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Abstract

We introduce a distinction between model-based and model-free arbitrage
and formulate an operational de�nition for absence of model-free arbitrage in a
�nancial market, in terms of a set of minimal requirements for the pricing rule
prevailing in the market. We show that any pricing rule verifying these prop-
erties can be represented as a conditional expectation operator with respect to
a probability measure under which prices of traded assets follow martingales.
Our result can be viewed as a model-free version of the fundamental theorem
of asset pricing, which does not require any notion of �reference" probability
measure.
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1 Introduction

1.1 Model-based vs model-free arbitrage

Stochastic models of �nancial markets represent the evolution of the prices of �-
nancial products as stochastic processes de�ned on some (�ltered) probability space
(Ω, (Ft)t≥0,P), where it is usually assumed [9, 10, 13, 12, 14] that an �objective"
probability measure P, describing the random evolution of market prices, is given.
Given a set of benchmark assets (St)t≥0, described as semimartingales under P, the
gain of a trading strategy (φt)t≥0 is de�ned via the stochastic integral

∫
φdS with

respect to the price processes. Then, one introduces the set of (P-)admissible trading

strategies as strategies with limited liability i.e. whose value is P-a.s. bounded from
below [9, 10]:

φ is admissible if ∃c ∈ R such that for all t, P(

∫ t

0

φ dS ≥ −c) = 1

An arbitrage opportunity is then de�ned as an admissible strategy φ such that

P(

∫ T

0

φ dS ≥ 0) = 1 and P(

∫ T

0

φ dS > 0) > 0, (1)

a de�nition which depends on P through its null-sets.
The Fundamental Theorem of Asset Pricing [12], which is the theoretical founda-

tion underlying the use of martingale methods in derivative pricing, is then loosely
summarized as follows: roughly speaking, in a market where no such arbitrage op-
portunities exist, there exists a probability measure Q equivalent to P such that
the (discounted) value Vt(H) of any contingent claim with terminal payo� H is
represented by:

Vt(H) = EQ[H|Ft] (2)

Loosely speaking: if the market is arbitrage-free, prices can be represented as con-
ditional expectations with respect to some �equivalent martingale measure" Q.

However, as noted by Kabanov [13], the precise formulation of this fundamental
result is quite technical. In the case of market models with an in�nite set of market
scenarios, absence of arbitrage has to be replaced by a stronger condition known as
No Free Lunch with Vanishing Risk, which means requiring that, for any sequence of
admissible strategies with terminal gains fn =

∫ T

0
φndS, such the negative parts f−n

tend to 0 uniformly and such that fn → f ∗ P-almost surely, we have P(f ∗=0) = 1.
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Under the NFLVR condition, one obtains [6, 9, 10, 13] the existence of a probability
measure Q equivalent to P such that the (discounted) value Vt(H) of a contingent
claim with terminal payo� H is represented by:

Vt(H) = EQ[H|Ft] (3)

Furthermore, in the case of unbounded price processes the martingale property
should be replaced by the weaker local martingale or �σ-martingale� properties [9,
10]. In addition, when asset prices are not locally bounded (as in a model with
unbounded price jumps), the only admissible investments are those in the risk-free
asset, which makes the above de�nitions somewhat trivial: the set of strategies needs
to to be suitably enlarged [3, 4].

All these additional technical assumptions are less obvious to justify in economic
terms. But perhaps the most important aspect of this characterization of absence
of arbitrage in terms of �equivalent martingale measures" is the way an arbitrage
opportunity (or free lunch) is de�ned: the de�nition explicitly refers to an objective
probability measure P. In �nancial terms, such a strategy is more appropriately
termed a model-based arbitrage, where the term �model" refers to the choice of
P. The absence of arbitrage is then justi�ed by saying that, if such an arbitrage
opportunity would appear in the market, market participants (�arbitrageurs") would
exploit it and make it disappear. This argument implicitly assumes that market
participants are able to detect whether a given trading strategy is an arbitrage. Such
a reasoning can be safely applied to model-free arbitrage opportunities: for instance,
if discrepancies appear between an index and its components or if triangle arbitrage
relations in foreign exchange markets are not respected, market participants will
presumably trade on them. In fact this is the basis of many automated �program"
trading strategies, which make such arbitrage opportunities short-lived.

