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Abstract. The aim of this paper is to develop an out-for-core Cholesky type solver for large dense
complex symmetric linear systems stemming from Boundary Element Methods in electromagnetics
or acoustics. We present and compare several variants of the Cholesky factorization algorithm.
The candidate variants are the classical blocked left-looking variant and a more recent recursive
formulation. Both have been implemented out-of-core for real positive definite matrices: the former
in the POOCLAPACK library and the latter in the SOLAR library. We perform a theoretical
analysis of the amount of I/O operations required by each variant in an out-of-core implementation.
We consider two memory layouts for the left-looking algorithm: the one-tile and two-tiles approaches.
We show that when the main memory is restricted, the one-tile approach yields less I/O operations.
We then show that the left-looking variant requires less I/O operations than the recursive variant.
‘We have implemented all the variants for complex matrices, and we report on numerical experiments.
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1. Introduction.

1.1. Motivation. The Boundary Element Method (BEM), which is widely used
in electromagnetic or acoustic scattering, consists of transforming the original scat-
tering problem set in an unbounded domain into an integral equation set on the
boundary of the scatterer [17]. In many situations, a symmetric formulation of the
integral equation is preferred (such as the Electric Field Integral Equation in elec-
tromagnetism [5, 7]). The discretization of such an integral equation e.g., by Finite
Element Methods (FEM) leads to a linear system of equations:

AX = B, (1.1)

where the coefficient matrix A of order N is dense, complex valued, symmetric but
non-Hermitian. It is observed that for complex symmetric matrices issued from
the discretization of Boundary Integral Equations, pivoting is not required: thus,
a Cholesky factorization can be used [6, 4].

For very large problems (e.g., N > 100000), direct solvers are too costly and pre-
conditioned iterative algorithms are preferred [8, 9]. For intermediate size problems,
where the matrix is too large to fit in-core, an out-of-core solver is very effective.

1.2. State of the art. The limited size of the memory is a major bottleneck
for solving large industrial problems, e.g. in electromagnetics. Therefore, out-of-core
implementations, which perform linear algebra operations on matrices stored on the
disk, are still an active resarch field. We refer to [20] for an extensive survey of trends
in out-of-core algorithms. The Cholesky factorization is one of the classical linear al-
gebra operations of LAPACK library [3]. The parallel extension of LAPACK, ScaLA-
PACK, provides a parallel out-of-core implementation of Cholesky factorization [10]:
the matrix is partitioned into column panels and a left-looking variant of Cholesky
factorization is chosen. The out-of-core extension of PLAPACK library, POOCLA-
PACK, also provides a parallel out-of-core implementation of Cholesky factorization:
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the matrix is partitioned into tiles, and is factorized by a left-looking variant [13].
The tile approach is more scalable than the panel approach used in ScaLAPACK.
Two slightly different tile approaches have been proposed in POOCLAPACK: the
one-tile approach [23] and the two-tiles approach [18], depending on the number of
full tiles allowed to reside in the memory simultaneously. The SOLAR library provides
routines for out-of-core linear algebra computations [21]. It is designed to be portable
across various architectures (personal, shared-memory, distributed memory comput-
ers) thanks to a portability layer, the Matrix Input Output Subroutines (MIOS),
which manages the data transfers to and from the disk. Matrices are partitioned into
primary blocks. A primary block is the basic unit of the matrix, stored contiguously
on the disk. SOLAR includes in particular an implementation of Cholesky factoriza-
tion routine, based on a recursive formulation. The matrix is recursively splitted. At
each level, the solution of a large system with triangular matrix is computed and a
large symmetric rank-k update is performed, through calls to out-of-core BLAS. At
the leaf level, the matrix is factorized by an in-core Cholesky routine (from LAPACK
or ScaLAPACK). The recursion is stopped when the matrix size is equal to a prede-
fined blocksize (for instance when the matrix consists of 2 or 4 x 4 primary blocks).
The performance reported in [21] are quite impressive: the recursive algorithm out-
performs the classical left-looking algorithm.

We refer to [11] for a complete survey on recursion as a key for designing high-
performance linear algebra library. Linear algebra algorithms may be formulated in
a recursive way. This recursive formulation is able to improve the locality of ref-
erence: its in-core implementation performs fewer cache misses, and its out-of-core
implementation less I/O operations. This fact is demonstrated for LU decomposition
in [19]. Recursive data structures have also been developped [2, 1]. Recently, a sparse
Cholesky solver based on a recursive formulation of Cholesky algorithm, at the sparse
and at the dense level, combined with a recursive layout of the data has been proposed
in [15]. This solver is part of the TAUCS library.

1.3. Aim. We seek to compute the Cholesky decomposition of large dense ma-

trices, stored on the disk, on a computer with a limited amount of memory available.
We focus on sequential algorithms. We survey several variants, and memory layouts
for computing this decomposition. Then, we propose a theoretical comparison of
these variants, substantiated by numerical experiments, to find out the most effective
implementation.
The paper is organised as follows. Section 2 describes two variants of Cholesky al-
gorithm, the left-looking variant and the recursive variant. Then, out-of-core imple-
mentations of these variants are detailed in §3. We describe in particular the one-tile
and the two-tiles approaches, which correspond to different memory layout. These
out-of-core implementations rely on out-of-core BLAS, which are described in §4. A
theoretical analysis of the data transfers from the disk to the memory is performed in
§5 for the left-looking variant and in §6 for the recursive variant. Numerical experi-
ments are conducted in §7. Our conclusions are presented in §8.

