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Abstract

In this paper, we consider a complete continuous-time financial market with
discontinuous prices. We consider a small investors model, where the agents are
price takers and the prices are exogenous. Our definition of equilibrium is stated
in term of a portfolio market clearing condition. The investors who trade in this
market have different types of side-information. They are “strong™informed (initially
or progressively), meaning that they know a functional w-wise (immediately and only
at time ¢ = 0 or the information is getting clearer to them as time evolves). Or they
are “weak”informed, meaning that they only know the law of a functional. Our
purpose is to see if an equilibrium can be achieved in such an asymmetrical financial
market. We show that the more informed an agent is, the less weight he must
invest. We simulate an equilibrium and the maximal weight an insider can invest in
the market.

Keywords : Strong and weak information, Risk neutral probability measure and min-
imal probability measure, Competitive dynamic equilibrium, Portfolio market clearing
condition.
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1 Introduction

This paper deals with the existence of a competitive dynamic equilibrium between
agents who do not have the same information about the market structure. The agents
can invest in financial assets, whose prices small variations can be modeled by a continuous
process driven by a Brownian motion. Merton (1976) [30] and Jarrow and Rudd (1983)
[20] pointed out that the analysis of prices evolution reveals sudden and rare breaks, that
it is natural to model by the means of a point process, whose jumps occur at rare and
unpredictable intervals. Thus, we fix a finite horizon time 7" > 0 and a filtered probability
space (2, Fp,P), with a multidimensional Brownian motion W and a multidimensional
point process N. A market model is built, with one bond and d discontinuous risky assets.

A large litterature about equilibrium under asymmetric information is written in the
setting of Kyle (1985) |27] and Back (1992) [4]. In their model, there are three types of
agents : one insider, noise traders who are not rational and trade for liquidity reasons,
and a market maker who sets the prices using the total order. In his PhD Thesis [32]
(1999), Wu studies particular cases of noisy information, of delayed information, and a
model with two degrees of information. In each case, Wu requires that the insider’s strat-
egy is unconspicious, in the sense that the total supply is a Brownian motion. Therefore,
the insider’s trades can not be seen in the market. In the same framework, Campi et
al. [9] (2006) study an equilibrium model for the pricing of a defaultable zero coupon
bond. The insider is assumed to know the default time. Here again, the insider’s trades
are inconspicuous at equilibrium. Ly Vath (2006) [29] considers a competitive equilib-
rium with noise traders and two rational traders: an “ordinary” one, and an informed
one whose side-information consists of the total supply of the risky asset. The existence
of an equilibrium is proved in the particular case where the total supply dynamics is a
Brownian motion, that is in a “inconspicious” setting.

The equilibrium model of this article is more related to a competitive dynamic stochastic
equilibrium, with only rational traders and no market makers. It is studied in Duffie and
Huang (1985) [12], Karatzas, Lehoczky and Shreve (1990) [26] or Dana and Pontier (1992)
[11] (to name a few), in the classical setting of a purely diffusive financial market where all
agents share the same information flow, which is conveyed by the prices. Karatzas et al.
consider two related problems : the moneyed model (prices are measured in dollars) and
the moneyless model (prices are measured in units of commodity). In the moneyed model,
the spot price of the commodity is determined at equilibrium, whereas in the moneyless
model, the interest rate and the mean rates of return of the stocks are determined (that
is equivalent to the fact that the interest rate and the risk neutral probability measure
are determined).

Our purpose in this paper is not to study the impact of asymmetric information on stock
prices. Therefore, we will consider a quite unusual competitive dynamic equilibrium in
a moneyless model, in the sense that the prices are assumed exogenous and neither the
agents strategies nor the total supply affect them. We can think of a “local” economy



where agents try to set transactions of assets (whose prices are given, for example deter-
mined by an other economy), such that those assets are in zero net supply in their local
economy. Thus, the prices are exogenous and our aim is to see if the transactions can
occur, and under which conditions about the private information. This naive approach
allows us to consider only rationals traders : there are no noise traders, therefore the
insiders information is not hidden by the non rational noise traders supply. Likewise, the
insiders strategies are not assumed unconspicious. Furthermore, we will give a framework
without specifying the side information. We will consider three general types of side-
information an insider may have.

The first type is called “initial strong” information: from the beginning the insider
has an extra information available about the outcome of some variable L of the prices.
The cornerstone of this modelization is the theory of initial enlargement of filtration by
a random variable, which was developed by Jeulin (1980) [22], in the series of papers in
the “Séminaire de Calcul Stochastique (1982/83)” of the University Paris VI, by Jacod
(1985) [19], Jeulin and Yor (1985) [23], F6llmer and Imkeller (1993) [14] and further by
Amendinger et al. (1998) [2] and Amendinger (2000) [1]. The second type is called “pro-
gressive strong” information: the insider’s information is perturbed by an independent
noise changing throughout time. This case deals with the theory of progressive enlarge-
ment of filtration and is studied by Corcuera et al. (2004) [10] in a purely diffusive model,
using Malliavin’s calculus. The third type is called “weak” information or anticipation:
the insider anticipates the law of a random variable L that will be realized at a future
date. In this latter case, enlargement of filtration techniques are irrelevant. This notion
of weak information is defined by Baudoin (2002) in [6] and [7].

In the moneyeless model of Karatzas et al. (1990), the risk neutral probability measure
is determined at equilibrium. In our setting of asymmetric information, each agent has is
own probability measure and the main result of this paper states a necessary and sufficient
condition for existence of an equilibrium, that gives a relation linking the densities of the
probability measures of each agent. That is why we will first recall the construction of
a risk neutral probability measure for the strong-informed agents, and a “minimal proba-
bility measure” for the weak-informed agents. These probability measures summarize the
information of each insider, whichever the type of side information they have. Then, with
the assets prices being given, we would like to see if an equilibrium can be achieved, and
under which constraints.