But the argument is less obvious when applied to a model-based arbitrage. A
model-based arbitrage opportunity is risk-free if the model P on which it is based is
equivalent to the (unknown) one underlying the market dynamics. Once �model risk"
� i.e. the possibility that P is misspeci�ed� is taken into account, a model-based
arbitrage is not riskless anymore. However model uncertainty cannot be ignored
when dealing with the pricing of derivative instruments [7] and model-based arbi-
trage strategies can in fact be quite risky. Hence, market participants will attempt
to exploit a model-based arbitrage opportunity if they believe that there is some
market consensus on the underlying model i.e. that market prices will not move in
a way which is precluded in the model.
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However, in �nancial markets, and even more so in the context of derivative
pricing, there is no consensus on the �underlying model� P [7]: the relevance of a
de�nition of arbitrage which relies on the existence of a consensual or �objective"
probability measure may thus be questioned.

Market consensus is expressed, not in terms of probabilities, but in terms of prices
of various underlying assets and their derivatives traded in the market. It thus seems
more natural to formulate the absence of arbitrage in terms of properties of market
prices, that is, as constraints linking the relative values of traded instruments. Well-
known constraints of this type are cash-and-carry arbitrage relations between spot
and forward prices, spot relations between an index and its components, triangle
relations between exchange rates, put-call parity relations, arbitrage inequalities
linking values of call and put options of di�erent strikes and maturities, in-out
parity relations for barrier options.

Characterization of arbitrage-free price systems in terms of equivalent martingale
measures also contrasts with the way the martingale pricing approach is commonly
used in derivatives markets. Derivative pricing models are usually speci�ed in terms
of a (parametric) family (Qθ, θ ∈ E) of �martingale measures" and the parameters θ
of the pricing model are typically obtained by calibrating them to observed prices of
various derivatives. The speci�cation of an objective probability measure typically
plays no role in this process. In fact, in most cases (Black-Scholes model, di�usion
models, stochastic volatility models,..) the probability measures (Qθ, θ ∈ E) are
mutually singular so the model selection problem cannot be formulated as a search
among martingale measures equivalent to a given measure P [2]. So, any charac-
terization of absence of arbitrage in terms of equivalent martingale measure would
appear as inconsistent with the practice of specifying and calibrating pricing rules
in this way.

Our goal in the present work is to present a formulation of the martingale ap-
proach to derivative pricing which is

• consistent with the way arbitrage constraints are formulated by market par-
ticipants, namely, in terms of market prices

• consistent with the way derivative pricing models are speci�ed and calibrated
in practice, that is, without referring to any �objective" probability measure.

We will start by formulating a set of minimal requirements for a pricing rule which
can be interpreted as absence of model-free arbitrage. These requirements are formu-
lated in terms of properties of prices (i.e. market observables), which is closer to the
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way arbitrage constraints are viewed in a �nancial markets, and without resorting
to any reference probability measure.

We will then show that any pricing rule verifying these minimal assumptions can
be represented by a conditional expectation operator with respect to a probability
measure Q under which prices of traded assets are martingales (�martingale mea-
sure"). Our proof is based on simple probabilistic arguments. Our result can thus
be viewed as a model-free version of the fundamental theorem of asset pricing.

1.2 Relation with previous literature

As noted above, classical formulations of the Fundamental Theorem of Asset pricing
are based on the absence of model-based arbitrage (which includes model-free arbi-
trage as a special case). It is therefore interesting that one obtains a similar result
with weaker assumptions. Since our result does not hinge on the existence of an
objective probability measure, it is robust to model misspeci�cation, an important
issue in �nancial modeling. The relation of our framework to classical formulations
of the Fundamental Theorem of Asset pricing are further discussed in Section 4.

A similar formulation of properties of pricing rules was proposed by Rogers [14].
In [14], a pricing rule was de�ned as a map on L∞(Ω,P) for some reference proba-
bility measure P. Unlike [14], our formulation avoids any reference to a consensual
or �objective" probability measure, and the set of contingent claims i.e. the domain
of the pricing rule is determined a posteriori, not imposed a priori. We believe this
renders our approach more general and more amenable to �nancial interpretation.
This point is further commented upon in Section 4.2.

1.3 Outline

The article is structured as follows. In Section 2 we discuss some reasonable and
�nancially meaningful requirements for a pricing rule and formulate them in mathe-
matical terms. In Section 3 we characterize any pricing rule verifying these require-
ments as conditional expectation with respect to a martingale measure. Section 4
discusses some implications of our result and its relation to previous literature on
arbitrage theorems.
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2 De�nitions and notations

Let (Ω, (Ft)t∈[0,T ]) be the set of market scenarios endowed with a �ltration (Ft)t∈[0,T ]

representing the �ow of information with time (in particular, F0 is trivial). Let L0

denote the space of R-valued, FT -measurable random variables, representing payo�s
of contingent claims and let L∞ denote the subspace of bounded variables.

