω,F , P ) is stable.

Lemma 4 To each set M1 of martingales on (Ω,F , P ) is associated a min-
imal stable set of martingales M containing M1. It is the intersection of
all the stable sets of martingales containing M1.

M is the set of all martingales M̃ on (Ω,F , P ) for which there exists a
subdivision 0 = t0 < t1 < ...tn and for each i ∈ {0, ...n} there are disjoint
Fti measurable sets Ai,j such that UjAi,j and martingales Mi,j in M1

such that (M̃ )ti+1
− (M̃)ti =

∑
j((Mi,j)ti+1

− (Mi,j)ti)1Ai,j

The proof of this lemma is the same as the proof of lemma 3.
notation
Let M be a stable set of continuous BMO martingales. For eachM ∈ M,

denote (QM ) the probability measure equivalent to P of Radon Nikodym
derivative dQM

dP
= E(M). Denote Q(M) = {(QM )/M ∈ M}.

From lemmas 3 and 4 we deduce the following result:

Lemma 5 Let M be a stable set of continuous BMO martingales. Then the
set of probability measures Q(M) is both m-stable and stable by bifurcation.

It is proved in Kazamaki [21] that the class BMO(QM ) is equal to the
class BMO(P ). More precisely we can prove the following lemma:

Lemma 6 For every K > 0 there exists K̃ > 0 such that for every con-
tinuous BMO martingale M such that ||M ||BMO2(P ) ≤ K, for every X

continuous BMO martingale, ||X||BMO2(QM ) ≤ K̃||X||BMO2(P )
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Proof:
From theorem 3.1. of Kazamaki [21] there is p0 such that for every M

such that ||M ||BMO2(P ) ≤ K, for every p ≤ p0, E(M) satisfies

(Rp) E[(E(M))p
∞|FT ] ≤ Cp(E(M))p

T

for every stopping time T .
Apply now the conditional Hölder inequality (denote q the conjugate

exponent of p).

||X||BMO1(QM ) ≤ supT ||(E(( (E(M))∞
(E(M))T

)p|FT )||
1

p
∞||X||BMOq(P )

Applying now the inequalities (IV ) and Rp, we get

||X||BMO2(QM ) ≤ K2Kq(Cp)
1

p ||X||BMO2(P )

Q.e.d.
We are now able to construct dynamic risk measures using continuous

BMO martingales. We will give several exemples.

Proposition 7 Consider a stable family M of BMO continuous martin-
gales. Define on Q(M) the penalty function α as follows:

∀0 ≤ s ≤ t αs,t(QM ) = EQM
(Zt(M) − Zs(M)|Fs)

.
Assume that one of the following conditions is satisfied:
i) There is a positive bounded predictable process bs

such that

∀M ∈ M Zt(M) =

t∫

0

bsd[M,M ]s

ii) There is a positive K such that for all M ∈ M, ||M ||BMO(1) ≤ K.
There is a bounded predictable process bs such that

∀M ∈ M Zt(M) =

t∫

0

bsd[M,M ]s

iii) There is a positive K such that for all M ∈ M, ||M ||BMO(1) ≤ K.
There is a bounded predictable process H such that

∀M ∈ M Zt(M) = (H.M)t

Then
ρs,t(X) = esssupM∈M(EQM

(−X) − αs,t(QM ))
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defines a time-consistent dynamic risk measure on the filtered probability
space (Ω,F , P, (Ft)0≤t≤∞).

Proof:
Let 0 ≤ s ≤ t.
We verify first that esssupM∈M(−αs,t(QM )) is essentially bounded.
In cases i) and ii), The process bs is bounded by C.