2. The Cholesky factorization. We briefly recall the definition of the Choleskyll
decomposition of a symmetric matrix A. Then, we review two algorithms for the
computation of the Cholesky factor L. Both algorithms are partitioned algorithms.
The matrices A and L are partitioned into tiles. Basic operations in partitioned
algorithms are matrix-matrix operations on these tiles. Therefore, partitioned algo-
rithms are known to enjoy a high level of data-reuse. This is critical for an efficient
out-of-core implementation [20]. We review a loop-based algorithm, the left-looking



OUT-OF-CORE CHOLESKY FACTORIZATION 3

Cholesky algorithm, and a recursive algorithm. A loop-based algorithm is based on
nested do-loops, whereas a recursive algorithm is based on a recursive splitting of the
matrix.

2.1. The Cholesky factorization. Let A be a symmetric matrix, such that A
admits a symmetric factorization

A=1LL", (2.1)

where L is a lower triangular matrix. This condition is satisfied by real definite positive
matrices and also by some complex, symmetric matrices, in particular by matrices
issued from Boundary Element Method [4, 6]. We assume hereafter that A admits
a symmetric factorization and we review different algorithms for the computation of
the triangular factor L.

Upon completion of the algorithm, the triangular factor L overwrites the original
matrix A. In the following, CHOL denotes a generic routine for the computation of
the lower triangular Cholesky factor. Depending on the context, CHOL stands for a
variant of the algorithm or for an optimized computational kernel.

2.2. A loop-based algorithm: the left-looking variant. We follow the
formalism introduced by R. Van De Geijn [22] to recap the left-looking variant of
Cholesky algorithm.

Let A and L be partitioned into quadrants with square diagonal blocks:

ATL * LTL 0
(ABR ABL) ’ (LBR Lpr
The diagonal blocks of L, Ly and Lpy are lower triangular. The % indicates that

the corresponding part of the matrix is not referenced (due to symmetry).
Using the partitionings in (2.1), we obtain the partitioned matrix expression:

At * \ _ (Lt Ly, * (2.2)
Apr ABL Lpr LY, L LE, +LerLlEy)” '

This equality must hold when the factorization is completed. A possible choice for
the content of A at an intermediate step of the factorization is:

LTL *
A= _ ) 2.3
(ABL L77 ABR) (2:3)

The bottom-right part of the matrix Agg is not changed. The loop-invariant (2.3)
yields the left-looking variant, described on Figure 2.1.

2.3. A recursive algorithm. Recursion is expected to provide a new generation
of high-performance linear algebra algorithm. Recursive algorithms are based on a
recursive splitting of the matrices, and this splitting is able to take advantage of a
hierarchical memory. In [19], S. Toledo shows that a recursive formulation of LU
decomposition improves the locality of reference. The recursive algorithm is thus not
only more concise but also more efficient than the classical right-looking variant of
LAPACK. Recursive blocked algorithms have been introduced for several dense and
sparse linear algebra operations, e.g. Cholesky decomposition [1], [14], [2], [15]. In
[21], the author proposes the use of recursive algorithms in an out-of-core library,
SOLAR.
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Algorithm: [A] := LLT(A)
ATL * >

Apr | ABr
where Arp is0x 0

Partition A — (

until Agpris0x 0 do
Repartition

Aoo * *
A *
( ATL a1 ) — A10 A11 *
BL BR Azo | A21 | A2z

where A1 isbx b

1 An = An - A AL

2 A11 = L11 — CHOL (All)
3 Agr = Ag1 — A AT

4 Az = Ao Ll_lT

Continue with )
00 * *
( jTL jTR ) — | Ao | A1 | A2
BL BR Az | A1 | A2z

enddo

FiGure 2.1. Loop-based, partitioned, left-looking variant of Cholesky algorithm

Algorithm: [A] := rLLT(A)
if p(A) >1 do
ATL * )

Partition A —
( Apr | ABr
where p(Arp) = p(A4)/2

1 ATL = LTL = RLLT (ATL)
2 ABL = ABL L;g
38 Apgr:=Apr—ApLAL,
4 ABR ::LBR:RLLT(ABR)
else
A:=L = cHoL(A)
endif

FiGure 2.2. Recursive variant of Cholesky algorithm. The number of tiles of a matriz A is
denoted by p(A).

A recursive template for Cholesky factorization can be found e.g. in [11]. The matrix
A is seen as a block matrix of p(A) x p(A) tiles. It is recursively splitted, until the
subblocks consist of a single tile. Hence, the leaves of the recursion tree are matrices
(and not scalars) and the computation at the leaf level is based on level 3 BLAS. We
show in Figure 2.2 the main steps of the recursive variant of Cholesky algorithm.

3. Out-of-core implementations. From now on, the matrix is assumed to re-
side on disk. We describe the data layout, and then detail the implementation of
a left-looking variant and of a recursive variant of Cholesky algorithm. Two imple-
mentations of Cholesky left-looking variant are sketched: a two-tiles and a one-tile,
depending on the number of tiles (respectively two and one) allowed to reside in
memory simultaneously.

3.1. Data layout. We use the tile approach, already implemented in POOCLA-
PACK [13] [23]. In the tile approach, the matrix A of size n x n is partitioned into
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7 7 1 7 4 4

Ficure 3.1. A matriz of size 15 X 15 is partitioned using an arithmetic partitioning (on the
left) and using a recursive partitioning (on the right). In both cases, the tile size t is equal to 7: it
represents the default block size in the arithmetic partitioning and the mazimum size of the leaves
in the recursion tree for the recursive partitioning.

p X p tiles.

3.1.1. Matrix tiling. Let t € N be the tile size. We use two types of partitioning
of the matrix:
e arecursive partitioning: the interval [1, n] is recursively halved until the size
of the subintervals is lower than t¢.
e a arithmetic partitioning: the interval [1,n] is partitioned into subintervals
of size t, except possibly for the last subinterval.
Examples of partitioning are shown on Figure 3.1. The recursive variants of Cholesky
algorithms are based on a recursive partitioning of the matrix. The left-looking vari-
ants are usually based on an arithmetic partitioning.
The size of the main memory constraints the size of the tile, but p can be very large
(it is only constrained by the size of the disk). Hence, this approach is well-adapted
to large out-of-core matrices. Another choice is made in the out-of-core parallel im-
plementation of Cholesky factorization in ScaLAPACK: the matrix is partitioned into
slabs of columns (possibly of variable width), instead of tiles. But this approach is
known to lack scalability [20] [16].

