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Abstract

The main purpose of this paper is to prove that the jump discontinuity set of the solution
of the total variation based denoising problem is contained in the jump set of the datum to
be denoised. We also prove some extensions of this result for the total variation minimization
�ow, for anisotropic norms and for some more general convex functionals which include the
minimal surface equation case and its anisotropic extensions.

1 Introduction

The use of total variation as a regularization term for image denoising and restoration was

introduced by L. Rudin, S. Osher and E. Fatemi in [27]. If Ω denotes the image domain, when

dealing with the restoration problem one minimizes the total variation functional

u 7→
∫

Ω

|Du| (1)

under some constraints which model the process of image acquisition, including blur and noise.

The constraint can be written as f = K ∗ u + n, where f ∈ L2(Ω) is the observed image, K is a

convolution operator whose kernel represents the point spread function of the optical system, n

is the noise (tipically a white Gaussian noise of zero mean), and u is the ideal image, previous

to distortion. The denoising problem corresponds to K = I and, in this case, the constraint

becomes

f = u + n. (2)

In practice, the only information we have about the noise is statistical. Assuming that n is a

Gaussian white noise of zero mean and standard deviation σ, the constraint (2) can be imposed

in an integral form as ∫
Ω

(f − u)2 dx ≤ σ2|Ω|, (3)
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where σ2 denotes a bound on the noise variance. Among all images satisfying this constraint,

the denoised image is chosen as the one minimizing (1) [27]. As proved by A. Chambolle and

P.L. Lions in [20], minimizing (1) under the constraint (3) amounts to solving

min
u∈BV (Ω)

{∫
Ω

|Du|+ 1
2λ

∫
Ω

(u− f)2 dx

}
, (4)

for some Lagrange multiplier λ > 0. When the noise bound is not known, λ acts as a penalization

term.

One of the main features of total variation denoising (4), con�rmed by numerical experiments,

is its ability to restore the discontinuities of the image [27], [20], [22]. The a priori assumption

is that functions of bounded variation (the BV model [8]) are a reasonable functional model for

many problems in image processing, in particular, for denoising and restoration problems. Typi-

cally, functions of bounded variation admit a set of discontinuities which is countably recti�able

[8], being continuous in some sense (in the measure theoretic sense) away from discontinuities.

The discontinuities could be identi�ed with edges. The ability of total variation regularization

to recover edges is one of the main features which advocates for the use of this model which had

a strong in�uence in the use of BV functions in image processing (its ability to describe textures

is less clear, even if some textures can be recovered, up to a certain scale of oscillation).

The main purpose of this paper is to prove that the jump discontinuities of the solution u of

the denoising problem (4) are contained in the jump discontinuities of the datum f , assuming that

f ∈ BV (Ω) ∩ L∞(Ω). Partial information on this question was known through the computation

of explicit solutions in several works [28, 13, 25, 14, 5, 6, 1]. In particular, let us mention the full

description of the solution in case that f = χC where C is a convex subset of RN , N ≥ 2 [5, 6, 4].

In this case, it is clear from the explicit solution that the jump set of the solution u is contained

in ∂C and it coincides with it when ∂C is of class C1,1 and λ is small enough. When N = 2,

a more detailed analysis, given in [5], also proves that the solution is W 1,1 inside C, being 0

outside. Other explicit solutions for piecewise constant data f made of sums of characteristic

functions of convex sets were given in [14]. The case of solutions when f has a radial symmetry

can be found in [9, 11, 25]. The picture coming out from these works is completed with the main

result of this paper.

Let us mention that our result gives some information about the nature of the �staircasing

e�ect�. Staircasing, i.e., the creation of image �at regions separated by boundaries, is one of the

observed artifacts which appear in total variation image denoising. The most obvious example is

when denoising a smooth ramp plus noise (see Fig. 1). In the discrete framework, this e�ect has

been reported to be a consequence of the non-di�erentiability of the total variation norm when

the gradient vanishes [26]. Indeed, this reason is at the origin of the appearance of �at regions

at points where the gradient vanishes as is shown by explicit solutions in the radially symmetric

case [9, 11, 25] as well as in 1D (see below and Figure 1). We also believe that this is the correct

explanation in the continuous framework (see for instance [5]).