Let Y be the set of the non-anticipative processes

Y : Ω× [0, T ] → R ∪ {+∞,−∞}

i.e. such that for each t, Yt is R ∪ {+∞,−∞}-valued and Ft-measurable.
A pricing rule can be seen as an operator Π : L0 → Y which assigns a price

process Πt(H) to each contingent claim H ∈ L0. Note that a pricing rule does
not necessarily assign a �nite price to all payo�s H ∈ L0. Denote by Dom(Π) the
domain of Π, that is, the set of payo�s with a �nite price:

Dom(Π) , {G ∈ L0 | Π(G) is �nite valued}

We can now formulate the minimal requirements for a pricing rule via the following
de�nition:

De�nition 1. A pricing rule is a mapping

Π : L0 → Y (4)

H 7→ (Πt(H))t∈[0,T ]

that satis�es the following properties:

A1 If G,H ∈ Dom(Π), then K = max(G,H) ∈ Dom(Π).

A2 Positivity. For any H ∈ L0, if H ≥ 0, then Π(H) ≥ 0.

A3 Ft-linearity on Dom(Π): For any H1, H2 ∈ Dom(Π) and any bounded Ft-

measurable variable λ, λH1 +H2 ∈ Dom(Π) and

Πt(λH1 +H2) = λΠt(H1) + Πt(H2) (5)

A4 Time consistency.

∀H ∈ L0, Πs(Πt(H)) = Πs(H) 0 ≤ s ≤ t ≤ T
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A5 Normalization. Π(1) = 1.

A6 Market consistency. If H is tradable at price (Vt)t∈[0,T ] in the market (whence

in particular H = VT ), then H ∈ Dom(Π) and

∀t ∈ [0, T ],∀ω ∈ Ω, Πt(H)(ω) = V (t, ω). (6)

A7 Continuity. If (Hn)n≥1 is an increasing sequence in L0, uniformly bounded

from below, with Hn ↑ H, then Π0(Hn) ↑ Π0(H).

Let us comment on the various elements in this de�nition.

The requirement that Π(H) is non-anticipative simply means that the pricing
rule only makes use of information available at t in order to assign the price at time
t to a claim.

Also, it is quite natural that Πt(H) is R∪{+∞,−∞} valued. For example, some
payo�s H may carry a huge downside risk that no market participant is willing to
assume at any price: this formally translates into Π(H) = −∞.

A1 This property means that, if H and G are two payo�s priced in the market
then the option to exchange them i.e. max(H,G) is also priced in the market.
Together with [A5], it ensures that, if an asset S is priced in the market then
the most common derivatives on S, namely calls and puts, also belong to the
domain of Π.

A2 Positivity ensures that the pricing rule veri�es model-free static arbitrage in-
equalities. For instance, it guarantees that the price of call options is decreas-
ing and the price of a put option is increasing with respect to its strike.

A3 Ft-linearity on Dom(Π) expresses additivity of prices plus the fact that the
value of a position, when computed at time t, scales linearly when we multiply
the size of the position by a factor which is known at t (i.e. Ft-measurable).
This property obviously implies linearity: Dom(Π) is thus a vector space.
In �nancial terms, linearity together with (A2) guarantees that the price of
call and put options is convex in the strike price.

A4 Time consistency rules out �cash and carry� arbitrage strategies for traded
assets. It ensures for instance that forward contracts on traded assets are
priced consistently with their underlyings.
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A5 Normalization simply means that we are dealing with prices expressed in units
of a given numeraire.1 Since (A2) and (A3) imply that Π is monotone, a
consequence of the normalization condition is that L∞ ⊂ Dom(Π).

A6 Market consistency means that the pricing rule is compatible with observed
market prices. It re�ects the fact that pricing rules used by market operators
are �calibrated� to prices of instruments (underlyings, derivatives) whose prices
are observed in the market. Together with the linearity condition (A2), it
implies put-call parity for calls and puts on traded assets.