3.1.2. Storage details. The partitioned matrix is decomposed in block-rows of
width ¢. Each row is stored tile by tile. Each tile is itself in column-major order.
From a practical standpoint, each block-row is stored as a collection of records in
a direct-access file. In this file, each record corresponds to a primary block, stored
contiguously on disk. The storage is illustrated by Figure 3.2 We distinguish between
a block and a tile. A block corresponds to a physical record in the direct-access file
storing a block-row of the matrix. A tile corresponds to an element of the logical
partitioning of the matrix. A tile is split on disk into several blocks of size ¢t x b,
with b < t. In the following, blocks are called narrow blocks, since they have fewer
columns than rows. Note that if b = ¢, a tile is identical to a block.

3.2. Implementations of the left-looking variant. Let the matrix A be
partitioned into tiles. We describe two implementations of the left-looking variant for
the computation of Cholesky factor:
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Ficure 3.2. Ezample of a matriz out-of-core storage. The matriz of size 9 X 9 is recursively
partitioned into tiles of size t X t witht = 5. The matriz is stored on the disk by block-rows. Hence,
two direct-access files are needed: one contains the tile A11, and the other the tiles A21 and Asa.
Each tile is stored as a collection of records, where each record corresponds to a block of size t X b
(b = 3), stored in column-major order.

e in the two-tiles approach, two tiles are allowed to reside in-core simultane-
ously [13].

e in the one-tile approach, there is only one tile in-core [23]. Therefore, this tile
may be larger, and the implementation benefits from a better ratio between
computations and I/O operations.

In both approaches, two extra buffers are needed for the in-core storage of two narrow
blocks.

3.2.1. Two-tiles approach. We strictly follow the sequential implementation
stated in [13]. Two tiles simultaneously reside in the main memory. One contains the
diagonal tile Aj; and the other the current tile of column As;. We recap the main
steps and refer to [13] and [18] for further details:

e Step 1: Tile A;; is read from disk and updated as A;; := Aj; — AjoAY by
a sequence of narrow out-of-core symmetric rank-k updates (routine
00C_ TILE_SYRK).

e Step 2: Tile Ay, is factored by an in-core factorization routine. Then, tile
Aj1 is written back on disk, but a copy is kept in memory.

e Steps 3 and 4: The update of block-column Ay, Az := (Aa1 — Az Afo)LflT
is performed tile by tile. Each tile of Ay is brought in turn into mem-
ory, updated by a sequence of narrow out-of-core multiply and adds (routine
00C_ TILE__GEMM ) and next, by solving (in-core) a multiple right-hand side
triangular system of matrix A7;. Then, the current tile of As; is written back
on disk, and the next tile is read.
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To optimize data transfers, tile A;; remains in-core for Steps 1 to 4. Therefore, we
define mixed BLAS, 00C_TILE_ SYRK and OOC_ TILE_ GEMM , whose arguments are
an in-core tile and out-of-core tiles:
e 00C_TILE_SYRK overwrites the (in-core) tile C of size ¢t x t with C — A AT,
where the tile A is stored on disk.
e 00C_TILE_GEMM overwrites the (in-core) tile C of size ¢ x t with C + A BT,
where A and B are out-of-core tiles.
These operations can be implemented as sequences of operations on narrow matrices,
as advocated in [13]. The narrow block technique, analyzed in §5.3 allows to increase
the ratio of computation over I/O operations.

3.2.2. One-tile approach. The one-tile approach is introduced in [23]. The
motivation is to increase the size of the current tile, which is read and written. We
briefly state the differences with the two-tiles implementation, for each step of the
algorithm:

e Steps 1 and 2 are not changed

e Tile A;; no longer remains in-core after Step 2. It is replaced in-core by the
current tile of Aj;. Then the routine 00C_TILE GEMMIis used to update
A21-

e For Step 4, a new mixed BLAS is needed for the solution of the triangular
system with matrix A;1: 00C_TILE TRSM. This routine overwrites the (in-
core) tile A1 with the solution X of X AY, = A, where the triangular tile
Ajq is stored on disk. Tile Ay; is read narrow block by narrow block in one
of the two extra buffers provided.

This implementation uses a larger current tile and benefits from a better flops to I/0O
operations ratio for the mixed BLAS. Nevertheless, tile A;; has to be read twice.

3.3. Implementations of the recursive variant. Let us now consider the
out-of-core implementation of the recursive factorization sketched in Algorithm 2.2.
A similar implementation is reported in [21], in the framework of SOLAR project.

3.3.1. Basic implementation. The main features of the factorization are the
following;:

e recursive partitioning of the matrix until the matrix consists of a single
tile.

e Step 1: at the leaf level, tile A;; is brought into memory, factored by an
in-core Cholesky routine, and written back to the disk. At another level, the
factorization is called recursively.

e Step 2 consists in solving a triangular linear system of matrix Lrr. At
the leaf level, this operation is performed by an in-core routine (for instance
LAPACK TRsM), after reading the tile Lry. If the matrices are larger, an
out-of-core routine 00C_TRSM is called.

e Step 3 is a symmetric update operation. It is performed either by calling
an in-core routine (for instance LAPACK SYRK ), or an out-of-core routine
00C_SYRK.