But our result says that, at the continuous level, no new jump discontinuities may appear

in the solution that were not present in the (BV ) datum f . Hence, if the original signal f is

smooth enough, one expects that �at areas will appear, but they should not be, strictly speaking,
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Figure 1: Top, left: a monotonous ramp and its BV -regularization: observe that nothing hap-

pens except at the boundaries. Right: staircasing in a (smooth) sinusoidal ramp (see explicit

computation in the text). Bottom: a noisy ramp: the staircasing e�ect is maximal

separated by jumps (however, steep transitions between �at areas might look close to jumps and

still look like a �staircase�). Observe for instance that if Ω = (0, 1), f : (0, 1) → R is a smooth

oscillating ramp (for instance, the function x+ .1 sin(100x)), then it is easy to show that actually,

u does not present any discontinuity and the �staircasing� e�ect is reduced to a �attening of u

near the local extrema of f . Indeed, the Euler-Lagrange equation for (4) turns out to be

−λφ′(x) + u(x) = f(x)

where −1 ≤ φ ≤ 1 a.e., and φu′ = |u′|. First of all, by the maximum principle and standard

techniques, one easily shows that u is Lipschitz, with ‖u′‖∞ ≤ max[0,1] f
′. Then, if u increases

on an interval, φ′ = 0 and u = f in the interval, and the same is true if u decreases on an

interval. On the other hand, if f 6= u in some interval, then φ′ is not zero, which is possible only

if |u′| = 0: u is �at.

On the other hand, if the we are given some discrete noisy data, we could interpretate it both

as a BV data with high norm and discontinuity around each pixel (although this point of view

is a bit strange), or as a non-BV data: in both cases, a strong staircasing e�ect is compatible

with our result (and we �nd that the total variation �ow will reduce progressively the number
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of discontinuities, in particular, by a progressive merging of the �at areas). See Figures 1, 2 for

numerical experiments illustrating these comments.

Figure 2: Top: an image, original and noisy. Bottom: the corresponding TV-regularized image

(same λ). Observe that the staircasing is hardly visible on the regularized version of the original

image, which is �closer� to BV than the noisy version.

The main result of the paper is extended in several directions. First, we prove a similar

statement for the solutions of the gradient descent �ow of the total variation, starting from

f ∈ L∞(Ω). In this case, using non-linear semigroup theory, we have a partial answer: the jump

discontinuity set Ju(t) of the solution u(t) is contained in the jump set Jf of f , when f is BV

and lies in the closure of the domain of the operator −div
(

Du
|Du|

)
in L∞(Ω). If f is just bounded,

we only get that Ju(t) ⊆ Ju(s) for any t ≥ s > 0. Other extensions concern the case of several

boundary conditions, or anisotropic total variation norms. Eventually, we also see how the above

results can be extended to convex functionals with linear growth, of the form F (ξ) = φ(ξ,−1),

ξ ∈ RN , where φ : RN+1 → R is a smooth and elliptic norm on RN+1. This includes, in

particular, the case where F (ξ) =
√

1 + |ξ|2, ξ ∈ RN , which is more carefully analyzed.

Let us describe the plan of the paper. In Section 2 we recall some basic facts about functions

of bounded variation.In Section 3, we prove the main result of the paper concerning the jumps

of the solutions of the denoising problem (4). We then extend this result to the case of the

total variation �ow (Section 4). We discuss in Section 5 the extension of our results to similar

problems (other boundary conditions, anisotropic norms, or more general convex functionals as

described in our last paragraph).
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2 Notation and preliminaries on BV functions

Let Ω be an open subset of RN . A function u ∈ L1(Ω) whose gradient Du in the sense of

distributions is a (vector valued) Radon measure with �nite total variation in Ω is called a

function of bounded variation. The class of such functions will be denoted by BV (Ω). The total

variation of Du on Ω turns out to be

sup
{∫

Ω

u div z dx : z ∈ C∞
0 (Ω; RN ), |z(x)| ≤ 1 ∀x ∈ Ω

}
, (5)

(where for a vector v = (v1, . . . , vN ) ∈ RN we set |v|2 :=
∑N

i=1 v2
i ) and will be denoted by

|Du|(Ω) or by
∫
Ω
|Du|. The map u → |Du|(Ω) is L1

loc(Ω)-lower semicontinuous. BV (Ω) is a

Banach space when endowed with the norm ‖u‖ :=
∫
Ω
|u| dx + |Du|(Ω).

A measurable set E ⊆ Ω is said to be of �nite perimeter in Ω if (5) is �nite when u is

substituted with the characteristic function χE of E. The perimeter of E in Ω is de�ned as

P (E,Ω) := |DχE |(Ω). We denote by LN and HN−1, respectively, the N -dimensional Lebesgue

measure and the (N − 1)-dimensional Hausdor� measure in RN .

Let u ∈ [L1
loc(Ω)]m. We say that u has an approximate limit at x ∈ Ω if there exists z ∈ Rm

such that

lim
ρ↓0

1
|B(x, ρ)|

∫
B(x,ρ)

|u(y)− z|dy = 0. (6)

The set of points where this does not hold is called the approximate discontinuity set of u, and

is denoted by Su. Using Lebesgue's di�erentiation theorem, one can show that the approximate

limit z exists at LN -a.e. x ∈ Ω, and is equal to u(x): in particular, |Su| = 0.

