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Abstract

A new class of risk measures called cash sub-additive risk measures is introduced to

assess the risk of future financial, nonfinancial and insurance positions. The debated cash

additive axiom is relaxed into the cash sub-additive axiom to preserve the original difference

between the numéraire of the current reserve amounts and future positions. Consequently,

cash sub-additive risk measures can model stochastic and/or ambiguous interest rates or

defaultable contingent claims. Several practical examples are presented and in such contexts

cash additive risk measures cannot be used. Several dual representations of the cash sub-

additive risk measures are provided. The new risk measures are characterized by penalty

functions defined on a set of sub-linear probability measures and can be represented using

penalty functions associated with cash additive risk measures defined on some extended

spaces. The issue of the optimal risk transfer is studied in the new framework using inf-

convolution techniques. Some examples of dynamic cash sub-additive risk measures are

provided via BSDEs. In contrast to the dynamic cash additive risk measures, the dynamic

cash sub-additive risk measures are recursive.
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1 Introduction

The assessment of financial and nonfinancial risks plays a key role for economic agents when

pricing assets or managing their wealths. Consequently, over the last decade several measures of

risk have been proposed to assess the riskiness of financial and nonfinancial positions and compute

cash reserve amounts for hedging purposes. The axiomatic based monetary risk measures have

been largely investigated because most axioms embed desirable economic properties. Coherent

risk measures have been introduced by Artzner, Delbaen, Eber, and Heath (1997), Artzner,

Delbaen, Eber, and Heath (1999), and further developed by Delbaen (2001), Delbaen (2002);

sublinear risk measures by Frittelli (2000); convex risk measures by Föllmer and Schied (2002a),

Föllmer and Schied (2002b) and Frittelli and Rosazza Gianin (2002). Examples of convex risk

measures related to pricing and hedging in incomplete markets are provided by, for instance,

El Karoui and Quenez (1996), Carr, Geman, and Madan (2001), Frittelli and Rosazza Gianin

(2004) and Staum (2004). However, while the convexity and the monotonicity axioms have been

largely accepted by academics and practitioners, the cash additive axiom has been criticized

from an economic viewpoint. A basic reason is that while regulators and financial institutions

determine and collet today the reserve amounts to cover future risky positions, the cash additivity

requires that risky positions and reserve amounts are expressed in the same numéraire. This is

a stringent requirement that limits the applicability of cash additive risk measures. Implicitly it

means that risky positions are discounted before applying the risk measure assuming that the

discounting process does not involve any additional risk. Unfortunately, when the interest rates

are stochastic this procedure does not disentangle the risk of the financial position per sé and

the risk associated to the discounting process1. Furthermore, payoff functions on risky assets

are a priori and contractually determined by economic agents considering different scenarios for

the underlying asset. While this procedure is theoretically framed into the cash additive risk

measures, the cash additive axiom does not allow to account for ambiguous discount factor. For

the correct assessment of the current reserve amount it is equally important to allow for ambiguity

on the underlying asset and on the discount factor. This assessment is achieved by relaxing the

cash additive axiom and searching for risk measures that preserve the different numéraires of the

current reserve amounts and the future risky positions.
1Disentangling the different risks is crucial when implementing hedging strategies as different risks are hedged

on different markets.
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The main contribution of this paper is to propose a new class of risk measures called cash

sub-additive risk measures that are directly defined on the future risky positions and provide the

reserve amounts in terms of the current numéraire. To reconcile the two different numéraires cash

sub-additive risk measures relax the cash additive axiom into the cash sub-additive axiom. This

is the minimal requirement to account for the time value of money. Remarkably, the cash sub-

additive axiom (together with the monotonicity and convexity axioms) is enough to characterize

measures of risk that can be applied also when the cash additive risk measures cannot—as

for instance under ambiguous interest rates or defaultable cash flows. Cash sub-additive risk

measures turn out to be suitable not only for assessing financial risks but also other kind of risks

such as insurance risks. For example, the put option premium investigated by Jarrow (2002) as a

measure of the firm insolvency risk defines a cash sub-additive risk measure. Moreover, similarly

to the cash additive risk measures, the cash sub-additive risk measures can be represented using

penalty functions. In particular, we show that cash sub-additive risk measures are characterized

by minimal penalty functions which only depend on finitely additive set functions µ such that

0 ≤ µ(Ω) ≤ 1, that we call finitely additive sub-probability measures.

The other contributions of this paper are the following. In the framework of cash additive risk

measures when the zero-coupon bond is available for the relevant time horizon, we provide the

conditions under which discounting the forward risk measure to obtain current reserve amounts

defines risk measures additive with respect the current numéraire and vice versa (Section 3).

In Section 4 we introduce the cash sub-additive risk measures (denoted byR) and we give sev-

eral examples, for instance generalizing the put option premium investigated by Jarrow (2002).

In these examples cash sub-additive risk measures are obtained applying cash additive risk mea-

sures to the discounted positions and considering the worst case scenario on the ambiguous

discount factor. Random convex functions arise naturally and using their Fenchel transforms a

dual representation is obtained penalizing discount factors through the Fenchel functionals.

In Section 5 making a minimal enlargement of the sample space we define a cash additive

risk measure which is in a one to one correspondence with R. Such a correspondence allows for

a rich interpretation of both cash additive and cash sub-additive risk measures. Moreover, this

correspondence simplifies the study of cash sub-additive risk measures as it enables to exploit

several results on cash additive risk measures. For instance, we characterize cash sub-additive

risk measures by showing that the minimal penalty function of R only depends on sub-linear

probability measures.
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In Section 6 we provide two other links between cash sub-additive and cash additive risk

measures on an enlarged linear space which “contains” the domain of R. The first link allows

to represent any cash sub-additive risk measure in terms of ambiguous probability models and

ambiguous discount factors, both defined on the original space of definition of R. The second

link shows that cash sub-additive risk measures given by compositions of a risk measure and a

convex random function are compositions of an unconditional and a conditional cash additive

risk measures. The first risk measure accounts for the model uncertainty and the second one for

the ambiguity on interest rates or more in general for the risk affecting the numéraire.

In Section 7 using cash sub-additive risk measures we study the problem of designing the

optimal transaction between two economic agents in a general framework allowing for ambiguous

discount factors. In particular we show that the risk transfer problem can be reduced to an inf-

convolution of cash sub-additive risk measures which is again a cash sub-additive risk measure.

Finally, in Section 8 we provide a dynamic example of cash sub-additive risk measures defined

as solution of backward stochastic differential equations. In particular, we let the generator of

backward differential equations depend on the solution in a monotone way and we obtain recursive

dynamic cash sub-additive risk measures. Section 9 concludes.

2 Cash additive risk measures

Coherent risk measures have been introduced by Artzner, Delbaen, Eber, and Heath (1997),

Artzner, Delbaen, Eber, and Heath (1999), and further developed by Delbaen (2001), Delbaen

(2002); sublinear risk measures by Frittelli (2000); convex risk measures by Föllmer and Schied

(2002a), Föllmer and Schied (2002b) and Frittelli and Rosazza Gianin (2002). In the following

we recall some key properties of cash additive risk measures and we discuss the cash additive

axiom. The following definitions are consistent with the definitions of monetary risk measure in

Föllmer and Schied (2002b).

2.1 Definitions and properties of cash additive risk measures

Let (Ω,A) be a measurable space. The risky positions at the relevant time horizon belong to the

linear space of bounded functions including constant functions denoted by X .
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Definition 2.1 A cash additive risk measure is a functional ρ : X → R cash additive, convex

and monotone decreasing, i.e.,

a) Convexity: ∀λ ∈ [0, 1], ρ
(
λX + (1− λ)Y

) ≤ λρ(X) + (1− λ)ρ(Y );

b) Monotonicity: X ≤ Y ⇒ ρ(X) ≥ ρ(Y );

c) Cash additivity (or cash invariance): ∀m ∈ R, ρ(X + m) = ρ(X)−m.

A cash additive risk measure is coherent when

d) Positive homogeneity: ∀λ ∈ R+, ρ
(
λX

)
= λρ

(
X

)
.

e) ρ is normalized when ρ(0) = 0.

f) ρ is continuous from below (from above) when

Xn ↗ X ⇒ ρ(Xn) ↘ ρ(X), (Xn ↗ X ⇒ ρ(Xn) ↗ ρ(X)).

The convexity axiom translates the natural important fact that diversification should not increase

risk. In particular, convex combinations of “admissible” risks should be “admissible”. Indeed, a

major drawback of the well-known Value at Risk measure is its failure to meet this criterion.

To shorten the representation of convex combinations of elements we use the following notation.

We denote the barycenter (or convex combination) of the set xI := {x(1), x(2), . . . , x(I)}, I ∈ N,

Bar[xI ] := BarλI [xI ] :=
I∑

i=1

λix(i) where λi ∈ [0, 1], i = 1, . . . , I, and
I∑

i=1

λi = 1.(2.1)

In particular, f is a convex function if and only if f(Bar[xI ]) ≤ Bar[f(x)I ]. The same definition

holds for a set XI of random variables.

2.2 Dual representation of cash additive risk measures

A key property of cash additive risk measures is the dual representation in terms of normal-

ized finitely additive set functions and minimal penalty functional (Föllmer and Schied (2002b,

Theorem 4.12)). The dual point of view emphasizes the interpretation in terms of a worst

case scenario related to the agent’s (or regulator’s) beliefs: the agent does not know the true

“probability" measure and uses distorted beliefs from a subjective set of normalized additive set

functions. Under the additional assumption that risk measures are continuous from below, the
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dual representation is in term of σ-additive probability measures (Föllmer and Schied (2002b,

Proposition 4.17)).

Theorem 2.2 (a) Let M1,f (A) be the set of all finitely additive set functions Q on (Ω,A)

normalized to one, Q(Ω) = 1, and α the minimal penalty functional taking values in R∪{
+∞}

:

∀Q ∈M1,f (A), α(Q) = sup
X∈X

{
EQ[−X]− ρ(X)

}
,

( ≥ −ρ(0)
)

(2.2)

Dom(α) = {Q ∈M1,f (A)| α
(
Q

)
< +∞}.(2.3)

The Fenchel duality relation holds:

∀X ∈ X , ρ(X) = sup
Q∈M1,f (A)

{
EQ[−X]− α

(
Q)

}
.(2.4)

Moreover, for any X ∈ X there exists a QX ∈M1,f (A), such that ρ(X) = EQX
[−X]−α

(
QX

)
=

maxQ∈M1,f (A)

{
EQ[−X]− α(Q)

}
.