The recursive implementation calls two out-of-core BLAS, whose arguments are all
out-of-core matrices:

e 00C_SYRKoverwrites the out-of-core matrix C of size n x n with C — 4 AT,
where A is an out-of-core matrix of size n x k. If n = ¢, A and C' are brought
into memory, and an in-core routine is called.
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e 00C__ TRSM overwrites the out-of-core matrix B of size m x n by the solution
X of X AT = B, where A is a triangular out-of-core matrix of size n x n.
When m = n = t, both arguments are brought into memory and an in-core
routine is called.
So, out-of-core routines switch to in-core routine as soon as the arguments are suffi-
ciently small matrices, that is matrices of size t x ¢, where t is the size of tiles of the
recursively partitioned matrix.

3.3.2. Implementation of a hybrid variant. A small modification of the
implementation of the recursive algorithm allows to reduce the disk to memory traffic.
It is based on the following observation.

Let A be a matrix of 2 x 2 tiles, initially stored on disk. Let us examine the recursive
procedure for the factorization of A. The matrix is split into:

A11 *
A= (A21 A22) '

The first tile A;; is read, factored in-core and written back on the disk. Then, it is
read again for the update of As;. Tile As; once computed is written back on the disk
and immediately read again for the update of Ass. Once updated, tile Ass is written
and read again for the computation of its Cholesky factor. As a result, the recursive
factorization of a matrix A of 2 x 2 tiles demands reading 5 tiles and writing 4 tiles.
The following schedule for the factorization of a matrix of 2 x 2 tiles avoids reading a
tile immediately after it has been written:

e read, factorize and write A;; (keeping a copy in-core),

e read, update and write Ay (keeping a copy in-core),

e read, update, factorize and write Ags.
It only requires reading 3 tiles and writing 3 tiles.
Hence, we suggest to stop the recursion when the matrix size is 2¢ x 2¢ and to switch
to this variant. The total gain in I/O operations is evaluated in §6.3.

4. Out-of-core BLAS. The recursive schedule of Cholesky factorization stated
in §3.3 calls out-of-core BLAS, for the out-of-core computation of:
e a symmetric rank-k update, 00C_SYRK, C— A AT, where A is a n x k matrix
and C is a k x k matrix.
e the solution X of X AT = B, 00c_ TRSM where A is a triangular matrix of
size n x n, and X overwrites B (of size m x n).
These operations (as Cholesky factorization) may be performed either by a recursive
algorithm or by a loop-based algorithm. In [21], the out-of-core sequential imple-
mentation of Cholesky factorization is based on a recursive strategy for the factor-
ization and calls to loop-based out-of-core BLAS. We follow this option. We recall
block-partitioned algorithms for the symmetric rank-k update SYRK and the triangular
system solver TRSM as they are derived in Chapter 8 and Chapter 16 of [12].

4.1. Out-of-core SYRK . We show the block down-right moving variant of the
symmetric rank-k update, SYRK .
The main features of the out-of-core implementation of this algorithm are the
following:
e Tile Cy; is brought into the main memory.
e Step 1is performed by applying a sequence of narrow rank-k updates through
a call to 00C__TILE_SYRK. Then, Cy; is written back on the disk.
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Algorithm: [C] := syrk(C, A)
. Crr, * ) ( At )
Partition C — | =———— , A—
< CpL | Cr Ap
where Crp is 0 X 0 and A7 has 0 rows

until Cpris0x 0 do
Repartition

Cri % Coo * * A Ao
8] 8] — Ci0 | C11 * s ) — Aq
BL BR Cao | Co1 | C22 B Az

where C11 ist X t, and A; has t rows

1 Ci1:=0Cy1 — A AT
2 Cyo:i=Cio— A1 Af

Continue with c A
Crrp * 0 1 * x AT 9
e e —~ | Cw | Cuu * =7 — | A
BL BR Cy | C21 | C22 B Ao

FIGURE 4.1. Blocked, loop-based algorithm for the computation of the symmetric rank-k update,
C:=C—-AAT,

enddo

Algorithm: [B] := trsm(L, B)

LTL *
L LBR>,B—>( By | Br)

where L7y is 0 X 0 and By, has 0 columns

Partition L — (

until Lgris0x0 do

Repartition
* *

Ly . Loo
( )-* Lio | Lia | * y,(Br|Bg )= (Bo| Bi| B2 )
Lpr | LBr
Lao | L21 | La2
where Lj; ist X t, and A; has ¢ columns

By := (B — BOL?O) L1_1T

Continue with

Lt % LOO * *
(L - )(— Lo | L11 * ,(BL | Br )« (Bo| B1]| B2)
BL BR Lao | L21 | La2

enddo

FiGure 4.2. Blocked, loop-based algorithm for the computation of the solution of the linear
system X LT = B, with lower triangular matriz L, where X overwrites B.

e Step 2 is performed tile by tile. Each tile of Cjg is read, updated by a call
to 00C__TILE _GEMM, and written back on disk.

4.2. Out-of-core TRSM. The solution of X LT = B is computed by the
blocked right-moving variant of the triangular solver TRSM :

The out-of-core two-tiles implementation uses the same techniques as Step 3 and
4 of Cholesky left-looking factorization:

e Tile L1; is brought into memory.

e Column B; is replaced tile by tile by the corresponding column of tiles of
the solution. The current tile of B; is read, updated by calling the routine
00C_ TILE_GEMM. Then, the linear sytem with matrix L, is solved in-core,
and the current tile of By is written back to the disk.
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4.3. But recursive algorithms can also be used. Matrix operations, as the
Level 3 BLAS operations, can benefit from recursion. Therefore, recursive templates
based on a recursive splitting of the matrix operands have been proposed, studied and
experienced in-core [11].

Nevertheless, the out-of-core implementation of these templates is not very efficient.
In particular, the amount of I/O operations is larger.