αs,t(QM ) = (EQM
(

t∫
s

bud[M,M ]u|Fs)

||αs,t(QM )||∞ ≤ C(EQM
(

t∫
s

d[M,M ]u|Fs). So ||αs,t(QM )||∞ ≤ C||M ||2
BMO2(QM )

Applying now the preceding lemma, it follows that for eachM ,||αs,t(QM )||∞
is finite, and in case ii) that there is K̃ such that ||esssupM∈M(−αs,t(QM ))||∞ ≤
K̃

In case i), αs,t(QM ) ≥ 0 a.s. and αs,t(Q0) = 0 so esssupM∈M(−αs,t(QM )) =
0

In case iii) H is bounded by B, H.M is BMO and ||H.M ||BMO2
≤

B||M ||BMO2
≤ KB

So it follows from the inequality (IV) and the preceding lemma that
there is K ′ such that

∀M ∈ M ||αs,t(QM )||∞ ≤ ||H.M ||BMO1(QM ) ≤ K ′

So ||esssupM∈M(−αs,t(QM ))||∞ ≤ K ′

It remains to prove that the penalty function is local and satisfies the
cocycle condition.

-α is local:
Let (M1,M2) ∈ M2 let A ∈ Fs such that ∀X ∈ Ft EQM1

(X1A|Fs) =
EQM2

(X1A|Fs)

It follows that ( (E(M1))t

(E(M1))s
)1A = ( (E(M2))t

(E(M2))s
)1A and so for every s ≤ u ≤ t

1A((M1)u − (M1)s −
1
2 [M1,M1]

u
s ) = 1A((M2)u − (M2)s −

1
2 [M2,M2]

u
s )

From the unicity in the Doob Meyer decomposition, it follows that
1A((M1)u − (M1)s) = 1A(M2)u − (M2)s) and then in each of the cases of the
proposition, 1Aαs,t(QM1

) = 1Aαs,t(QM2
). So α is local.

- cocycle condition:
Let 0 ≤ r < s < t, let (M,N,R) ∈ M3 be such that

∀f ∈ EFt , EQM
(f |Fr) = EQR

(EQN
(f |Fs)|Fr)

i.e. ( (E(M))t

(E(M))r
) = ( (E(N))t

(E(N))s
)( (E(R))s

(E(R))r
). Then
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EQR
(αs,t(QN )|Fr)+αr,s(QR) = E( (E(R))s

(E(R))r
( (E(N))t

(E(N))s
(Zt(N)−Zs(N)|Fs)|Fr))

+E( (E(R))s

(E(R))r
(Zs(R) − Zr(R))|Fr)

Denote Yr,s = (E(R))s

(E(R))r
(Zs(R)−Zr(R)) It is Fs measurable and E(N) is a

martingale so
E(( (E(N))t

(E(N))s
Yr,s|Fr) = E(E(( (E(N))t

(E(N))s
|Fs)Yr,s|Fr)) = E(Yr,s|Fr)

It follows that
EQR

(αs,t(QN )|Fr) + αr,s(QR)

= E(( (E(M))t

(E(M))r
)(Zt(N) − Zs(N) + Zs(R) − Zr(R))|Fr).

As in the proof of the locality of α, Mu −Ms = Nu −Ns ∀s ≤ u ≤ t and
Mv −Mr = Rv −Rr ∀r ≤ v ≤ s. And then in each of the cases i) ii) and iii)
of the proposition, Zt(N) − Zs(N) + Zs(R) − Zr(R) = Zt(M) − Zr(M) So
α satisfies the cocycle condition.

Hence from the theorem 6, ρs,t is in each case a time-consistent dynamic
risk measure.

Q.e.d.
We give now an exemple of a stable family of continuous BMO martin-

gales of BMO norm uniformly bounded.

Lemma 7 Consider (Ni)1≤i≤k strongly orthogonal continuous martingales.
Consider (φi)1≤i≤k non negative predictable processes such that ∀i, φi.Ni is a
continuous BMO martingale. The set M of continuous BMO martingales of
the form the

∑
1≤i≤k Hi.Ni where Hi is a locally bounded predictable process

such that |Hi| ≤ φi a.s. is a stable set of continuous BMO martingales with
norm BMO uniformly bounded.

Proof:
It is easy to verify that this set is stable; and for every M ∈ M,

||M ||2BMO2
≤

∑
1≤i≤k ||φi.Ni||

2
BMO2

Q.e.d.
Now we can construct in this context another family of exemples of time-

consistent dynamic risk measures.

