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1. Introduction

The pricing and hedging of vanilla options is now part of the common knowledge and the
general interest has moved on to more complex products. So, practitioners need to be able
to price these new products. Among them, there are the so-called path-dependent options.
The ones we study in this paper are called double barrier Parisian options. They are a
version with two barriers of the standard Parisian options introduced by Marc Chesney,
Monique Jeanblanc and Marc Yor in 1997 (see Chesney et al. (1997)). Before introducing
double barrier Parisian options, we first recall the definition of Parisian options. Parisian
options can be seen as barrier options where the condition involves the time spent in a
row above or below a certain level, and not only an exiting time. Double barrier Parisian
options are options where the conditions imposed on the asset involve the time spent out
of the range defined by the two barriers.

The valuation of single barrier Parisian options can be done by using several different meth-
ods: Monte Carlo simulations, lattices, Laplace transforms or partial differential equations.
As for standard barrier options, using simulations leads to a biased problem, due to the
choice of the discretisation time step in the Monte Carlo algorithm. The problem of improv-
ing the performance of Monte Carlo methods in exotic pricing has drawn much attention
and has particularly been developed by Andersen and Brotherton-Ratcliffe (1996). Con-
cerning lattices, we refer the reader to the work Avellaneda and Wu (1999). The idea of
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using Laplace transforms to price single barrier Parisian options is owed to Chesney et al.
(1997). The Formulae of the Laplace transforms of all the different Parisian option prices
can be found in Labart and Lelong (2005). Schröder (2003) and Hartley (2002) have also
studied these options using Laplace transforms. An approach based on partial differential
equations has been developed by Haber et al. (1999) and Wilmott (1998). Double Parisian
options have already been priced by Baldi et al. (2000) using Monte Carlo simulations cor-
rected by the means of sharp large deviation estimates.

In this paper, we compute the prices of double barrier Parisian options by using Laplace
transforms. First, we give a detailed computation of the Laplace transforms of the prices
with respect to the maturity time. Then, we establish a formula for the inverse of the
Laplace transforms using contour integrals. Since it cannot be computed exactly, we give
an upper bound of the error between the approximated price and the exact one. We
improve the approximation by using the Euler summation to get a fast and accurate
numerical inversion. The paper is organised as follows. In section 2, we introduce the
general framework and give precise definitions of double barrier Parisian option prices.
In section 3, we establish a Call Put parity relationship, which enables us to deduce
the price of put options from the prices of call options. In section 4, we carry out the
computation of the Laplace transforms of double barrier Parisian option prices. In section
5, we give a formula for the inversion of the Laplace transforms and state some results
concerning the accuracy of the method. The technique we use to prove these results is
based on the regularity of option price (see Appendix A). In section 6, we draw some
graphs and compare the Laplace transform technique with the corrected Monte Carlo
method of Baldi et al. (2000). For the comparison, we have used the implementation of
the algorithm of Baldi et al. (2000) available in PREMIA1.

2. Definitions

2.1. Some notations. Let S = {St, t ≥ 0} denote the price of an underlying asset. We
assume that under the risk neutral measure Q, the dynamics of S is given by

dSt = St((r − δ)dt+ σdWt), S0 = x

where W = {Wt, t ≥ 0} is a Q−Brownian motion, x > 0, the volatility σ is a positive
constant, r denotes the interest rate. The parameter δ is the dividend rate if the underlying
is a stock or the foreign interest rate in case of a currency. We assume that both r and δ
are constant. It follows that

St = x e(r−δ−σ2/2)t+σWt .

We introduce

(2.1) m =
1

σ

(
r − δ − σ2

2

)
.

Under Q, the dynamics of the asset is given by St = x eσ(mt+Wt). From now on, we
consider that every option has a finite maturity time T . Relying on Girsanov’s Theorem

(see Revuz and Yor (1999)), we can introduce a new probability P — defined by
dP

dQ |FT

=

emZT−m2

2
T — which makes Z = {Zt = Wt +mt, 0 ≤ t ≤ T} a P-Brownian motion. Thus,

S rewrites St = x eσZt under P. Without any further indications, all the processes and
expectations are considered under P.

1PREMIA is a pricing software developed the MathFi team of INRIA Rocquencourt, see

http://www.premia.fr.

http://www.premia.fr
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2.2. Double barrier Parisian option. There are two different ways of measuring the
time spent above or below a barrier. Either, one only counts the time spent in a row
and resets the counting each time the stock price crosses the barrier(s) — we call it
the continuous manner — or one adds the time spent in the relevant excursions without
resuming the counting from 0 each time the stock price crosses the barrier(s) — we call
it the cumulative manner. In practice, these two ways of counting time raise different
questions about the paths of Brownian motion. In this work, we only focus on continuous
style options.

2.2.1. Knock Out. A knock out double barrier Parisian call (respectively put) is lost if S
makes an excursion outside the range (L1, L2) older than D before T otherwise it pays at
maturity time T (ST −K)+ (respectively (K − ST )+) where K is the strike.
We introduce b1 and b2 the barriers corresponding to L1 and L2 for the Brownian motion Z

b1 =
1

σ
log

(
L1

x

)
, b2 =

1

σ
log

(
L2

x

)
.

For some level b, let us introduce the following notations

gbt = gbt (Z) = sup {u ≤ t | Zu = b},
T−
b = T−

b (Z) = inf {t > 0 | (t− gbt ) 1{Zt<b} > D},
T+
b = T+

b (Z) = inf {t > 0 | (t− gbt ) 1{Zt>b} > D}.
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Figure 1. Brownian paths

Hence, the price of a knock out double barrier Parisian call (DPOC) is given by

(2.2) DPOC(x, T ;K,L1, L2; r, δ) = e−(m2

2
+r)TE

[
emZT (ST −K)+1{T−

b1
>T}1{T+

b2
>T}

]
.

The two indicators can be rewritten

1{T−
b1
>T}1{T+

b2
>T} = 1 − 1{T−

b1
<T} − 1{T+

b2
<T} + 1{T−

b1
<T}1{T+

b2
<T}.