(b) Let M1(A) denote the set of all probability measures Q on (Ω,A). Let ρ be a monetary

risk measure continuous from below and suppose that β is any penalty function on M1,f (A)

representing ρ. Then β is concentrated on the class M1(A) of probability measures, i.e., β(Q) <

∞ only if Q is σ-additive.

Henceforth, α in equation (2.2) is the minimal penalty function, denoted by αmin in Föllmer and

Schied (2002b).

The following lemma shows that a cash additive risk measure is linear with respect to a (risky)

position Y if and only if any set function Q in the domain of the penalty functional satisfies the

calibration constraint: Q(−Y ) = ρ(Y ). This lemma will be used to derive the results in Section

3.

Lemma 2.3 Let ρ be a normalized cash additive risk measure on X and W a linear sub-space

of X containing the constants. The risk measure ρ is linear on W, that is

(2.5) ∀ (W1,W2) ∈ W ×W, ∀(λ1, λ2) ∈ R× R, ρ(λ1 W1 + λ2 W2) = λ1ρ(W1) + λ2ρ(W2),
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if and only if ρ(W ) = EQ[−W ] for any Q ∈ Dom(α). This implies that the risk measure is

invariant with respect to W, that is ∀X ∈ X , ∀W ∈ W, ρ(X + W ) = ρ(X) + ρ(W ).

Proof. The dual representation and the linearity of ρ with respect to W imply that for any

Q ∈ Dom(α), λ ∈ R, λρ(W ) = ρ(λW ) ≥ EQ[λ(−W )] − α(Q), where α is the minimal penalty

of ρ. Then α(Q) ≥ −λ (ρ(W ) + EQ[W ]). As the last inequality holds for any λ ∈ R, ρ(W ) =

−EQ[W ], ∀Q ∈ Dom(α). The vice versa is evident.

If (2.5) holds then for any X ∈ X , W ∈ W, ρ(X + W ) = supQ∈Dom(α){EQ

[ − X − W
] −

α(Q)} = supQ∈Dom(α){ρ(W ) + EQ[−X]− α(Q)} = ρ(W ) + ρ(X). 2

2.3 Cash additivity and discounting

The cash additive axiom is motivated by the interpretation of ρ(X) as capital requirement.

Intuitively, ρ(X) is the amount of cash which should be added to the risky position X in order

to make it acceptable (i.e., with non positive measure of risk) by a supervising agency

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0.

The amount of cash ρ(X) can also be considered as the opposite of the buyer’s indifference price

of the position. Paying the amount −ρ(X), the new exposure X − (−ρ(X)) does not carry any

risk (i.e., the risk measure is non positive) and the agent is indifferent between doing nothing and

having the “hedged” exposure. Hence the cash additive property requires that the risky position

and the risk measure are expressed in the same numéraire. Then either cash additive risk

measures are defined on the discounted value of the future positions (see, for instance, Delbaen

(2001) and Föllmer and Schied (2002b)) or cash additive risk measures are defined directly on the

future positions and give the forward reserve amount to add to the future position at the future

date (see, for instance, Rouge and El Karoui (2000)). When interest rates are stochastic the

risk measure on the discounted position and the forward risk measure are different. In the next

section, assuming that all the agents use the same discount factor for the maturity of interest

and there exists a zero coupon bond for that maturity, we provide a link between cash additive

risk measures on the discounted positions and forward cash additive risk measures.
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3 Spot and forward risk measures under stochastic interest rates

Let DT denote the stochastic (non-ambiguous) discount factor for the maturity of interest T used

by all the agents on the market. (Ω,FT ) is a measurable space and the risky position belongs

to X the linear space of real-valued bounded random variables on (Ω,FT ) including constant

variables. The riskiness of XT ∈ X is assessed at time t = 0 and 1T denotes one unit of cash

available at date T .

Definition 3.1 a) Let DT be the FT -measurable discount factor, 0 ≤ DT ≤ 1. A spot risk

measure, ρ0, is a cash additive risk measure defined on the discounted position DT XT , XT ∈ X .

The cash additive property is with respect to the cash available at time t = 0, ∀XT ∈ X ,

(3.1) ∀m ∈ R, ρ0

(
DT XT + m

)
= ρ0(DT XT ) + ρ0(m) and ρ0(m) = mρ0(1) = −m.

b) A forward risk measure, ρT , is a cash additive risk measure defined on the future position

XT ∈ X . The cash additive property is with respect to cash available at time T , ∀XT ∈ X ,

(3.2) ∀m ∈ R, ρT (XT + m1T ) = ρT (XT ) + ρT (m1T ) and ρT (m1T ) = mρT (1T ) = −m1T .

The spot risk measure ρ0 is the monetary risk measure defined in Föllmer and Schied (2002b).

It represents the cash amount at t = 0 to add to the discounted position DT XT to make it

acceptable. The spot risk measure does not disentangle the discounting risk from the risk of the

financial position per sé. Furthermore, to meaningful consider the discounted future position the

discount factor cannot be ambiguous.

Rouge and El Karoui (2000) partially solve this problem introducing the forward risk measure

ρT defined on the future position. ρT gives the forward cash amount (evaluated today) to add

at time T to the position to make it acceptable. When the zero coupon bond for the maturity

of interest is available, the forward reserve ρT (XT ) can be easily discounted at time zero. We

show that this procedure defines a spot risk measure when ρT satisfies a calibration constraint on

D−1
T and B−1

T . Similarly, the spot risk measure ρ0(DT XT ) capitalized by B−1
T defines a forward

risk measure if ρ0 satisfies a calibration constraint on DT and BT . The penalty function of

ρ0 is equal to the penalty function of ρT discounted by BT and the corresponding additive set

functions satisfy the usual spot-forward change of measure.

8



Proposition 3.2 1) Let ρT be a normalized forward risk measure with penalty function αT . The

functional

(3.3) q0

(
DT XT

)
:= BT ρT (XT )

is convex and monotone decreasing with respect to DT XT and satisfies the following calibration

constraint on DT and BT : ∀λ ∈ R, q(λDT ) = BT ρT (λ) = −λBT = λq(DT ). Moreover, q0 is a

spot risk measure if and only if ρT satisfies the calibration constraint on D−1
T and B−1

T

(3.4) ∀λ ∈ R, ρT

(
λDT

−1
)

= −λBT
−1 = λρT (DT

−1).

In that case any QT ∈ Dom(αT ) is such that EQT

[
DT

−1
]

= BT
−1 and the minimal penalty

functional of q0, α0, is given by

(3.5) α0(Q0) = BT αT (QT ), ∀Q0 : dQT =
DT

BT
dQ0 ∈ Dom(αT ), and α0 = ∞ otherwise.

2) Vice versa, let ρ0 be a normalized spot risk measure. The functional qT

(
XT

)
:= B−1

T ρ0(DT XT )

is convex and monotone decreasing with respect to XT and satisfies the following calibration con-

straint on D−1
T and B−1

T : ∀λ ∈ R, qT (λD−1
T ) = B−1

T ρ0(λ) = −λBT
−1 = λqT (D−1

T ). Moreover,

qT is a forward risk measure if and only if ρ0 satisfies the calibration constraint on DT and BT :

∀λ ∈ R, ρ0 (λDT ) = −λBT .

Proof. 1) If ρT satisfies (3.4) the cash additive follows directly from Lemma 2.3. Conversely, let

q be cash additive. This is equivalent to require that ρT satisfies

(3.6) ∀XT ∈ X ,∀λ ∈ R, ρT

(
XT + λDT

−1
)

= ρT (XT )− λBT
−1.

Setting XT = 0 in (3.6) gives the calibration constraint (3.4). To prove (3.5) we observe that if

q in (3.3) is a spot risk measure with minimal penalty function α0, the definition of the minimal

penalty function and Lemma 2.3 give

α0(Q0) = sup
XT

{EQ0 [−DT XT ]− q(DT XT )} = sup
XT

{BTEQT
[−XT ]−BT ρT (XT )},
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that is α0(Q0) = BT αT (QT ), where dQT = DT BT
−1dQ0. It follows that Q0 is in the domain of

α0 if and only if QT is a set function in the domain of αT and satisfies the calibration constraint

in (3.5). Conversely, a risk measure with minimal penalty functional α0 satisfying (3.5) is of the

form ρ0(DT XT ) = BT ρT (XT ).

2) Similar arguments can be used to prove the vice versa. 2

Unfortunately, the procedure of computing current reserve amounts discounting forward risk

measures in equation (3.3) is feasible only when the zero coupon bonds for the relevant maturities

are available on the market.

Next section contains the major contribution of this paper which is the introduction of a

new class of risk measures called cash sub-additive risk measures. These risk measures provide

reserve amounts which account for the ambiguity on the discount factor. This result is achieved

by simply relaxing the cash additive axiom into the cash sub-additive axiom and preserving the

original difference in the numéraires of reserves and future positions. This will be illustrated by

several examples in the finance and insurance frameworks.

4 Cash sub-additive risk measures

The following observation provides the intuition for introducing cash sub-additive risk measures.

Given a spot risk measure ρ0 in equation (3.1), the convex, non-increasing functional defined

on X denoted by R(XT ) = ρ0(DT XT ) is cash sub-additive, that is it satisfies the following

inequality: ∀m ≥ 0,

R(XT + m1T ) = ρ0(DT XT + DT m) ≥ ρ0(DT XT + m) = ρ0(DT XT )−m = R(XT )−m.

