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AbstratWe investigate variants of Goddard's problems for nonvertial traje-tories. The ontrol is the thrust fore, and the objetive is to maximizea ertain �nal ost, typially, the �nal mass. In this artile, performingan analysis based on the Pontryagin Maximum Priniple, we prove thatoptimal trajetories may involve singular ars (along whih the norm ofthe thrust is neither zero nor maximal), that are omputed and har-aterized. Numerial simulations are arried out, both with diret andindiret methods, demonstrating the relevane of taking into aount sin-gular ars in the ontrol strategy. The indiret method we use is basedon our previous theoretial analysis and onsists in ombining a shootingmethod with an homotopi method. The homotopi approah leads to aquadrati regularization of the problem and is a way to takle with theproblem of nonsmoothness of the optimal ontrol.Keywords: Optimal ontrol, Goddard's problem, singular trajetories, shoot-ing method, homotopy, diret methods.1 IntrodutionThe lassial Goddard's problem (see [10, 20, 22℄) onsists in maximizing the�nal altitude of a roket with vertial trajetory, the ontrols being the normand diretion of the thrust fore. Due to nonlinear e�ets of aerodynami fores,the optimal strategy may involve subars along whih the thrust is neither zeronor equal to its maximal value, namely, sine the ontrol variable enters linearlyin the dynamis and the ost funtion is over the �nal ost, singular ars. A
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natural extension of this model for nonvertial trajetories is the ontrol system
ṙ = v,

v̇ = −
D(r, v)

m

v

‖v‖
− g(r) + C

u

m
,

ṁ = −b‖u‖,

(1)where the state variables are r(t) ∈ IR3 (position of the spaeraft), v(t) ∈ IR3(veloity vetor) and m(t) (mass of the engine). Also, D(r, v) > 0 is the dragomponent, g(r) ∈ IR3 is the usual gravity fore, and b is a positive real numberdepending on the engine. The thrust fore is Cu(t), where C > 0 is the maximalthrust, and the ontrol is the normalized thrust u(t) ∈ IR3, submitted to theonstraint
‖u(t)‖ ≤ 1. (2)The real number b > 0 is suh that the speed of ejetion is C/b. Here, andthroughout the paper, ‖ ‖ denotes the usual Eulidean norm in IR3.We onsider the optimal ontrol problem of steering the system from a giveninitial point

r(0) = r0, v(0) = v0, m(0) = m0, (3)to a ertain target M1 ⊂ IR7, in time tf that may be �xed or not, while maxi-mizing a �nal ost. For the moment, there is no need to be more spei� with�nal onditions and the ost. In real appliations, the problem is typially toreah a given orbit, either in minimal time with a onstraint on the �nal mass,or by maximizing the �nal mass, or a ompromise between the �nal mass andtime to reah the orbit. In our numerial experiments we will study the problemof maximizing the �nal mass (i.e., minimizing the fuel onsumption) subjet toa �xed �nal position r(tf ) = rf , the �nal veloity vetor and �nal time beingfree. 2



Depending on the features of the problem (initial and �nal onditions, mass/thrustratio, et), it is known that ontrol strategies that onsist in hoosing the on-trol so that ‖u(t)‖ is pieewise onstant all along the �ight, either equal to 0or to the maximal authorized value 1, may not be optimal, as a onsequeneof the high values of the drag for high speed. Optimal trajetories may indeedinvolve singular ars, and it is preisely the aim to this artile to perform suhan analysis and prove that the use of singular ars is relevant in the problem oflaunhers.The artile is strutured as follows. In Setion 2, we reall the PontryaginMaximum Priniple, and the onept of singular trajetories. A preise analysisof the optimal ontrol problem is performed in Setion 3, where extremals arederived, and singular trajetories are omputed. Theorem 1 makes preise thestruture of the optimal trajetories. Setion 4 is devoted to numerial simu-lations. The problem is �rst implemented with indiret methods, based on ourtheoretial analysis with the maximum priniple, and, numerially, our methoduses a shooting method ombined with an homotopi approah. The homotopimethod, leading to a quadrati regularization, permits to takle with the prob-lem of nonsmoothness of the optimal ontrol. Experiments are also made usingdiret methods, i.e., by disretizing ontrol variables and solving the resultingnonlinear optimization problem. Less preise than the indiret one, this methodpermits however to validate our approah by heking that results are onsistentwith the previously omputed solution.Our results show, as expeted, that taking into aount singular ars in theontrol strategy permits to improve slightly the optimization riterion. Thenumerial simulations presented in this paper, using a simpli�ed and more aa-demi model and set of parameters, onstitute the �rst step in the study of arealisti launher problem. 3