Since the r.v. T+
b and T−

b have a density w.r.t the Lebesgue measure (see Appendix B),
one can use either strict or non-strict inequalities in the previous formula.
Dealing with inequalities of the type 1{T±

b
<T} is much simpler than 1{T±

b
>T}since we can

condition w.r.t. FT±
b

and use the Strong Markov property. Consequently, Equation (2.2)

can be split into four terms using the prices of single barrier Parisian options. To describe
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single barrier Parisian options, we use the following notations : PDOC means Parisian
Down and Out Call, whereas PUIP stands for Parisian Up and In Put and so on. BSC
simply denotes the price of a standard call option.

DPOC(x, T ;K,L1, L2; r, δ) =BSC(x, T ;K; r, δ) − PDIC(x, T ;K,L1; r, δ)

− PUIC(x, T ;K,L2; r, δ) + e−(m2

2
+r)TA,(2.3)

where

(2.4) A = E

[
emZT (ST −K)+1{T−

b1
<T}1{T+

b2
<T}

]
,

For any function f of the maturity T , we introduce the “star” notation

⋆f(T ) = e(r+
1
2
m2)T f(T ).

The computation of ⋆DPOC will be done using numerical inversion of its Laplace trans-
form with respect to T . Explicit formulae for the Laplace transforms of the first three

terms in (2.3) — ⋆̂BSC, ̂⋆PDIC, ̂⋆PUIC — can be found in Labart and Lelong (2005)
and are recalled in Appendix D for the sake of clearness. We only need to compute

Â =

∫ ∞

0
E

[
emZu(Su −K)+1{T−

b1
<u}1{T+

b2
<u}

]
e−λudu. A detailed computation can be

found in Section 4.

2.2.2. Knock In. A knock in double barrier Parisian call (respectively put) pays at matu-
rity time T (ST −K)+ (respectively (K−ST )+) if S makes an excursion outside the range
(L1, L2) longer than D before T and is lost otherwise.
The price of such an option (DPIC) is given by

DPIC(x, T ;K,L1, L2; r, δ) = e−(m2

2
+r)T

E

[
emZT (ST −K)+

(
1{T−

b1
<T} + 1{T+

b2
<T} − 1{T−

b1
<T}1{T+

b2
<T}

)]
.

It is quite obvious that DPIC can be expressed in terms of single barrier Parisian option
prices

(2.5) DPIC(x, T ;K,L1, L2; r, δ) = PDIC(x, T ;K,L1; r, δ)

+ PUIC(x, T ;K,L2; r, δ) − e−(m2

2
+r)TA,

where A is defined by (2.4).

3. A Call Put parity relationship

As for single barrier Parisian options, a parity relationship between calls and puts holds.
The basic idea of the relationship is that the processes Z and −Z have the same law.
Therefore, introducing the new Brownian motion Z̃ = −Z enables to rewrite the price of
double barrier Parisian puts

(3.1) DPOP (x, T ;K,L1, L2, D, r, δ) = Kxe
−

“

r+m2

2

”

T

E

(
e−(m+σ)Z̃T

(
1

x
eσZ̃T − 1

K

)+

1{T+
−b2

>T}1{T−
−b1

>T}

)
.

Let us introduce

m′ = −(m+ σ), δ′ = r, r′ = δ, b′1 = −b2, b′2 = −b1.
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One can easily check that m′ = 1
σ

(
r′ − δ′ − σ2

2

)
and that r′ + m′2

2 = r + m2

2 . Moreover,

by noticing that the barrier L′ corresponding to b′ = −b is
1

L
, it becomes clear that the

expectation on the right hand side of (3.1) can be interpreted as

xK DPOC

(
1

x
, T ;

1

K
,

1

L2
,

1

L1
, D, δ, r

)
.

The same kind of relation holds for knock in options

DPIP (x, T ;K,L1, L2, D, r, δ) = xK DPIC

(
1

x
, T ;

1

K
,

1

L2
,

1

L1
, D, δ, r

)
.

4. Computation of Laplace transforms

The computation of ⋆DPOC will be done using numerical inversion of its Laplace trans-
form with respect to maturity time. As explained above, the computation of the Laplace
transform of DPOC boils down to the one of A. First, we split A into two terms depending
on the relative position of T−

b1
and T+

b2
.

A =E

[
1{T−

b1
<T}E

[
1{T−

b1
≤T+

b2
<T}e

mZT (xeσZT −K)+

∣∣∣∣FT−
b1

]]

+ E

[
1{T+

b2
<T}E

[
1{T+

b2
≤T−

b1
<T}e

mZT (xeσZT −K)+

∣∣∣∣FT+
b2

]]
△
= A1 +A2.

The computation of Â2 being quite similar to the one of Â1, we only focus on Â1. See

Appendix C for a computation of Â2.

The computation of Â1 is quite lengthy, so we split it into two separate steps. First, we

give a global formula for Â1 (see Theorem 4.1). Then, we carry out a detailed computation

of the different terms appearing in the expression of Â1 in the case K ≤ L2. The reader
is referred to Appendix C for the other cases.
Computations are quite long but not difficult, that’s why we omit further details.

4.1. Global formula for Â1. Before giving a global formula for Â1, we state a theorem,

which ensues a corollary giving the global formula for Â1. The rest of the paragraph is
devoted to the proof of the theorem.

Theorem 4.1. In the case L1 ≤ x ≤ L2 (i.e. b1 ≤ 0 ≤ b2), we have

A1 =

∫ +∞

k
emy(xeσy −K)h(T, y)dy,

where k = 1
σ ln(Kx ). The function h(t, y) is characterised by its Laplace transform

ĥ(λ, y) =
e(2b1−b2)

√
2λ

√
2λDψ2(

√
2λD)

ψ(−
√

2λD)

∫ +∞

0
xe−

x2

2D
−
√

2λ|x+b2−y|dx,(4.1)

where

ψ(z) =

∫ +∞

0
xe−

x2

2
+zxdx = 1 + z

√
2πe

z2

2 N (z).(4.2)

Corollary 4.1. In the case L1 ≤ x ≤ L2 (i.e. b1 ≤ 0 ≤ b2), we have

Â1 =
e(2b1−b2)

√
2λ

√
2λDψ2(

√
2λD)

ψ(−
√

2λD)

∫ +∞

k
emy(xeσy −K)H(y − b2)dy,(4.3)

where H(z) =

∫ +∞

0
xe−

x2

2D
−
√

2λ|x−z|dx.
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Proof of Theorem 4.1. In the first part of the proof, we show that A1 can be written as∫ +∞
k emy(xeσy − K)h(T, y)dy for a certain function h. Then, we compute the Laplace

transform of h w.r.t. t to get (4.1).