This inequality is a simple consequence of the time value of the money, i.e. DT m ≤ m. The

functional R is expressed in terms of the current numéraire but directly defined on the future

position expressed in terms of the future numéraire. The function m ∈ R 7→ R(XT 1T +m1T )+m

is non-decreasing, that is R is cash sub-additive. This observation highlights the cash sub-

additive axiom as the minimal condition (imposed by the time value of the money) that has

to be satisfied by risk measures which preserve the two different numéraires of current reserve

amounts and future risky positions. Remarkably, replacing the cash additive axiom with the

cash sub-additive axiom is sufficient to characterize risk measures that can be used also when

cash additive risk measures cannot. For instance under stochastic and/or ambiguous interest
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rates or assessing the risk of defaultable contingent claims. In the sequel we formally define the

cash sub-additive risk measures denoted by R. Then we provide several examples showing the

different applications of these new risk measures. The previous considerations and the following

examples motivate the study of cash sub-additive risk measures.

4.1 Definition of cash sub-additive risk measures

Definition 4.1 A cash sub-additive risk measure R is a functional R : X → R, convex and non

increasing satisfying the cash sub-additive axiom:

∀m ∈ R, R(XT + m1T ) + m is non decreasing in m.

The cash sub-additive axiom can also be expressed:

∀m ∈ R, R(XT + |m|1T ) ≥ R(XT )− |m| and R(XT − |m|1T ) ≥ R(XT ) + |m|.
Cash sub-additive risk measures naturally account for the time value of money. When m dollars

are added to the future position XT , XT +m1T , the capital requirement at time t = 0 is reduced

by less than m dollars, that is R(XT 1T + m1T ) ≥ R(XT 1T )−m.

4.2 Examples of cash sub-additive risk measures

This section provides several examples of cash sub-additive risk measures. All these risk measures

can be obtained composing cash additive risk measures and convex real (random) functions. The

first example arises naturally considering an ambiguous discount factor.

4.2.1 Cash sub-additive risk measures under ambiguous discount factors

Consider a regulator assessing the risk of a future payoff XT when the discount factor DT is

ambiguous and ranges between two positive constants, 0 ≤ dL ≤ DT ≤ dH ≤ 1, according to

her beliefs. The regulator is endowed with a spot risk measure ρ0 and adverse to ambiguity on

discount factor. Hence she assesses the risk of XT in the interest rates worst case scenario

(4.1) Rρ0(XT ) := sup
DT∈X

{
ρ0(DT XT ) | dL ≤ DT ≤ dH

}
.

Proposition 4.2 The functional Rρ0 in equation (4.1) is a cash sub-additive risk measure. Rρ0

can be rewritten as Rρ0(XT ) = ρ0(−v(XT )), where v(x) = −(dLx+ − dH (−x)+) is convex
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decreasing function with left derivative vx such that vx ∈ [−1, 0] and x+ = sup(x, 0).

Proof. Rρ0 is a cash sub-additive risk measure as it is the supremum of cash sub-additive, convex

and monotone functions with respect to XT ∈ X . Moreover, as the infDT∈X {DT XT |dL ≤ DT ≤
dH} is attained, then supDT∈X

{
ρ0(DT XT )|dL ≤ DT ≤ dH

}
= ρ0

(
infDT∈X {DT XT |dL ≤ DT ≤

dH}
)

= ρ0

(
dLX+

T − dH(−X+
T )

)
, where v(x) = −(dLx+ − dH (−x)+). 2

Remark 4.3 When DT varies between two random variables DL and DH in X , 0 ≤ DL ≤ DT ≤

DH ≤ 1, the functional in (4.1) is a cash sub-additive risk measure Rρ0(XT ) = ρ0(−V (XT )),

where V is the random function V (ω, x) = −(DL(ω)x+ − DH(ω) (−x)+), convex, decreasing

with respect to x, Vx ∈ [−1, 0], for any given ω ∈ Ω, and FT -measurable for any given x ∈ R.

Notice that when DL = DT , R(XT ) = ρ0(DT XT ).

Next example of cash sub-additive risk measure is not related to risk/ambiguous discount factors

and is a corollary of Proposition 4.2.

4.2.2 Cash sub-additive risk measures and insurance risks

Taking an insurance point Jarrow (2002) studies the put option premium with zero strike price

as a possible measure of the firm insolvency risk. The premium is the discounted expected loss.

Let r ≥ 1 be the risk free gross return from time t = 0 to time T of a riskless investment and P

the reference probability measure.

Corollary 4.4 Put premium risk measure. The premium of a put option with strike price zero

and maturity T ,

(4.2) Rp(XT ) :=
1
r
EP

[
(−XT )+

]
,

is a coherent cash sub-additive risk measure as a function of the underlying asset price XT .

Proof. The cash sub-additive risk measure in (4.1) coincides with the put option premium Rp

when ρ0(·) = EP[− (·)], dL = 0 and dH = 1/r. 2
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Remark 4.5 For any given strike price K the premium of a put option, Rp(XT ) := 1
r EP

[
(K −

XT )+
]
is a cash sub-additive risk measure. This follows setting in equation (4.1) ρ0 equals to the

non normalized risk measure ρ0(XT ) = EP[K −XT ] and −v(x) = 1
r max(K − x, 0).

4.3 Composing cash additive risk measures and convex functions

Generalizing the previous examples we show that ρ0(−V ) is a cash sub-additive risk measure,

where V denotes a continuous random function V : Ω × R −→ R, V (ω, x), such that, for any

ω ∈ Ω, V (ω, ·) is decreasing, convex and V (ω, 0) = 0, Vx ∈ [−1, 0], and for any x ∈ R, V (·, x) is

FT -measurable. Moreover, ρ0(−V ) can be represented in terms of finitely additive measures and

FT -measurable “discount factors" over a set of possible scenarios that can be chosen according

to the beliefs of the agent/regulator.

From standard results in convex analysis V (ω, x) = supy∈R{xy − βT (ω, y)}, where βT is

the random convex Fenchel transform of V , βT (ω, y) := supx∈R{xy − V (ω, x)}. Notice that

βT is finite only if y ∈ (−1, 0) as Vx > −1. For example, the Fenchel transform of v(x) =

−(DLx+ −DH (−x)+) is βT (y) = lD(−y), where lD is the convex indicator function of the set

D = [DL, DH ]. While Vx > −1 is a necessary condition to obtain a cash sub-additive functional,

the decreasing monotonicity (Vx < 0) and convexity of V insure the convexity and decreasing

monotonicity of ρ0(−V ).

Proposition 4.6 Let V be a random convex function as above and βT the convex Fenchel trans-

form of V . Let ρ0 be a cash additive risk measure defined on X with minimal penalty function α0.

Rρ0,V (XT ) := ρ0(−V (XT )) is a cash sub-additive risk measure. Rρ0,V (XT ) can be represented

in the following two forms:

Rρ0,V (XT ) = sup
DT∈X

{
ρ0 (DT XT + βT (−DT )) | 0 ≤ DT ≤ 1

}
,(4.3)

Rρ0,V (XT ) = sup
Q0∈M1,f

{
EQ0 [V (XT )]− αρ0,V (Q0)

}
.(4.4)

Moreover, Rρ0,V (XT ) = ρ0(−V (XT )) admits the following representation in term of set functions
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Q ∈M1,f (FT ) and FT -random variables DT ∈ [0, 1],

Rρ0,V (XT ) = sup
Q0∈M1,f , DT∈X

{
EQ0 [−DT XT ]− αρ0,V (Q0 , DT )| 0 ≤ DT ≤ 1

}
(4.5)

αρ0,V (Q0, DT ) := α0(Q0) + EQ0 [βT (−DT )].(4.6)

For instance, if ρ0 is the coherent worst case risk measure, that is, ρ0(XT ) = ρmax(XT ) =

supQ∈M1,f
EQ0 [−XT ], then Rρ0,V (XT ) = ρmax(−V (XT )) = ‖−V (XT )‖∞ and αρ0,V (Q0, DT ) :=

EQ0 [β(−DT )].

Remark 4.7 Allowing for different specifications of the underlying asset model and of the dis-

count factor, representation (4.5)–(4.6) provides a better understanding of the different risks

involved in the evaluation of the risky position XT . The scenarios could be exogenously deter-

mined, for instance by some regulatory institution. The penalty function αρ0,V depending on the

ambiguous model and ambiguous discount factor could be determined by the preferences of the

economic agent on Q0 and DT .

Remark 4.8 Robust expected utility and cash sub-additive risk measures. Consider a concave

utility function U such that Ux ∈ [0, 1]. From equation (4.4) it follows that the robust expected

utilities, supQ0∈M1,f

{
EQ0 [−U(XT )] − αρ0,U (Q0)

}
are cash sub-additive risk measures as func-

tions of XT . Notice that U does not satisfies the Inada conditions. For robust robust expected

utility see, for instance, Schied (2004) and Maccheroni, Marinacci, and Rustichini (2004).

Proof. Firstly we prove that Rρ0,V is a cash sub-additive risk measure. Decreasing monotonicity:

The increasing monotonicity of −V and the decreasing monotonicity of ρ0 imply the decreasing

monotonicity of Rρ0,V .

Convexity: The concavity of −V , the decreasing monotonicity and the convexity of ρ0 imply the

convexity of Rρ0,V .

Cash sub-additivity: Rρ0,V (XT +m)+m = ρ0(−V (XT +m1T ))+m = ρ0(−V (XT +m1T )−m)

is increasing in m if −V (XT + m1T )−m is decreasing in m. As Vx > −1 the result follows.

Representations: To prove (4.3) we observe that

ρ0(−V (XT )) = ρ0

(
inf

−1≤y≤0
{−XT y + βT (y)}) = ρ0

(
inf

DT∈X
{DT XT + βT (−DT ) | 0 ≤ DT ≤ 1}).
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From the decreasing monotonicity of ρ0, for any D̃T ∈ X , 0 ≤ D̃T ≤ 1 we have

ρ0

(
inf

DT∈X
{DT XT + βT (−DT ) | 0 ≤ DT ≤ 1}) ≥ ρ0

(
D̃T XT + βT (−D̃T )

)
.(4.7)

The result follows setting D̃T = D∗
T in equation (4.7), where D∗

T ∈ X is the element achieving the

infDT∈X {DT XT +βT (−DT ) | 0 ≤ DT ≤ 1}. Finally, (4.4) is obtained from the dual representation

of ρ0. (4.5)–(4.6) are obtained from the dual representation of ρ0 and from (4.3). 2

The penalty function αρ0,v in (4.6) is not the minimal one. As any pair (Q0, DT ) defines a unique

additive set function µ absolutely continuous with respect to Q0, dµ := DT dQ0, 0 ≤ µ(Ω) ≤ 1,

the functional Rρ0,V can be rewritten as

Rρ0,V (XT ) = sup
µ∈M1,f (FT )

{
µ(−XT )− γ(µ) | 0 ≤ µ(Ω) ≤ 1

}
,

where µ(−XT ) :=
∫ −XT (ω)µ(dω) and γ(µ) = infQ0∈M1,f

{
α0(Q0) + EQ0

[
βT

(
− dµ

dQ0

)]}
for

any µ such that dµ = DT dQ0, 0 ≤ D0,T ≤ 1, and γ = ∞ otherwise.