2 PreliminariesIn this setion we reall a general version of the Pontryagin Maximum Priniple(see [16℄, and for instane [7℄ for its pratial appliation), and a de�nition andharaterizations of singular ars.Consider the autonomous ontrol system in IRn

ẋ(t) = f(x(t), u(t)), (4)where f : IR × IRn × IRm −→ IRn is of lass C1, and where the ontrols aremeasurable and bounded funtions de�ned on a subinterval [0, te(u)[ of IR+with values in Ω ⊂ IRm. Let M0 and M1 be subsets of IRn. Denote by U theset of admissible ontrols u, whose assoiated trajetories are well de�ned andjoin an initial point in M0 to a �nal point in M1, in time t(u) < te(u).De�ne the ost of a ontrol u on [0, t] by
C(t, u) =

∫ t

0

f0(x(s), u(s))ds + g0(t, x(t)),where f0 : IRn × IRm −→ IR and g0 : IRn → IR are of lass C1, and x(·) is thetrajetory solution of (1) assoiated to the ontrol u.Consider the optimal ontrol problem of �nding a trajetory joining M0 to
M1 and minimizing the ost. The �nal time may be free or not.2.1 Pontryagin Maximum PrinipleAording to the Pontryagin Maximum Priniple (see [16℄), if the ontrol u ∈

U assoiated to the trajetory x(·) is optimal on [0, T ], then there exists anabsolutely ontinuous mapping p(·) : [0, T ] −→ IRn alled adjoint vetor, and areal number p0 ≤ 0, suh that the ouple (p(·), p0) is nontrivial, and suh that,4



for almost every t ∈ [0, T ],
ẋ(t) =

∂H

∂p
(x(t), p(t), p0, u(t)),

ṗ(t) = −
∂H

∂x
(x(t), p(t), p0, u(t)),

(5)where H(x, p, p0, u) = 〈p, f(x, u)〉+p0f0(x, u) is the Hamiltonian of the optimalontrol problem. Moreover, the funtion
t 7−→ max

v∈Ω
H(x(t), p(t), p0, v)is onstant on [0, T ], and the maximization ondition

H(x(t), p(t), p0, u(t)) = max
v∈Ω

H(x(t), p(t), p0, v) (6)holds almost everywhere on [0, T ].Moreover, if the �nal time T to join the target set M1 is free, then
max
v∈Ω

H(x(t), p(t), p0, v) = −p0 ∂g
0

∂t
(T, x(T )). (7)for every t ∈ [0, T ].Furthermore, if M0 and M1 (or just one of them) are submanifolds of IRnhaving tangent spaes in x(0) ∈ M0 and x(T ) ∈ M1, then the adjoint vetoran be hosen so as to satisfy the transversality onditions at both extremities(or just one of them)

p(0) ⊥ Tx(0)M0 (8)and
p(T ) − p0 ∂g

0

∂x
(T, x(T )) ⊥ Tx(T )M1. (9)An extremal of the optimal ontrol problem is a fourth-tuple (x(·), p(·), p0, u(·))5