This article is organized as follows.
In section 2, we define the market and introduce the general framework and notation that
are valid throughout the paper.
In section 3, we solve the optimization problem of the consumption of an agent having
a side-information. We point out the similarities and the differences between an initial
strong information on the one hand and the other types of side information on the other



hand. The key point of this section is that whatever the type of the side information, the
change of the probability measure (risk neutral probability measure for a strong insider,
minimal probability measure for a weak insider) summarizes his information.

In section 4, we study the formation of an equilibrium. The assets prices being exoge-
nous, our definition of equilibrium is that the financial assets are in zero net supply. We
consider a logarithmic utility and different optimization problems (maximization of the
consumption and/or the terminal wealth). Although our framework of exogenous prices
seems naive, we believe it is worth to study it because it leads to a meaningful necessary
and sufficient condition for existence of an equilibrium, that gives a relation linking the
densities of the probability measures of each agents. The meaning of this relation is that
the transactions between agents can take place if and only if their information and their
endowments are well-balanced. Thus, in order to reach an equilibrium in these three
cases of side information, we show that the more informed an insider is, the less weight
he must have in the financial market. In a market model with two agents, we simulate
the maximal weight an insider can invest in the market. Figures are given in annex.

2 The market

Let W be a real m-dimensional Brownian motion on its canonical probability space
QY FY = (F")icjor), PV). Let N be a n-dimensional point process on its canonical
probability space (Y, FY := (F )i, PY), with a positive, F¥-predictable intensity
satisfying Fpn [fOT Kk(t)dt] < 4+o0. The process M defined by M(t) := N(t) — fot k(s)ds is
a (FY,PY)-martingale, called the compensated martingale of the point process N.

Let (Q,Fp,P) := (QY x QN FV @ FX PV @ PV) be the product space. W and N are
independent processes. Let d =m+n. Let A <T.

We consider a financial market with K agents who invest in one bond and d stocks (fi-
nancial assets), the prices of which are expressed in units of a single perishable commodity
and driven by the following stochastic differential equations :

(2.1) Po(t) = Py(0) exp! /0 r(s)ds)

(2.2) dP;(t) = P;(t7)[bi(t)dt + Zaij(t)d(W*, N*)i(t)] 1=1,---,d

where X* denote the transposed process of process X.

o is a given strongly non-degenerate d x d-matrix-valued process. The processes r, b and
o are assumed to be uniformly bounded on [0,7] x 2 and Fr-predictable. We assume
that o;; > —1 forallm+1<j<d and 1< <d. Thus (2.2) has a unique strong
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solution and the market is complete (cf. Bardhan and Chao [5]).

If the k-th agent has a strong information (initial or progressive), he receives an individual
flow of “side-information”, represented by the filtration HY. := (H})e(o,77- Finally, for all
k=1,---,K, we introduce the individual agent’s filtration G% := (GF);cp,1) of available
information, with

GF = F, VHY, 0<t<T.

In other words, this agent possesses all informations about the market up to the present
time t, plus his own “side-information”. Besides, if agent k£ has a weak information, he
only has the filtration G% := Fr of the market available.

The agents strategies are produced on [0, A], with A < T. The k-th agent has his
own nontrivial endowment process ¢, expressed in units of the commodity and assumed
to be a nonnegative uniformly bounded G%-adapted process. We introduce the cumu-
lative endowment rate ¢ := Y1 ¢. The k-th agent is free to choose a nonnegative
consumption rate process ¢, Gf-adapted, and a R%valued portfolio process m; G-
predictable. He chooses both these processes to satisfy the integrability requirement
fOA(ck(t) + [|o*(t)m(¢)]|?)dt < oo P almost surely. m;(t) represents the amount invested
by the k-th agent at time ¢ in the i-th stock (i = 1,---,d). As usually, we assume that
the strategy is self-financing, so the k-th agent’s discounted wealth is given by

B Xu(t) = / B(s) (e — ) (s)ds + / Bls)mi(s) (b — L) (s)ds
(2.3) 4 / B(s)mi(s™)o (5)d(W*, N*)* (s)

where ((t) := (Py(t))~! is the deflator process and I; = (1,---,1)* € R But on an
enlarged filtration, the process (W*, N*) could no more be a semi-martingale. We will
add in section 3 sufficient conditions to obtain a meaningful wealth equation for a strong
insider.

Definition 2.1 A GY-admissible strategy for the k-th agent is a pair (my,cx) (portfo-

lio, consumption) such that c¢;, is G*-adapted, oa=1,---,d, are Gk -predictable and

satisfying the integrability requirement fOA(ck(t) + ||lo* ()7 (1) |]?)dt < oo P almost surely
and so that the corresponding wealth process Xy is bounded from below dt ® dP a.s. and
satisfies Xx(A) > 0 P almost surely.

Agent k chooses his strategy so as to optimize his consumption ¢, or more precisely the
expectation of his utility from consumption. An utility function Uy : (t,¢) — Uk(t,c)
is continuous, strictly increasing and strictly concave in its second variable and V¢ €
[0, A] Ix(t,-) is the inverse of the strictly decreasing mapping %Uk(t, -) and satisfies :
Ik(t, —|—OO) = limc_)+oo Ik(t, C) = O, Ik(t, 0) = hmc\o [k(t, C) = +00.



Let us introduce some notations:

o[, =(1,---, 1) € R™

o If v; et vy are two vectors of same dimension d, we note v;.v, the vector with components
(v1.v9); = V14094, 1 =1,---,d.

e £ denote the Doléans exponential.

We define ©O(t) := m first lines of (o(¢)) 1 (b(¢) — r(t)1,)

and the n dimensional process ¢ such that

q(t).k(t) := n last lines of —(a ()2 (b(t) — r(t)1y).