If x ∈ Ω \ Su, the vector z is uniquely determined by (6) and we denote it by ũ(x). We say

that u is approximately continuous at x if x 6∈ Su and ũ(x) = u(x), that is if x is a Lebesgue

point of u (with respect to the Lebesgue measure). Let u ∈ [L1
loc(Ω)]m and x ∈ Ω \ Su; we say

that u is approximately di�erentiable at x if there exists an m×N matrix L such that

lim
ρ↓0

1
|B(x, ρ)|

∫
B(x,ρ)

|u(y)− ũ(x)− L(y − x)|
ρ

dy. (7)

In that case, the matrix L is uniquely determined by (7) and is called the a approximate di�er-

ential of u at x.

For u ∈ BV (Ω), the gradient Du is a Radon measure that decomposes into its absolutely

continuous and singular parts Du = Dau + Dsu. Then Dau = ∇u dx where ∇u is the Radon-

Nikodym derivative of the measure Du with respect to the Lebesgue measure in RN . The function

u is approximately di�erentiable LN a.e. in Ω and the approximate di�erential coincides with

∇u(x) LN a.e.. The singular part Dsu can be also split in two parts: the jump part Dju and

the Cantor part Dcu. We say that x ∈ Ω is an approximate jump point of u if there exist

u+(x) 6= u−(x) ∈ R and |νu(x)| = 1 such that

lim
ρ↓0

1
|B+

ρ (x, νu(x))|

∫
B+

ρ (x,νu(x))

|u(y)− u+(x)| dy = 0

lim
ρ↓0

1
|B−

ρ (x, νu(x))|

∫
B−ρ (x,νu(x))

|u(y)− u−(x)| dy = 0,
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where B+
ρ (x, νu(x)) = {y ∈ B(x, ρ) : 〈y − x, νu(x)〉 > 0} and B−

ρ (x, νu(x)) = {y ∈ B(x, ρ) :

〈y − x, νu(x)〉 < 0}. We denote by Ju the set of approximate jump points of u. If u ∈ BV (Ω),

the set Su is countably HN−1 recti�able, Ju is a Borel subset of Su and HN−1(Su \ Ju) = 0 [8].

In particular, we have that HN−1-a.e. x ∈ Ω is either a point of approximate continuity of ũ, or

a jump point with two limits in the above sense. Eventually, we have

Dju = Dsu Ju = (u+ − u−)νuHN−1
Ju and Dcu = Dsu (Ω\Su).

For a comprehensive treatment of functions of bounded variation we refer to [8].

3 The discontinuities of solutions of the TV denoising prob-

lem

Given a function f ∈ L2(Ω) and λ > 0 we consider the minimum problem

min
u∈BV (Ω)

∫
Ω

|Du|+ 1
2λ

∫
Ω

(u− f)2 dx =: Fλ(u) . (8)

Notice that problem (8) always admits a unique solution uλ, since the functional Fλ is strictly

convex.

Let us recall the following observation, which is proved in [21, 6] (see also [19, 15]).

Proposition 3.1. For any t ∈ R, consider the minimal surface problem

min
E⊆Ω

P (E,Ω) +
1
λ

∫
E

(t− f(x)) dx (9)

(whose solution is de�ned in the class of �nite-perimeter sets, hence, up to a Lebesgue-negligible

set). Then, {uλ > t} (respectively, {uλ ≥ t}) is the minimal (resp., maximal) solution of (9).

In particular, for all t but a countable set, the solution of this problem is unique.

The proof of this proposition, which we do not give here, is based on the co-area formula

which shows that

Fλ(u) ∼
∫ (

P ({u > t},Ω) +
1
λ

∫
{u>t}

(t− f) dx

)
dt ,

and on the following comparison result for solutions of (9) which is proved in [6, Lemma 4]:

Lemma 3.2. Let f, g ∈ L1(Ω) and E and F be respectively minimizers of

min
E

P (E,Ω)−
∫

E

f(x) dx and min
F

P (F,Ω)−
∫

F

g(x) dx .

Then, if f < g a.e., |E \ F | = 0 (in other words, E ⊆ F up to a negligible set).

The proof of this lemma only relies on the inequality P (A∪B,Ω)+P (A∩B,Ω) ≤ P (A,Ω)+

P (B,Ω) and is easily generalized to other situations (Dirichlet boundary conditions, anisotropic

and/or nonlocal perimeters, . . . , see the proof in [6]).
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Eventually, we mention that the result of Proposition 3.1 remains true if the term (u(x) −
f(x))2/(2λ) in (8) is replaced with a term of the form Ψ(x, u(x)), with Ψ of class C1 and strictly

convex in the second variable, and replacing (t− f(x))/λ with ∂uΨ(x, t) in (9).

From Proposition 3.1 and the regularity theory for minimal surfaces (see for instance [7]) we

obtain the following regularity result (see also [1]).

Corollary 3.3. Let f ∈ Lp(Ω), with p > N . Then, for all t ∈ R the super-level set {uλ > t}
(respectively, {uλ ≥ t}) has boundary of class C1,α, for all α < (p−N)/p, out of a closed singular

set Σ of Hausdor� dimension at most N − 8. Moreover, if p = ∞, the boundary is of class W 2,p

out of Σ, for all p < ∞, and is of class C1,1 if N = 2.

