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Abstract

In a previous paper [1], a multiscale finite element method was intro-
duced for performing numerical homogenization in the case of scalar el-
liptic boundary value problems with highly oscillating coefficients. The
present report shows that the use of such a method is also possible for
numerical approximation of the solution of parabolic equations which
model many problems in science and engineering such that chemical
diffusion of radionucleides in highly heterogeous media.

1 Introduction

The aim of the GAR ' MOMAS of the CNRS is to develop numerical meth-
ods to simulate radioactive waste management problems in deep geological
formation. Thus, the knowledges of the mean field solution but also of the
local fluctuations in a highly heterogeneous problem are very important in
many applications. Diffusion in porous media is an example. The major dif-
ficulty for numerical simulation is to take into account the spatial variability
of the parameters used to characterize the relevant physical properties of
the medium : classical finite element methods (or any other methods) give
good approximation only if the mesh size is smaller than the finest scale and
this leads to prohibitively large amount of computer memory and CPU time.
Thus, a direct simulation of such problems exceeds the existing computer re-
sources. In a previous work, a new multiscale finite element was introduced
[1] to overcome these difficulties for scalar elliptic boundary value problems.
This method was developped in the spirit of Hou and Wu’s ([8], [9]). In
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this report, we extend this method to the numerical approximation of the
solution of a parabolic problem.

In the following, the notation € > 0 stands for some small scale. Let 2 be a
bounded open set of R™ and let I'° and I'! be a partition of the boundary
09 of 2. We denotes by v denoting the exterior unit normal to 9f2.

Let T > 0 be a given positive number. We set

Qr = Qx]0,T[, T = T'x]0,T[ (i =0,1).

Let f € L?(0,T;H () and let ® € C'([0,7]) be the function with
compact support inside the interval 0,7 such that ®(0) = 0. Let uy €
L?(92). Our model problem is to find a function u® satisfying

(- O0u® .
P —div{A® gradu®} = f in Qp
v = 0 onTY (1)
ouf
o d(t) onTh

£

where the notation stands for A°grad u® .v.

U pe
Furthermore, the solution «°® satisfies the initial condition

uE(O,x) = Uug- (2)

In the present work, all the characteristic properties of the medium are given
data which are assumed to be independant on t. We assume that p° € L*°(Q)
and that there exists two positive constants A; and Ay such that 0 < A\ <
p° < A2 a.ein

The matrix A° = (af;)7;_; is non-necessarily symmetric and all the coef-
ficients belong to L*°(£2). We assume that A° is uniformly bounded and
coercive.

This report has been organized into two parts. The first one (sections 2 and
3) concerns the straightforward extension of our multiscale approach devel-
opped in [1]. The second part (section 4) deals with numerical experiments
of the algorithm previously described to highly heteregeneous unstationary
problems with applications to the storage of nuclear waste.

2 Homogenization theory and approximate varia-
tional formulation
2.1 H-convergence and oscillating test functions

The variational formulation of (1) is classical. Let V' be the functional space
V = {veH(Q);v=00nI" and denote a°(.,.) the continue and co-



ercive bilinear form over H'(Q) associated to the operator A® :
a®(u,v) = /Aagrad u - grad v dz.
Q

Then u® is the unique function in L?(0,T;V) N C° ([O,T];LQ(Q)) which
satisfies, for all vin V,

d

% (pa(x) ua(t),’U)Lz(Q) + as(us(t),’U) = (f,’U)LQ(Q) + /qu)(t) vdo (3)

and the initial condition
u®(0) = up. (4)

We know that, up to a subsequence, the sequence of matrices A* € L>(2; M, 3)
H-converges, when ¢ tends to zero, to a homogenized matrix A* € L*(2; M, )
where, for given positive constants o > 0 and 3 > 0, M, 3 is the subspace
of square real matrices of order n (denoted by M,) which are coercive as
well as their inverses