We assume that ¢ is a process with positive components (otherwise arbitrage opportunities
can occur, see [21]).

(2.4) iﬂw:ww+/E@@, t € [0, 7).

(2.5) M@:N@—Aﬂwwm, te[0,7).

We denote S := (W*, M*)*.

3 Change of probability measure and optimization of
consumption

In Hillairet (2005) [17], we have studied the case of an agent who knows a functional
Ly w-wise from the beginning. We say that he is an initial strong insider. The side
information for a initial strong insider is the following

Assumption 3.1 V¢ € [0, 7], HF = o(Ly) where Ly, is an Fr-measurable random variable
with values in a Polish space (Ey, ) (the k-th agent receives his additional information
immediately and only at time t = 0) and moreover, L satisfies the assumption :
P(Ly, € -|F)(w) ~ P(Lg € -) for P almost all w € Q, for all t € [0, A].

Remark: Assumption 3.1 is equivalent to: There exists a probability measure equivalent
to P on F4 V o(Ly) and under which Vt € [0, A], F; and o(Ly) are independent (Lemma
3.1 and 3.4 in [16]). We consider the only one that is identical to P on F4 and on o (Ly,) (cf.
Lemma 3.1 in [16] for the construction of this measure). We denote it Q. We introduce
the density process Z(t) := Egr, [dé%wtk]. There exist G¥-predictable processes p} and

o5 such that de(t) = Z,(t) o5 () dW (t) + (p5(t) — I,)*dM(t)].

WH() - )—J, PL(t)dt is a (G%,P)-Brownian motion and ME() =N )— Jy k-5 (t)dt
is the compensated process of a (G P)-point process with intensity (K, p2) Therefore
the wealth equation (2.3) is meaningful under assumption 3.1.
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Definition 3.2

Y =& (/0 (—(@ + i (s)) W (s) + (% - In)* dﬁk(s))) .

Y} is a positive (G¥,P)-local martingale. A straightforward calculus yields :
AV =Y OG0 with 1= (04 ) (2 - 1))

q

Assumption 3.3 We assume that Y}, defined in (3.2) is a (G5, P)-martingale.

Under this assumption, P* := Y}, (A)P is a risk neutral probability measure for the initial
strong insider and [17] gives his optimal strategy. We extend here these results with two
other types of side information and we stress on the similarities and the differences be-
tween these three settings of side information. We will point out the common fact that
all the relevant information for the insider is contained in the density probability of an
equivalent change of probability measure (a risk neutral probability measure for a strong
insider, respectively a minimal probability measure for a weak insider).

3.1 Progressive strong information

In this subsection, we consider an agent whom additional information changes through
time. His knowledge is disturbed by an independent noise, and is getting to him clearer
as time evolves.

Assumption 3.4

YVt € [O,T],Hf = O'(Lk(S),S S t) where Lk(s) = hk(Lk, Bk(8)> with

e h; : R? — R is a given measurable function.

e B, = {By(t),0 <t <T} is independent of Fr.

e L. is an Fp-measurable random variable such that :

P(Ly € | F)(w) < P(Ly € -) for all t € [0,T] for P almost all w € .

Gk and Y% denote the usual enlarged filtrations

GF = Nyt (Fu Vo(Li(s), s <u)) and YF = Nysy (FuVo(Ly)), te[0,T]

L, contains the additional information available to the insider, and B, represents an
additional noise that perturbs this “side-information”. Therefore one expects in general
that By(7T) = 0 and that the variance of the noise decreases to zero as revelation time 7'
approaches. We denote by PFf(w,dz) a regular version of the conditional law of L, given
F: and by P, the law of L.



Lemma 3.5 (Proposition 12 Grorud (2000) [15])
There exists a measurable version of the conditional density p*(t,z)(w) = (W, )
k

which is a (F 4, P)-martingale and can be written, for all z € R, as

pk(t,x):pk(0,$)+/0t (s, 2)dW (s) /57"’3sz()

where for all x, s — of(s,z) and s — B*(s, x) are F 4 predictable processes. Moreover,
for all s < A, pF(s, Ly) > 0 P almost surely. W — o 5 (s L’“ ds is a (Y%, P)-Brownian

Pk

*(s,Lx)

motion and if (I, + DE(s=L1) ) has positive components, M (- ds is the

(1(5)-B%(s,Ly))
fO T pF(s—,Ly)

compensated process of a (Y%, P)-point process with intensity K(S). ([n + Pi(gi%,j))'

Proof: cf. proof of Proposition 12 in Grorud (2000) [15], using Jacod’s results [19] (The-
orem 2.1 and Theorem 2.5). O

Theorem 3.6 We assume that Ep <H iz L’“ FI 4 + ilzt(t_LL’“:)\D < +o0 Vt € [0, 4] and

that (In+ %) has positive components Setting pi(t) = Ep( i L’“ |Qt> and

A
ph(t) = Ep <<I + i(t(tLL’“ ) | Qt>, we assume that [ (|[pf(t)|] + ||(Ii.p2)( )||) dt < +o0
P almost surely. Then W’“( = — [, pi(s)ds is a (G, P)-Brownian motion and

MFE() := N(-) — Jo(k-p5)(s)ds is the compensated process of a (Gh,P)-point process with
intensity (k.p%).

Proof: cf. Annex 5.1. O

Example 3.7
(Example in Corcuera et al. (2004) [10]).
Ly, is the following m-dimensional process

(Li)i(t) = 0Wi(T) + Big:i(T' = t)) i=1,---,m t€[0,T]

where §; # 0, B = (B;,i = 1,--- ,m) is a m-dimensional Brownian motion independent
of Fr, and g; : [0, T[— [0, +0o0[ is a strictly increasing bounded function with ¢;(0) =0 .
Then, p5 =1, and using Malliavin’s Calculus, the authors get

oy (D (Ld1) = 6 (0)
= (G o), reloAl

i=1,---.m

O

Theorem 3.6 implies that the wealth equation (2.3) is meaningful and we are now able to
construct a risk neutral probability measure for this progressive strong informed agent.
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Definition 3.8

o= O+ (2-1)). *
Y —5(&( (O + ph)*(s)dWH(s) + (gg-ih)dﬁﬂ@»).