solution of (5) and (6). If p0 = 0, then the extremal is said to be abnormal , andif p0 6= 0 then the extremal is said to be normal .2.2 Singular arsGiven x0 ∈ IRn and two real numbers t0, t1, with t0 < t1, denote by Ux0,t0,t1 theset of ontrols u ∈ L∞([t0, t1],Ω1), with Ω1 an open subset of Ω, suh that thetrajetory t 7→ x(t, x0, t0, u), solution of (1), assoiated with the ontrol u on
[t0, t1], and suh that x(t0) = x0, is well de�ned on [t0, t1]. De�ne the end-pointmapping Ex0,t0,t1 by Ex0,t0,t1(u) := x(t1, x0, t0, u), for every u ∈ Ux0,t0,t1 . It islassial that Ex0,t0,t1 : Ux0,t0,t1 → IRn is a smooth map.A ontrol u ∈ Ux0,t0,t1 is said to be singular if u is a ritial point of the end-point mapping Ex0,t0,t1 , i.e., its di�erential dEx0,t0,t1(u) at u is not surjetive.In this ase, the trajetory x(·, x0, t0, u) is said to be singular on [t0, t1].Reall the two following standard haraterizations of singular ontrols (see[5, 16℄). A ontrol u ∈ Ux0,t0,t1 is singular if and only if the linearized systemalong the trajetory x(·, x0, t0, u) on [t0, t1] is not ontrollable. This is alsoequivalent to the existene of an absolutely ontinuous mapping p1 : [t0, t1] −→IRn \ {0} suh that, for almost every t ∈ [t0, t1],

ẋ(t) =
∂H1

∂p
(x(t), p1(t), u(t)), ṗ(t) = −

∂H1

∂x
(t, x(t), p1(t), u(t)),

∂H1

∂u
(x(t), p1(t), u(t)) = 0,where H1(x, p1, u) = 〈p1, f(x, u)〉 is the Hamiltonian of the system.Note that singular trajetories oinide with projetions of abnormal ex-tremals for whih the maximization ondition (6) redues to ∂H

∂u
= 0.For a given trajetory x(·) of the system (1) on [0, T ], assoiated to a ontrol

u ∈ Ux(0),0,T , we say that x(·) involves a singular ar, de�ned on the subinterval6



[t0, t1] ⊂ [0, T ], whenever the ontrol u|[t0,t1] for the ontrol system restrited to
[t0, t1] is singular.In the ase when the dynamis f and the instantaneous ost f0 are linear inthe ontrol u, a singular ar orresponds to an ar along whih one is unable toompute the ontrol diretly from the maximization ondition of the Pontryaginmaximum priniple (at the ontrary of the bang-bang situation). Indeed, inthis ase, the above ondition ∂H1

∂u
= 0 along the ar means that some funtion(alled swithing funtion) vanishes identially along the ar. Then, it is wellknown that, in order to derive an expression of the ontrol along suh an ar,one has to di�erentiate this relation until the ontrol appears expliitly. It isalso well known that suh singular ars, whenever they our, may be optimal.Their optimal status may be proved using generalized Legendre-Clebsh typeonditions or the theory of onjugate points (see [17, 11℄, or see [1, 4℄ for aomplete seond-order optimality theory of singular ars).3 Analysis of the optimal ontrol problemWith respet to the notations used in the previous setion, we set

x =













r

v

m













∈ IR3 × IR3 × IR, f(x, u) =













v

−D(r,v)
m

v
‖v‖ − g(r) + C u

m

−b‖u‖













,and f0 = 0. Here, the set Ω of onstraints on the ontrol is the losed unit ballof IR3, entered at 0.Consider the optimal ontrol problem of minimizing some �nal ost g0(tf , x(tf )),for the ontrol system (1), with initial onditions (3) and �nal onditions x(tf ) ∈

M1 in time tf whih may be free or not.We make the following assumption.7



Assumption (H). The funtion g0 is suh that:
• either the �nal mass m(tf ) is free, and ∂g0