We now show that the jump set of uλ is always contained in the jump set of f .

Theorem 1. Let f ∈ BV (Ω) ∩ L∞(Ω). Then, for all λ > 0,

Juλ
⊆ Jf (10)

(up to a set of zero HN−1-measure).

Proof. Let Et := {uλ > t}, and let Σt be its singular set given by Corollary 3.3. We show that

for all t1 6= t2 there holds

HN−1 (∂Et1 ∩ ∂Et2 \ Jf ) = 0 . (11)

Suppose by contradiction that (11) does not hold for some values t1 < t2, and let x ∈ ∂Et1 ∩
∂Et2 \ Jf . We can assume that x does not belong to Σt1 ∪ Σt2 . Therefore, by Corollary 3.3, we

know that both ∂Et1 and ∂Et2 are regular in a neighborhood of x, therefore we may write the set

∂Eti locally as the graph of a function vi ∈ W 2,p(U), i ∈ {1, 2}, where U is a neighborhood of x

in the tangent space to ∂Eti
at x (which we identify with RN−1). In this way, the Euler-Lagrange

equation for (9) becomes

div
∇vi(y)√

1 + |∇vi(y)|2
+

1
λ

(ti − f(y, vi(y))) = 0 y ∈ U. (12)

From t1 < t2 and Lemma 3.2, it follows Et2 ⊆ Et1 , which gives in turn v2 ≥ v1 in U . Recall

that since f ∈ BV (Ω), HN−1-a.e. x 6∈ Jf is a Lebesgue point for f [8]. Hence, without loss of

generality, we may also assume that x is a Lebesgue point for f and, also, a point of approximate

di�erentiability for both vi and ∇vi, i ∈ {1, 2}. In particular, equation (12) has a pointwise

meaning at x, and there holds v1(x) = v2(x) = 0 and ∇v1(x) = ∇v2(x) = 0. As a consequence,

subtracting the two equations satis�ed by v1 and v2 at x, we obtain

∆v1(x)−∆v2(x) =
t2 − t1

λ
> 0 ,

which contradicts the inequality v2 ≥ v1.

Remark 3.4. Notice that, if f is continuous at x ∈ ∂Et1 ∩ ∂Et2 , reasoning as in the proof of

Theorem 1 it follows that x ∈ Σt1 ∪ Σt2 . Indeed, using the continuity of f we can choose the

neighborhood U small enough such that there exists two constant c1, c2 with the property

div
∇v1(y)√

1 + |∇v1(y)|2
≥ c1 > c2 ≥ div

∇v2(y)√
1 + |∇v2(y)|2

y ∈ U, (13)
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which contradicts v2 ≥ v1 as above.

In particular, if N ≤ 7 and f ∈ C(Bρ(x)) ⊂ Ω then uλ ∈ C(Bρ(x)).

Remark 3.5. By a result of Calderon [18], if p > N any function v ∈ W 1,p(Ω) is di�erentiable

a.e.. We could have used this result in the proof of Theorem 1, but we used the simpler result that

both vi and∇vi are approximately di�erentiable a.e.. In any case we have that D2(v2−v1)(x) ≥ 0

since v2 − v1 has a minimum at x and ∇v1 and ∇v2 are approximately di�erentiable at x.

4 The total variation �ow

To �x ideas, let us assume in this Section that Ω is an open bounded set with Lipschitz boundary.

Let us consider the minimizing total variation �ow

∂u

∂t
= div

(
Du

|Du|

)
in QT =]0, T [×Ω,

Du

|Du|
· νΩ = 0 in QT =]0, T [×∂Ω,

(14)

with the initial condition

u(0, x) = f(x), x ∈ Ω. (15)

Let us recall that, in the Hilbertian framework (in L2), it is the gradient �ow of the total variation

as de�ned in [17]. In the general case we shall follow [9, 13]. The purpose of this Section is to

prove the following result.

Theorem 2. Let f ∈ LN (Ω). Let u(t) be the solution of (14) with initial condition u(0, x) =

f(x). Then u(t) ∈ L∞(Ω) ∩BV (Ω) for any t > 0, and

Ju(t) ⊆ Ju(s) ∀t > s > 0. (16)

Moreover, if u(s) is continuous at x ∈ Ω, then also is u(t) for any t > s > 0. If f ∈ Dom(A∞)∩
BV (Ω), then the above assertions are true up to s = 0.

To prove Theorem 2, let us recall some basic facts about the operator −div
(

Du
|Du|

)
in Lp

spaces. Since it su�ces for our purposes, we shall only consider the case p ∈ [ N
N−1 ,∞]. For any

p ∈ [1,∞], let us de�ne the space

X(Ω)p :=
{
z ∈ L∞(Ω, RN ) : div(z) ∈ Lp(Ω)

}
.