Next section gives the dual representation of the cash sub-additive risk measures R in terms

of the minimal penalty function.

5 Minimal cash additive extension of R and duality

Considering a minimal enlargement of the sample space Ω we define a cash additive risk measure

which is in a one to one correspondence with the cash sub-additive risk measure R. This relation

provides for a rich interpretation of both cash additive and cash sub-additive risk measures.

Moreover this one to one correspondence allows to exploit all the results on the cash additive

risk measures to derive the corresponding properties of R. For instance, the dual representation

of cash sub-additive risk measures is obtained using the dual representation of cash additive risk

measures.

A simple procedure to obtain a cash additive risk measure using a cash sub-additive risk

measure R is as follows. While R is not cash additive with respect to XT ∈ X , the bivariate

function ρ̂(XT , x) := R(XT 1T − x1T ) − x as a function of the pair (XT , x) is cash additive. In

the sequel we introduce the minimal measurable space where the pair (XT , x) is the coordinate

of a random variable and ρ̂ is a cash additive risk measure on these random variables.
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5.1 The enlarged space X̂

Any pair (XT , x) where XT ∈ X and x ∈ R can be viewed as the coordinates of a function

defined on the enlarged space Ω̂ = Ω× {0, 1} with element (ω, θ),

X̂T (ω, θ) := XT (ω)1{θ=1} + x1{θ=0}.

We endow Ω̂ with the σ-algebra F̂T generated by the bounded random variables X̂T . Notice that

F̂T is not the product σ-algebra. Let X̂ be the linear space of all bounded random variable X̂T .

To denote X̂T ∈ X̂ we use its coordinates X̂T = (XT , x). The constant variables are denoted by

m̂ = (m,m) and m̂ = m1{θ=1} + m1{θ=0} = m. The event {θ = 1} models the risk affecting the

numéraire 1T . Intuitively, θ is associated with the default time τ of the counterpart. The event

{θ = 1} is equivalent to {τ > T}. The event {θ = 0} is atomic and all F̂T -random variables are

constant on this event.

We focus on the normalized finitely additive set functions Q̂ on (Ω̂, F̂T ). We recall that

M1,f (F̂T ) denotes the set of all additive set functions normalized to one on F̂T . We formally

define the finitely additive sub-probability measures µ on FT introduced at the end of the previous

section.

Definition 5.1 A finitely additive sub-probability measure is an additive set function µ : FT →

R+ such that 0 ≤ µ(Ω) ≤ 1. Ms,f (FT ) denotes the set of all finitely additive sub-probability

measures and Ms(FT ) ⊆Ms,f (FT ) the set of σ-additive sub-probability measures.

The choice of the minimal filtration F̂T implies a one to one correspondence between normalized

additive set function Q̂ on (Ω̂, F̂T ) and sub-probability measure on (Ω,FT ). Indeed, any Q̂ in

M1,f (F̂T ) can be decomposed as follows, ∀X̂T = (XT , x) ∈ X̂ ,

(5.1) Q̂(X̂T ) = Q̂(XT 1θ=1) + xQ̂(1θ=0) = µ(XT ) + x(1− µ(1)),

where µ(·) := Q̂(·1θ=1) is an additive sub-probability of Ms,f (FT ). Equation (5.1) shows how

to obtain a probability measure Q̂ from a sub-probability measure µ and vice versa.

5.2 Minimal extension of R into a cash additive risk measure

The following proposition shows that ρ̂ on X̂ is a cash additive risk measure and that ρ̂ and R
are in a one to one correspondence.
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Proposition 5.2 1) A normalized cash sub-additive risk measure R on X defines a normalized

cash additive risk measure ρ̂ on X̂ ,

∀ X̂T = (XT , x) ∈ X̂ , ρ̂(X̂T ) := ρ̂
(
(XT , x)

)
:= R(

XT − x1T

)− x.(5.2)

Notice that ρ̂(XT 1{θ=1}) = R(XT ).

2) Any cash additive risk measure on X̂ restricted to the event {θ = 1} defines a cash sub-additive

risk measure which satisfies equation (5.2).

Remark 5.3 The cash sub-additive risk measure R can be used to measure the risk of defaultable

contingent claims X̂T when there is no compensation (x = 0) if the default occurs, {θ = 0}.

The proof relies on the cash sub-additive property to obtain a monotone decreasing functional.

Proof. 1) Cash additive: Let X̂T = (XT , x) ∈ X̂ and m ∈ R. By definition, ρ̂
(
XT 1θ=1 + x1θ=0 +

m1θ=1 + m1θ=0

)
= R(

XT + m1T − (x + m)1T

)− (x + m) = ρ̂
(
X̂T )−m.

Decreasing monotonicity: Let X̂T = (XT , x) and ŶT = (YT , y) ∈ X̂ such that X̂T ≥ ŶT , that

is XT ≥ YT and x ≥ y. From the cash sub-additivity and the decreasing monotonicity of R it

follows that ρ̂(X̂T ) = R(XT − x1T )− x ≤ R(XT − y1T )− y ≤ R(YT − y1T )− y = ρ̂(ŶT ).

Convexity : We use the notation in equation (2.1). From the convexity of R, R (Bar[XI ]) ≤
Bar [R(X)I ]. This implies that ρ̂(Bar[X̂I ]) = R (

Bar
[
XI − xI

])−Bar[xI ] ≤ Bar
[R(

X − x
)
I

]−
Bar[xI ] = Bar

[
ρ̂(X̂)I

]
, which shows the convexity of ρ̂.

2) Let ρ̌ be a cash additive risk measure on X̂ . We have to show that Rρ̌(XT ) := ρ̌(XT 1θ=1)

is a cash sub-additive risk measure. The decreasing monotonicity and convexity follow from

the definition. The cash sub-additive property is verified observing that Rρ̂(XT + m1T ) + m =

ρ̂((XT + m)1θ=1) + m = ρ̂(XT 1θ=1 −m1θ=0) is increasing in m. 2

5.3 Dual representation of cash sub-additive risk measures

In the next proposition we use the one to one correspondence in equation (5.2) between ρ̂ and R
to characterize cash sub-additive risk measures. We show that the minimal penalty function ofR
and the minimal penalty function ρ̂ coincide and are concentrated on the set of sub-probability

measures Ms,f (FT ). Moreover, under the additional assumption of continuity from below of
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R the dual representation in terms of σ-additive sub-probability measures is obtained. The

same results could be derived using convex analysis tools, however our approach has a richer

interpretation.

Theorem 5.4 (a) Any cash sub-additive risk measure R on X can be represented in terms of

finitely additive sub-probability measures,

(5.3) ∀XT ∈ X , R(XT 1T ) = sup
µ∈Ms,f (FT )

{
µ(−XT )− αR(µ)

}
, αR(µ) := α̂(Q̂),

where µ(·) = Q̂(·1θ=1) and α̂ is any penalty function representing ρ̂. In particular, if α̂ is the

minimal penalty function for ρ̂ then αR is the minimal penalty function for R and αR(µ) =

supXT∈X {µ(−XT )−R(XT )}.

(b) When R is a cash sub-additive risk measure continuous from below any penalty function β

representing R is concentrated on the class Ms(FT ) of σ-additive sub-probability measures, i.e.,

β(µ) < ∞⇒ µ is σ-additive.

Proof. (a) From Proposition 5.2, R(XT 1T ) = ρ̂(XT 1θ=1). Equation (5.3) is implied by the dual

representation of ρ̂ and the one to one correspondence between Q̂ and µ: Q̂(·1θ=1) = µ(·). Let

α̂ be the minimal penalty function of ρ̂. By definition of the minimal penalty function,

α̂(Q̂) = sup
bXT∈ bXT

{
E bQ[−XT 1θ=1 − x1θ=0]− ρ̂(X̂T )

}

= sup
bXT∈ bX

{
E bQ[−(XT − x)1θ=1]− x−R(XT − x1T ) + x

}

= sup
XT∈XT

{
E bQ[−(XT )1θ=1]−R(XT )

}
, Q̂ ∈M1,f (F̂T ).(5.4)

As Q̂(·1θ=1) = µ(·), from equation (5.4) we have αR(µ) := α̂(Q̂) = supXT∈X {µ(−XT )−R(XT )} ,

showing that αR is the minimal penalty function for R.

(b) If R is continuous from below the cash additive ρ̂ is continuous from below as a function of

X̂T = (XT , x). Then from Theorem 2.2 follows that the penalty function of ρ̂ is concentrated

on the class M1(F̂T ). This implies that the penalty function of R is concentrated on the set of

σ-additive sub-probability Ms(FT ). 2
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6 Other cash additive extensions of R

The cash additive risk measure ρ̂ in equation (5.2) defined using R cannot asses the risk of

FT -random variables XT ∈ X as X̂ does not contain X , the domain of definition of R. Hence

we extend R to a larger space which contains X and we study a dual representation of R in

the enlarged space. For the cash sub-additive risk measures generated via convex functions

(introduced in Section 4.3) we propose another extension on the same enlarged space obtained

via a conditional risk measure.

6.1 The enlarged space X̃

To define a linear space which contains X , the σ-algebra F̂T defined in Section 5.1 is replaced

by the product σ-algebra GT . On (Ω × {0, 1},GT ) any bounded GT -random variable X̃T can

be represented as X̃T (ω, θ) = X1
T (ω)1θ=1 + X0

T (ω)1θ=0 and X0
T , X1

T ∈ X . Let X̃ be the linear

space of all the bounded GT -random variables X̃T . We refer to X̃T using the short notation

X̃T = (X1
T , X0

T ). The diagonal elements X̃T = (XT , XT ) coincide with XT and the corresponding

σ-algebra with FT . This identification was not possible for the random variables X̂ = (XT , x)

defined in the previous section.