∂m
6= 0,

• or the �nal time tf is free, and ∂g0

∂t
6= 0.In the �rst situation, the target setM1 ⊂ IR7 an be written asM1 = N1×IR,where N1 is a subset of IR6. A typial example is the problem of maximizingthe �nal mass, for whih g0(t, x) = −m. If the �nal ondition is r(tf ) = r1 and

‖v(tf )‖ = a, then M1 = {r1} × S(0, a) × IR, where S(0, a) is the sphere of IR3,entered at 0, with radius a.In the seond situation, a typial example is the minimal time problem toreah some target. In this ase, g0(t, x) = t.3.1 Computation of extremalsAording to Setion 2.1, the Hamiltonian of the optimal ontrol problem underonsideration is
H = 〈pr, v〉 +

〈

pv,−
D(r, v)

m

v

‖v‖
− g(r) + C

u

m

〉

− pmb‖u‖, (10)where 〈 , 〉 denotes the usual salar produt in IR3. Here, the adjoint vetor isdenoted by
p(t) =













pr(t)

pv(t)

pm(t)













∈ IR3 × IR3 × IR.
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In what follows, we assume the mappings D and g to be of lass C1. ApplyingPontryagin's Maximum Priniple leads to the adjoint equations
ṗr =

1

m

〈pv, v〉

‖v‖

∂D

∂r
+

〈

pv,
∂g

∂r

〉

,

ṗv = −pr +
1

m

〈pv, v〉

‖v‖

∂D

∂v
+
D

m

pv

‖v‖
−
D

m
〈pv, v〉

v

‖v‖3
,

ṗm =
1

m

〈

pv,−
D(r, v)

m

v

‖v‖
+ C

u

m

〉

.

(11)
Moreover, if u is an optimal ontrol on [0, tf ], then, for almost every t ∈ [0, tf ],
u(t) maximizes the funtion

Φt(w) :=
C

m(t)
〈pv(t), w〉 − bpm(t)‖w‖,among all possible w ∈ IR3 suh that ‖w‖ ≤ 1.The next tehnial lemma is the �rst step in the analysis of extremals.Lemma 3.1. If there exists t0 ∈ [0, tf ] suh that pr(t0) = pv(t0) = 0, then

pr(t) = pv(t) = 0, and pm(t) = pm(tf ), for every t ∈ [0, tf ]. Moreover, pm(tf ) 6=

0, and if pm(tf ) > 0 then u(t) = 0 on [0, tf ], otherwise ‖u(t)‖ = 1 on [0, tf ].Proof. The �rst statement follows immediately from a uniqueness argumentapplied to the system (11). It follows from the expression of the Hamiltonianfuntion that, if pm(t) > 0, then u(t) = 0, and if pm(t) < 0, then ‖u(t)‖ = 1.In the �rst ase of Assumption (H), the transversality ondition (9) yields inpartiular
pm(tf ) = p0 ∂g

0

∂m
(tf , x(tf )).Therefore, pm(t) annot be equal to zero (otherwise the adjoint vetor (p, p0)would be zero, ontraditing the maximum priniple). In the seond ase of

9



Assumption (H), it follows from (7) and (10) that
pm(t)b‖u(t)‖ = p0 ∂g

0

∂t
(tf , x(tf )).Therefore, similarly, pm(t) annot be equal to zero. The onlusion follows.An extremal satisfying the onditions of Lemma 3.1 (ie pr(t) = pv(t) = 0for every t ∈ [0, tf ]) is alled degenerate. For suh extremals, the ontrol iseither identially equal to zero, or or maximal norm, along the whole trajetory.Suh kind of trajetories an be exluded for pratial appliations and are thusdisarded in the sequel.Lemma 3.2. Consider a nondegenerate extremal. Then:1. The set T := {t ∈ [0, tf ] | pv(t) = 0} has a �nite ardinal.2. There exists a measurable funtion α on [0, tf ], with values in [0, 1], suhthat

u(t) = α(t)
pv(t)