Step 1: Computation of A1. We can write

A1 = E

[
1{T−

b1
<T}E

[
1{T−

b1
≤T+

b2
<T}e

m(ZT−Z
T
−
b1

+Z
T
−
b1

)

(xe
σ(ZT−Z

T
−
b1

+Z
T
−
b1

)

−K)+

∣∣∣∣FT−
b1

]]

△
= E[1{T−

b1
<T}A11].(4.4)

Let us introduce a new Brownian motion B = {Bt = Zt+T−
b1

− ZT−
b1

, t ≥ 0} independent

of FT−
b1

thanks to the Strong Markov property. On the set {T−
b1
< T}, the indicator

1{T−
b1
≤T+

b2
<T} can be rewritten using B

A11 = E



1{T+
b2−Z

T
−
b1

(B)≤T−T−
b1
}e
m(B

T−T
−
b1

+Z
T
−
b1

)

(xe
σ(B

T−T
−
b1

+Z
T
−
b1

)

−K)+

∣∣∣∣FT−
b1



 ,

= E

[
1{T+

b2−z
(B)≤T−τ}e

m(BT−τ+z)(xeσ(BT−τ+z) −K)+

]

|z=Z
T
−
b1

,τ=T−
b1

,

△
= E

(
ZT−

b1

, T−
b1

)
.(4.5)

Once again, conditioning w.r.t. FT+
b2−z

and introducing a new Brownian motion B̃ =

{B̃t = Bt+T+
b2−z

−BT+
b2−z

, t ≥ 0} yields

E(z, τ) = E



1{T+
b2−z

(B)≤T−τ}E
[
em(B̃T−τ−t+y+z)(xeσ(B̃T−τ−t+y+z) −K)+

]

|y=B
T

+
b2−z

,t=T+
b2−z



 ,

= E

[
1{T+

b2−z
(B)≤T−τ}PT−τ−T+

b2−z
(fx)(BT+

b2−z
+ z)

]
,

where fx(z) = emz(xeσz −K)+, and Pt(fx)(z) =
1√
2πt

∫ +∞

−∞
fx(u)e

− (u−z)2

2t du. As recalled

by Chesney et al. (1997), the random variables BT+
b2−z

and T+
b2−z are independent. Let

ν+(du) denote the law of BT+
b2−z

, we have

E(z, τ) =

∫ +∞

−∞
E

[
1{T+

b2−z
(B)≤T−τ}PT−τ−T+

b2−z
(fx)(u+ z)

]
ν+(du),

=

∫ +∞

−∞
fx(y)hb2−z(T − τ, y − z)dy,
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where hb(t, y) =

∫ +∞

−∞
E


1{T+

b
≤t}

e
− (y−u)2

2(t−T
+
b

)

√
2π(t− T+

b )


 ν+(du). By using (4.4) and (4.5), we get

A1 = E

[
1{T−

b1
<T}

∫ +∞

−∞
fx(y)hb2−Z

T
−
b1

(T − T−
b1
, y − ZT−

b1

)dy

]
,

=

∫ +∞

−∞
fx(y)h(T, y)dy,

where h(t, y) =

∫ +∞

−∞
E

[
1{T−

b1
<T}hb2−z(t− T−

b1
, y − z)

]
ν−(dz) and ν−(dz) denotes the

density of ZT−
b1

.

Step 2: Laplace transform of h w.r.t. t. Before computing ĥ(λ, y), we give a more explicit
formula for the function h. Using the law of BT+

b2−z
(see Chesney et al. (1997)), we have

hb2−z(t, y) =

∫ +∞

b2−z
du
u− (b2 − z)

D
e−

(u−(b2−z))2

2D γ(t, u− y),

where γ(t, x) = E


1{T+

b2−z
(B)≤t}

e

− x2

2(t−T
+
b2−z

(B))

q

2π(t−T+
b2−z

(B))


 . Using the expression of h and the ex-

plicit formula of ν−(dz) yields

h(t, y) =

∫ b1

−∞
dz

∫ +∞

b2−z
du

b1 − z

D

u− (b2 − z)

D
e−

(b1−z)2

2D e−
(u−(b2−z))2

2D γ0(t, u− (y − z)),

(4.6)

where γ0(t, x) = E

[
1{T−

b1
≤t}γ(t− T−

b1
, x)

]
.

In view of (4.6), computing ĥ(λ, y) boils down more or less to computing γ̂0(λ, u−(y−z)).
By doing some changes of variables, we get

γ̂0(λ, x) = E
[
e
−λT−

b1

] ∫ +∞

0
e−λvγ(v, x)dv = E

[
e
−λT−

b1

]
E
[
e
−λT+

b2−z
(B)]

∫ +∞

0
e−λu

e−
x2

2u√
2πu

du.

One can easily prove that

∫ +∞

0
e−λu

e−
x2

2u√
2πu

du =
1√
2λ
e−

√
2λ|x|. Furthermore, the values of

E
[
e
−λT−

b1

]
and E

[
e
−λT+

b2−z
(B)
]

are explicitly known (see Appendix Chesney et al. (1997)

for a proof). Then, γ̂0(λ, x) =
e(b1−|x|−b2+z)

√
2λ

√
2λψ2(

√
2λD)

, and Equation (4.1) follows.

�

4.2. Computation of Â1. For the sake of clearness, in the following we write θ =
√

2λ.

In this part, we state and prove a theorem giving the value of Â1 in the case K ≤ L2. We
refer the reader to Appendix C for the case K > L2.

Theorem 4.2. In the case K ≤ L2, we have the following result

Â1 =
Ke2(b1−b2)θ

θψ2(θ
√
D)

ψ2(−θ
√
D)e(m+θ)k

[
1

m+ θ
− 1

m+ θ + σ

]

+
2e(2b1−b2)θ

ψ2(θ
√
D)

ψ(−θ
√
D)emb2

[
Kψ(m

√
D)

m2 − θ2
− L2ψ((m+ σ)

√
D)

(m+ σ)2 − θ2

]
.
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Proof. We want to compute Â1, so we need to evaluate

I
△
=

∫ +∞

k
emy(xeσy −K)H(y − b2)dy.(4.7)

Standard computations lead to the following formula for the function H (see Corollary 4.1
for the definition of H).