Proposition 8 Consider a family of strongly orthogonal continuous mar-
tingales (Ni)1≤i≤k. Consider a non negative locally bounded predictable φ
such that for all i, φ.Ni is BMO. As in the preceding lemma consider the
stable set M of BMO martingales

∑
1≤i≤k Hi.Ni with predictable Hi such

that |Hi| ≤ φ a.s. Consider as in the proposition 7, the penalty function α
defined on Q(M) as follows:

∀0 ≤ s ≤ t αs,t(QM ) = EQM
(Zt(M) − Zs(M)|Fs).
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Assume now that one of the following conditions is satisfied:
i) There are Borel functions bi(s, x1, x2, ..., xk) with quadratic growth

in (xi); i.e. there is a constant K > 0 such that |bi(s, x)| ≤ K(φ2 +∑
1≤i≤k |xi|

2) such that for ∀M ∈ M ,

Zt(
∑

1≤i≤k Hi.Ni) =
∑

1≤i≤k

t∫
0

bi(s,H1,H2, ...Hk)d[Ni, Ni]s

ii)There are Borel functions ai(s, x1, x2, ..., xk) with linear growth in (xi);
i.e. there is a constant K > 0 such that |ai(s, x1, x2, ..., xk)| ≤ K(φ +
sup1≤i≤k |xi| such that for ∀M ∈ M ,

Zt(
∑

1≤i≤k Hi.Ni) = (
∑

1≤i≤k ai(s,H1,H2, ...Hk).Ni)t
Then ρs,t(X) = esssupM∈M(EQM

(−X) − αs,t(QM )) defines a time-
consistent dynamic risk measure.

Proof:
The processes ai(s,H1(s),H2(s), ...Hk(s)) and bi(s,H1(s),H2(s), ...Hk(s))

are locally bounded predictable.
The proof of this proposition is similar to the proof of the preceding one.
In case i), we get that there is a constant C such that for every M =∑

1≤i≤k Hi.Ni,

||αs,t(QM )||∞ ≤ C(
∑

i(||φ.Ni||
2
BMO2(QM )

In case ii) we get that ||αs,t(QM )||∞ ≤ C
∑

1≤i≤k ||(φ.Ni)||BMO1(QM ).
As in the proof of case iii) of proposition 7, using the lemma 6 it follows

that esssupM∈M(−αs,t(QM )) is essentially bounded. The end of the proof
is as that of proposition 7

Proposition 9 Consider a family of strongly orthogonal continuous mar-
tingales (Ni)1≤i≤k. The set M of all the martingales of the form M =∑

1≤i≤k Hi.Ni such that Hi.Ni is BMO for all i is stable.
Consider bi(s, x1, x2, ..., xk) such that there is a non negative predictable pro-
cess ψi such that |bi(s, x1, x2, ..., xk)| ≤ k(ψi)

2 +
∑

1≤i≤k |xi|
2. Assume that

ψi.Ni is BMO.
Assume that ρs,t(X) = ess maxM∈M((EQM

(−X|Fs)−αs,t(QM )) P a.s.
where

∀0 ≤ s ≤ t αs,t(QM ) = EQM
(Zt(M) − Zs(M)|Fs) with

Zt(
∑

1≤i≤k Hi.Ni) =
∑

1≤i≤k

t∫
0

bi(s,H1,H2, ...Hk)d[Ni, Ni]s

Then the dynamic risk measure is time-consistent.

Proof:
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As bi(s, x1, x2, ..., xk) is of quadratic growth, from the preceding propo-
sition, for each M ||αs,t(QM )||∞ is finite for each M . Furthermore there is
M̃ in M such that

essmaxM∈M(−αs,t(QM ))=−αs,t(QM̃
) and hence it is essentially bounded.

The rest of the proof is the same as that of the preceding proposition.

Remark 5 This exemple generalizes the dynamic risk measures obtained
from the BSDE.

Indeed consider (Ω,F ,Ft, P ) where Ft is the augmented filtration of a d
dimensional Brownian motion. When the driver g(t, z) satisfies g(t, 0) = 0
and is continuous and convex(in z), and satisfies the condition of quadratic
growth the associated BSDE

−dyt = g(t, zt)dt− z∗t dBt

yT = X
has a solution which gives rise to a dynamic risk measure. ρs,T (−X) = ys

P. Barrieu and N. El Karoui [3] section 7.3 have computed the representation
associated to this dynamic risk measure, assuming that g is strongly convex.