‖pv(t)‖
, a.e. on [0, tf ]. (12)3. Set Ψ(t) := C

m(t)‖pv(t)‖ − bpm(t). Then,
α(t) =











0 if Ψ(t) < 0,

1 if Ψ(t) > 0.Proof. If t ∈ T , then by the ostate equation (11), ṗv(t) = −pr(t) is not zero(sine the extremal is not degenerate). Therefore T has only isolated points,and hene, has a �nite ardinal.Writing w = αd, with α = ‖w‖ and d of unit norm, we get Φt(w) =

α
(

C
m(t)〈pv(t), d〉 − bpm(t)

)

. Sine pv(t) 6= 0 a.e., points 2 and 3 of the lemmafollow immediately from the maximization ondition.10



The ontinuous funtion Ψ de�ned in Lemma 3.2 is alled swithing funtion.In the onditions of the lemma, the extremal ontrol is either equal to 0, orsaturating the onstraint and of diretion pv(t). The remaining ase, not treatedin this lemma and analyzed next, is the ase where the funtion Ψ vanishes ona (losed) subset I ⊂ [0, tf ] of positive measure.Remark 3.1. Let [t0, t1] be a subinterval of I on whih α(t) > 0. Then, theontrol u|[t0,t1] is singular.Indeed, it su�es to notie that, using (12),
∂Φt

∂w
(u(t)) =

(

C

m(t)
‖pv(t)‖ − bpm(t)

)

pv(t)

‖pv(t)‖
= Ψ(t)

pv(t)

‖pv(t)‖
,and to use the Hamiltonian haraterization of singular ontrols realled inSetion 2.2.Singular ars may thus our in our problem whenever Ψ vanishes, and wenext provide an analysis of that ase, and show how to derive an expression ofsuh singular ontrols.3.2 Analysis of singular arsThroughout this setion, we assume that

Ψ(t) =
C

m(t)
‖pv(t)‖ − bpm(t) = 0 (13)for every t ∈ I, where I is a (losed) measurable subset of [0, tf ] of positiveLebesgue measure.Usually, singular ontrols are omputed by derivating this relation with re-spet to t, until u appears expliitly. The following result is required (see [18,Lemma p. 177℄). 11



Lemma 3.3. Let a, b be real numbers suh that a < b, and f : [a, b] → IR bean absolutely ontinuous funtion. Let J be a subset of {t ∈ [a, b] | f(t) = 0} ospositive Lebesgue measure. Then f ′(t) = 0 a.e. on J .Using this lemma, and extremal equations (11), one gets, for a.e. t ∈ I,
Ψ̇(t) =

bC

m(t)2
(‖pv(t)‖‖u(t)‖ − 〈pv(t), u(t)〉)+Ξ(r(t), v(t),m(t), p(t)) = 0, (14)where the funtion

Ξ(r, v,m, p) =
Db

m2‖v‖
〈pv, v〉 +

C

m‖pv‖

(

〈pv, pr〉 +
〈pv, v〉

m‖v‖

〈

∂D

∂v
, pv

〉

+
∂D

∂m

‖pv‖
2

m‖v‖
−
D

m

〈pv, v〉
2

‖v‖3

)does not depend on u. From Lemma 3.2, the relation (12) holds almost every-where, and hene the �rst term of (14) vanishes. Therefore,
Ψ̇(t) = Ξ(r(t), v(t),m(t), p(t)) = 0, (15)for almost every t ∈ I (atually over every subinterval of positive measure, sinethe above expression is ontinuous).Relations (13) and (14) are two onstraint equations, neessary for the exis-tene of a singular ar. Derivating one more, using Lemma 3.3, leads to