H(x) =






eθxDψ(−θ
√
D) if x ≤ 0,

e−θxDψ(θ
√
D) −Dθ

√
2πDeλD

{
N (θ

√
D − x√

D
)e−θx+

N (−θ
√
D − x√

D
)eθx

}
otherwise.

Using this result, we can compute I.

(4.8) I =

∫ b2

k
emy(xeσy −K)H(y − b2)dy +

∫ +∞

b2

emy(xeσy −K)H(y − b2)dy
△
= I1 + I2.

Computation of I1. In view of the definition of H, this case is the simpler one. Easy
computations give

I1 = Dψ(−θ
√
D)e−θb2

{
e(m+θ)b2

[
L2

m+ σ + θ
− K

m+ θ

]
+Ke(m+θ)k

[
1

m+ θ
− 1

m+ σ + θ

]}
.

Computation of I2. The second integral in (4.8) can be split into three terms

I21 = Dψ(θ
√
D)

∫ ∞

b2

emy(xeσy −K)eθ(b2−y)dy,

I22 = −Dθ
√

2πDeλD
∫ ∞

b2

emy(xeσy −K)eθ(b2−y)N (θ
√
D +

b2 − y√
D

)dy,

I23 = −Dθ
√

2πDeλD
∫ ∞

b2

emy(xeσy −K)eθ(y−b2)N (−θ
√
D +

b2 − y√
D

)dy.

For I21, we simply get I21 = ψ(θ
√
D)Demb2

[
K
m−θ − L2

m+σ−θ

]
.

I22 and I23 are computed in the following way: we change variables (we introduce v =

θ
√
D+ b2−y√

D
(for the valuation of I22)) and we use the following equality

∫ a
−∞N (v)ebvdv =

1
b (N (a)eab − e

b2

2 N (a− b)), for a, b ∈ R, b 6= 0. We get

I22 = −Dθ
√

2πDemb2eλDN (θ
√
D)

[
K

m− θ
− L2

m+ σ − θ

]

+Dθ
√

2πDemb2
[

K

m− θ
N (m

√
D)e

m2D
2 − L2

m+ σ − θ
N ((m+ σ)

√
D)e

(m+σ)2D

2

]
,

I23 = −Dθ
√

2πDemb2eλDN (−θ
√
D)

[
K

m+ θ
− L2

m+ σ + θ

]

+Dθ
√

2πDemb2
[

K

m+ θ
N (m

√
D)e

m2D
2 − L2

m+ σ + θ
N ((m+ σ)

√
D)e

(m+σ)2D

2

]
.

Summing I21, I22 and I23 and using the definition of ψ (see (4.2)) yield

I2 = Demb2ψ(−θ
√
D)

[
K

m+ θ
− L2

m+ σ + θ

]
+2Dθemb2

[
Kψ(m

√
D)

m2 − θ2
− L2ψ((m+ σ)

√
D)

(m+ σ)2 − θ2

]
.
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We sum I1 and I2 to get

I =DK ψ(−θ
√
D)e(m+θ)ke−θb2

[
1

m+ θ
− 1

m+ σ + θ

]

+ 2Dθemb2

[
Kψ(m

√
D)

m2 − θ2
− L2ψ((m+ σ)

√
D)

(m+ σ)2 − θ2

]
.

From the definitions of Â1 and I (see (4.3), (4.7)), we complete the proof of Theorem 4.2.
�

5. The inversion of Laplace transforms

This section is devoted to the numerical inversion of the Laplace transforms computed pre-
viously. We recall that the Laplace transforms are computed with respect to the maturity
time. We explain how to recover a function from its Laplace transform using a contour
integral. The real problem is how to numerically evaluate this complex integral. This is
done in two separate steps involving two different errors. First, as explained in Section 5.1
we replace the integral by a series. The first step creates a discretisation error, which is
handled by Proposition 5.1. Secondly, one has to compute a non-finite series. This can be
achieved by simply truncating the series but it leads to a tremendously slow convergence.
Here, we prefer to use the Euler acceleration as presented in Section 5.2. Proposition 5.2
states an upper-bound for the error due to the accelerated computation of the non finite
series. Theorem 5.2 gives a bound for the global error.

5.1. The Fourier series representation. Thanks to Widder (1941, Theorem 9.2), we
know how to recover a function from its Laplace transform.

Theorem 5.1. Let f be a continuous function defined on R+ and α a positive number. If
the function f(t) e−αt is integrable, then given the Laplace transform f̂ , f can be recovered
from the contour integral

(5.1) f(t) =
1

2πi

∫ α+i∞

α−i∞
est f̂(s)ds, t > 0.

The variable α has to be chosen greater than the abscissa of convergence of f̂ . The ab-
scissa of convergence of the Laplace transforms of the double barrier Parisian option prices
computed previously is smaller than (m+σ)2/2. Hence, α must be chosen strictly greater
than (m+ σ)2/2.

For any real valued function satisfying the hypotheses of Theorem 5.1, we introduce a
trapezoidal discretisation of Equation (5.1)

(5.2) fπ/t(t) =
eαt

2t
f̂(α) +

eαt

t

∞∑

k=1

(−1)kRe

(
f̂

(
α+ i

kπ

t

))
.

Proposition 5.1. If f is a continuous bounded function satisfying f(t) = 0 for t < 0, we
have

(5.3)
∣∣eπ/t(t)

∣∣ =
∣∣f(t) − fπ/t(t)

∣∣ ≤ ‖f‖∞
e−2αt

1 − e−2αt
.

To prove Proposition 5.1,we need the following result adapted from Abate et al. (1999,
Theorem 5)



10 C. LABART AND J. LELONG

Lemma 5.1. For any continuous and bounded function f such that f(t) = 0 for t < 0,
we have

(5.4) eπ/t(t) = fπ/t(t) − f(t) =
∞∑

k = −∞
k 6= 0

f (t(1 + 2k)) e−2kαt .