Now we discuss the probabilistic structure of (Ω× {0, 1},GT ). Notice that in this section we

consider probability measures and not finite additive set functions.

Definition 6.1 For any given probability measure Q̃ ∈ M1(GT ) let Q denote the restriction of

Q̃ to FT , Q := Q̃|FT , and DT ∈ [0, 1] the FT -conditional probability of the event {θ = 1},

DT := EeQ[1θ=1|FT ], also called discount factor. We denote Q the probability measure associated

with the restriction of Q̃ to the event {θ = 0}, which is uniquely determined by (Q, DT )

(6.1) Q(XT ) = Q(DT XT ) + (1−Q(DT ))Q(XT ).

Q is a probability measure absolutely continuous with respect to Q, with Radon-Nikodym density

given by ∆T := dQ
dQ = 1−DT

(1−Q(DT )) , 0 ≤ ∆T ≤ 1, Q(∆T ) = 1.

For any X̃T = X1
T 1θ=1 + X0

T 1θ=0 ∈ X̃ ,

(6.2) Q̃(X1
T 1θ=1 +X0

T 1θ=0) = Q(X1
T DT )+Q(X0

T (1−DT )) = Q(X1
T DT )+ (1−Q(DT ))Q(X0

T ).
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Remark 6.2 The interpretation of DT in credit risk. In credit risk, θ is associated with the

default time of the counterpart τ , where τ is a positive random variable not FT -measurable. The

event {θ = 1} can be viewed as {τ > T} and EeQ[1θ=1|FT ] as the conditional survival probability

function of τ at time T . X̃T = X1
T 1θ=1 +X0

T 1θ=0 ∈ X̃ is a defaultable contingent claim that pays

X1
T (at time T ) if there is no default (τ > T ) and X0

T otherwise.

6.2 Cash sub-additive risk measures and ambiguous discounted factors

In the sequel we define a cash additive risk measure on the enlarged space X̃ . Using its dual

representation, any cash sub-additive risk measure is represented in terms of the ambiguous

probability model and the ambiguous discount factor both on the original space of definition of

R. This representation is similar to the dual representation (see equations (4.5)–(4.6)) of cash

sub-additive risk measures generated by convex functions.

To define this cash additive risk measure on X̃ we use, as in Section 5.2, the cash additive

risk measure ρ̂ in (5.2). In this case X̃T = (X1
T , X0

T ) ∈ X̃ has two risky components and we

introduce an a priori risk measure ρ assessing the risk of the second component.

Definition 6.3 Let R be a cash sub-additive risk measure and ρ a cash additive risk measure

both normalized and defined on X . The functional on X̃

(6.3) ρ̃(X̃T ) = ρ̃(X1
T , X0

T ) := R(X1
T + ρ(X0

T )1T ) + ρ(X0
T ) = ρ̂

(
X1

T ,−ρ(X0
T )

)

and its restriction on X ,

(6.4) ρR,ρ(XT ) := R(XT + ρ(XT )1T ) + ρ(XT ) = ρ̂
(
XT ,−ρ(XT )

)
,

are cash additive risk measures. Moreover, R(XT 1T ) = ρ̃(XT 1θ=1).

The following theorem shows that R can be written as a function of probability measures Q ∈
M1(FT ) and FT -measurable discount factors DT ∈ X using the minimal penalty function of

the cash additive risk measure ρ̃. We consider penalty functions concentrated on the class of

probabilities measures assuming that R and ρ are continuous from below. This implies that also

ρ̃ and ρR,ρ are continuous from below.
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Theorem 6.4 Assume that the convex functionals R and ρ are continuous from below. Let αR

and α be the minimal penalty functions of R and ρ, respectively. Let α̃ be the minimal penalty

function of ρ̃ defined in equation (6.3). For any Q̃ ∈M1(GT ), let Q, DT and Q be as in Definition

6.1, such that
dQ
dQ

= ∆T =
1−DT

(1−Q(DT ))
.

1) The cash sub-additive risk measure R can be represented as

(6.5) R(XT ) = ρ̃(XT 1θ=1) = sup
Q∈M1(FT ), DT∈[0,1]

{
EQ(−DT XT )− α̃

(
DT ,Q

)}
,

where the minimal penalty α̃ has the following form

(6.6) α̃(Q̃) = α̃(Q, DT ) = αR(DT ·Q) + (1−Q(DT ))α(Q), Q̃ ∈M1(GT ).

Notice that Q̃ ∈ Dom(α̃) if and only if Q ·DT ∈ Dom(αR) and Q ∈ Dom(α).

2) The minimal penalty function of ρR,ρ in equation (6.4) is given by, for any Q ∈M1(FT ),

(6.7)

αR,ρ(Q) = inf
DT ,Q

{
αR(DT ·Q) + (1−Q(DT ))α(Q) | Q(·) = Q(DT ·) + (1−Q(DT ))Q(·)} .

Remark 6.5 When R and ρ are both coherent risk measures, equation (6.5) reduces to

R(XT ) = ρ̃(XT 1θ=1) = sup
Q∈M1(FT ), DT∈[0,1]

{
EQ(−DT XT )|DT ·Q ∈ Dom(αR), ∆T ·Q ∈ Dom(α)

}
.

Proof. 1 ) The representation (6.5) of R follows from R(XT 1T ) = ρ̃(XT 1θ=1) and equation (6.2).

To obtain the decomposition of the minimal penalty function in equation (6.6) we use the the

representation of Q̃ in terms of Q(DT ·) and Q given in definition 6.1. From the definition of ρ̃

and of the minimal penalty function we have

α̃(Q̃) = sup
(X1

T ,X0
T )∈ eX

{
Q̃(−X1

T 1θ=1 −X0
T 1θ=0)−R(X1

T + ρ(X0
T )1T )− ρ(X0

T )
}

= sup
(X1

T ,X0
T )∈X̃

{
Q̃(−(X1

T + ρ(X0
T ))1θ=1)−R(X1

T + ρ(X0
T )1T ) + Q̃(−(X0

T + ρ(X0
T ))1θ=0)

}
.

Using the change of variable YT := X1
T + ρ(X0

T ) and equations (6.1)–(6.2) give the result

α̃(Q̃) = sup
(YT ,X0

T )

{
Q(−YT DT )−R(YT ) + (1−Q(DT ))

[
Q(−(X0

T + ρ(X0
T ))

]}

= αR(DT ·Q) + (1−Q(DT )) sup
X∈Aρ

{
Q(−X∆T ))

}

= αR(DT ·Q) + (1−Q(DT ))α(∆T ·Q).
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2) To obtain the penalty function αR,ρ of ρR,ρ0 we restrict ρ̃ on FT and we use equation (6.1)

ρR,ρ0(XT ) = sup
Q∈M1(FT )

{
Q(−XT DT ) + (1−Q(DT ))Q(−XT )

−(
αR(DT ·Q) + (1−Q(DT )α(Q)

)}

= sup
Q∈M1(FT )

{
Q(−XT )− (

αR(DT ·Q) + (1−Q(DT ))α(Q)
)}

.

Observing that for a given Q ∈ M1(FT ) more then one pair (DT ,Q), DT ∈ X , DT ∈ [0, 1],

can verify Q(−XT DT ) + (1 − Q(DT ))Q(−XT )) = Q(XT ) yields the equation (6.7). Similar

calculations show that αR,ρ is the minimal penalty function. ¤

6.3 Conditional risk measures and extensions on X̃

This section reinterprets the cash sub-additive risk measures Rρ,V = ρ(−V ) studied in Sec-

tion 4.3. These risk measures are now represented as the composition of the unconditional cash

additive risk measure ρ and the conditional cash additive risk measure generated by the random

function V . We obtain the result introducing a more natural extension of Rρ,V called ρ̌V to

the enlarged space X̃ . The restriction of ρ̌V to the space X is ρ itself, and ρ̌V can be obtained

composing ρ with a cash additive conditional risk measures. Moreover, we show that any cash

additive risk measure on X̃ generated from ρ via a conditional cash additive risk measure is

associated to a cash sub-additive risk measure generated by a convex function.

As in Section 4.3, in the sequel ρ denotes a normalized cash additive risk measure and V (ω, x)

an FT -measurable random functional convex monotone decreasing such that V (0) = 0 and with

left derivative Vx ∈ [−1, 0]. From Proposition 4.6 we know that Rρ,V (XT ) := ρ(−V (XT )) is a

cash sub-additive risk measure on X .

Proposition 6.6 On the enlarged space X̃ any cash additive risk measure ρ and any random

function V define a cash additive risk measure,

(6.8) ρ̌V (X1
T 1θ=1 + X0

T 1θ=0) := ρ
(− V (X1

T −X0
T ) + X0

T

)
, X̃T = X1

T 1θ=1 + X0
T 1θ=0 ∈ X̃ .

ρ̌V coincides with Rρ,V on {θ = 1} and with ρ on X ⊂ X̃ :

ρ̌V (XT 1θ=1) = ρ
(− V (XT )

)
= Rρ,V (XT ) and ρ̌V ((XT , XT )) = ρ

(
XT

)
.
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Requiring V decreasing monotone and such that Vx ∈ [−1, 0] is crucial to obtain ρ̌V decreasing

monotone (see proof below).

Proof. Decreasing monotonicity: ρ̌V is decreasing monotone if V (X1
T −X0

T ) −X0 is decreasing

monotone with respect to (X1
T , X0

T ). Let X̃T = (X1
T , X0

T ) ≥ ỸT = (Y 1
T , Y 0

T ), that is X1
T ≥ Y 1

T

and X0
T ≥ Y 0

T . As V (x + m) + m is not decreasing in m, V (X1
T −X0

T )−X0
T is not increasing in

X0
T , then V (X1

T −X0
T )−X0

T ≤ V (X1
T −Y 0

T )−Y 0
T ≤ V (Y 1

T −Y 0
T )−Y 0

T , where the last inequality

is due to the decreasing monotonicity of V .