5. Analysis of the I/O costs of the left-looking variant. This section
presents a theoretical analysis of data transfers between the disk and the main memory
in left-looking Cholesky algorithms. Let A be a matrix of size n, partitioned into p X p
tiles of size t x t. For the sake of simplicity, we assume that n is a multiple of ¢, and
thus p(n,t) = n/t. Our aim is to compare different implementations corresponding
to different layouts of the memory in terms of I/O operations. We focus on two
approaches, the one-tile approach and the two-tiles approach already described in
section 3.2. We compute the number of tiles read from and written to the disk by
both approaches. In both approaches, two extra buffers store narrow blocks of size
t x b. If the size of the tiles, ¢, is fixed, the width of the narrow blocks has no influence
on the amount of I/O operations. Consider now that the main memory is limited to
M words. The size of the tiles and of the narrow blocks is constrained by the following
inequality:

2t2 4+ 2tb < M,

for the two-tiles approach. Hence, if b is small, ¢ can be increased, and thereby
the amount of I/O operations is modified. We analyze this effect for the two tiles
approach and obtain an asymptotic expression for the gain expected (in terms of I/O
operations), when narrow blocks are used.

Next, we compare the one-tile and two-tiles approaches when the size of the main
memory is limited to M words. We obtain a simple criterion for choosing one or the
other approach, when one wishes to minimize the amount of I/O operations during
the factorization.

5.1. Two-tiles approach. We analyze the data transfers performed by the
schedule described in §3.2.1. Suppose that k& — 1 columns of tiles of A have already
been factored. Matrix A is partitioned as:

AOO * *
A10 A11 * y (5 ].)
A20 A21 A22

with A;; is a tile and A,y is a matrix of (p — k) x (p — k) tiles.
During the k'" iteration, the following I/O operations are performed:
e read Aq1, Ajo (k tiles).
write A;; (1 tile).
read Ay tile by tile (k — 1 tiles).
for each tile of Ay, read A;9 and k — 1 tiles of Ayg (2 x (k — 1) tiles).
write Aay (k — 1 tiles).
Hence, the total number of tiles read Tr (LQLTT) (p) is

2
Tr {37 (p) Zp+2 —1)(p-k) = %’(”2 +2>.
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The total number of tiles written Tw gﬁ? is:

p
: b
Twin () = Y k=3 (p+1).
k=1

5.2. One-tile approach. We examine the number of tiles read and written
during the kt* iteration of the one-tile approach described in §3.2.2. The matrix A is
partitioned as in (5.1).

The tile A7 does not stay in memory for the whole iteration: it has to be read for
each tile of A1, which results in p — k extra tiles to read. In the end, the number of

tiles read, Tr SI:FT) (p), is:

P
TN = Te2RE + Y (n—k) = 2 (20 +3p+1),

k=1 6
and the number of tiles written, Tw (LlLTT) (p), is:
1
1T 2T
Twin(p) = i) = 5p (@+1).

2

5.3. Narrow blocks. Some basic linear algebra operations can be implemented
using the narrow block technique. The matrix operands that are left unchanged on
exit of these operations are partitioned into narrow blocks. Hence, a symmetric rank-k
update:

C « C— AAT

is implemented as a sequence of narrow rank-b updates: C — ), A; AT where A; is
a narrow subblock of A of width b. A multiply and add:

C + C—-ABT

is implemented as a sequence of narrow multiply and adds: C' —}~, 4; BT, where A;
and B; are narrow subblocks of A and B of width b.
If the narrow block technique is used, the two-tiles approach requires in-core two full
tiles (of size ¢ x t) and two narrow blocks (of size ¢ x b).
Assume now that the size of the main memory is limited to M words. Several memory
layouts are possible:
(a) Ignore the narrow block technique, and divide the M words of memory into
4 tiles of equal size t x ¢, with t = /M /4.
(b) Apply the narrow block technique and divide the M words of memory into 2
tiles of equal size t x t, with \/M/4 < t < 1/(M/2) and two narrow blocks
of size t x b with b = at, 0 < a < 1, under the constraint: 2tb +2¢2 < M.
The number of terms read, with the two-tiles approach is given by:

2T 2T
Nr£m? (n,t) = Tr £LT) (n,t) x t2.
If n is fixed, t — Nr&? (n,t) is decreasing with respect to t for ¢ < n/2. Hence,
the larger ¢, the lower the number of terms read. The narrow block technique allows
to have a larger size of tile ¢, and thus seems to be more efficient in terms of I/0
operations.
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The number of terms read during the factorization without using the narrow blocks
technique, Nr{® (n) is equal to:

Nr(®(n) = Nr 2D (n,t = \/M/4).

Otherwise, if the narrow block technique is used, an asymptotic bound for the number
of terms read Nr® (n) is:

Nr W (n,t = \/M/2).

Hence, when n is large, we have the asymptotic relation:
1
N (n) ~ —Nr(® (n). 5.2
(n) 7 (n) (5.2)

One can expect substantial savings in I/O operations when the narrow blocks tech-
nique is used. The numerical experiments reported in §7.1 confirm these asymptotic
I/0O savings.

5.4. One-tile versus two-tiles implementation. We still consider the factor-
ization of a matrix A of size n with a limited main memory of M words. We again
focus on the number of terms read, which dominates the amount of I/O operations.
We consider two options:

(a) Partition the main memory into 4 tiles of size t = /M /4 and use the two-

tiles approach.

(b) Partition the main memory into 3 tiles of size t = /M /3 and use the one-tile

approach.
We compare these options from the point of view of I/O operations. The number of
tiles in A is approximated by p(n,t) = n/t.
We denote by Nr‘® (n) and Nr*) (n) the number of terms read respectively with option
(a) and option (b).
The number of terms read during the factorization of A of size n with the two-tiles
approach is equal to:

Nr & (n,t) = Te (37 (p(n, 1)) .