Mg = {M €M, ; MEL>al¢]?, MTlee > Bl¢f?, veE e R}

(for details on H-convergence theory see e.g. [10], [2]).
The sequence of solutions u® of (1) satisfies

u® — u* weakly in L?(0,T;V) (¢ —0),
Afgradu® — A*gradu* weakly in L? (0,T; L*(Q)") (e — 0),

where u* € L? (0, T; V)NCP ([0,T]; L*(Q2)) is the solution of the homogenized
problem

o @;t —div{A* gradu*} = f in Qp
u* = 0 on T (5)
ou*
o ®d(t) onTi
satisfying the initial condition u*(0) = wug. Further, we also know that

u® — u*strongly in L? (0, T; L*()).

The existence of the so-called oscillating test functions is the key point of the
sequential compactness property which defines the H-limit of the sequence
(A%).oo- These ones are neither explicit (they depend on A*) nor unique
(they are unique up to the addition of a sequence converging strongly to



zero in H'(€2)). As in [1], we define them as the solutions of the following
abstract boundary value problems (j = 1,...,n)

—div{A® grad w5} = —div{A"e;} inQ
(6)

(CHEE on 0f).

where (e;)j=1,, denotes the canonical basis of R".

2.2 An approximate variational formulation

As in the elliptic case, we can immediatly deduce from corrector results
(see [1] and [7]) that, if the homogenized solution is smoother, say u* €
L? (0, T; W%>(Q)), then

*

u® :u*—i—Z(@f(:ﬂ)—xl)g—Z + 7l (7)
i=1 !

where the remainder r. converges strongly to zero in L? (0, T; H' (Q)) The
same remark on the corrector result developped in [1] is available : the right-
hand side of formula (7) looks like the first order Taylor expansion of u* at
the point w*(x) = (w5 (z), ..., w5 (x)) and indicates that u(z,t) may well be
approximated by u*(t) o @°(x). Thus, assuming u* € L* (0,T; W2 (Q)),
the representation of the solution u® takes the form :

u®(z,t) = u* (0°(x),t) + 7°(¢t, ) (8)

where @5 denotes the family of oscillating test functions defined in (6) and
7° the remainder term which converges strongly to zero in L? (0,T;V).
Following [1] and denoting we (x,t) = (wi(x),...,w;(x),t), we can see that
the approximation of the principal part of the solution u®, i.e. u* o we , may
serve as a substitute for the approximation of the solution of problem (1).
The representation formula (8) for u. suggests an approximation of the vari-
ational formulation (3)-(4). Indeed, it is equivalent to

d e * _T17€ E( 2% & TI7E
%(p(x)u OW’U)L2(Q) + a(u*oWe v)
(9)
= (f,’l})LQ(Q) + / @(t)vda — as(;‘\e7 U)
rt

Vv € V, where the last term tends to zero. Dropping it and choosing an
adequate subspace of V' should yield a good approximation of (3). From the
additional regularity w° € W1>°(Q;R"), we can define a closed subspace of
v



Ve ={v eV;3veV, v =vow}, (10)

since @° € W1>°(Q; R™) implies that v o @w° belongs to V as soon as v does.
We defined the approximate variational formulation as:

find uw € L? (0, 7;V) N CY (0,T; L*(Q)) such that

4 (ps(a:) u o Ws,v)

dt

iy 0 WEW,0) = (F0) 50y + [ 2(0) i

1_‘1
u o We(0) = ug
(11)
for all v € V. By the Lax-Milgram theorem (11) admits a unique solution
wo W¢ in L2 (0,7;V¢). In the following, we will call u the substituting
homogenized solution and like in [1], we remark that u actually depends on
e but it oscillates less compared to u. (see also [11]).