Yy is a (G¥,P)-local martingale. We assume that :

Assumption 3.9 Y is a (G¥,P)-martingale.

Therefore IP”“ = Yi(A)P is a risk neutral probability measure for agent k.

Wis a (Gk IP”“) Brownian motion and M is the compensated process of a (GY, IP’k)—point
process with intensity (¢.x). Furthermore,

d(Y;)(t) = Y (0)(0)dS (@),

Besides, if (7, ;) is a GY-admissible strategy for the k-th agent, then it satisfies the
budget constraint

A
(3.1) Ep {/0 B(s)Yi(s) (cr(s) — ex(s)) ds|GE] < 0.

But in contrary to an initial strong information, this necessary condition (3.1) for admissi-
bility is not sufficient. Indeed, the main difference here is that the financial market is not
complete for the insider because as a general rule, we do not always have the existence
of a probability measure equivalent to P and under which F; and H¥ are independent
for all t € [0, A]. Therefore we do not have a martingale representation theorem for the

(Gk,P*)-local martingales. Thus a consumption satisfying the budget constraint (3.1) is
not always attainable.
A progressive strong insider wants to maximize the mapping

(3.2) (s ) — V(mp cx) = B /O Ui(t, c(t))dt|GE]

over all G%-admissible investment /consumption strategies.

Because of the non completeness of the market for a progressive strong insider, we can
not give the optimal consumption and wealth for any utility function. Nevertheless, in
the usual case of a logarithmic utility and a deterministic discounted endowment, we
can solve this optimization problem explicitly by producing an optimal portfolio: we
obtain the same solution as for an initial strong insider (Example 4.7 in [17]), with the
corresponding Y.

Example 3.10
We assume 3.4, assumptions of Theorem 3.6 and 3.9.
Uk(t,c) = In(c), V(t,c) € [0, A]x]0, +o0.



We assume that Ep[fOA Yi(t)B(t)er(t)dt|GE] > 0 P almost surely and that (e is determin-
istic. Then

= A
B 080Gl
A0 - oo M AOROK = S Bl V0e)a()aslg)

Alt) = (o"(1)) (jﬁ—‘(tﬁ / ﬁ(s)ek(s>d8) !

3.2 Weak information

Here we consider that the true model of the stock prices is partially observed. More
precisely, the effective probability measure P of the market is unknown, but the agents
know the risk neutral probability measure I’ of a non-insider, that is the unique probability
measure equivalent to [P such that the discounted prices are (Fr, P)-local martingales. The
insider knows there will be a release of information about the outcome of some variable
Ly, of the prices, but in contrary to a strong information, he does not observe it, therefore
he anticipates its law. We say that this agent is weakly informed on this Fr-measurable
random variable Ly, meaning that he only has the filtration Fr available (thus his strategy
is Fr-admissible), but he anticipates the law of L under P.

Let Lj, : © — R’ be a Fr-measurable random variable. We denote by @Lk the law of L;
under P. With L, we associate a probability measure v, on R7. We assume that

Assumption 3.11 v, admits a positive bounded density &, with respect to @Lk'

The insider knows that the law of L, under the effective probability measure P is v,. v
is called a weak information on the functional L.

Proposition 3.12 (Proposition 8 Baudoin (2002) [6])

On Fr, there exists a unique probability measure P** such that

(i) For all Fr-measurable bounded random variable X, Epw (X |Ly) = E5(X|Ly).
(17) The law of Ly under P is vy.

P is called the minimal probability associated with the conditioning (T, Ly, vy).

~

Proof: We easily check that P+ given by : VB € Fr, P**(B) = [, P(B|Ly = y)vi(dy)
is the unique probability measure on Fr satisfying (i) and (i7). O

The link between the notion of initial strong information given by an initial enlargement
of filtration and the notion of weak information is given in Baudoin (2001) [7] Theorem
2.2 and Proposition 2.3. We need a technical lemma to solve the optimization problem of
a weak-insider.
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Lemma 3.13 Under assumption 3.11

dPve dv ke

(1) d@ - d@Lk (Lk) = fk’(Lk’)
dP"x
@ ( = )m — B(&(L)|F).

Proof: cf. Baudoin (2002) [6].

We denote

Definition 3.14
{ Ce(t) = Ep(&(Li)|F2)-
Yk = Cik

~

+ is a strictly positive (Fr, P)-local martingale, there exists a

Since ¢, = v
Fr-predictable process [ such that dyik(t) = Yik(t_)l,’;(t)dg(t).

Example 3.15
We take Ly = W;(T') and we study the case where v} is the Gaussian measure

1 —(y — m)? 2
vi(dy) = Tors exp (T dy, m € R, s <T.
Then £(y) = g exp (% — —(y;$)2> and
2 774 2 2
i(t):/ 1 VT S A el LA10) i O P
Yy V2msT —t 2T 2(T —t) 252

Thus in this example dyik(t) = Yik(t_)l,’;(t)dg(t) with

~Wi(t) 2 (y=Wi®)?  (y—m)?
() J 5 exp (éJ_T - y2(T—t) — 5 )dy
k)i - 5 “Wa)? )2 )
e (5 — S ) ay

(), = 0 if i#j.

A weak-informed agent wants to maximize the mapping

A
(3.3) (a0 1) — V(. ca) = B | /0 Us(t, cu(t))dt]

11



over all F A adm1s51ble strategies, that are characterized by the budget constraint

Es] fo )(ck — €x)(s)ds] < 0 (indeed, there is no enlargement of filtration for a weak in-
51der therefore the market is both viable and complete for his point of view). Then, using
Lemma 3.13, we solve his optimization problem by means of the Lagrange multipliers.