Cash additivity and convexity follow from the definition of ρ̌V . 2

Now we recall the definition of conditional risk measures that in our setting2 reads as follows.

Definition 6.7 1) A cash additive conditional risk measure on FT is a monotone decreasing

convex functional, ρ̃FT
: X̃ → X which satisfies the FT -cash additive axiom, that is

∀X̃ ∈ X̃ , ∀Y ∈ X , ρ̃FT
(X̃ + Y ) = ρ̃FT

(X̃)− Y .

2) ρ̃FT
is regular if for any FT ∈ FT , X̃T ∈ X̃ , ρ̃FT

(1FT
X̃T ) = 1FT

ρ̃FT
(X̃T ).

3) A cash additive risk measure ρ̌ on X̃ is generated from ρ via a conditional risk measure

if there exists a cash additive conditional risk measure on FT , ρ̃FT
such that, ρ̌(X1

T , X0
T ) =

ρ(−ρ̃FT
((X1

T , X0
T )).

It easy to see that any conditional risk measure on FT is completely determined by its value on

the set {θ = 1}. This observation leads to the following proposition.

Proposition 6.8 Any FT -measurable random function V defines a cash additive conditional

risk measure on FT , ρ̃V
FT

: X̃ → X , given by

(6.9) ρ̃V
FT

(XT 1θ=1) := V (XT ) or equivalently by ρ̃V
FT

((X1
T , X0

T )) := V (X1
T −X0

T )−X0
T .

Conversely, any regular and continuous from above cash additive conditional risk measure on FT ,

ρ̃FT
: X̃ → X , generates a convex random function Ṽ FT (λ) := ρ̃FT

(λ1θ=1) which satisfies (6.9).

Proof. Decreasing monotonicity: We refer the reader to the proof of decreasing monotonicity in

Proposition 6.6. FT -cash invariance and convexity follow respectively from the definition of ρ̃V
FT

2For conditional risk measures see Bion-Nadal (2004), Detlefsen and Scandolo (2005) and references therein.
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and the convexity of V .

Conversely: Define Ṽ FT (ω, λ) := ρ̃FT
(λ1θ=1(ω)). V (ω, λ) is FT -measurable convex and monotone

decreasing functional such that Ṽ FT (0) = 0 and Ṽ FT ∈ [−1, 0]. For the regularity of ρ̃FT
the

previous definition can be extended to all the simple FT -random variables
∑

λi1Ai , where the

sets Ai ∈ FT and {Ai}i=1,...,n form a partition of Ω. Hence ρ̃FT
(
∑

λi1Ai) =
∑

1Ai Ṽ
FT (λi). The

continuity from above of ρ̃FT
allows to extend the definition to positive XT ∈ X and then to any

arbitrary XT ∈ X using standard analysis tools. 2

The following theorem states the main result of this section showing that any cash sub-

additive risk measure of the form Rρ,V = ρ(−V ) can be extended into a cash additive risk

measure which is generated from ρ via a conditional risk measure. Conversely, any cash additive

risk measure ρ̌ on X̃ generated from ρ via a conditional risk measure is associated to a cash

sub-additive risk measure of type Rρ,V̌FT .

Theorem 6.9 The cash additive risk measure ρ̌V in equation (6.8) is generated from ρ via the

conditional risk measure ρ̃V
FT

in (6.9) associated with V , that is

(6.10) ρ̌V (X1
T 1θ=1 + X0

T 1θ=0) = ρ
(− V (X1

T −X0
T ) + X0

)
= ρ

(−ρ̃V
FT

(X1
T 1θ=1 + X0

T 1θ=0)
)
.

Moreover,

(6.11) Rρ,V (XT ) = ρ̌V (XT 1θ=1) = ρ
(−ρ̃V

FT
(XT 1θ=1)

)
.

Conversely, to any cash additive risk measure ρ̌(·) = ρ(−ρ̃FT
(·)) on X̃ generated by a cash

additive conditional risk measure ρ̃FT
on FT is associated a cash sub-additive risk measure of the

following form Rρ,V̌ FT (XT ) = ρ
(− V̌ FT (XT )

)
where V̌ FT (XT ) = ρ̃FT

(XT 1θ=1).

Proof. The proof follows easily from the previous considerations. 2

Equation (6.11) suggests that the risk of the future position XT depends on the risk/ambiguity

on the underlying asset model (the unconditional risk measure ρ) and on the risk/ambiguity on

interest rates (the conditional risk measure ρ̃FT
) or more in general on the risk affecting the

numéraire.
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7 Optimal derivative design and inf-convolution

The problem of designing the optimal transaction between two economic agents has been largely

investigated both in the insurance and in the financial literature. The risk transfer between the

agents takes place through the exchange of a derivative contract and the optimal transaction

is determined by a choice criterion. For example, in Barrieu and El Karoui (2006) the choice

criterion is given by the minimization of the risk of the agent’s exposure and the risk is assessed

using forward cash additive risk measures. Using cash sub-additive risk measures we study this

problem in a general framework that allows for ambiguous discount rates. We focus on the

problem of the risk transfer between two agents who determine today the reserve to hedge the

future exposure when the discount factor for the maturity of interest is ambiguous. To account

for this ambiguity the agents collect the reserve using cash sub-additive risk measures and the

decision criterium is the minimization of their reserves.

7.1 Transaction feasibility and optimization program

Let A and B be the two agents and suppose that they are evolving in a uncertain universe

modeled by the probability space (Ω,FT ). Agent A is exposed towards a non-tradable risk that

will impact her wealth XA
T ∈ X at the future date T . To reduce her risk exposure and the reserve

associated, A aims at issuing a derivative contract HT ∈ X with maturity T and selling it to

the agent B for a price π0. Agent B will enter the transaction only if this transaction reduces

or leaves unchanged the reserve that she has to put aside to hedge her future exposure XB
T ∈ X .

The objective is to find the optimal structure (HT , π0) according to the decision criterion of the

agents given by their cash sub-additive risk measure RA and RB.

If the agents agree on the transaction, at time zero B pays π0 to A. At time T the terminal

wealths of the agents A and B are XA
T −HT and XB

T + HT , respectively. A aims at minimizing

the current reserve RA

(
XA

T −HT

)
for the future exposure XA

T − HT , knowing that today she

receives π0 from B,

inf
HT∈X ,π0

RA

(
XA

T −HT

)− π0.(7.1)

The constraint to the optimization program (7.1) is that B enters the transaction. This happens

when buying HT for π0 reduces or leaves unchanged the reserve RB

(
XB

T

)
that B would collect
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not entering the transaction,

RB

(
XB

T + HT

)
+ π0 ≤ RB

(
XB

T

)
.(7.2)

The pricing rule of the HT -structure is fully determined by the buyer B simply binding the

constraint at the optimum in equation (7.2),

π∗0 = π∗0 (HT ) = RB

(
XB

T

)−RB

(
XB

T + HT

)
.

This price π∗0 corresponds to an “indifference” pricing rule from the point of view of the agent B

as π∗0 gives the maximum amount that agent B is ready to pay to enter the transaction. Given

π∗0, the optimization program in (7.1) becomes

(7.3) RA,B(XA
T , XB

T ) := inf
HT∈X

RA

(
XA

T −HT

)
+RB

(
XB

T + HT

)
,

where the optimal transaction H∗
T attains the infimum.

7.2 Optimal transaction and inf-convolution

The risk transfer problem in equation (7.3) can be rewritten as an inf-convolution of cash sub-

additive risk measures on X . Indeed defining FT := XB
T + HT ∈ X we have

(7.4) RA,B(XA
T , XB

T ) = inf
FT∈X

{RA(XA
T + XB

T − FT ) +RB(FT )
}

=: RA¤RB(XA
T + XB

T ),

where ¤ denotes the inf-convolution. The value of RA,B(XA
T , XB

T ) can be interpreted as the

residual measure of risk after the transaction FT has occurred. This residual measure of risk

depends on the initial exposures XA
T and XB

T . The transaction induces an optimal redistribution

of the risks of the agents. In the following we show that RA¤RB is a cash sub-additive risk

measure completely characterized by RA and RB and we provide its dual representation. Also

in this case, instead of using convex analysis tools to prove these results we exploit the one to one

correspondence between R and the cash additive risk measure ρ̂(X̂T ) = R(
XT −x1T

)−x defined

on X̂ and given in equation (5.2). We show that the inf-convolution of cash sub-additive risk

measures on X is equal to the inf-convolution of their corresponding cash additive risk measures

ρ̂ on X̂ .

Lemma 7.1 The inf-convolution of RA and RB on X in equation (7.4) corresponds to the inf-

convolution of the cash additive extensions of RA and RB on X̂ ,

(7.5) RA¤RB(XA
T + XB

T ) = ρ̂A¤ρ̂B(X̂A
T + X̂B

T ), where X̂A
T := XA

T 1θ=1, X̂B
T := XB

T 1θ=1.
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RA¤RB(XA
T + XB

T ) is the infimum on FT ∈ X , while ρ̂A¤ρ̂B(X̂A
T + X̂B

T ) is the infimum on the

pairs (FT , x) ∈ X̂ .

Proof. The result follows observing that any FT ∈ X can be rewritten as FT = GT − x1T , for

some GT ∈ X and x ∈ R, and

RA¤RB(XA
T + XB

T ) = inf
FT∈X

{RA(XA
T + XB

T − FT ) +RB(FT )
}

= inf
(GT ,x)∈X×R

{RA(XA
T + XB

T − (GT − x1T )) +RB(GT − x1T )
}

= inf
bGT =(GT ,x)∈X̂

{
ρ̂A((XA

T + XB
T )1θ=1 − ĜT ) + ρ̂B(ĜT )

}
= ρ̂A¤ρ̂B(X̂A

T + X̂B
T ). 2

Barrieu and El Karoui (2006, Theorem 3.3) show that the inf-convolution of cash additive risk

measures is a cash additive risk measure. We apply this result to ρ̂A¤ρ̂B. When ρ̂A¤ρ̂B(0) >

−∞, the inf-convolution X̂ ∈ X̂ 7−→ ρ̂A¤ρ̂B(X̂) is a cash additive risk measure3, continuous

from below if one of the two risk measures is continuous from below, and with penalty function

the sum of the penalties of ρ̂A and ρ̂B. We showed that any ρ̂ constrained to the event θ = 1

defines a cash sub-additive risk measure with the same penalty function (Proposition 5.2). Then

RA¤RB in equation (7.5) is a cash sub-additive risk measure. We collect all the previous results

in the following theorem.