If z ∈ X(Ω)p and w ∈ BV (Ω) ∩ Lq(Ω), p−1 + q−1 = 1, we de�ne the functional (z · Dw) :

C∞
0 (Ω) → R by the formula

< (z ·Dw), ϕ >:= −
∫

Ω

w ϕ div z dx−
∫

Ω

w z · ∇ϕ dx.

Then (z ·Dw) is a Radon measure in Ω, and (z ·Dw) = z · ∇w if w ∈ W 1,1(Ω) ∩ Lq(Ω).

Finally, we observe that ([12]) if z ∈ X(Ω)p, then there exists a function [z · νΩ] ∈ L∞(∂Ω)

satisfying ‖[z · νΩ]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN ), and such that for any u ∈ BV (Ω) ∩ Lq(Ω) we have∫
Ω

u div z dx +
∫

Ω

(z ·Du) =
∫

∂Ω

[z · νΩ]u dHN−1.
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De�nition 4.1. We de�ne the operator Ap ⊆ Lp(Ω)× Lp(Ω), N
N−1 ≤ p ≤ ∞, by

(u, v) ∈ Ap if and only if u, v ∈ Lp(Ω), u ∈ BV (Ω) and

there exists z ∈ X(Ω)p with ‖z‖∞ ≤ 1, such that (z ·Du) = |Du| , [z · νΩ] = 0 and

v = −div(z) in D′(Ω).

By v ∈ Apu we mean that (u, v) ∈ Ap. By L1
w(]0, T [;BV (Ω)) we denote the space of weakly

measurable functions w : [0, T ] → BV (Ω) (i.e., t ∈ [0, T ] → 〈w(t), φ〉 is measurable for any

φ ∈ BV (Ω)∗ where BV (Ω)∗ denote the dual of BV (Ω)) such that
∫ T

0
‖w(t)‖ dt < ∞.

De�nition 4.2. A function u ∈ C([0, T ];Lp(Ω)) is called a strong solution of (14) if u ∈
W 1,1

loc (0, T ;Lp(Ω)) ∩ L1
w(]0, T [;BV (Ω)) and there exists z ∈ L∞

(
]0, T [×Ω; RN

)
with ‖z‖∞ ≤ 1

such that ∫
Ω

(z(t) ·Du(t)) =
∫

Ω

|Du(t)| for a.e. t > 0. (17)

[z(t) · νΩ] = 0 in ∂Ω for a.e. t > 0. (18)

and

ut = div z in D′ (]0, T [×Ω) .

Proposition 4.3. The operator Ap is m-accretive in Lp(Ω), that is for any f ∈ Lp(Ω) and any

λ > 0 there is a unique solution u ∈ Lp(Ω) of the problem

u + λApu 3 f. (19)

Moreover, if u1, u2 ∈ Lp(Ω) are the solutions of (19) corresponding to the right hand sides

f1, f2 ∈ Lp(Ω), then

‖u1 − u2‖p ≤ ‖f1 − f2‖p.

Moreover the domain of Ap is dense in Lp(Ω) when p < ∞.

We denote by Jλf the solution of (19).

Recall the notion of strong solution for nonlinear semigroups generated by accretive operators.

De�nition 4.4. A function u is called a strong solution of in the sense of semigroups of du
dt +

Apu 3 0 with u(0) = f if

u ∈ C([0, T ];Lp(Ω)) ∩W 1,1
loc (]0, T [;Lp(Ω))

u(t) ∈ Dom(Ap) a.e. in t > 0 and u′ +Apu(t) 3 0 a.e. t ∈]0, T [

u(0) = f.

(20)

Using Proposition 4.3, by Crandall-Ligget's semigroup generation theorem [23] we obtain the

following result.
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Theorem 3. Let f ∈ Lp(Ω) if N
N−1 ≤ p < ∞, or f ∈ Dom(A∞) if p = ∞. Then there is a unique

strong solution in the sense of semigroups u(t) = S(t)f := limλ↓0,kλ→t Jk
λf ∈ C([0, T ], Lp(Ω)) of

the problem
du

dt
+Apu 3 0, u(0) = f. (21)

Moreover, the semigroup solution is a strong solution of (14) and conversely, any strong solution

of (14) is a strong solution in the sense of semigroups of (21).

Remark 4.5. Notice that given p ∈ [ N
N−1 ,∞] the limit limλ↓0,kλ→t Jk

λf is taken in Lp(Ω).

To prove Theorem 2, we need the following Lemma.

Lemma 4.6. Let (un)n∈N be a sequence of functions in BV (Ω)∩L∞(Ω). Assume that Jun ⊆ Ju0 ,

for all n ∈ N, and un → u strongly in L∞(Ω). Then, HN−1-almost every point of Ω \ Ju0 is a

Lebesgue point for u. In particular, if u ∈ BV (Ω), then Ju ⊆ Ju0 . Moreover, if all the functions

un are continuous at x ∈ Ω, then also u is continuous at x.