Theorem 3.16 We suppose assumptwn 3.11 satisfied.  If there exists a positive con-
stant N satisfying Es| fo 6) (L (t, \eB() Yi(t)) — ex(t))dt] = 0, then there exists a
unique solution to the k th weak informed agent’s optimization problem.

The optimal consumption rate is given by Cx(t) = I (¢, A\ B(t)Yi(2)).

The optimal wealth is given by X% (1) = %E@[LA B(s)(r — €x)(s)ds|F].

Example 3.17

We assume 3.11. Uy(t,c¢) = In(c), V(t, ¢) € [0, A]x]0, 4+o0].

We assume that [ fOA B(t)eg(t)dt] >0 P almost surely. Then since Yik is a density process
of a probability measure,

(B Bmeatdn\ T (B B@endn )
Es(fy! Tk()dt) A |

0= sy W SO% = - / B(s)eu(s)ds| il

If Bey is deterministic, the optimal portfolio is
A—t [4 1
~ o * —1
A =001 (7 | A0 o)

Remark 3.18 In this three types of side information, the optimal strategy of the k-th
agent is determined by the density process Yy of his probability measure. This means that
all the relevant information of each agent is contained in his own probability measure.
Therefore it is not surprising that a necessary and sufficient condition of equilibrium
establishes a link between these densities probabilities. That is what we will see in the next
section.

O

4 Equilibrium

In Hillairet (2005) [17], the formation of an equilibrium of the consumptions is studied,
in the case where all agents are initial strong insiders. The consumption market clearing
condition was :

(4.1) doa) =) ald), te o, Al



A necessary and sufficient condition for existence of an equilibrium of the consump-
tions is given. Under an assumption about conditional independence of the enlarged
filtrations, the insiders have the same risk neutral probability measure. In a moneyless
model, this risk neutral probability measure and the interest rate are uniquely deter-
mined at equilibrium. Moreover, if an equilibrium of the consumptions exists , then
SK T (t) = Opa, t€[0,A]. Here we will focus our attention on this following port-
folio market clearing condition, for the three types of side information :

(4.2) > @) = Oga, t €0, Al

k=1

Our setting is not usual for an equilibrium model in the sense that we assume that the
price processes are exogenous. The agents we consider are price takers. We can think
for example at a small closed structure of agents trying to set transactions such that the
stock market clears in their “local” structure. Their transactions do not affect the price
processes, that are fixed by an external market. It is a competitive dynamic equilibrium,
with no market maker, and the price are not determined by this equilibrium. Although
this framework seems naive, it leads to a particularly interesting and meaningful relation
linking the densities of the probabilities measures of each agents. This relation (4.3) means
that the transactions can occur if the endowments and the information of the agents are
well-balanced. It can be interpreted as following : the more informed an agent is, the less
weight he must invest.

4.1 Equilibrium with logarithmic utility and deterministic dis-
counted endowments

In this subsection, we consider the optimization problem of the consumption with a log-
arithmic utility and deterministic discounted endowments. The price processes being
exogenous (given by (2.2)), the question is the following : can the transactions occur, and
under which constraints?

We can express the optimal portfolio for each of the three types of “side-information”,
see example 4.5 in [17], examples 3.10 and 3.17. For a strong information (initial or
progressive) or a weak information, the optimal portfolio is given by

1

. A
BOR Or(t) = [ Be)en(s)dsp i)

with the corresponding Y} defined respectively in Definitions 3.2, 3.8 and 3.14. It is
important to notice here that, for these three Y},

1 1

A —()(1)dS(2)

d 7
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with the corresponding /;, and the same §(t) Therefore

K
;ﬂ*EORd — Z 0 Y,

L)=0  tel0,A4]

1 Yk t—
K A K
B(s)ex(s)ds A
— ; ) Yk(tk :Ek:; /0 B(s)en(s)ds  te [0, Al

The last equivalence is obtained by integrating the expression between 0 and ¢ and by
using the fact that Y;(0) = 1. We proved the following theorem :

Theorem 4.1 For an initial-strong insider, we assume 3.1 and 3.3. For a progressive-

strong insider, we assume 3.4, assumptions of Theorem 3.6 and 3.9. For a weak-insider,
fo (s)er(s)ds

SR i B(s)en(s)ds

we assume 3.11. In those three types of side information, if ap =

K

(4.3) D A= Ope = Zakyl( 5 =1 t €0, A

k=1 k

with the corresponding Y defined respectively in 3.2, 3.8 and 3.14.

In the case of an equilibrium of the consumptions with only initial strong insiders, under
an assumption about conditional independence of the enlarged filtrations (assumption
5.2 [17]), the insiders have the same risk neutral probability measure, that is uniquely
determined at equilibrium. In our setting of an equilibrium of the portfolio with different
types of insiders, the densities Y} of their own probability measures (risk neutral proba-
bility measure for a strong insider, minimal probability measure for a weak insider) are
linked by relation (4.3). The weights aj (note that S~ | a; = 1) represent the proportion
of endowments of each agent, and can be seen as the weight of each agent in the market.
The process Y}, summarizes the information of insider k. It determines his behavior (cf.
the expressions of the optimal consumption and portfolio). The process Y}, is also closely
related with the insider’s gain. Indeed, in our case of a logarithmic utility, the discounted
consumption is proportional to Yik Furthermore, we can represent the insider’s additional
expected logarithmic utility as the relative entropy of his own probability measure with
respect to the risk neutral probability measure of a non-insider. That is why relation
(4.3), giving a linear constraint between the weight of the agents and their probability
measures, is particularly interesting and meaningful. From a financial point of view, the
relation (4.3) means that an equilibrium (the transactions) can occur if the endowments
and the information of the agents are well-balanced.