3 Multiscale finite element method and time-stepping
method

3.1 Approximation of the oscillating test functions

Recall the local approximation of the oscillating test functions used in [1]
for a two-phase composite material simulation. For simplicity we assume
Q) C R?. Our approach can easily be generalized to higher dimensions. We
first introduce a coarse mesh of ¢} which, for simplicity, is assumed to be
polyhedral. This coarse mesh is a conforming triangulation 7 such that

Q= Jxk
KeTy,
where the elements K satisfy diam(K) < h and the mesh size h is larger
than the space scale of oscillations ¢, i.e. h > ¢.

Then, each oscillating test function @ is localy (i.e. in each coarse cell K)
approximate by ﬁfK solution of

—div{A®(z) grad @f’K} =0 in K,
(12)
ﬁ}fK = bf’K(x) on 0K,

where, on each side S of the cell K, bf’K(a:) is either equal to z; if SNOQ # ()
or is the solution of the following boundary value problem. If the side S



is parametrized by a curvilinear coordinate s € [0, 1], the boundary data
be(as(s)) is the solution of

e, K
d (A%a:(s))%) =0 forx(s) €S,

ds 5

with the following boundary conditions at the two end points of S (which
are corners of K)

b7 (2(0)) = 24(0) b2 (2(1)) = 24(1).

These boundary conditions (see [8], [1]) are introduced to allow the necessary
oscillating character of the oscillating functions on the coarse cell boundaries.
Collecting together these local approximations we define @f’h € H'(Q) by

. e K . . .
wf’h = w;" for each K € T, and we set wsh = (wi’h,...,wf{h) €

HY(Q;R™).

A numerical approximation of the local oscillating test functions defined
in (12) is computed by using a classical conforming finite element in each
K € T}, (P;» Lagrange for example). We use the same notations except that
we drop the hat notation to refer the approximations. In numerical practice
we content ourselves in using IP; finite elements for computing w®".

3.2 Semi-discretization in space

The use of our multiscale finite element method is straightforward to obtain
a semi-discretization of the problem (11).

Let V}, C V be a finite dimensional subspace (dim V}, = N},) corresponding
to a conforming finite element method defined on the coarse mesh (12).
Typically we use P, Lagrange finite elements. Let (@?) I=1... N, denote a
finite element basis of V},. In order to compute a numerical approximation
up, of the substituting homogenized solution u, we introduce an oscillating

(or multiscale) finite element basis defined by

7" (x) = B ow(z), (I=1,...,Np). (13)

Therefore we obtain a conformal finite element method associated to the
coarse mesh 7;, and we denote by V;> C V' the space spanned by the functions
g,h»

(@f’h)l LN Roughly speaking, V7 is the space “V}, o w
=d5-054Vp

Denoting W& = (wi’h(:z),t), and from the approximate variational for-

mulation (4), we deduce a numerical approximation:
Find uy o Weh € Vy> such that



% (Pe(ﬂf) up o W v 0 We’h) @) +  a*(up 0o W v o WEN)

_ e,h h
= (Fono W) gy + [ @O w0 Wt

(14)
for all v, o W& € ViF and uj, o Wo(0) = uy.

3.3 Time discretization

Checking the approximation of uf in the form

Ny,
up o Wl (2, t) =) up (1) @7 (x)
=1
we are lead to solve the differential system

e O} | e ) 0) = o)

where M€, K¢ are respectively the mass and the stiffness matrices and F*©
the right hand side coming from the multiscale finite element discretisation.
The vector {uy(t)} € R¥» represent the approximated values at time ¢ of
the substituting homogenized solution at the nodes of the coarse mesh.
Then, we solve the system with an implicit Euler method (for instance). Let
At be the uniform time step used for time discretization (At = T'/M where
M is the number of time steps). The backward Euler’s method takes the
form

(M® + AtKE) {ugnan } = A FG, ) + M {ug)}

where {u(n)} € RMr denotes the approximation of the solution at the time
nAt.

4 Numerical experiments

The numerical experiments presented in this section concern two cases of
non-periodic homogenization. In the first one, we consider a transmission
problem within a heterogeneous composite material and an homogeneous
one. The second numerical experiment concerns a diffusion process from a
hole inside an heterogeneous composite material.