A7 By the positivity property, if (Hn)n≥1 is a monotone (increasing toH) sequence
of payo�s then (Π0(H−Hn))n≥0 is a decreasing and positive sequence so it has
a limit. So the continuity condition boils down to requiring continuity from
above at zero for Π0(.). This is a rather weak continuity requirement, which
excludes unrealistic speci�cations of pricing rules which would allocate very
di�erent prices to very similar payo�s.

Remark 1 (Vector lattice property). Properties [A1], [A2], [A3] and [A5] imply
that the set Dom(Π) of payo�s with a �nite price forms a vector lattice that contains
L∞ (see [1] for de�nitions).

3 Pricing rules as conditional expectation operators

Let us start by showing that, for any market-consistent �martingale" measure Q,
the conditional expectation operator with respect to Q de�nes a pricing rule in the
sense of De�nition 1:

Proposition 1. Let Q be a probability measure de�ned on (Ω, (Ft)t∈[0,T ]) such that

the prices Vt(H) of all traded assets are martingales with respect to Q. There exists

a pricing rule Λ such that

1. Dom(Λ) is the vector space L1(Q) of Q-integrable payo�s ;

2. For any H ∈ Dom(Λ),

Πt(H) = EQ[H|Ft] Q− a.s. (7)
1One could rewrite the whole formalism with the apparently (but not really) more general

condition 0 < Π(1) ≤ 1.
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Proof. For a Q-integrable payo� H one can de�ne Λ(H) as (a version of the) Q-
conditional expectation of H, as in (7). To de�ne a pricing rule, we need to extend
Λ to the entire space L0, i.e. also to non-integrable payo�s.

For a positive payo� G, EQ[G | Ft] is always well-de�ned, with values in R ∪
{+∞}. Let us �x a general payo� H and call (αt)t a version of (EQ[ |H| | Ft])t. For
all t ≤ T, k ∈ N consider the Ft-measurable sets

Ak,t = {k ≤ αt < k + 1}

Fix t and for any Ak,t select a version fk,t of EQ[HIAk,t
| Ft] and de�ne

Λt(H) = fk,t on Ak,t

Λt(H) = +∞ on Ω− ∪kAk,t,

Λ(H) thus de�nes an element of Y . It is very easy to see that Dom(Λ) = L1(Q),
i.e. it is the space of Q-integrable payo�s. On this space Λt(H) satis�es (7).

The properties (A1), (A2), (A3), (A4), (A5), (A7) of a pricing rule are easily
veri�ed for Λ and to obtain (A6) when H is tradable, simply choose Λt(H) to be
the version of EQ[H|Ft] that coincides with Vt(H).

We now state our main result, which shows that any pricing rule can be repre-
sented as a conditional expectation with respect to a �martingale measure" Q:

Theorem 1. Given a pricing rule Π, there exists a probability measure Q de�ned

on (Ω,FT ) such that Π coincides with the conditional expectation with respect to Q.

More precisely:

1. Dom(Π) is the vector space L1(Q) of Q-integrable payo�s ;

2. For any H ∈ Dom(Π),

Πt(H) = EQ[H|Ft] Q− a.s. (8)

3. Prices of traded assets are Q-martingales.

Proof. De�ne Q on FT by

∀A ∈ FT , Q(A) = Π0(1A)

It is not di�cult to see that Q is a probability measure. In fact, Q is positive
by positivity of Π, additive by linearity of Π and normalized. Furthermore, the
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continuity property (A7) of Π0 implies the monotone convergence property for Q,
which is therefore a probability. De�ne a simple payo� as an element H ∈ L∞ of
the form

H =
n∑

i=1

ci1Ai
, Ai ∈ FT , ci ∈ R.

Since Π is linear, for any simple payo� H we have Π0(H) = EQ[H]. A general
H ∈ L0, H ≥ 0 can be approximated from below by a monotone sequence (Hn)n≥1

of simple payo�s:
Hn ↑ H

Using the monotone convergence theorem for Q-expectation and the continuity prop-
erty (A7) for Π, we can pass to the limit in EQ[Hn] = Π0(Hn) and we thus obtain

Π0(H) = EQ[H]

IfH is in L1(Q), both its positive and negative partH+, H− have �nite Q-expectation
and by additivity of Q and Π we get Π0(H) = EQ[H]. If H is not integrable, then ei-
ther Π0(H

+) = EQ[H+] or Π0(H
−) = EQ[H−] is in�nite. By property (A1), Π0(H)

cannot be �nite. In particular, we obtain Dom(Π) ⊆ L1(Q) but not equality yet,
since we need more properties to control Πt when t > 0.