The two following subsections are an illustration and an interpretation of this theorem in
two particular cases.
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4.1.1 Particular case where agents share the same information

We suppose here that the process Y} is the same for all agents, thus all agents share the
same information. Then equivalence (4.3) implies that at equilibrium, Y, = 1. Therefore
PP is the risk neutral probability measure for the strong insiders and P = P" for the weak
insiders, that is to say the agents have no side-information, or their side-information is
irrelevant. In this case of no side-information, the agents do not move, and consume
exactly their endowments distributed over [0, A] : for all k,

_ Jy Bl)e(s)ds

7 = Oga and Be, = "

Remark: link with the consumption market clearing condition (4.1).
In the case of the portfolio market clearing condition with no side information,

K A K
Zc/;g(t> _ fo ﬁ(s)(Zk:I 6k($)>d$ te [O,A]

pt)A

Therefore we do not have generally the relation (4.1), but

/0 ﬁ(s)(Z@(s))ds :/O g(s)(z x(5))ds.

1 k=1

This example shows that the market clearing (4.1) is a bit too restrictive, therefore it is
justified and more natural to consider the portfolio market clearing condition.

Let us now focus on the more interesting case where the agents do not have the same
information.

4.1.2 Case where agents have asymmetric information

Lemma 4.2 Under assumptions of Theorem 4.1, if the discounted endowment rates are

constant, then
K K K
E Ch E 6“:’2 T
k=1 k=1 k=1

Proof: We assume that the discounted endowment rates are constant (Se; = aj where
ay is a strictly positive constant), then ()¢ (t) = &

Yie(t)
Thus
K K
Sa=Y e
k=1

k=1

O

K a K K
k ~
— = E ap < E Wk*EORd.
k= k=1

1 k=1

e
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O

First, let us consider only two agents on the financial market. Y; of the first agent being
given, what must satisfy Y5 so that an equilibrium could be achieved? Equivalence (4.3)
yields

(4.4) T4y = Oge <= 1+ fo 5)ds 1
: T T = —= = - =

= Y2 I B(s)ea(s)ds
On the one hand, Y5 must be a positive process. On the other hand, the more informed
is the first agent, the bigger is Yil and therefore the more negative is the process (1 — Yil)
Thus we have to “counterbalanced” (1 — 3 L) with a small %
0 €2(s)as
strictly positive. Intuitively, the bigger fo (s)ex(s)ds is, the more influential agent k is
on the financial market. This is coherent with the theory of the representative agent that
was introduced by Karatzas et al. [26]. A representative agent is a fictitious agent who
recelves the endowment process ¢ and attempts to maXHnlze his total expected utility
Ep fo c(t), N)dt|Go| under the constraint Ep fo VWY (t)(c—e)(t)dt|Go) <0 (U is the
representatlve agent’s utility function and Gy is the common information shared by all
agents at time 0). For all k = 1,--- , K, the representative agent assigns to the k-th agent
the weight Ay. Actually, A, = A\;' (up to a multiplicative constant, cf [17]), where )\ is
the Lagrange multiplier of agent k. In the case of logarithmic utility

Ep <fOA ﬁ(s)ek(s)ds>
A

Therefore, the more informed an agent is, the less weight he must have in the financial
market (comparatively to the others agents) so that an equilibrium could be achieved (cf.
section 4.3 for explicit calculus and simulations).

Besides, the more endowment an insider invests on a financial market, the more abnormal
deviations he will induce on this market, and therefore the more he risks to be detected.
Furthermore, the abnormal strategies or deviations induced by an insider are as big as his
side-information is important. Thus a well-informed agent would be well advised to keep
himself unobtrusive and invest a small part of his endowment on the market (see section
4.3).

).

so that Y5 remains

Ak - ()\k)_l —

Proposition 4.3 Under assumptions of Theorem 4.1, if Y3, k = 1,--- , K — 1 of the
(K — 1) first agents are given, there is an equilibrium (i.e. 25:1 7" = Oa) if and only
if
K
k= 11 ay (1 ) -
Yo _1+Zk 1 ak(l YL)
Proof: 1t is a straightforward application of equivalence (4.3). a
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4.2 Equilibrium with other optimization problems

A similar work can be done with other optimization problems. We find it interesting

to write a short paragraph on them because, although the theory remains the same, the
simulation part is sometimes more technical, as we will see.
First, we can consider the problem consisting in optimizing both consumption and ter-
minal wealth (or respectively terminal wealth only), with an initial wealth X (0) and
no endowment. In the case of a logarithmic utility, by using similar methods as for the
consumption optimization problem, we show that the optimal portfolio is given by

pOXO0)(1+A-1) 1

SR (Do lt) = = i )

(respectively ﬁ(tm*@)o—(w:@(0)&(0)%&(0. )

Thus, instead of equivalence (4.3), we have

K K

(4.5) Y A = O = );:—Eg) = X;(0) te 0, Al

k=1 k=1 k=1

Here the weight of agent k in the market is Ay = %ﬁ(o) (respectively 3(0)X(0)), thus
his weight is proportional to his initial wealth. In this setting, similar results can be

proven, with X (0) instead of fOA B(s)ex(s)ds.