Hence,

M (2n?
Ne@(n) = Ne (3 (n,t = /M/4) = © 2 (%4_1)'

The number of terms read for the factorization of A of size n with the one-tile approach
is equal to:

Nr (R (n,1) = Tr {7 (p(n, 1)) £2.
Hence,

vM (602 3nV3
Nr®(n) = Ne D (n,t = /M73) = = (22 L TX2 4y
( ) LLT( / ) 6\/3 M M

Hence, for large n, the one-tile implementation requires less I/O operations than the
two-tiles.
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Next step is to find out the size n where this transition occurs. We obtain a simple
formula criterion for choosing between the one-tile and the two-tiles approach. Finding
n such that:

Nr® (n) < Nrl@(n) (5.3)
is equivalent to solve
N%2—¢$—§N441——LJ<0
2 2V3° ~

where N = n/\/M This equation has two roots, N1 ~ 0.52, and Ny ~ 5.08. So,
equation (5.3) is satisfied if N < Ny or N > N,. The first range of n is not very
interesting: it corresponds to the case where more than a quarter of the matrix fits
within the main memory. The second range corresponds to:

n > 5.08VM. (5.4)

We summarize this result in the following Lemma:

LEMMA 1. Consider the Cholesky factorization of a matriz A of size n initially
stored on disk. The factorization is run on a computer with M words of main mem-
ory. If n > 5.08 /M, then the one-tile implementation of the left-looking variant
of Cholesky factorization, with a tile size t = /M/3, requires less 1/0 operations.
Otherwise, the two-tiles implementation, with a tile size t = /M /4, yields less 1/0
operations.

Numerical experiments sustaining this claim are performed in §7.2

6. Analysis of the I/O costs of the recursive variant. In this section, we
analyze the memory behavior of the recursive variant of the Cholesky factorization.
We suppose that 4 tiles can reside simultaneously in the main memory. We first
estimate the number of I/Os for the out-of-core BLAS 00C__TRSMand 00C_ SYRK.
Then, in §6.2, we combine these estimates to obtain the number of tiles read and
written by the recursive variant of Cholesky factorization, when the number of tiles
of the matrix A is a power of two. Finally, we analyze a hybrid variant of Cholesky
factorization.

6.1. Analysis of the out-of-core BLAS. We analyze the data transfer per-
formed by an out-of-core (two-tiles) implementation of 00C_ SYRK and OOC_ TRSM.
All the operands of these routines are out-of-core matrices partitioned into tiles of
size t x t.

6.1.1. Out-of-core SYRK. Let A be a symmetric matrix of p x p tiles, and C
a matrix of p x k tiles. The number of tiles read during the computation of C' — AAT
by Algorithm 4.1 is:

Trsvri(p,h) = Y 1+k+ (G- 1)@k+1) = kp*+ 2 p+1).  (61)

=1
The number of tiles written Tw syrk (p, k) is:

Twsyrk (p, k) = g(p'i' 1). (6.2)
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6.1.2. Out-of-core TRSM. Let A be a lower triangular matrix of p x p tiles,
and B a matrix of m x p tiles. The number of tiles read during the computation of
the solution of X AT = B by Algorithm 4.2 is:

Tr rrsm(m,p) = Z 1+m(1+2(k—1)) = mp® +p. (6.3)
k=1

The number of tiles written Tw trsm(m, p) is:

Twrrsm(m,p) = Zm = mp. (6.4)
k=1

6.2. Analysis of the recursive variant. This paragraph presents an analysis
of the data transfers associated to the recursive variant of Cholesky factorization. We
consider a matrix A, partitioned into p x p tiles, and we assume that p = 2! for some
integer [. We denote by Trgrrr(p) and Twrrrr(p) the number of tiles respectively
read and written during the factorization of A by the recursive Algorithm 2.2.

Let us compute Trrprr(2') and Tw rerr(2!) by induction.
If & = 0, the matrix A is reduced to single tile and the factorization is computed by
the in-core Cholesky factorization routine. Hence:

Trrerr(l) =1, Twgroer(l) = 1.
Let k£ > 1. The number of tiles read at level k satisfies the following recurrence:
Trrerr(2¥) = 2Trrorr (2871) + Trrrsm (2571, 2871) + Trgyri (281, 2871,
The number of tiles written satisfies a similar relation:
Twreer(2¥) = 2Twreer(257) + Twrrsm (2871, 2571) + Twsyrk (2871, 2571).

Hence, we have the following formulas, for the factorization of a matrix of 2! tiles:

»
Trrerr(2) = 2" Trrurr(1) + Z 21 Trppam (2877, 20°F)
k=1
- (6.5)
+ Z 261 T gypic (2175, 207,
k=1
and
»
Twrerr(2) = 2 Twrrrr (1) + Z 28 Tw prom (2, 27F)
k=1
- (6.6)
+ Z 281 Tw gyric (217F, 207F).
k=1

Hence, using (6.1) and (6.3) in (6.5), we obtain the number of tiles read:

23 22 35
N 1
TrRLLT(Z) == —3 + —4 +2 <4 + 12) . (67)
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Using (6.2) and (6.4) in (6.6) yields the number of written tiles:

3 I+1
Twrrrr(2') = 1221 + 2! (%) ) (6.8)
The expressions (6.7) and (6.8) give the exact number of tiles read and written for

the case p = 2!. If p is not a power of two, these expressions give an approximation of
this number. We replace 2! by p and [ by In(p)/In(2) in (6.7) and (6.8) and obtain:

3ln(p) 5
41n(2) E) ’

3 2
TrgLir(p) ~ % + % +p (

and

TwrLrT(P) ~ 3Tp2 + 2 (Eg; + 1) .

6.3. The hybrid recursive/left-looking approach. We investigate the hy-
brid implementation proposed in §3.3.2. We denote by Trgrrr(p) and Twgrrr(p)
the number of tiles read and written for the factorization of a matrix of p x p tiles,
where for the sake of simplicity p = 2!. This hybrid variant is very close to the fully
recursive variant analyzed in §6.2. Therefore, we now focus on the differences.

The recursive partitioning of the matrix is stopped at level [ — 1 (instead of [), when
the matrix has 2 x 2 tiles.