Ψ̈(t) = 0, a.e. on I. (16)The ontrol u is expeted to appear expliitly in this latter relation. However,sine alulations are too lengthy to be reported here, we next explain how (16)permits to derive an expression for α(t), and hene, from (12), an expression for
u(t). When derivating (15), the terms where the ontrol u appears are the termsontaining v̇, ṗm, and ṁ. Reall that ṁ = −b‖u‖, that ṗm = 1

m
〈pv,−

D(r,v)
m

v
‖v‖+12



C u
m
〉, and that v̇ is a�ne in u. Hene, sine α(t) ≥ 0, it is not di�ult to seethat this derivation leads to an equation of the form

A(r, v,m, pr, pv, pm)α = B(r, v,m, pr, pv, pm), (17)almost everywhere on I. This relation should be "generially" nontrivial, thatis, the oe�ient A should not be equal to zero. This fat proves to hold true onnumerial simulations. We explain below rigorously why this is true generiallyat least in the ase of a salar ontrol (reall that we deal here with a three-dimensional ontrol). For a salar ontrol, the ontrol system (1) is of the form
q̇ = f0(q) + uf1(q), (18)where f0 and f1 are smooth vetor �elds, and q is the state. In this ase, it iswell known (see e.g. [5℄) that, if u is a singular ontrol on I, then there mustexist an adjoint vetor p suh that

〈p, f1(q)〉 = 0 on I, (19)
〈p, [f0, f1(q)]〉 = 0 on I, (20)

〈p, [f0, [f0, f1(q)]〉 + u〈p, [f1, [f0, f1(q)]〉 = 0 a.e. on I. (21)The situation enountered here for 3D Goddard's problem is similar to that ase:Equations (19), (20), (21), are respetively similar to Equations (13), (15), (16);Equations (19), (20) (similarly, Equations (13), (15)) are onstraint equations,and Equation (21) (similarly, Equation (16)) permits in general to derive anexpression for the ontrol u. The voable "generi" employed above an now bemade more preise: it is proved in [6℄ that there exists an open and dense (in thesens of Whitney) subset G of the set of ouples of smooth vetor �elds suh that,13



for every ontrol system (18) with (f0, f1) ∈ G, the set where 〈p, [f1, [f0, f1(q)]〉vanishes has measure zero, and hene Equation (21) always permits to derive u.Additionaly, we an notie that the lassial one-dimensional Goddard probleman be formulated as a partiular ase of the general 3D problem desribed here.In this ase, it is well known that the seond derivative of the swithing funtionprovides the expression of the singular ontrol, so we an safely assume that 17 isnontrivial for the restrition to the 1D problem. Based on these arguments, weshould expet the oe�ient A of Equation (17) to be non zero in general. Thisis indeed the ase in our numerial simulations presented next. Of ourse, one
α(t) has been determined, one has to hek (numerially) that 0 ≤ α(t) ≤ 1, sothat the onstraint ‖u‖ ≤ 1 is indeed satis�ed. Here also, numerial simulationsshow the existene and admissibility of suh singular ars (see Setion 4).3.3 ConlusionWe sum up the previous results in the following theorem.Theorem 1. Consider the optimal ontrol problem of maximizing a �nal ost
g0(tf , x(tf )), for the ontrol system (1), with initial onditions (3) and �nalonditions x(tf ) ∈ M1. We assume that Assumption (H) holds. Let u be anoptimal ontrol de�ned on [0, tf ], assoiated to the trajetory (r(·), v(·),m(·)).Then, there exist absolutely ontinuous mappings pr(·) : [0, tf ] → IR3, pv(·) :

[0, tf ] → IR3, pm(·) : [0, tf ] → IR, and a real number p0 ≤ 0, suh that
(px(·), pv(·), pm(·), p0) is nontrivial, and suh that Equations (11) hold a.e. on
[0, tf ]. De�ne the swithing funtion Ψ on [0, tf ] by