Proof of Proposition 5.1. By performing a change of variables s = α + iu in the integral
in (5.1), we can easily obtain an integral of a real variable.

f(t) =
eαt

2π

∫ +∞

−∞
f̂(α+ iu)(cos(ut) + i sin(ut))du.

Moreover, since f is a real valued function, the imaginary part of the integral vanishes

f(t) =
eαt

2π

∫ +∞

−∞
Re
(
f̂(α+ iu)

)
cos(ut) − Im

(
f̂(α+ iu)

)
sin(ut))du.

We notice that

Im
(
f̂(α+ iu)

)
= −Im

(
f̂(α− iu)

)
, Re

(
f̂(α+ iu)

)
= Re

(
f̂(α− iu)

)
.

So,

(5.5) f(t) =
eαt

π

∫ +∞

0
Re
(
f̂(α+ iu)

)
cos(ut) − Im

(
f̂(α+ iu)

)
sin(ut))du.

Using a trapezoidal integral with a step h = π
t leads to Equation (5.2). Remembering that

f(t) = 0 for t < 0, we can easily deduce from Lemma 5.1 that

eπ/t(t) =
∞∑

k=0

f (t(1 + 2k)) e−2kαt .

Taking the upper bound of f yields (5.3). �

Remark 5.1. For the upper bound in Proposition 5.1 to be smaller than 10−8 ‖f‖∞, one
has to choose 2αt = 18.4. In fact, this bound holds for any choice of the discretisation step
h satisfying h < 2π/t.

Simply truncating the summation in the definition of fπ/t to compute the trapezoidal
integral is far too rough to provide a fast and accurate numerical inversion. One way to
improve the convergence of the series is to use the Euler summation.

5.2. The Euler summation. To improve the convergence of a series S, we use the Euler
summation technique as described by Abate et al. (1999), which consists in computing
the binomial average of q terms from the p-th term of the series S. The binomial average
obviously converges to S as p goes to infinity. The following proposition describes the
convergence rate of the binomial average to the infinite series fπ/t(t) when p goes to ∞.

Proposition 5.2. Let f be a function of class Cq+4 such that there exists ǫ > 0 s.t.
∀k ≤ q + 4, f (k)(s) = O(e(α−ǫ)s). We define sp(t) as the approximation of fπ/t(t) when
truncating the non-finite series in (5.2) to p terms

(5.6) sp(t) =
eαt

2t
f̂(α) +

eαt

t

p∑

k=1

(−1)kRe

(
f̂

(
α+ i

πk

t

))
,

and E(q, p, t) =
∑q

k=0C
k
q 2

−qsp+k(t). Then,

∣∣fπ/t(t) − E(q, p, t)
∣∣ ≤ teαt |f ′(0) − αf(0)|

π2

(p+ 1)! q!

2q−2 (p+ q + 2)!
+ O

(
1

pq+3

)

when p goes to infinity.
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Using Propositions 5.1 and 5.2, we get the following result concerning the global error on
the numerical computation of the price of a double barrier Parisian call option

Theorem 5.2. Let f be the price of a double barrier Parisian call option. Using the
notations of Proposition 5.2, we have

(5.7) |f(t) − E(q, p, t)| ≤ S0
e−2αt

1 − e−2αt
+
eαtt |f ′(0) − αf(0)| (p+ 1)! q!

π22q−2 (p+ q + 2)!
+ O

(
1

pq+3

)

where α is defined in Theorem 5.1.

Proof of Theorem 5.2. f being the price of a double barrier Parisian call option, we know
that f is bounded by S0. Moreover, f is continuous (actually of class C∞, see Appendix A).
Hence, Proposition 5.1 yields the first term on the right-hand side of (5.7).

Relying on Proposition A.1, we know that ⋆f is of class C∞ and ⋆f (k)(t) = O(e
(m+σ)2

2
t),

∀k ≥ 0. Since f(t) = e−(r+m2/2)t ⋆f(t), it is quite obvious that f is also of class C∞ and

f (k)(t) = O
(
e((m+σ)2/2−(r+m2/2))t

)
, ∀k ≥ 0. Since α > (m+σ)2

2 , we can apply Proposi-

tion 5.2 to get the result. �

Proof of Proposition 5.2. We compute the difference between two successive terms.

E(q, p+ 1, t) − E(q, p, t) =
eαt

2qt

q∑

k=0

Ckq (−1)p+1+kap+k+1,

where

(5.8) ap =

∫ +∞

0
e−αs cos

(p
t
πs
)
f(s)ds.

Let g(s) = e−αsf(s). Since g(k)(∞) = 0 for k ≤ q + 3 and g(q+4) is integrable, we can
perform (q+3) integrations by parts in (5.8) to obtain a Taylor expansion when p goes to
infinity

(5.9) ap =
c2
p2

+
c4
p4

+ · · · + cq

p2[(q+3)/2]
+ O

(
1

pq+4

)

with c2 = 4t2(f ′(0)−αf(0))
π2 .

We can rewrite (5.9)

ap =
c2

p(p+ 1)
+

c′3
p(p+ 1)(p+ 2)

+ · · · +
c′q

p(p+ 1) · · · (p+ q + 2)
+ O

(
1

pq+4

)
.

Some elementary computations show that for j ≥ 1
q∑

k=0

Ckq (−1)p+1+k 1

(p+ k)(p+ k + 1) · · · (p+ k + j)
= (−1)p+1 p! (q + j)!

j!(p+ q + j + 1)!
.

Computing
∑q

k=0C
k
q (−1)p+1+kap+k+1 leads to

E(q, p+ 1, t) − E(q, p, t) = (−1)p+1c2
eαt

2qt

p! (q + 1)!

(p+ q + 2)!
+ O

(
1

pq+4

)
.

Moreover, p! (q+1)!
(p+q+2)! is decreasing w.r.t p, so

|E(q,∞, t) − E(q, p, t)| ≤ c2
eαt

2qt

p! (q + 1)!

(p+ q + 2)!
+ O

(
1

pq+3

)
.