4.1 Implementation details

Once the coarse mesh of the domain €2 has been built with triangular ele-
ments, the implementation of the implicit Euler scheme using our multiscale
method in the Py case (denoted by Po-MSFEM) is achieved in two major
steps. In the following, we suppose that the right hand side of the partial
differential equation, namely f, is a product of a time dependant function
by a spatial one.

The first step consists in assembling the mass and the stiffness matrices
(which are supposed not to depend on time) as well as the spatial part of
the right hand side. Then, in a second step the time-marching is achieved.
Hence, the first step includes the set of computations (which can be done in
parallel) of the oscillating functions as well as the elementary contributions
(matrices and right hand sides) from each cell of the coarse mesh for the
unsteady problem at hand.

The numerical approximations of the oscillating functions itself are per-
formed by using a classical P1-Lagrange finite element method. To the end
of post-processing, they are saved on files.

More precisely, each coarse element K is meshed with triangles and for each
element T' of this mesh denoted ’Z;ZI,{ , a weighted mean conductivity is com-
puted. It combines values of conductivity of the materials with the volumic
fractions in the element T" € ’]71[,{ (heterogeneous composite mediums are de-
scribed by piecewise constant properties). Then, the elementary quantities
are computed using a two-dimensional centered trapezoidal rule. After as-
sembling these elementary contributions to build the matrix and the right
hand side, and after taking into account the boundary conditions on 0K,
the resulting linear system is solved by the Cholesky method.

Once the calculations of the oscillating functions have be done, we can com-
pute the elementary contributions corresponding to each coarse element K.
A two-dimensional seven points Gauss rule is used to compute the contri-
butions of each element 7' of the local fine mesh ’Z}f,{ . The same computing
procedure is used to evaluate the weighted mean value for the properties of
the media used in these numerical integrations.

Then, assembling these elementary contributions leads to build the mass,
the stifness matrices and the spatial part of the right hand side which are
used in the second step of the time-stepping method.

The matrix (M® + A ¢K?) is factorized once for all at the first step and only
the right hand side is updated at all time steps.

Thanks to the backup files of the oscillating functions, the numerical ap-
proximation of the solution as well as the flux density are given by a post-
processing inside each element of the coarse mesh 7p,.



4.2 A transmission problem

In this numerical experimentation, the domain €2 is composed of two parts.
The upper one consists in a homogeneous material whereas the lower is
a heterogeneous one (see fig. 1). The heterogeneous composite material
is made up of a pseudo random distribution of 10* spherical inclusions in
a background matrix. Both phases are isotropic with a high conductivity
Af(x) = 10? in the inclusions and a lower one A°(z) = 1 in the matrix and
in the upper homogeneous medium.

Figure 1: Coarse mesh of the computational domain

This numerical experiment corresponds to a minimum distance between two
inclusions of ¢ = 5.1073 and a particle diameter of £/2. A time dependant
flux is imposed on the lower part of the boundary of the computational
domain. The solution is zero on the upper part of the boundary and satisfies
a homogeneous Newman condition on the vertical edges.

At a very small scale, one can clearly see the diffusion channels between close
inclusions (see fig. 3).
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Figure 2: Computed solutions at the 500 and 1000 time step

Figure 3: Close-up of the flux density at the 500 and 1000 time step in an
element of the coarse mesh.
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4.3 A diffusion process from a fissure

From its low permeability and strong capacity for radionucleide retention,
the clayey media is a natural geological barrier for nuclear waste storage [3].
Thus, the so-called Callovo-Ozfordien geological formation, which is made
of argilite, was choosen for such a site. In the site of Bure (France), the
argilite contains clay (25% to 60%) and other materials such as calcite (15%
to 50%), quartz (25% to 30%) pyrite (2% to 3%) and organic material (0.5%
to 2%). During the building of repositories, the mechanical excavation of
galleries in the clayey rocks leads to damaging their neighbourhoods [4] :
many fissures and micro-fissures have been generated. In such a medium,
the radionucleide transport is essentially governed by diffusion processes: the
dimensionless Peclet number, which gives a rough estimate of the relative
signifiance of convective and diffusive transfert, is of order 0.02 for the anions
[5].