The read operations corresponding to the level I are avoided. This results in 3 x 2!
tiles less to read. At level [ —1, 3 x 2!~! additional tiles are read (for the factorization
of the 2!=! blocks of 2 x 2 tiles). Finally,

231 22l

3l 13
T = Tr — 2l 2l_1 — 21 _ .
raLLT (p) riT(p) —3 x 2 +3 x sttt 5

This variant avoids to write 2/~ tiles. Hence,

3 (-1
TwaLrr(®) = Twrorr(p) — 2071 = i 22t 4 9t (T)

When p is not necessarily a power of two, the following approximation are satisfied:

3 2
p P 3ln(p) 13
T N — 4 — - —
raLur(p) & AT P (4111(2) 12
32 p (In(p
Twmarts) =+ § (g 1

The hybrid variant slightly improves the number of tiles read and written. Neverthe-
less, it does not affect the dominant terms.

6.4. Conclusion of the analysis. We compare the number of tiles read from
disk and written to the disk by the left-looking variant and by the recursive variant of
Cholesky factorization. To make the comparison as fair as possible, we assume that
the computation is run on a computer with M words of memory, where M > 4t2,
where t is the size of the tiles of the matrix. Both implementations are of two-tiles
type. We do not take into account improvements like the narrow block technique.
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Therefore, we assume that 4 tiles can reside in the memory simultaneously.
We summarize the results of this section in the following theorem:

THEOREM 1. Let A be an out-of-core matriz partitioned into p x p tiles, of size
txt. We assume that the computation is run on a computer with M words of memory,
where M > 4t2.

With the left-looking variant, the number of tiles read from the disk, Tr &Tg (p), and

the number of tiles written to the disk, Tw 1(421:1;) (p) are given by:

2
2T Db (D
TrIEer)(p) =73 (E +2> ,

T p
Twiin(p) = 5 (p+1).

During the factorization of A by a recursive variant of Cholesky algorithm, the number
of tiles read from the disk, TrrrrT(p), and the number of tiles written to the disk,
TwrLLt(p), are given by:

3 2 3ln 5
TTRLLT(p)%%+p—+p( (p)+ )

4 4In(2) ' 12
TwrLrr(p) = 3Tp2 +§ GEE’Z; + 1) .

Hence, the recursive variant reads and writes more tiles. Therefore, when one tries
to minimize the number of tiles read and written, the left-looking variant is more
appropriate.

7. Numerical experiments. We present numerical experiments for the differ-
ent variants of the out-of-core Cholesky factorization. All variants were implemented
in Fortran 90, compiled with Intel’s Fortran compiler ifort with -tpp7 -xW optimiza-
tion and run on a Pentium 4 XEON based bi-processor running RedHat Linux 3.2.2-5.
The 2 CPUs have a clock cycle of 3.05 GHz, 2GB of Ram and a cache size of 512 KB.
We use a SCSI disk for the out-of-core storage of matrices. We use Intel’s optimized
implementation of BLAS, the Math Kernel Libray. Experiments are performed in
simple precision complex arithmetic with matrices generated by the discretization of
boundary element formulation of the electromagnetic scattering by an object.

7.1. Narrow blocks. We consider the factorization of a matrix A of size n =
12000, arithmetically partitioned into tiles of size ¢ x t, by the two-tiles implementation
of the Cholesky factorization. The size of the memory is fixed to M words. The
memory is divided into 4 buffers, 2 for the storage of full tiles of size ¢t x ¢t and 2 for
the storage of narrow blocks of size t x b, with b = at. We investigate different values
of the parameter o, to find out an optimal distribution of the memory. The results
are shown in Table 7.1.

We verify that the amount of words read from the disk generally decreases with
the width of the narrow blocks b. Nevertheless, this decrease is not regular. The
amount of words read actually depends on the uniformity of the (arithmetic) matrix
partitioning. For a = 0.17, the predefined tile size is t = 655, but the actual size of
the last row and column is 210. This situation is less favorable than taking a = 0.25.
With a = 0.25, the predefined tile size is equal to 633, and the size of the last tiles,
606 is very close to this value. This partitioning generates less I/O operations.

We also verify the estimate (5.2). We compare the ratio Nr®) /Nr®) to the predicted
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I M = 1.10% words I M = 4.10% words |

a t b words read | total t b words read | total
read time | time read time | time

(x10%) | (s) (s) (x10%) | (s) (s)

1 500 | 500 1156 115 398 1000 | 1000 584 58 321
0.5 578 | 289 1017 101 400 1155 578 548 55 331
0.33 613 205 973 98 452 1225 409 493 49 341
0.25 633 | 159 918 91 489 1265 317 498 50 358
0.17 655 | 110 931 93 541 1310 219 504 50 384
0.10 675 68 874 85 518 1349 135 444 44 392
0.014 707 1 824 103 1858 1413 2 496 48 1336

TABLE 7.1

Impact of the narrow blocks technique on the performance characteristics of the two-tiles im-
plementation of Cholesky factorization. The matriz size is n = 12000. The memory of M words is
divided into 4 buffers, 2 for the storage of tiles of size t X t and 2 for the storage of narrow blocks
of size t X b. Several values of o = b/t are ezperienced.

value 1/v/2 for a small . When M = 1 x 10 words, and b = 1, we obtain:

Nr(?(12000) -  824x 2

2 = = 1.0080,
Nr(® (12000) 1156

When M = 4 x 10® words, the choice a = 0.014 leads to a non-uniform partitioning
(the size of the last tiles is 688 whereas the tile size is 1414), and to a high amount
of I/O operations. Therefore, for M = 4 x 10® words, we compute Nr(®) /Nr(“) for
a = 0.10:

Nr®) (12000) 5 _ M4 x V2

= 1.075,
Nr(®) (12000) 584

which again confirms prediction (5.2).