�
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Remark 5.2. Whereas Proposition 5.1 in fact holds for any h < 2π/t, the proof of Propo-
sition 5.2 is essentially based on the choice of h = π/t since the key point is to be able to
write E(q, p+1, t)−E(q, p, t) as the general term of an alternating series. The impressive
convergence rate of E(q, p, t) definitely relies on the choice of this particular discretisation
step. For a general step h, it is much more difficult to study the convergence rate and one
cannot give an explicit upper-bound.

Remark 5.3. For 2αt = 18.4 and q = p = 15, the global error is bounded by S010−8 +
t |f ′(0) − αf(0)| 10−11. As one can see, the method we use to invert Laplace transforms
provides a very good accuracy with few computations.

Remark 5.4. Considering the case of call options in Theorem 5.2 is sufficient since put
prices are computed using parity relations and their accuracy is hung up to the one of call
prices. Theorem 5.2 also holds for single barrier Parisian options.

6. Numerical examples

In this section, we present some results obtained using the numerical inversion developed
in Section 5. We have implemented our method in C and used the function erfc from the
Octave library to compute the function N at a complex point. In the examples, we choose
p = 15, q = 15 and α = 18.4/2T . Hence, when the spot is of order 100 the accuracy of
our method is ensured up to 10−6.
In Table 1, we compare the prices of a double barrier Parisian out call with S0 = K = 100,
L1 = 90, L2 = 110, r = 0.095, δ = 0 and T = 1 obtained with our method and the
corrected Monte Carlo method of Baldi et al. (2000) with 10000 samples. For the results
obtained by the corrected Monte Carlo method, we precise the width of the confidence
interval at level 95%. The accuracy showed by this approach decreases as the delay of the
option increases. Our method is far more accurate and incredibly faster. For instance, if we
consider the option described above with D = 0.2 and 250 time steps for the Monte Carlo,
our algorithm takes 1.5 ms (CPU time) whereas the corrected Monte Carlo algorithm runs
in 1.2 sec (CPU time).

Delay MC Price Price CI Laplace
0.0500 0.545 0.0840 0.522
0.1000 1.142 0.1359 1.102
0.1500 1.774 0.1763 1.725
0.2000 2.241 0.2049 2.375
0.2500 3.044 0.2492 3.037
0.3000 3.681 0.2781 3.722
0.3500 4.530 0.3231 4.411
0.4000 4.933 0.3362 5.109

Table 1. Comparison corrected Monte Carlo and Laplace Transform

Figure 2 shows the evolution of the price of a double Parisian knock out call w.r.t. the
delay when using the Laplace transform method or the corrected Monte Carlo one. We
can see that the price given by the Laplace transform method is in the confidence interval
given by the corrected Monte Carlo method. Figures 3 and 4 show the evolution of the
price and the delta of a double barrier Parisian in call with respect to the spot and the
strike. The delta is computed using a finite difference scheme.



PRICING DOUBLE BARRIER PARISIAN OPTIONS USING LAPLACE TRANSFORMS 13

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ric

e

Delay

Price Monte Carlo

Laplace Transform

Inf Price Monte Carlo

Sup Price Monte Carlo

Figure 2. Comparison of corrected Monte Carlo and Laplace Transform

85 
90 

95 
100 

105 
110 

115 
120 

80 
85 

90 
95 

100 
105 

110 
115 

120 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

Price

Spot

Strike

Price

Figure 3. Price of a Double barrier Parisian In Call (σ = 0.2, r = 0.02,
δ = 0, L = 80, U = 120)



14 C. LABART AND J. LELONG

80 85 90 95 100 105 110 115 120 

80 

85 

90 

95 

100 

105 

110 

115 

120 

-0.2 
0 

0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 

Delta

Spot

Strike

Delta

Figure 4. Delta of a Double barrier Parisian In Call



PRICING DOUBLE BARRIER PARISIAN OPTIONS USING LAPLACE TRANSFORMS 15

Appendix A. Regularity of option prices

Proposition A.1. Let f(t) be the “star” price of a double barrier Parisian option of

maturity t. If b1 < 0 and b2 > 0, f is of class C∞ and for all k ≥ 0, f (k)(t) = O
(

e
(m+σ)2

2
t

)

when t goes to infinity.

For the sake of clearness, we will only prove Proposition A.1 for single barrier Parisian
options as the scheme of the proof is still valid for double barrier Parisian options. Once
again, we can restrict to calls. Let f(t) = PDIC(x, t;K,L; r, δ).

f(t) = E
[
emZt(St −K)+1{T−

b
<t}

]
.

Let Wt denote Zt+T−
b
− ZT−

b
. Relying on the strong Markov property,

(A.1) f(t) = E

(
1{T−

b
<t}E

[
(xeσ(Wt−τ+z) −K)+em(Wt−τ+z)

]

|z=Z
T
−
b

, τ=T−
b

)
.

Let ν denote the density of ZT−
b

(see Chesney et al. (1997) for its expression) and µ the

density of T−
b (see Proposition B.1 for a proof of existence). Since ZT−

b
and T−

b are

independent, Equation (A.1) can be written

f(t) =

∫ t

0
dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw (xeσ(w

√
t−τ+z) −K)+em(w

√
t−τ+z)p(w)ν(z)µ(τ)

where p(w) = 1√
2π

e−
w2

2 . A change of variable on τ gives

f(t) =

∫ t

0
dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw (xeσ(w

√
τ+z) −K)+em(w

√
τ+z)p(w)ν(z)µ(t− τ).

Since µ is of class C∞ and all its derivatives are null at 0 and bounded on any interval
[0, T ](see Appendix B), one can easily prove that f is of class C∞ and that for all k ≥ 0

f (k)(t) =

∫ t

0
dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw (xeσ(w

√
τ+z) −K)+em(w

√
τ+z)p(w)ν(z)µ(k)(t− τ).

This proves the first part of Proposition A.1. From Proposition B.1, we know that µ and
all its derivatives are bounded. Then, we can bound f (k)

∣∣∣f (k)(t)
∣∣∣ ≤

∫ t

0
dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw xe(m+σ)(w

√
τ+z)p(w)ν(z)

∥∥∥µ(k)
∥∥∥
∞
,

≤
∫ ∞

−∞
xe(m+σ)zν(z)dz

∥∥∥µ(k)
∥∥∥
∞

∫ t

0
e

(m+σ)2

2
τdτ,

≤ e
(m+σ)2

2
t 2x

(m+ σ)2

∥∥∥µ(k)
∥∥∥
∞

∫ ∞

−∞
e(m+σ)zν(z)dz.