The aim of the numerical experimentation below is to simulate the diffu-
sion process of radionucleides from a fissure of the excavation disturbed or
damaged zone (EDZ) into a region of the clayey media (see fig. 4).

Bentonite

Concrete

Crack type

Computational domain
Argilitewith quartz enrichment

Figure 4: The excavation disturbed or damaged zone (EDZ).
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More precisely, we approximate the time-dependant concentration of iodine
1297 which is solution of the diffusion equation in a domain  (a unit square
of one m?) surrounding the fissure of width 2.0 10~3m (see fig. 5). The
diffusion coefficient for '2°T in the argilite we have used, is 1071m?/s. Let
us note that this one is an effective coefficient and thus it takes into account
all the porosity forms inside the medium.

i
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Figure 5: Coarse mesh of the computational domain and close-up round
of the fissure.

Our simulation assumes that the surrounding fissure contains a quartz en-
richment of 12.5% (represented by 10° nearly non-diffusive sperical quartz
grains of width 0.2 1073m) for which the effective diffusion coefficient is
10728m? /year ([5]). Note that such an enrichment has been pointed up fif-
teen kilometers to the North of the storage site (|5]) but is only of 5% to
10% for finest quartz grains.

The diffusing species are supplied from a square shaped source (2.0 10~3m),
representing a crack type, centered in the domain €. A given flux is given on
its boundary I''. The characteristic time scale ¢, related to the characteristic
diffusion length L., is approximatively t. ~ L?/2. x D, 7f where D¢ is the
effective diffusion coefficient. Let us note t’c = D¢fs.t.. For L, = 1/2, this
gives t, ~ 20 years (ie t, = 0.0625) and for L. = 3/4, t. ~ 44 years (ie
t. = 0.140625). The function ® which describes the time behaviour of the
flux density through the hole is one mass unit per m~2.s~! during 20 years
and decrease linearly during 24 years. After this period the flux density is
zero. The total duration of the numerical integration is 64 years (ie t,, = 0.2).
The concentration is supposed to be zero on the exterior boundary I'? of Q.
The time step At of the numerical integration is 1075.

Another simulation of this time evolution has been made without enrichment
of quartz : the only material considered here is the argilite (see fig. 7). As
expected the enrichment of quartz contributes to a retardation effect of the
iodine transport (see fig. 8)). From this simulation and from the previous
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Figure 6: Numerical simulation with a Po-MSFEM. The figures show the
numerical homogenized concentration of iodine '2°I at the different time
steps (2, 63 and 200).

Figure 7: Numerical simulation with a Po-FEM. The figures show the nu-
merical homogenized concentration of iodine 2?1 at the same time steps in
argilite without enrichment of quartz.

one, we deduce the mean radius of two same valued level lines obtained at
the end of the time integration. The square of the ratio of this mean radius
gives the factor for an approximation of a new effective diffusion coefficient :
the two-phase composite material used for our simulation (which is made up
of quartz spherical inclusions in an argilite background matrix) corresponds
to a homogeneous one with an effective diffusion coefficient equal to a factor
0.92 of an argilite one.

However, this numerical result must be specified since on the one hand the
experimental diffusion coefficients are known with a high uncertainty and
on the other hand our model does not take into account that arround the
inclusions of quartz grains there exist a porosity filled with water which
increase the diffusion (see fig. 9).
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Figure 8: Superposition of two same valued level lines obtained at the end
of the time integration. The exterior one corresponds to the homogeneous
case (ie without enrichment of quartz).

Figure 9: Argilite of so-called Callovo-Ozfordien French geological formation:
pore (P), quartz (Q) and clay minerals [5].
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