Let then H ∈ L1(Q) and �x t ∈ [0, T ]. Applying Ft-linearity and time consis-
tency, for anyA ∈ Ft we have that Π0(1AH) is �nite and coincides with Π0(1AΠt(H)).
Hence, for any A ∈ Ft

EQ[1AH] = EQ[1AΠt(H)] (9)

which characterizes Πt(H) as a version of the Q-conditional expectation of H with
respect to Ft. This shows also that Dom(Π) coincides with L1(Q). Finally, property
(A6) of Π entails that if V is the market price of a traded asset H, then V is a version
of the Q-martingale with terminal value H:

Vt = Πt(H) = EQ[H | Ft]

Remark 2 (Continuity of Π). Inspecting the �rst part of the above proof shows
that we could have recovered Q also from the restriction of Π to L∞ ⊆ Dom(Π). In
particular, it would have been enough to consider the (linear, positive) functional
ψ : L∞ → R de�ned by:

ψ(H) = Π0(H)
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If we endow L∞ with the uniform norm, it is a Banach space (in fact, a Banach
lattice). Hence, thanks to [1, Theorem 9.6], ψ is already norm-continuous and so it
can be identi�ed with a measure Q on (Ω,FT ). But without any extra condition,
Q is a �nitely additive measure but not a probability measure in general. To get
countable additivity, we need the continuity condition property (A7), which amounts
to requiring order-continuity of ψ.

4 Discussion

We have characterized pricing rules de�ned on L0 as conditional expectation oper-
ators with respect to a probability measure Q such that prices of traded assets are
Q-martingales. Our characterization does not require any a priori restriction on the
domain of the pricing rule or the existence of a reference probability measure. We
now examine some of the consequences of this result and its relation with previous
characterizations of absence of arbitrage.

4.1 Implications for the speci�cation of derivative pricing

models

In contrast with previous formulations of no-arbitrage theorems, our result does
not include any reference to an �objective" probability measure P. In particular,
we characterize internally consistent pricing models in terms of �martingale mea-
sures" without requiring that these martingale measures be equivalent to a reference
probability measure Q.

This is consistent with the way derivative pricing models are speci�ed and used
in the market. In practice, one does not necessarily start by identifying/ specify-
ing an �objective" probability measure P and then subsequently look for a suitable
martingale measure Q compatible with market prices, among those equivalent to
P. Instead, common practice is to specify a derivative pricing model in terms of a
(parametric) family (Qθ, θ ∈ E) of �martingale measures" and select the parameter θ
of the pricing model are typically obtained by calibrating them to observed prices of
various derivatives. The speci�cation of an objective probability measure typically
plays no role in this process. In fact, in most cases (Black-Scholes model, di�u-
sion models, stochastic volatility models,..) the probability measures (Qθ, θ ∈ E)

are mutually singular: for example, if Qσ designates a Black-Scholes model with
volatility parameter σ then σ1 6= σ2 entails that Qσ1 and Qσ2 are mutually singular
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measures. So, the model selection problem cannot be formulated as a search among
martingale measures equivalent to a given measure P [2].

Therefore, while any characterization of absence of arbitrage in terms of equiv-
alent martingale measure would appear as inconsistent with this (commonly used)
way of specifying and calibrating pricing models, our result provides a justi�cation
for it: it simply re�ects the fact that there is no consensus in the market on the
�objective" probability and not even on its equivalence class.

4.2 The domain of the pricing rule

Another common feature of previous formulations of the absence of arbitrage is that
the set of contingent claims is chosen in advance, either as L∞(Ω,P) or Lp(Ω,P), p ≥
1 for some reference measure P. In practice the set of payo�s is de�ned indepen-
dently from any probability measure: it typically contains unbounded payo�s whose
integrability with respect to a given probability measure is not determined a priori,
so this approach does not seem very natural.

In our approach, a pricing rule is de�ned on L0 -the set of all possible payo�s-
and the domain of the pricing rule is determined a posteriori.

We �nd this approach �nancially meaningful. In fact, the simplest derivatives
�call options� have unbounded payo�s and are priced on the market, so taking the
set of payo�s to be L∞(P) �as in [14]� seems restrictive. Of course, the pricing
operator de�ned in this way can be then extended but this may lead to further
mathematical issues (which should be the right extension to use? Is the resulting
extension market-consistent?). In our setting, market consistency is guaranteed a
priori and as a consequence of our result Dom(Π) turns out a posteriori to be the
space L1(Q).