Ψ(t) =
C

m(t)
‖pv(t)‖ − bpm(t).Then, 14



• if Ψ(t) < 0 then u(t) = 0;
• if Ψ(t) > 0 then u(t) = pv(t)

‖pv(t)‖ ;
• if Ψ(t) = 0 on a subset I ⊂ [0, tf ] of positive Lebesgue measure, thenEquation (15) must hold on I, and

u(t) = α(t)
pv(t)

‖pv(t)‖
a.e. on I,where α(t) ∈ [0, 1] is determined by (17).Remark 3.2. The optimal ontrol is pieewise either equal to zero, or saturatingthe onstraint with the diretion of pv(t), or is singular. Notie that, in all ases,it is ollinear to pv(t), with the same diretion.Remark 3.3 (Optimality status). The maximum priniple is a neessary ondi-tion for optimality. Seond-order su�ient onditions are usually haraterizedin terms of onjugate points (see e.g. [1, 4℄. Unfortunately standard theoriesdo not apply here for two reasons: �rst, the equation in m(t) involves the term

‖u(t)‖ whih is not smooth; seond, the struture of trajetories stated in thetheorem involves both bang ars and singular ars, and up to now a theory ofonjugate points that would treat this kind of trajetory.We mention however below a trik, spei� to the form of our system, whihpermits to apply the standard theory of onjugate points on every subinterval Jof [0, tf ] on whih u is singular and 0 < ‖u(t)‖ < 1. Let J be suh a subinterval.Then, ṁ 6= 0 a.e. on J , and the system an be reparametrized by −m(t). Then,denoting q = (r, v), system (1) yields
dq

dm
=

1

‖u‖
f(m, q) +

u1

‖u‖
g1(m, q) +

u2

‖u‖
g2(m, q) +

u3

‖u‖
g3(m, q).
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Now, set
v =

1

‖u‖
, and u1

‖u‖
= cos θ1 cos θ2,

u2

‖u‖
= cos θ1 sin θ2,

u3

‖u‖
= sin θ2,and onsider as new ontrol the ontrol ũ = (v, θ1, θ2). Notie that the ontrols

θ1 and θ2 are unonstrained, and that v must satisfy the onstraint v ≥ 1. How-ever, along the interval J it is assumed that 0 < ‖u(t)‖ < 1, and thus v does notsaturate the onstraint. Hene, the standard theory of onjugate points appliesand the loal optimality status of the trajetory between its extremities on Jan be numerially heked, for instane using the ode COTCOT (Conditionsof Order Two and COnjugate times), available on the web1, developed in [4℄.This referene provides algorithms to ompute the �rst onjugate time (wherethe trajetory eases to be optimal) along a smooth extremal urve, based ontheoretial developments of geometri optimal ontrol using seond order opti-mality onditions. The omputations are related to a test of positivity of theintrinsi seond order derivative or a test of singularity of the extremal �ow.It an be heked as well that every smooth sub-ar of the trajetory is loallyoptimal between its extremities. However, the problem of proving that thewhole trajetory (i.e., a suession of bang and singular ars) is loally optimalis open. Up to now no onjugate point theory exists to handle that type ofproblem. Of ourse, one ould make vary the times of swithings but this onlypermits to ompare the trajetory with other trajetories having exatly thesame struture. A sensitivity analysis is atually required to treat trajetoriesinvolving singular subars.1http://www.n7.fr/apo/otot
16



4 Numerial experimentsIn this setion, we provide numerial simulations showing the relevane of sin-gular ars in the omplete Goddard's Problem. For given boundary onditions,the optimal trajetory is �rst omputed using indiret methods (shooting algo-rithm) ombined with an homotopi approah. Then we use a diret method(based on the disretization of the problem) to hek the obtained solution. Allnumerial experiments were led on a standard omputer (Pentium 4, 2.6 GHz).4.1 Numerial values of the parameters of the modelWe implement the optimal ontrol problem of maximizing m(tf ) for the system(1), with the onstraint (2). The equations of motion an be normalized withrespet to r(0), m(0), and g0. We follow [15℄ (in whih 2D-trajetories withmaximization of the �nal veloity are studied), and set the following parameters.
• The distane unit is the Earth radius RT = 6378 103 m.
• Maximal thrust modulus C = 3.5; b = 7.
• Gravity g(r) = g0