Theorem 7.2 Let RA and RB be two cash sub-additive risk measures with penalty functions αA

and αB, respectively. Let RA,B be the inf-convolution of RA and RB

Ψ →RA,B(Ψ) := RA¤RB(Ψ) = inf
H∈X

{RA(Ψ−H) +RB(H)
}

(7.6)

and assume that RA,B(0) > −∞. Then

1) RA,B is a cash sub-additive risk measure which is finite for all Ψ ∈ X .

2) The associated penalty function is given by ∀µ ∈Ms,f (FT ), αA,B(µ) = αA(µ) + αB(µ).

3) RA,B is continuous from below when this property holds for RA and/or RB.

4) The optimal derivative contract is H∗ = F ∗ −XB
T , where F ∗ attains the infimum in (7.4).

3For the interpretation of the condition RA¤RB(0) > −∞ see Theorem 3.3 in Barrieu and El Karoui (2006).
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8 Dynamic infinitesimal cash sub-additive risk measures

The cash sub-additive risk measures considered so far are static measures assessing the risk of

the future position XT at a given time t. In this section, we give an example of dynamic cash

sub-additive risk measure on the filtered probability space (Ω,FT , (Ft)t∈[0,T ],P), where (Ft)t∈[0,T ]

is the augmented filtration associated to the d-dimensional Brownian motion W = (Wt)t∈[0,T ].

At any time t ∈ [0, T ], the risk measure assesses the riskiness of the future position XT taking

into account the information available, Ft. In particular, following Peng (2004), El Karoui,

Peng, and Quenez (1997), Barrieu and El Karoui (2006) and Rosazza Gianin (2006) who link

backward stochastic differential equations (BSDEs) and risk measures, we show that BSDEs

with suitable coefficients are cash sub-additive risk measures. The main difference with cash

additive risk measures generated by BSDEs is that cash sub-additive risk measures are now

recursive risk measures. When the dual representation exists, the penalty function of dynamic

cash sub-additive risk measures generalizes the penalty function of the static cash sub-additive

risk measures in Section 4.2.

Dynamic risk measures not based on BSDEs have been recently studied by several authors

such as Cvitanic and Karatzas (1999), Wang (1999), Artzner, Delbaen, Eber, Heath, and Ku

(2004) Cheridito, Delbaen, and Kupper (2004), Frittelli and Rosazza Gianin (2004), Riedel

(2004), Frittelli and Scandolo (2006), Cheridito, Delbaen, and Kupper (2006), Weber (2006)

and Kloeppel and Schweizer (2006). Here we consider cash sub-additive risk measures generated

by BSDEs.

8.1 Some results on BSDEs

Let XT ∈ L∞(Ω,FT ,P) and g(t, y, z) be a P1 × B(R) × B(Rd)-measurable coefficient, where

P1 is the set of real-valued progressively measurable processes. Consider the pair of squared-

integrable progressively measurable processes (Y, Z) := (Yt, Zt)t∈[0,T ] solution of the following

BSDE associated to (g, XT ),

−dYt = g(t, Yt, Zt)dt− 〈Zt, dWt〉, YT = XT .

The existence and the uniqueness of the solution (Yt, Zt)t∈[0,T ] depend on the properties of the

coefficient g. Pardoux and Peng (1990) prove that the solution exists and is unique when g is

uniformly Lipschitz continuous with respect to (y, z). In this case g is called standard coefficient.
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When, for any given t ∈ [0, T ], g is continuous with respect to (y, z) P-a.s. and |g(t, y, z)| ≤
C(1+ z2 + y), ∀(t, y, z) P-a.s., (g with linear-quadratic growth, in the sequel), Kobylanski (2000)

and Lepeltier and San Martin (1998) show that the BSDE associated with (g, XT ) has a maximal

and minimal solution. Uniqueness holds under some additional assumptions.

The following theorem, called Comparison Theorem, is a crucial tool in the study of one-

dimensional BSDEs and corresponding dynamic measures of risk.

Theorem 8.1 Let X1
T and X2

T ∈ L∞(Ω,FT ,P) and g1 and g2 both standard (or both with linear-

quadratic growth) coefficients. Let (Y 1, Z1) and (Y 2, Z2) be the (maximal) solutions associated

to (g1, X1
T ) and (g2, X2

T ), respectively. If X1
T ≥ X2

T , P-a.s., and g1(t, Y 2
t , Z2

t ) ≥ g2(t, Y 2
t , Z2

t )

dP×dt-a.s., then Y 1
t ≥ Y 2

t a.s. ∀ t ∈ [0, T ]. In particular, the maximal solution is still monotone

decreasing with respect to the terminal condition.

The comparison theorem and the existence of the maximal solution ensure that, if the coefficient

g is convex, the solution Yt of the BSDE (g,−XT ) is also convex when Yt is considered as

a functional of its terminal condition −XT . Moreover, the existence of the maximal solution

ensures the time consistency of (Yt)[0,T ], that is: ∀ 0 ≤ t1 ≤ t2 ≤ T, Yt1(XT ) = Yt1(−Yt2(XT )).

For the derivations of this result see, for instance, El Karoui, Peng, and Quenez (1997), Peng

(2004), Barrieu and El Karoui (2006) and Rosazza Gianin (2006).

8.2 BSDEs and cash sub-additive risk measures

The link between measures of risk and BSDEs is particularly interesting because it enhances

interpretation and tractability of risk measures. Barrieu and El Karoui (2006) point out that

the coefficient g of BSDEs can be interpreted as infinitesimal risk measure over a time interval

[t, t + dt] as EP[dYt|Ft] = −g(t, Yt, Zt)dt where Zt is the local volatility of the conditional risk

measure, V(Yt|Ft) = |Zt|2dt. Choosing carefully the coefficient g enables to generate g-conditional

risk measures that are locally compatible with the different agent beliefs.

Example 8.2 Ambiguous interest rates. Assume that locally EP[−dYt|Ft] is driven by the worst

case scenario generated by an ambiguous discount rate β = (βt)t∈[0,T ], where β is an adapted
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process ranging between two adapted and bounded processes (rt)t∈[0,T ] and (Rt)t∈[0,T ], that is

EP[−dY r,R
t |Ft] = sup

0≤rt≤βt≤Rt

(−βtY
r,R
t )dt.

Y r,R is the first component solution of the BSDE

−dYt = −(
rY +

t −RtY
−
t

)
dt− 〈Zt, dWt〉, YT = −XT ,

where y+ = sup(y, 0) and y− = sup(−y, 0). More precisely, since (rt)t∈[0,T ] and (Rt)t∈[0,T ] are

assumed to be bounded, (Y r,R, Zr,R) is the unique solution of the standard BSDE with convex

Lipschitz coefficient

(8.1) gr,R(t, y) = Rty
− − rty

+ = sup
rt≤βt≤Rt

(−βty).

Notice that y 7→ gr,R(t, y) is a monotone non increasing function. To provide the intuition on this

risk measure, we apply the comparison theorem to the coefficients gr,R(t, y) and g(t, y) = (−βty),

βt ∈ [rt, Rt], with the same terminal condition −XT . Since gr,R(t, y) ≥ (−βty), Y r,R
t ≥ Y β

t where

Y β is the solution of the linear BSDE

−dYt = −βtYtdt− 〈Zt, dWt〉, YT = −XT ,

and it can be represented as Y β
t = EP[e−

R T
t βsds(−XT )|Ft], ∀t ∈ [0, T ]. Then it follows that

Y r,R
t ≥ ess sup0≤rt≤βt≤Rt

Y β
t . As the process βt = Rt1Y r,R

t ≤0
+ rt1Y r,R

t >0
achieves the maxi-

mum of suprt≤βt≤Rt
(−βtY

r,R
t ) = −βtY

r,R
t , then the equality Y r,R

t = Y
βt
t holds. Thus, the dual

representation of Y r,R
t follows

Y r,R
t = Y

βt
t = ess sup

0≤rt≤βt≤Rt

EP[e−
R T

t βsds(−XT )|Ft].

Notice that, for any t ∈ [0, T ], Y r,R
t is dominated, but in general not equal to the conditional risk

measure RDR,Dr

t associated with the worst case discounted factors DR
t,T ≤ Dt,T ≤ Dr

t,T , where

DR
t,T = exp{− ∫ T

t Rsds} and Dr
t,T = exp{− ∫ T

t rsds},

(8.2) Y r,R
t (−XT ) ≤ RDR,Dr

t (XT ) = EP[DR
t,T (−XT )− + Dr

t,T (−XT )+|Ft].
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RDR,Dr
:= (RDR,Dr

t )t∈[0,T ] is a cash sub-additive risk measure which is not time consistent in

contrast to Y r,R = (Y r,R
t )t∈[0,T ].

In the sequel we consider risk measures generated by BSDEs which generalize Example 8.2.

For the remain part of the paper g(t, y, z) denotes a convex generator in (y, z), standard or with

linear growth with respect to y and quadratic growth in z. The comparison theorem ensures

that the (maximal) solution (Y,Z) associated with a (g,−XT ) exists and, for any t ∈ [0, t], Yt is

convex and decreasing with respect to the final condition −XT .

The coefficient gr,R(t, y) in equation (8.1) depends on y in a convex decreasing way. As

observed by Peng (2004) and Barrieu and El Karoui (2006), this is never the case for conditional

cash additive risk measures generated by BSDEs. Under some mild additional assumptions, Peng

(2004) shows that, for any t ∈ [0, T ], the (maximal) solution Yt associated with (g,−XT ) is cash

additive as functional of its terminal condition if and only if g does not depend on y for any

t ∈ [0, T ]. Barrieu and El Karoui (2006) study these cash additive solutions as a dynamic risk

measure (ρt(XT ))t∈[0,T ], ρt(XT ) = Yt(−XT ), that they call g-conditional risk measures4.