4.3 Introduction of a privileged set of assets

Suppose that a pricing rule Π is given on the market. Also, suppose that a "priv-
ileged" set of d processes S1, · · · , Sd is selected (the so-called underlyings). The
goal of this paragraph is to show how we can recover the general local-martingale
or σ−martingale properties for S = (S1, · · · , Sd) (see e.g. [4, 13, 10]) within our
framework.

A classical requirement on S is that it is an Rd-valued semimartingale with
respect to the objective probability P. In this model-free context the natural coun-
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terpart is the assumption that S is a Q-semimartingale. One can then introduce
stochastic integrals with respect to S and de�ne a notion of replicating strategy:

De�nition 2. Given a pricing rule Π on the market, represented by a martingale

measure Q and an Rd-valued Q-semimartingale S, a payo� H ∈ L0 is said to be

S-replicable if there exist a x ∈ R and a predictable process ( strategy) ϕ such that:

1. ϕ is S-integrable under Q.

2. Q( Πt(H) = x+
∫ t

0
ϕdS ) = 1.

Remark 3. In the above de�nition and in what follows probabilistic notions are

induced by the pricing rule through its representing Q.

Delbaen and Schachermayer [10] linked the No Free Lunch with Vanishing Risk
property under P with the existence of a probability measure equivalent to P under
which S is a σ-martingale, a notion introduced in [5]. We will now show how the
σ-martingale property appears in our context.

Let us recall a basic result from Emery [11] which illustrates that the σ-martingale
property is a generalization of the local martingale property. The notation φ ∈
L(S)(Q) means that φ is a predictable and S-integrable process under the probabil-
ity Q.

Proposition 2. [11, Proposition 2] Let S be a d-dimensional semimartingale on

(Ω,F , (Ft)t∈[0,T ],Q). The following assertions are equivalent:

1. there exist a d-dimensional Q- martingale N and a positive (scalar) process

ψ ∈ ∩1≤i≤dL(N i)(Q) such that Si =
∫
ψ dN i;

2. there exists a countable predictable partition (Bn)n of Ω×R+ such that
∫
IBndS

i

is a Q-martingale for every i, n;

3. there exist (scalar) processes ηi with paths that Q−a.s. never touch zero, such

that ηi ∈ L(Si)(Q) and
∫
ηidSi is a Q-local martingale.

De�nition 3. We say that S is a σ-martingale under Q if it satis�es any of the

equivalent conditions of the above Proposition.

Remark 4. Whenever the the (Bn)n can be written as stochastic intervals ]Tn, Tn+1]

where Tn is a sequence of stopping times increasing to +∞, then the previous de�-
nition coincides with that of local martingale.
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If for some i the process Si is not the market price of a traded asset (but, for
instance, a non-traded risk factor such as an instantaneous forward rate or instan-
taneous volatility process) then Si is not necessarily a martingale. However, the
result by Emery allows us to recover the σ-martingale features of S under Q from a
straightforward analysis of the market spanned by S. Roughly speaking, there must
be a traded derivative H with underlying S, which is S-replicable via a hedging
strategy that is always non zero:

Proposition 3. Suppose that for all i there exists an Si-replicable derivative H i

traded in the market with a strategy (ϕi
t)t∈[0,T ] that Q-a.s. never touches zero. Then

S is a σ-martingale under Q.

Proof. Since H i is traded with market price V i = Π(H i), our Theorem 1 implies
that the gain

∫
ϕidSi is a Q-martingale. Then, given the assumption on the ϕis, S

is a σ-martingale under Q from a direct application of item 3, Proposition 2.

Remark 5 (The 'No Free Lunch with Vanishing Risk' property). If S is
indeed a σ−martingale under Q, then the market spanned by S satis�es the NFLVR
condition with respect to Q (and henceforth with respect to any P ∼ Q). In fact,
consider the Q-admissible strategies ϕ i.e. whose gain processes are Q -almost surely
bounded from below:

∃c > 0,Q(

∫
ϕdS ≥ −c) = 1

If S is a σ-martingale under Q, such strategies give rise to gain processes which
are Q-supermartingales (see e.g. [10]). Hence absence of arbitrage obviously holds,
since EQ[

∫ T

0
ϕdS] ≤ 0. An application of Fatou's Lemma then shows that NFLVR

also holds.
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