Proof. The thesis follows observing that if x ∈ Ω is a Lebesgue point for all the functions un,

then it is also a Lebesgue point for u, and the same is true for a continuity point.

Proof of Theorem 2. Step 1. Assume that f ∈ Dom(A∞) ∩ BV (Ω). Then we know that

Jk
λf → u(t) when λ → 0+ and kλ → t [23]. Then the result follows as a consequence of Theorem

1, Remark 4.5 and Lemma 4.6.

Step 2. Let f ∈ L∞(Ω). Observe that the functions u(t) = S(t)f ∈ C([0, T ];L∞(Ω)) and

u(t) ∈ BV (Ω) for any t > 0 . Moreover, recall the following estimate, consequence of the

0-homogeneity of the operator A∞ [9, 11],∥∥∥∥ d

dt
S(t)fλ

∥∥∥∥
∞
≤ 2

‖fλ‖∞
t

≤ 2
‖f‖∞

t
for any t > 0. (22)

This implies that u(t) ∈ Dom(A∞). Notice that by Step 1 and Theorem 1, we know that

Ju(t) ⊆ Ju(s) and the corresponding assertion for the continuity points.

Step 3. Let f ∈ LN (Ω). Then we know that [11, 24] u(t) ∈ L∞(Ω) for any t > 0, and the result

follows as a consequence of Step 2.

5 Extensions and remarks

In this section we discuss some extensions of the previous results.

5.1 Boundary conditions

Theorem 1 is purely local, in the sense that it also holds considering Dirichlet boundary conditions

in the minimization problem, hence, by localization in appropriate balls, any kind of boundary

conditions.

The results concerning the evolution problem also hold in the case of Dirichlet boundary

conditions or in RN [10, 13, 11].
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5.2 Anisotropic total variation

Let φ be a norm on RN . Following [2, 3], we say that φ is smooth if φ ∈ C∞(RN \ {0}), and we

say that φ is elliptic if there exist two constants 0 < c ≤ C < +∞ such that

cId ≤ ∇2

(
φ(x)2

2

)
≤ CId ∀x ∈ RN \ {0}.

Given a function f ∈ L2(Ω) and λ > 0 we consider the anisotropic version of problem (23):

min
u∈BV (Ω)

∫
Ω

φ(Du) +
1
2λ

∫
Ω

(u− f)2 dx , (23)

where the integrand has to be suitably understood on the jump set Ju [8, Section 5].

Then, Proposition 3.1 holds for the solution u of (23), provided the perimeter in (9) is replaced

with the anisotropic perimeter

Pφ(E,Ω) :=
∫

Ω

φ(DχE) =
∫

∂∗E

φ(νE(x)) dHN−1(x),

where ∂∗E = JχE
is the jump set de�ned in Section 2, and νE the corresponding normal vector.

The following result follows from standard regularity theory [2, 3].

Proposition 5.1. Let φ be smooth and elliptic. let f ∈ Lp(Ω), with p > N , and let uλ ∈ BV (Ω)

be the (unique) minimizer of (23). Then, for all t ∈ R the super-level set {uλ > t} (respectively,
{uλ ≥ t}) has boundary of class C1,α, for all α < (p − N)/p, out of a closed singular set Σ of

Hausdor� dimension less than N − 2.

Reasoning as above, if f ∈ BV (Ω) ∩ L∞(Ω), we obtain that uλ satis�es (10) also in the

anisotropic setting. Moreover, the analogous statement as in Theorem 2 also holds, provided we

substitute equation (14) with

∂u

∂t
= div (∇φ (Du)) in QT =]0, T [×Ω,

∇φ (Du) · νΩ = 0 in QT =]0, T [×∂Ω .

(24)

with an initial condition f ∈ LN (Ω). Indeed, this statement follows as a consequence of two

basic ingredients, the regularizing e�ect of (24) due to the homogeneity of the operator in its

right-hand side and the LN − L∞ regularizing e�ect of the solutions of div (∇φ (Du)) = f . The

proofs of this facts can be done as in the total variation case [24, 11]. As in Section 5.1, we notice

that Neumann boundary conditions may be replaced by Dirichlet ones and we can also work in

RN .

Remark 5.2. Notice that Theorems 1 and 2 cannot be expected to hold without further as-

sumptions on the norm φ. Indeed, letting N = 2 and φ(x1, x2) = |x1| + |x2|, from an example

discussed in [16] it follows that we can �nd a set E ⊂ R2 (which is the union of two rectangles)

such that, letting f = χE , both the solution uλ of (23) and u of (24) have jump set which strictly

contains the jump set of f .