We can also consider the portfolio market clearing condition with different optimization
problems according to each agent : they all have a logarithmic utility but the first &,
maximize their consumption (with no initial wealth and a deterministic discounted en-
dowment), the next ky maximize their terminal wealth (with an initial wealth and no
endowment) and the others maximize both consumption and terminal wealth (with an
initial wealth and no endowment). Thus, instead of equivalence (4.3), we have

K
Z 7" = Oga if and only if
k=1

o, IR G+ [ o]+ Y s0x050

k=k1+1

46) + ). M{(HA—wi(tH/o i(s)ds]

W (A+1) Yy
k1

A K
=X et + Y B0X0), eel.AL

k=1 k=k1+1
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Simulations can be done to exhibit Y} (that summarize the side-information) such that
an equilibrium exists. The optimization problem and the side information of K —1 agents
being given, we simulate for each one of them the process Yik Using relation (4.6), we
simulate (or we deduce straight) the process YLkO of the last agent such that an equi-
librium exists. More precisely, if this agent does not maximize his consumption (i.e.

ki1 < ko < k2), we can deduce straight from (4.6) his process % because %(s)ds does
0 0

not appear in (4.6). On the other hand, if this agent maximizes his consumption (i.e.
ko < ky or ko > ko), [, %(s)ds appears in (4.6) and we simulate then % by iteration,
0 0

setting ﬁO(O) = 1 and simulating fo% Yik(s)ds with 4 Zj-:l Yik(%), i=1,---,N (where
4 is the iteration’s step).

In our simulation, there are 3 agents. The first one is a non-insider and maximizes his
terminal wealth. The second one knows I, 4 (P (7)) (initial strong insider) and maximizes
both his consumption and his terminal wealth. We simulate the process Y% of the third

agent who maximizes his consumption only.

Results

cf. section 5.2 for the figures. We have simulated the portfolio of each agent (cf. figures
3, 5.2 and 4), so that we can see our equilibrium condition about the portfolio . We have
also simulated the discounted consumption and wealth of the third agent (cf. figure 2).

4.3 Maximal weight of an insider

We will estimate the maximal weight that an insider can invest in the market such that
an equilibrium can be achieved. More precisely, we consider a market with two agents.
The first one has a side information (an initial or progressive strong information, or a
weak information). We notice that the weight in the market of an agent 7 is proportional
to fOA B(s)e;(s)ds if he maximizes his consumption only and has the endowment ¢;, or to
3(0)X;(0) otherwise (where X;(0) is his initial wealth), denoted as a; in both cases. The
necessary and sufficient condition (4.6) gives the maximal ratio o> so that the process Y%
is positive, i.e. so that an equilibrium can be achieved. We simulate this ratio for different
information and different optimization problems, but for the same realization of w.

If both agents have the same optimization problem, it follows from relations (4.4) and
. o 1\ 1

(4.5) that the maximal ratio £ is equal to — <1 — trerf(%ﬁ](f(t))) if tgf&ﬁ](f(t)) > 1

(otherwise the maximal ratio is infinite, there is no constraint on the insider’s weight).

If the first agent (the insider) maximizes his consumption (respectively his consumption

and his terminal wealth) and the second agent maximizes his terminal wealth, it follows

from relation (4.6) that the maximal ratio ¢! is :
-1

1 A—t t 1 A—t |
(1-= S | T LAY R A
( 155 0 +/o (o) S>) IS +/o i)~
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-1

1 1+A—t
tively — (1 — —— ds)
(respectively ( A—i—ltreI%O,A] Vil /Y1 5 s)
1+A—t

t
1
if + ——ds > 1),
A—|— 1 tE[O,A]( Yi(¢) /0 Yi(s) )
otherwise there is no constraint on the insider’s weight.

The insider may have the side information ¢, i =1,--- ,4.

information 1 : initial strong information Iy, 4 (P (7).

information 2 : initial strong information In(Py (7)) — In(P(T)).

information 3 : progressive strong information 2W+(T") 4+ a + Br—_y) (cf. example 3.7)
information 4 : weak information of example 3.15.

Both agents can maximize their consumption (optimization number 1), their terminal
wealth (optimization number 2) or both their consumption and their terminal wealth
(optimization number 3), until a date A < T. Here are the data we have used for our
simulations. A = 0.95 and T = 1. Both Brownian motion and Poisson process are
2-dimensional: m = n = 2. The intensity of the Poisson process is © = (3,2). We
choose constant market coefficients, but the simulations could be easily extended with
time-varying market coefficients. The annual interest rate is 0.02 : r(¢) = 0.02 for all ¢.

0.15
0.1
0.084
0.1

The drift b(t) = vt € [0, 7).

-04 -0.1 -0.15 0.17
-0.09 —-04 -0.03 0.035
0.048 —-0.12 0.1 —-0.12
0.075 026 031 —0.28

The volatility o(t) = vt € [0, 7],

Results

cf. section 5.3 page 24 for the table of the results and the figures. The first simulation
is in a diffusive-jump market (first table and figures 5 and 6). The second simulation is
in a purely diffusive market (second table and figures 7 and 8) driven by a 4-dimensional
Brownian motion. Optimization jk corresponds to the optimization number j for the
insider and number £ for the second agent. We also have simulated the process % for each
side information.

We notice that the larger the process Yil is, the smaller the maximal ratio Z—; is. In

particular, the process % for the second information in the second simulation is very high
and such an insider must invest a derisory sum (the maximal ratio is in the region of le-4)
so that an equilibrium could exist between the two agents. In both our simulations, the
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process % is larger (and then the maximal ratio smaller) in the case of the progressive

strong information (information 3) than in the case of the initial strong information 1.
This can be explained by the fact that for the information 1, the insider knows an event
that occurs with a positive probability, whereas for the information 3, the event the
insider knows (in a disturbed way) occurs with a probability equal to zero. Furthermore,
the processes % are larger in the purely diffusive market than in the diffusive-jump market,
especially for the informations 2 and 3 where the insiders know an event that occurs with
a probability equal to zero. Indeed, in both those cases, the side-information loses some
of its relevance if a jump occurs between A and T

We notice that the maximal ratio depends on the optimization problems of both agents. It
is smaller if the insider maximizes only his terminal wealth, and larger if he maximizes only
his consumption. Inversely, it is larger if the second agent maximizes only his terminal
wealth, and smaller if he maximizes only his consumption.