In the following proposition we show that conditional risk measures generated by BSDEs are

cash sub-additive when the convex coefficient g(t, y, z) depends on both y and z and is decreasing

with respect to y.

Proposition 8.3 If the convex g(t, y, z) is decreasing with respect to y then the (maximal) so-

lution Yt of the BSDE associated with (g,−XT ) is a conditional cash sub-additive risk measure,

Rg
t (XT ) = Yt and Rg = (Rg

t (XT ))t∈[0,T ] is a time consistent cash sub-additive risk measure. We

call Rg = (Rg
t (XT ))t∈[0,T ] g-conditional cash sub-additive risk measure.

Proof. For the convexity and the decreasing monotonicity of Yt with respect to the terminal

condition see, for instance, El Karoui and Quenez (1996) and Peng (1997).

Cash sub-additivity: Consider the BSDE satisfied by Rg
t (XT + m1T ) + m = Y m

t ,

−dY m
t = gm

(
t, Y m

t , Zm
t

)
dt− 〈Zm

t , dWt〉, Y m
T = −XT .

Since gm(t, y, z) = g(t, y−m, z), then gm(t, y, z) is increasing in y (as g is decreasing in y). From

the comparison theorem it follows that Rg
t (XT + m1T ) + m = Y m

t is increasing in m. 2

4If g(t, 0) = 0 for any t ∈ [0, T ], the g-conditional risk measures coincide with the non linear expectation

originally studied by Peng (2004); see also Rosazza Gianin (2006).
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8.3 Dual Representation

In this section we focus on a dual representation for g-conditional cash sub-additive risk measures

Rg as in the static case. For the cash additive g-conditional risk measures such a representa-

tion has been derived in Barrieu and El Karoui (2006). The next result is a straightforward

generalization of their results.

The key tool to obtain dual representations is the Legendre transform of the generator g

defined by

G(t, β, µ) := sup
(y,z)∈R×Rd

{−βy − 〈µ, z〉 − g(t, y, z)}.

The following lemma summarizes the properties of G and g.

Lemma 8.4 Let g be a continuous convex function on R×Rd satisfying the growth control: there

exist two positive constants C > 0 and k > 0 such that |g(t, y, z)| ≤ |g(t, 0, 0)|+ C|y|+ k
2 |z|2.

i) Then the Legendre transform of g, G(t, β, µ), takes infinite values if β /∈ [0, C]. Moreover,

(8.3) G(t, β, µ) ≥ −|g(t, 0, 0)|+ 1
2k
|µ|2.

ii) Since g is continuous, for any t ∈ [0, T ], g(t, Yt, Zt) = supβ,µ{−βtYt−〈µt, Zt〉−G(t, βt, µt)}.

The maximum is achieved at (βt, µt) with 0 ≤ βt ≤ C and |µt|2 ≤ A
(|g(t, 0, 0)|+ C|Yt|

)
+

B|Zt|2, for some A and B positive constants.

Proof. i) G(t, β, µ) ≥ −βy−g(t, y, 0) ≥ −βy−|g(t, 0, 0)|−C|y|. Then, if |β| > C, supy∈R{−βy−
C|y|} = +∞. Moreover, since g(t, y, z) is monotone decreasing with respect to y, −g(t, y, 0) ≥
−g(t, 0, 0), ∀y > 0 and G(t, β, µ) ≥ −βy − g(t, 0, 0), ∀y > 0. Then G(t, β, µ) = +∞ if β < 0. To

prove the inequality (8.3), we observe that G(t, β, µ) ≥ 〈µ,−z〉−g(t, 0, z) ≥ 〈µ,−z〉−|g(t, 0, 0)|−
k
2 |z|2. As maxz∈R{〈µ,−z〉 − k

2 |z|2} = 1
2k |µ|2 the result follows.

ii) Standard results in convex analysis show that, since g is continuous, the duality between g

and G holds true and the maximum is achieved.

To show the inequality in ii), we choose a constant ε such that 0 < ε < 1
2k and we use the
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inequality (8.3),

( 1
2k
− ε

)|µt|2 ≤ |g(t, 0, 0)|+ G(t, βt, µt)− ε|µt|2

≤ |g(t, 0, 0)| − βtYt + 〈µt,−Zt〉 − g(t, Yt, Zt)− ε|µt|2

≤ 2|g(t, 0, 0)|+ 2C|Yt|+ k

2
|Zt|2 + sup

µt

{〈µt,−Zt〉 − ε|µt|2}.

As maxµt∈R{〈µt,−Zt〉−ε|µt|2} = |Zt|2
4ε , then

(
1
2k − ε

)|µt|2 ≤ 2|g(t, 0, 0)|+2C|Yt|+
(

k
2 + 1

4ε

)|Zt|2,
which proves the inequality. 2

Now we introduce the class of probability measures that appears in the dual representa-

tion. As in Barrieu and El Karoui (2006) the reference is the Girsanov theorem for the BMO-

exponential martingales such as defined in Kazamaki (1994),

Γµ
t = E(Mµ

t ) = exp
(−

∫ t

0
µsdWs − 1

2

∫ t

0
|µs|2ds

)
,

where Mµ
t =

∫ t
0 µsdWs is a BMO(P)-martingale, that is µ belongs to BMO(P),

BMO(P) := {ψ ∈ H2 such that ∃C > 0 : EP[
∫ T

t
ψ2

sds|Ft] ≤ C a.s.,∀t ∈ [0, T ]}.

Using Kazamaki (1994, Section 3.3), Γµ
T is the likelihood of an equivalent probability measure

on FT with respect to P defined by dQµ = Γµ
T dP. Moreover, if v ∈ BMO(P) then v ∈ BMO(Qµ).

Recall that Γµ
t is the solution of the forward stochastic differential equation

dΓµ
t = Γµ

t 〈−µt, dWt〉, Γµ
0 = 1.

Now we establish the duality theorem.

Theorem 8.5 Let g be a convex coefficient, decreasing with respect to y and with growth |g(t, y, z)| ≤

|g(t, 0, 0)| + C|y| + k
2 |z|2. Moreover, assume that there exists a constant K > 0 such that

E
[ ∫ T

t |g(s, 0, 0)|ds|Ft

] ≤ K, ∀t ∈ [0, T ]. Then the (maximal) solution (Y, Z) of the BSDE

−dYt = g(t, Yt, Zt)− 〈Zt, dWt〉, YT = −XT , XT ∈ L∞(P),

is bounded and Z is in BMO(P). Let G(t, y, z) be the Fenchel transform of g and

A :=
{
(βt, µt)t∈[0,T ]|G(t, βt, µt) < +∞, 0 ≤ βt ≤ C, ∀t ∈ [0, T ] and µ ∈ BMO(P)

}
.

33



Then, the g-conditional cash sub-additive risk measure Rg = (Rg
t (XT ))t∈[0,T ], Rg

t (XT ) = Yt, has

the following dual representation

Rg
t (XT ) = ess sup(β, µ)∈AEQµ

[
e−
R T

t βsds (−XT )−
∫ T

t
e−
R s

t βuduG(s, βs, µs)ds
∣∣Ft

]
.(8.4)

Remark 8.6 The dual representation of Rg in equation (8.4) is similar to the dual representa-

tion of static cash sub-additive risk measures. Here, the sub-probability measures are replaced by

the Ft-conditional sub-probability measures Rβ,µ

dRβ,µ

dP
|Ft := exp

(−
∫ T

t
µsdWs − 1

2

∫ T

t
|µs|2ds−

∫ T

t
βsds

)

and the penalty function becomes

αt(Rβ,µ) := Rβ,µ

(∫ T

t
e−
R s

t βuduG(s, βs, µs)ds
∣∣Ft

)
.

Proof. i) To show that Z ∈ BMO(P) we refer the reader to the proof in Barrieu and El Karoui

(2006).

ii) From the Girsanov theorem for BMO-martingales we known that for any 0 ≤ βt ≤ C,

µ ∈ BMO(P), dWµ
t = dWt + µtdt is a Qµ-Brownian motion and

−dYt = g(t, Yt, Zt)− 〈Zt, dWt〉

=
[
g(t, Yt, Zt) + βtYt + 〈µt, Zt〉

]
dt− βtYtdt− 〈Zt, dWµ

t 〉.

Then it follows

Yt(−XT ) = EQµ

[
e−
R T

t βsds (−XT ) +
∫ T

t
e−
R s

t βudu
[
g(s, Ys, Zs) + βsYs + 〈µs, Zs〉

]
ds|Ft

]

≥ EQµ

[
e−
R T

t βsds (−XT )−
∫ T

t
e−
R s

t βuduG(s, βs, µs)ds|Ft

]
.(8.5)

To prove the last equality in (8.5) at the optimal control (β, µ),

G(t, β, µ) = −βtYt − 〈µt, Zt〉 − g(t, Yt, Zt), ∀t ∈ [0, T ],

we need to verify that (β, µ) is admissible. Since 0 ≤ βt ≤ C, we only need to verify that µ is

in BMO(P). We use the inequality in Lemma 8.4, |µt|2 ≤ A
(|g(t, 0, 0)| + c|Yt|

)
+ B|Zt|2. Since

|g(t, 0, 0)|1/2 belongs to BMO(P), Y is bounded and Z ∈ BMO(P), then µ ∈ BMO(P),

Yt(−XT ) = Rg(XT ) = EQµ

[
e−
R T

t βsds (−XT )−
∫ T

t
e−
R s

t βuduG(s, βs, µs)ds|Ft

]

and this establishes the dual representation. 2
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9 Conclusion

We propose a new class of risk measures called cash sub-additive risk measures which account

for the risk/ambiguity on interest rates when assessing the risk of future financial, nonfinancial

and insurance positions. This goal is achieved by relaxing the debated cash additive axiom into

the cash sub-additive axiom. We provide several examples of the new risk measures in the static

and the dynamic frameworks, such as the put options premium and the robust expected utility.

In the dynamic framework cash sub-additive risk measures are generated by BSDEs enhancing

their tractability and interpretability. Cash sub-additive risk measures represent a promising

research area as these risk measures overcome the issues arising from the cash additive axiom.
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