11



5.3 Convex functionals with linear growth

Let us now show that Theorems 1 and 2 also hold if we substitute (23) with a more general

convex functional of the type ∫
Ω

F (Du) +
1
2λ

∫
Ω

(u− f)2 dx , (25)

where F (ξ) = φ(ξ,−1), and φ : RN+1 → R is a smooth and elliptic norm on RN+1. An important

example is the Lagrangian F (ξ) =
√

1 + |ξ|2 of the minimal surface problem. Given a function

u ∈ Lp(Ω), with p ∈ [1,+∞], we de�ne ũ ∈ Lp(Ω×]0, 1[) as ũ(x, xN+1) = u(x) − xN+1. If

u ∈ BV (Ω) then ũ ∈ BV (Ω×]0, 1[), and using the Coarea formula [7] it is easy to show that∫
Ω×]0,1[

φ(Dũ) =
∫

Ω

F (Du).

As a consequence, letting uλ be the minimizer of (25), we have that ũλ is the unique minimizer

of ∫
Ω×]0,1[

φ(Dv) +
1
2λ

∫
Ω×]0,1[

(v − f̃)2 dxdxN+1 ,

among v ∈ BV (Ω×]0, 1[), with boundary conditions v(x, 0) = u(x) and v(x, 1) = u(x) − 1, for

x ∈ Ω.

From the discussion above, if f ∈ L∞(Ω) ∩BV (Ω) we get

Jeuλ
= Juλ

×]0, 1[⊆ J ef = Jf×]0, 1[ ,

which yields in particular Juλ
⊆ Jf .

Let us state the corresponding result for the evolution problem.

Theorem 4. Let f ∈ L∞(Ω). Let u(t) be the solution of

∂u

∂t
= div (∇F (Du)) in QT =]0, T [×Ω,

∇F (Du) · νΩ = 0 in QT =]0, T [×∂Ω,

(26)

with initial condition u(0, x) = f(x). Then u(t) ∈ L∞(Ω) ∩BV (Ω) for any t > 0, and

Ju(t) ⊆ Ju(s) ∀t > s > 0.

Moreover, if u(s) is continuous at x ∈ Ω, then also is u(t) for any t > s > 0. If f ∈ Dom(A∞)∩
BV (Ω), then the above assertions are true up to s = 0.

We have a corresponding statement for Dirichlet boundary conditions or for the Cauchy

problem.

This result can be proved if we have a regularizing e�ect for the evolution problem, i.e., if

as in the proof of Theorem 2 we are able to prove that u(t) ∈ Dom (−div (∇F (Du))) (where

the closure is taken in L∞(Ω)). This follows again from the estimate ‖ut‖∞ ≤ 2‖f‖∞t which has

been proved in [13] for the minimal surface operator (corresponding to F (ξ) =
√

1 + |ξ|2) and
can be extended in a similar way to a general norm φ in RN+1.

Notice that we have restricted our statement to the case where f ∈ L∞(Ω), since we have no

general LN to L∞ estimates for the equation div (∇F (Du)) = f , without further assumptions

on f or on the domain Ω.
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5.4 Further remarks on the case F (ξ) =
√

1 + |ξ|2

To �x ideas, we shall work in RN . Let us consider the functional∫
RN

√
1 + |Du|2 +

1
2λ

∫
RN

(u− f)2 dx (27)

which is used sometimes instead of functional (8) in problems related to image denoising and

restoration. Our aim is to show that if f is discontinuous in some boundary, then, for small

values of λ, the discontinuities are still preserved in the solution uλ of (27). Moreover the graph

of uλ has a vertical contact angle at the discontinuity.

Let us recall the following Lemma whose proof can be found in [6].

Lemma 5.3. Let R, c > 0. Then for any λ−1 > max
(

4N2

c , 2N
cR

)
there is a value of R̃ ∈ (0, R)

such that there exists a radial solution uB̃ of
u− λdiv

( ∇u√
1 + |∇u|2

)
= c in B̃ = B(0, R̃)

u = 0 on ∂B̃

(28)

such that

0 > u′
B̃

(r) > −∞, U < uB̃(r) < c for 0 < r < R̃, and

u′
B̃

(r) → −∞, uB̃(r) → U as r → R̃−.

for some U > 0.

Lemma 5.4. For any c > 0 there is λ0 > 0 such that for any 0 < λ ≤ λ0 there is Rλ > 0 such

that the solution uλ of (28) in B(0, Rλ) satis�es inf∂B(0,Rλ) uλ > 0. Moreover uλ → c uniformly

as λ → 0.

Proof. Let us choose λ = 1, R = 1, and c′ > 4N2 in Lemma 5.3. Let ũ be the solution of (28)

with right hand side c′ in a ball B̃ of radius 0 < R̃ < 1 given by that Lemma. Let g(x) = c′ − ũ

in B̃. Then g = div
(

∇g√
1+|∇g|2

)
. Let c > 0 and λ0 > 0 be such that c′

√
λ0 < c. Then for

any λ ∈ (0, λ0), uλ(x) = c −
√

λg( x√
λ
) is the solution of (28) in B(0, Rλ) with Rλ =

√
λR̃ and

satis�es inf∂B(0,Rλ) uλ > 0. The last assertion follows from the continuity of ũ.