ρs,t(X) = essmaxM∈M(EQM
(−X|Fs) − αs,t(QM ))

where M is the set of martingales of the form M =
∑

1≤i≤k Hi.Ni such
that Hi.Ni is BMO for all i. And the Ni are independent Brownian motions.
The penalty function is αs,t(QM ) = EQM

(Zt(M) − Zs(M)|Fs) with

Zt(
∑

1≤i≤k Hi.Ni) =
∑

1≤i≤k

t∫
0

G(s,H1,H2, ...Hk)ds

where G has quadratic growth. So the dynamic risk measures obtained as
solutions of BSDE are particular cases of the dynamic risk measures obtained
in the preceding proposition when the reference orthogonal martingales are
independent Brownian motions.

In that sense the dynamic risk measures constructed as in the preceding
propositions can be viewed as generalizations of the BSDE when we start
with general continuous uniformly integrable martingales; and no more with
Brownian motions.

Now we will give more exemples constructed in the same manner using
as before BMO martingales. But now we do not assume continuity of the
martingales. We consider cadlag BMO martingales. Jumps are allowed.

3.3 Dynamic risk measure associated to a family of BMO

martingales with jumps

The references for the general right continuous BMO martingales are the
papers of C.Doléans-Dade and P.A.Meyer [12] and [13]
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Consider a filtered complete probability space (Ω,F , P, (Ft)0≤t≤∞) sat-
isfying the usual hypothesis. Let (Mt,Ft)0≤t≤T be a (uniformly integrable)
square integrable cadlag martingale with M0 = 0. M is in BMO if

||M ||BMO = supS||E[[M,M ]∞S−|FS ]||
1

2
∞

is finite (where [M,M ]∞S− means [M,M ]∞ − [M,M ]S−).
Denote E(M) the unique solution of the stochastic integral

Zt = 1 +
t∫
0

Zs−dMs. It is well known that

E(M)t = exp(Mt −
1
2 < M c,M c >t)Πs≤t(1 + ∆Ms)e

−∆Ms .
Recall now the following result which is included in the proof of theorem

1 of C.Dolans-Dade and P.A.Meyer [12].
Let M a BMO martingale (M0 = 0) such that ||M ||BMO < 1

8 , then E(M)
is a strictly positive process which is a martingale.

In order to construct time-consistent dynamic risk measures we will make
use of the two following lemmas:

Lemma 8 Assume that M is a BMO martingale. Then for every T ,
E(([M,M ]∞

T− )2|FT ) ≤ 2(||M ||BMO)4.

Proof:
We apply the theorem 23 of the chapter V of [22] to the increasing

process [M,M ]t, the constant positive random variable (||M ||BMO)2 and
the continuous increasing function φ(x) = 2x.

Thus we get E(([M,M ]∞)2|F0) ≤ 2E([M,M ]∞(||M ||BMO)2. We end
the proof as in the proof of the lemma 1 in [12] applying the preceding
result to the martingale M ′

t = MT+t −MT−, and the σ-algebras F ′
t = FT+t.

Lemma 9 Assume that M is a BMO martingale with |M ||BMO ≤ K < 1
16 .

Then E(( E(M)∞
E(M)

T−
)2|FT ) ≤ 1

1−16K
<∞.

Proof:
( E(M)∞
E(M)

T−
)2 = exp2[(M∞ −MT−) − (< M c,M c >∞ − < M c,M c >T−)]

(Πs≥T (1 + ∆Ms)e
−∆Ms)2.

The jumps of M are bounded by ||M ||BMO < 1.
As in the proof of theorem 1 in [12], it follows from the inequality ex ≥

1 + x that each factor of the preceding infinite product is between 0 and 1.
It follows that ( E(M)∞

E(M)
T−

)2 ≤ exp 2|M∞ −MT− |
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Consider now as in the end of the proof of the preceding lemma the
martingale M ′

t = MT+t −MT− , the σ-algebras F ′
t = FT+t.