Relying on one more use of the strong Markov property, the same kind of computations
can be reproduced for double barrier Parisian options.

Appendix B. Regularity of the density of T−
b

In this section, we assume b < 0.

Proposition B.1. The r.v. T−
b has a density µ w.r.t to Lebesgue’s measure. µ is of class

C∞ and for all k ≥ 0, µ(k)(0) = µ(k)(∞) = 0.

To prove this proposition, we need the two following lemmas.
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Lemma B.1. Let N be the analytic prolongation of the cumulative normal distribution
function on the complex plane. The following equivalent holds

N (r(1 + i)) ∼ 1 when r → ∞.

Lemma B.2. For b < 0, we have for u ∈ R

E
(
e−iuT

−
b

)
= O

(
e−|b|

√
|u|
)

when |u| → ∞.

Proof of Proposition B.1. We recall that

(B.1) E

(
e−

λ2

2
T−

b

)
=

eλb

ψ(λ
√
D)

.

We define O = {z ∈ C;−π
4 < arg(z) < π

4 }. One can easily prove that the function

z 7−→ E

(
e−

z2

2
T−

b

)
is holomorphic on the open set O and hence analytic. Moreover,

z 7−→ ezb

ψ(z
√
D)

is also analytic on O except perhaps in a countable number of isolated

points. These two functions coincide on R+, so they are equal on O.
Consequently, we can derive the following equality. For all z ∈ C with positive real part,
we have

(B.2) E
(
e−zT

−
b

)
=

e
√

2zb

ψ(
√

2zD)
.

We use the following convention: for any z ∈ C with positive real part,
√
z is the only

complex number z′ ∈ O such that z = z′z′.
Thanks to the continuity of both terms in (B.2), the equality also holds for pure imaginary
numbers. Hence, by setting z = iu for u ∈ R in Equation (B.2), we obtain the Fourier
transform of T−

b

E
(
e−iuT

−
b

)
=

e
√

2uib

ψ(
√

2iuD)
.

From Lemma B.2, we know that the Fourier transform of T−
b is integrable on R, thus the

r.v. T−
b has a density µ w.r.t. the Lebesgue measure given by

µ(t) =
1

2π

∫ ∞

−∞

e
√

2uib

ψ(
√

2iuD)
e−iut du.

Moreover, thanks to Lemma B.2, u 7−→ uk e
√

2uib

ψ(
√

2iuD)
is integrable and continuous. Hence,

µ is of class C∞. Since µ(t) = 0 for t < D, for all k ≥ 0, µ(k)(0) = 0. Lemma B.3 yields

that for all k ≥ 0, limt→∞ µ(k)(t) = 0. �

Proof of Lemma B.1.

N (x+ iy) =
1√
2π

∫ x

−∞
e−

(v+iy)2

2 dv.

It is easy to check that ∂xN (x+ iy) − ∂yN (x+ iy) = 0 and this definition coincides with
the cumulative normal distribution function on the real axis, so it is the unique analytic
prolongation. We write N (x+ iy) = N (x) +

∫ y
0 ∂yN (x+ iy), to get

N (x+ iy) = N (x) − i
1√
2π

∫ y

0

∫ x

−∞
(v + iu) e−

(v+iu)2

2 dvdu,

= N (x) + i
1√
2π

∫ y

0
e−

(x+iu)2

2 du.
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Taking x+ iy = r(1 + i) gives

N (r(1 + i)) = N (r) + i
1√
2π

∫ r

0
e−

(r+iu)2

2 du,

= N (r) + i
1√
2π

∫ 1

0
e

r2

2
(t2−1) e−itr

2
rdt.(B.3)

For t ∈ [0, 1), e
r2

2
(t2−1) r tends to 0 when r goes to infinity. The function r 7−→ e

r2

2
(t2−1) r

is maximum for r = 1
1−t2 , hence the following upper bound holds

e
r2

2
(t2−1) r ≤ 1

1 − t2
e

1
2(t2−1) for all t ∈ [0, 1).

The upper bound is integrable on [0, 1), so by using the bounded convergence theorem,
we can assert that the integral on the right hand side of (B.3) tends to 0 when r goes to
infinity. �

Proof of Lemma B.2. We only do the proof for u > 0. For r > 0,

ψ(r(1 + i)) = 1 + r(1 + i)
√

2π er
2iN (r(1 + i)).

Using the equivalent of N (r(1 + i)) when r goes to infinity (see Lemma B.1) enables to

establish that |ψ(r(1 + i))| ∼ 2r
√
π when r goes to infinity. Noticing that

√
iu =

√
2u
2 (1+i)

ends the proof. �

Here is a quite obvious lemma we used in the proof of Proposition B.1.

Lemma B.3. Let g be an integrable function on R, then

lim
t→∞

∫ ∞

−∞
g(u) eiut du = 0.

Appendix C. Formulae of Â1, Â2

Let us recall the definitions of A1, A2

A1 =E

[
1{T−

b1
<T}E

[
1{T−

b1
≤T+

b2
<T}e

mZT (xeσZT −K)+|FT−
b1

]]
,

A2 =E

[
1{T+

b2
<T}E

[
1{T+

b2
≤T−

b1
<T}e

mZT (xeσZT −K)+|FT+
b2

]]
.