Proposition 5.5. Let Ω be an open bounded domain whose boundary is of class C1,1 and let

f ∈ L∞(RN ), f ≥ 0, with f ≥ c > 0 in Ω and f = 0 in RN \ Ω. Let uλ be the solution of{
u− λdiv

( ∇u√
1 + |∇u|2

)
= f in RN . (29)

Then for λ small enough uλ is discontinuous on ∂Ω, having a vertical contact angle.

We recall that if u ∈ BV (RN ) is a solution of (29) for some f ∈ L1(RN ), then the vector �eld

Tu = ∇u√
1+|∇u|2

is such that u− λdiv Tu = f in D′(RN ) and (Tu ·Du) = |∇u|2√
1+|∇u|2

+ |Dsu|.

Proof. Let us take R > 0 such that for any point p ∈ ∂Ω there are open balls B,B′of radius

R such that B ⊆ Ω, B′ ⊆ RN \ Ω and p ∈ ∂B, p ∈ ∂B′. Observe that, by the maximum
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principle (see [11]) we know that uλ ∈ L2(RN ) and 0 ≤ uλ ≤ ‖f‖∞. First, we observe that uλ

is a supersolution of (28) on any ball B̃ ⊆ B. By the comparison principle for (28) we obtain

that uλ ≥ uB̃ ≥ U for some U > 0. Since we can do this for any ball B̃ inside Ω we deduce that

uλ ≥ U . Notice that, by Lemma 5.4, we may take λ and the balls B̃ small enough so that uλ is

greater than c
2 in ∂Ω. On the other hand, uλ is a subsolution of

u− λdiv
( Du√

1 + |Du|2
)

= 0 in B̃′

u = ‖f‖∞ on ∂B̃′

(30)

for any ball B̃′ of radius smaller than R contained in RN \ Ω. Again, by Lemma 5.4, we know

that for λ > 0 small enough, the solution uλ is strictly below c
2 in ∂Ω. We deduce that uλ is

discontinuous on ∂Ω.

Let Tuλ = ∇uλ√
1+|∇uλ|2

. Let us prove that uλ has vertical contact angle from both sides of the

discontinuity, i.e., [Tuλ · νΩ] = −1 and [Tuλ · νRN\Ω] = 1. For that, let ϕ ∈ C∞
0 (RN ). Then∫

RN

div Tuλ ϕ dx = −
∫

RN

Tuλ · ∇ϕ = −
∫

Ω

Tuλ · ∇ϕ−
∫

RN\Ω
Tuλ · ∇ϕ

=
∫

Ω

divTuλ ϕ +
∫

RN\Ω
divTuλ ϕ

−
∫

∂Ω

[Tuλ · νΩ]ϕ−
∫

∂Ω

[Tuλ · νRN\Ω]ϕ.

That is,

div Tuλ = div Tuλ χΩ + div Tuλ χRN\Ω − [Tuλ · νΩ]HN−1|∂Ω − [Tuλ · νRN\Ω]HN−1|∂Ω. (31)

Hence

〈div Tuλ, uλ 〉 =
∫

Ω

divTuλ uλ +
∫

RN\Ω
divTuλ uλ −

∫
∂Ω

[Tuλ · νΩ]u∗λ −
∫

∂Ω

[Tuλ · νRN\Ω]u∗λ,

where u∗λ = u+
λ +u−λ

2 . Now,∫
RN

div Tuλ uλ dx = −
∫

RN

Tuλ ·Duλ = −
∫

Ω

Tuλ ·Duλ −
∫

RN\Ω
Tuλ ·Duλ

−
∫

RN

(Tuλ ·Duλ)s dHN−1|∂Ω

=
∫

Ω

divTuλ uλ +
∫

RN\Ω
divTuλ uλ −

∫
RN

(Tuλ ·Duλ)s dHN−1|∂Ω

−
∫

∂Ω

[Tuλ · νΩ]uλ −
∫

∂Ω

[Tuλ · νRN\Ω]uλ.

Comparing the above two expressions and using (Tuλ · Duλ)sHN−1|∂Ω = |(Duλ)s|HN−1|∂Ω =

|[uλ]|HN−1|∂Ω (where [uλ] denotes the jump of uλ on ∂Ω), we deduce that

|[uλ]| =
(
[Tuλ · νΩ]− [Tuλ · νRN\Ω]

) [uλ]
2

.
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Since [uλ] 6= 0, this implies that

[Tuλ · νRN\Ω]− [Tuλ · νΩ] = 2,

which in turn implies

[Tuλ · νΩ] = −1 and [Tuλ · νRN\Ω] = 1,

since both |[Tuλ · νΩ]|, |[Tuλ · νRN\Ω]| ≤ 1.
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