5 Annex

5.1 Proof of Theorem 3.6

We use similar arguments as those of Proposition 1 of Corcuera et al. (2004) [10] to
generalize their result in the case of our mixed diffusive-jumps model. In particular,
we need to explicit the proof because of the jumps and to explicit the formula for the
compensator for the point process.

Let g€ N*and s; <--- < s, <s <t Let C'€ F; and h a bounded measurable function
on R?%. Set H = h(Ly(s1),- -+, Li(s,)). Using Lemma 3.5 for the second equality, we get

E[p [(Wt — WS) H0H|Bk($1) = bl, tee ,Bk(Sq) =b ]
= B [(W, = W) Ich (hy (L, by) - by, (Lk,b Nl

L
— B {Hoh(hk (Lisbi) s - s B (Lk,bq)) (u, L) }
s U Lk
L
= FEp |iHCH/ ’ZL]I: du‘Bk(Sl) =by,- ( ) b:|

Taking expectation with respect to (By(s1),- -, Bk(s,)) yields

Ep (W, — W,)IcH] = Ep {]ICH / t Mdu] .

pk (U/, Lk)
Therefore W (-) — [, pi(s)ds is a contmuous (G*,P)-local martingale. Lévy’s characteri-
zation theorem implies that W(-) — [, Pi(s)ds is a (G, P)-Brownian motion. The same

proceading with N instead of W yleld
t k
ﬂ (U/, Lk)
E[p [(Nt — NS) ]IcH] = E[p |iH0H/S m(u) (In + m du| .
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Thus N(-) — [,(k.p5)(s)ds is a (G%,P)-local martingale and Theorem 5 p. 25 in [8] im-
plies that N(-) — [, (x.p5)(s)ds is the compensated process of a (G%, P)-point process with
intensity (x.p5). O

5.2 Equilibrium

In this simulation, a = 0.6, b = 1.2, P,(T") = 0.3666. The initial wealth of the two first
agents is equal to 1. The third agent has a constant discounted endowment equal to 1.
cf. figures 1, 2, 3, and 4.

T T

- 1/‘(' non-insider
— - 1/Y, insider
- 1/‘(3 third agent

0.2
0

I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 1: < of the 3 agents at equilibrium
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discounted consumption

discounted wealth
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“ T —mwaagent]
13F il
0.2 q
12 q
1.1 - 0.1 4
1 q 0 |
Fos 1% W
0.8 B o ]
0.7k b _02k R
0.6 4
-0.31 4
0.5 il
! O
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t t
discounted consumption discounted wealth

of the third agent at equilibrium

Figure 3:

of the third agent at equilibrium

Figure 2:

portfolio on asset 1

—©- non-insider
= or B
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2
]
g 2 1
°
£
5
s 4 7
o
£
5
8 gl ]
8t 4
-10 4
_12 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

portfolio on the bond of the 3 agents at equilibrium
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portfolio on the first asset(t)

portfolio on asset 1

portfolio on the second asset(t)

portfolio on asset 2

—©- non-insider

er
—— third agent

portfolio on the third asset(t)

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

portfolio on asset 1

portfolio on asset 3

T T T T T T
-5 non-insider
insider

—— third agent

portfolio on asset 2

portfolio on asset 4

3 0 7
0 B 2
&
£
5
K]
-10 4 °
<
5
2
20 B 2
g8 -5 4
_30 |
_40 |
50 . . . . . . . . . _10 . . . . . . . . .
0 0.1 02 03 0.4 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 07 08 09 1

t

portfolio on asset 3

t

portfolio on asset 4

Figure 4: portfolio of the 3 agents at equilibrium
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5.3 Maximal weight

See below the table of the results.

Optimization jk corresponds to the optimization

number j for the insider and number k for the second agent. We also have simulated the
process % for each side information.

5.3.1 First simulation (diffusive-jump market):

Py(T) = 0.8083, In(Py(T)) — In(Py(T)) = —0.2986.

cf. figures 5 and 6.

information optimization
g | 12 ] 32 | 21 | 31 | 13 | 23
infol 0.7095 | 5.6045 | 1.2595 | 0.0965 | 0.1566 | 2.5656 | 0.4117
info2 0.2118 | 1.5066 | 0.3714 | 0.0212 | 0.0378 | 0.8661 | 0.1207
info3 0.3343 | 2.7773 | 0.5967 | 0.0394 | 0.0680 | 1.4481 | 0.1889
info4 21.4833 | 82.6345 | 69.9539 | 1.3163 | 1.2123 | 70.3262 | 10.7096
5.3.2 Second simulation (purely diffusive market) :
P (T) =2.2397, In(P(T)) — In(P(T)) = 0.7127.  cf. figures 7 and 8.
information optimization
g 12 | 32 | 21 | 31 | 13 | 23 |
infol 0.5037 | 0.8791 | 0.6404 | 0.1996 | 0.2544 | 0.7019 | 0.38
info2 0.0092 | 0.1008 | 0.0168 | 6.4122e-4 | 0.0012 | 0.0595 | 0.005
info3 0.0405 | 0.1080 | 0.0597 | 0.0069 | 0.0117 | 0.0806 | 0.0266
info4 0.6637 | 1.235 | 0.8728 | 0.1791 | 0.2474 | 0.9954 | 0.4797
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6 T T T T T T

25 T T T T T T — —
- VYO s
— 1/Y initial strong information 1 17Y initial strong information 2

Process % for information 1 Process % for information 2

Figure 5: diffusive-jump market

4 T T -
— 1Y, non-insider — 1IN non-insider
— 1/¥p strong ion 3 — 1/Y weak information 4

Process % for information 3 Process % for information 4

Figure 6: diffusive-jump market
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Figure 7: purely diffusive market
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Figure 8: purely diffusive market
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