We observe an unexpected behavior: despite of the decrease of the amount of read
words, the total time taken by the factorization increases as a diminishes. The optimal
value for «, from the point of view of elapsed time, is « = 1, that is when narrow
blocks are not used. A possible explanation for this behavior is that the computation
is better scheduled when performed on square matrices. Thus, narrow blocks do
not allow to achieve better performances. Therefore, they are no more used in our
numerical experiments.

7.2. One-tile versus two-tiles approach for the left-looking variant. We
consider the factorization of a matrix A of size n = 12000, arithmetically partitioned
into tiles of size t x ¢ by the left-looking out-of-core Cholesky algorithm. The amount
of available memory is limited to M words. We show on Figure 7.1 the number of
terms read with respect to the size of the memory available. We verify our theoretical
prediction: if the memory available is larger than My words, with

My = (n/5.08)%,

that is for simple precision complexes, 42.5 MB, the two-tiles approach requires less
I/O operations. Nevertheless, though there is a difference in the amount of I/0
operations, none of the variant is significantly faster than the other, as shown on the
right graphic of Figure 7.1. The difference in the elapsed times is about 1 second for
a total elapsed time of 270 seconds.
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Figure 7.1. Factorization of a simple precision compler matriz of size 12000, by the one-
tile and two-tiles implementation of the left-looking variant. Different sizes of tiles t are experi-
enced, corresponding to different memory size requirements. The memory size in M B is equal to
M x 8/(1024)%, where M is the memory size in words. The left part shows the measured number
of elements read during the factorization (x10%). The right part shows the elapsed time for the
factorization.

Left-looking algorithm
One-tile implementation Two-tiles implementation

t Tiles Tiles I/O | Total Tiles Tiles I/O | Total
read written | time time read written | time | time

(s) (s) (s) (s)

375 11440 528 175 495 10944 528 166 483
750 1496 136 97 389 1376 136 90 381
1500 204 36 60 325 176 36 53 318
3000 30 10 46 306 24 10 42 300

Recursive algorithm
Standard implementation Hybrid implementation

t Tiles Tiles I/O | Total Tiles Tiles I/0 | Total
read written | time | time read written | time | time

(s) (s) (s) (s)

375 11312 816 183 501 11264 800 205 523
750 1484 212 106 396 1460 204 115 405
1500 208 56 70 335 196 52 71 337
3000 33 15 59 319 27 13 53 311

TABLE 7.2
Factorization of a matriz of simple precision complex matriz of size N = 12000, partitioned

into tiles of size t X t, for different values of t. We compare two recursive variants (standard and
hybrid), and two left-looking variants (one-tile and two-tiles). The recursive variants and the two-
tiles left-looking variant use 4 buffers of t X t words in-core, whereas the one-tile variant of the
left-looking algorithm uses 3 buffers of t X t words in-core. We measure the number of tiles read and
written during the factorization, the total time elapsed, and the time taken by the I/Os (read+write).
Times are reported in seconds.

7.3. Comparison of the loop-based and recursive implementations. In
this paragraph, we compare the performance characteristics of the one-tile and two-
tiles implementation of the left-looking variant, and the fully recursive and hybrid
implementations of the recursive variant of Cholesky algorithm. We factorize a sim-
ple precision complex matrices of size n = 12000 and n = 48000, and the results
are respectively reported in Table 7.2 ans Table 7.3. For the tile sizes we consider,
arithmetic and recursive partitioning of the matrices are identical.

We observe a quite surprising result: the fully recursive implementation is faster
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Left-looking algorithm

One-tile implementation Two-tiles implementation
t Tiles Tiles I/O | Total Tiles Tiles I/0 | Total
read written | time time read written | time time

(s) (s) (s) (s)
750 || 89440 | 2080 | 5645 | 23655 || 87424 | 2080 | 5462 | 23489
1500 || 11440 | 528 | 3039 | 19239 || 10944 | 528 | 2903 | 19077

3000 1496 136 1898 | 17608 1376 136 1781 | 17365
Recursive algorithm
Standard implementation Hybrid implementation
t Tiles Tiles 1/0 Total Tiles Tiles 1/0 Total
read written | time time read written | time time

(s) (s) (s) (s)

750 || 88720 | 3184 | 5732 | 23746 || 88624 | 3152 | 64LL | 24467
1500 || 11312 | 816 | 3100 | 19208 || 11264 | 800 | 3466 | 19671
3000 || 1484 212 | 1952 | 17583 || 1460 204 | 2164 | 17724

TABLE 7.3

Factorization of a matriz of simple precision complex matriz of size N = 48000, partitioned
into tiles of size t X t, for different values of t. We compare two recursive variants (standard and
hybrid), and two left-looking variants (one-tile and two-tiles). The recursive variants and the two-
tiles left-looking wvariant use 4 buffers of t X t words in-core, whereas the one-tile variant of the
left-looking algorithm uses 3 buffers of t X t words in-core. We measure the number of tiles read and
written during the factorization, the total time elapsed, and the time taken by the 1/Os (read+write).
Times are reported in seconds.

than the hybrid implementation, although the amount of I/O operations is higher.

8. Conclusion and perspectives. This paper analyses and compares the out-
of-core implementation of different variants of the partitioned Cholesky factorization
algorithm. The same partitioning of the matrix to factorize is used for all variants,
to allow a fair comparison. Our theoretical analysis shows that the amount of I/0O
operations is lower when a left-looking algorithm is used. Our numerical experiments
confirm this result. Moreover, in our tests, the two-tiles implementation of the left-
looking algorithm is the fastest variant. It is the equivalent in complex arithmetic
of the (sequential) POOCLAPACK routine for the Cholesky decomposition of real
positive definite matrices [13]. Some improvements could still be added to this solver,
as prefetching the tiles, to overlap I/O operations and computation, as is performed
in [21]. Finally, in order to tackle larger size problems, we are currently working on
the parallelization of the solver on a distributed architecture.
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