Let M ′∗ = supt |M
′
t |. It follows then from the John Nirenberg inequality

that E(exp(2M ′∗)|F ′
0) <

1
1−16||M ||BMO

.
Q.e.d.
We are now able to construct dynamic risk measures associated to stable

sets of BMO martingales with BMO norms bounded by a constant K < 1
16 .

Proposition 10 Consider a stable family M of BMO cadlag martingales
(with M0 = 0). Assume that there is a 0 < K < 1

16 such that for every
M ∈ M, ||M ||BMO ≤ K. For every M denote QM the probability measure
such that dQM

dP
= E(M).

Define on Q(M) the penalty function α as follows:
∀0 ≤ s ≤ t αs,t(QM ) = EQM

(Zt(M) − Zs(M)|Fs).
Assume that one of the following conditions is satisfied:
i) There is a bounded predictable process bs

such that ∀M ∈ M Zt(M) =
t∫
0

bsd[M,M ]s

ii) There is a bounded predictable process H such that ∀M ∈ M Zt(M) =
(H.M)t

Then ρs,t(X) = esssupM∈M(EQM
(−X) − αs,t(QM )) defines a time-

consistent dynamic risk measure.

Proof:
As ||M ||BMO < K and K < 1

8 , it follows that E(M) is a strictly positive
martingale and so QM is a probability measure equivalent to P .

In case i) as the process bs is bounded by C,
||αs,t(QM )||∞ ≤ C||(EQM

([M,M ]ts|Fs)||∞
Applying the conditional Hölder inequality and the two preceding lemma,

we get that for every M ∈ M

||αs,t(QM )||2∞ ≤ C2||E((
E(M)t

E(M)s
)2|Fs)||∞||E(([M,M ]∞s )2|Fs)||∞ ≤

4C2

1 − 16K
K4

and so ||esssupM∈M(−αs,t(QM ))||∞ is finite.
In case ii), the proof is similar.
The proof of the locality and the cocycle condition of α is the same as

in the case of continuous BMO martingales.
We give now another exemple in the case where the family M is con-

structed from a family of orthogonal BMO martingales.
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Proposition 11 Consider a family of strongly orthogonal cadlag martin-
gales (Ni)1≤i≤k (with (Ni)0 = 0). Consider a locally bounded non negative
predictable φ such that for all i, φ.Ni is BMO and such that:
(
∑

1≤i≤k(||φ.Ni||BMO)2)
1

2 < 1
16 . Consider the stable set M of BMO mar-

tingales
∑

1≤i≤k Hi.Ni with |Hi| ≤ φ a.s. Consider the penalty function α
defined on Q(M) as in proposition 8.

Then ρs,t(X) = esssupM∈M(EQM
(−X)−αs,t(QM )) defines a time con-

sistent dynamic risk measure.

The proof of this proposition is similar to that of the preceding one.

Conclusion

Making use of the conditional risk measures and their dual representation
obtained in [5], we have studied the dynamic risk measures both in discrete
time and in continuous time.

In discrete time (section 2), the study is done in a context of uncertainty
(without fixing in advance a probability measure), which is very relevant for
the study of financial markets. The main result is that when the filtration
Fn is the natural filtration of a IRl valued process bounded at each time,
we can associate canonically a class of probability measures to any dynamic
risk measure continuous from below.

We prove also that a dynamic risk measure (which is sequence of condi-
tional risk measures) can be viewed as a single conditional risk measure on
a bigger space.

In continuous time (section 3) we have fully characterized the time-
consistency of a dynamic risk measure on a filtered probability space, in
terms of its dual representation: stability of the set of probability mea-
sures and cocycle condition of the minimal penalty function. We have also
proved that a dynamic risk measure defined from any stable set of proba-
bility measures and any penalty function (which is not assumed to be the
minimal one) is time-consistent if the penalty function is local and satisfies
the cocycle condition.

This allows us to construct new families of time-consistent dynamic risk
measures using BMO martingales. The examples obtained generalize the
dynamic risk measures which are obtained as solutions of BSDE. Using BMO
right continuous martingales, we also construct time-consistent dynamic risk
measures which can have jumps. These various examples will be very usefull
for dynamic pricing and hedging in incomplete markets. This will be the
subject of a future work.
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