C.1. Formula of Â1. Case L2 ≥ K

Â1 =
Ke2(b1−b2)θ

θψ2(θ
√
D)

ψ2(−θ
√
D)e(m+θ)k

[
1

m+ θ
− 1

m+ θ + σ

]

+
2e(2b1−b2)θ

ψ2(θ
√
D)

ψ(−θ
√
D)emb2

[
Kψ(m

√
D)

m2 − θ2
− L2ψ((m+ σ)

√
D)

(m+ σ)2 − θ2

]
.
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Case L2 < K

Â1 = K
e2b1θ

θψ(θ
√
D)

ψ(−θ
√
D)e(m−θ)k

[
1

m− θ
− 1

m+ σ − θ

]

−K e(2b1−b2)θ

ψ2(θ
√
D)

ψ(−θ
√
D)

√
2πDeλDemk

[
eθ(b2−k)N (θ

√
D +

b2 − k√
D

)

(
1

m− θ
− 1

m+ σ − θ

)

+eθ(k−b2)N (−θ
√
D +

b2 − k√
D

)

(
1

m+ θ
− 1

m+ σ + θ

)]

+2
e(2b1−b2)θ

ψ2(θ
√
D)

ψ(−θ
√
D)

√
2πDemb2

[
mK

m2 − θ2
e

m2D
2 N (m

√
D +

b2 − k√
D

)

− L2(m+ σ)

(m+ σ)2 − θ2
e

(m+σ)2D

2 N ((m+ σ)
√
D +

b2 − k√
D

)

]
.

C.2. Formula of Â2. Instead of computing Â2 directly, which would mean doing again

the same type of computations we did to evaluate Â1, we first rewrite A2 to use as much

as possible the computations we have already done in the valuation of Â1. As Z and −Z
have the same law, introducing a new Brownian motion Z̃ = −Z leads to

A2 = E

[
1{T+

−b1
(Z̃)<T}1{T−b

−
2

(Z̃)≤T+
−b1

(Z̃)<T}e
−mZ̃T (xeσZ̃T −K)+

]

= E

[
1{T+

−b1
(Z̃)<T}1{T−b

−
2

(Z̃)≤T+
−b1

(Z̃)<T}e
−(m+σ)Z̃T (x−KeσZ̃T )+

]
.

Let A3 be defined as E

[
1{T−

b1
<T}1{T−

b1
≤T+

b2
<T}e

mZT (K − xeσZT )+

]
. Analogously with The-

orem 4.1, we can write, for L1 ≤ x ≤ L2, A3 =
∫ k
−∞ dyemy(K − xeσy)h(T, y), where the

Laplace transform of h is still given by Equation (4.1). Then, we compute Â3, and we get

Â2 by replacing in Â3 m by −(m+ σ), x by K, K by x, b1 by −b2 and b2 by −b1 (which
means we replace L2 by xK

L1
and L1 by xK

L2
).

Case K ≥ L1

Â2 =
xe2(b1−b2)θ

θψ2(θ
√
D)

ψ2(−θ
√
D)e(m+σ−θ)k

[
1

m− θ
− 1

m+ σ − θ

]
.

Case K ≤ L1

Â2 =
xe−2b2θ

θψ(θ
√
D)

ψ(−θ
√
D)e(m+σ+θ)k

[
1

m+ θ
− 1

m+ σ + θ

]

− xe(b1−2b2)θ

ψ2(θ
√
D)

ψ(−θ
√
D)

√
2πDeλDe(m+σ)k

[
e(k−b1)θN (θ

√
D +

k − b1√
D

)

(
1

m+ θ
− 1

m+ σ + θ

)

+e(b1−k)θN (−θ
√
D +

k − b1√
D

)

(
1

m− θ
− 1

m+ σ − θ

)]

+
2xe(b1−2b2)θ

L1ψ2(θ
√
D)

ψ(−θ
√
D)e(m+σ)b1

[
K

m2 − θ2

(
ψ(−m

√
D) +m

√
2πDe

m2D
2 N (−m

√
D +

k − b1√
D

)

)

− L1

(m+ σ)2 − θ2

(
ψ(−(m+ σ)

√
D) + (m+ σ)

√
2πDe

(m+σ)2D

2 N (−(m+ σ)
√
D +

k − b1√
D

)

)]
.
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Appendix D. Laplace transforms of single barrier Parisian option prices

In this section, we only recall the prices of single barrier Parisian options that are required
to compute the double barrier Parisian option prices. In the following, d denotes b−k√

D
.

D.1. Standard call option.

∗̂BSC(x, λ;K; r, δ) =






K
θ e

(m−θ)k
(

1
m−θ − 1

m+σ−θ

)
for K ≥ x,

2K
m2−θ2 − 2x

(m+σ)2−θ2 + Ke(m+θ)k

θ(
1

m+θ − 1
m+σ+θ

)
for K ≤ x.

D.2. Parisian down in call.

̂∗PDIC(x, λ;K,L; r, δ) =
ψ(−θ

√
D)e2bθ

θψ(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)
,

for K > L and x ≥ L.

̂∗PDIC(x, λ;K,L) =
e(m+θ)b

ψ(θ
√
D)

(
2K

m2 − θ2

[
ψ(−

√
Dm) +

√
2πDe

Dm2

2 mN (−d−
√
Dm)

]

− 2L

(m+ σ)2 − θ2

[
ψ(−

√
D(m+ σ)) +

√
2πDe

D
2

(m+σ)2(m+ σ)N
(
−d−

√
D(m+ σ)

)])

+
Ke(m+θ)k

θψ(θ
√
D)

(
1

m+ θ
− 1

m+ σ + θ

)[
ψ(−θ

√
D) + θeλD

√
2πDN (d− θ

√
D)
]

+
eλD

√
2πD

ψ(θ
√
D)

Ke2bθe(m−θ)kN (−d− θ
√
D)

(
1

m+ σ − θ
− 1

m− θ

)

for K ≤ L ≤ x.

D.3. Parisian up in call.

̂∗PUIC(x, λ;K,L; r, δ) = e(m−θ)b
√

2πD

ψ(θ
√
D)

[
2K

m2 − θ2
e

Dm2

2 mN (d+
√
Dm)

− 2L

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N (d+
√
D(m+ σ))

]

+
e−2bθ

ψ(θ
√
D)

Ke(m+θ)keλD
√

2πDN (d− θ
√
D)

(
1

m+ σ + θ
− 1

m+ θ

)

+
e(m−θ)k

θψ(θ
√
D)

K

(
1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN (d− θ

√
D)
)

for x ≤ L ≤ K.

̂∗PUIC(x, λ;K,L; r, δ) =
e(m−θ)b

ψ(θ
√
D)

[
2K

m2 − θ2
ψ(

√
Dm) − 2L

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

]

+
e−2bθψ(−θ

√
D)

θψ(θ
√
D)

K e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)

for K ≤ L and x ≤ L.
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