‖r‖3 r, with g0 = 1.
• Drag D(r, v) = KD‖v‖2e−500(‖r‖−1) with KD = 310.
• Initial and �nal onditions

r0 = (0.999949994 0.0001 0.01), v0 = (0 0 0), m0 = 1,

rf = (1.01 0 0), vf is free, mf is free.
tf is free.4.2 Numerial simulations with indiret methodsIn our simulations presented hereafter, we prefer to express the objetive of theoptimal ontrol problem in the following form.17



Maximizing m(tf ) is equivalent to minimizing the ost
∫ tf

0

‖u(t)‖dt,and we assume that there are no minimizing abnormal extremals, therefore theadjoint vetor an be normalized so that p0 = −1. The results of the simulationsare onsistent with this assumption.Aording to Setion 2.1, the Hamiltonian of the optimal ontrol problemunder onsideration is
H = 〈pr, v〉 +

〈

pv,−
D(r, v)

m

v

‖v‖
− g(r) + C

u

m

〉

− (1 + bpm)‖u‖,The only di�erene with the Hamiltonian in 2.1 for the Max m(tf ) objetiveis the additional �−1� in the ‖u‖ term, whih leads to the swithing funtion
ψ(t) = C

m(t)‖pv(t)‖ − (1 + bpm(t)),
• if ψ(t) < 0 then u(t) = 0;
• if ψ(t) > 0 then u(t) = pv(t)

‖pv(t)‖ ;
• if ψ(t) = 0 on I ⊂ [0, tf ], then Equation (15) must hold on I, the ontrol
u is singular, and

u(t) = α(t)
pv(t)

‖pv(t)‖
a.e. on I,where α(t) ∈ [0, 1] is determined by (17). We hek numerially that

0 ≤ α(t) ≤ 1.Furthermore, on a singular subar, derivating the swithing funtion twieyields the expression of α via a relation of the form A(x, p)α = B(x, p), see 17.18



The omputations are atually quite tedious to do by hand, and we used thesymboli alulus tool Maple. The expressions of A and B are quite ompli-ated and are not reported here.The free �nal time problem is formulated as a �xed �nal time one via theusual time transformation t = tf s, with s ∈ [0, 1] and tf an additional om-ponent of the state vetor, suh that ṫf = 0 and tf (0), tf (1) are free, with theassoiated ostate satisfying ˙ptf
= −H .Transversality onditions on the adjoint vetor yield pv(1) = (0 0 0), pm(1) =

0, and ptf
(0) = ptf

(1) = 0.4.2.1 Homotopi approahIn the indiret approah, it is neessary to get some information on the strutureof the solutions, namely, to know a priori the number and approximate loationof singular ars. To this aim, we perform a ontinuation (or homotopi) ap-proah, and regularize the original problem by adding a quadrati (‖u‖2) termto the objetive, as done for instane in [14, 19℄. The general meaning of on-tinuation is to solve a di�ult problem by starting from the known solution ofa somewhat related, but easier problem. By related we mean here that theremust exist a ertain appliation h, alled a homotopy, onneting both problems.Here, we regularize the ost funtion by onsidering an homotopi onnetionwith an energy,
∫ tf

0

(‖u(t)‖ + (1 − λ)‖u(t)‖2) dt, (22)where the parameter of the homotopy is λ ∈ [0, 1]. The resulting perturbedproblem (Pλ) has a strongly onvex Hamiltonian (with respet to u), with a19



ontinuous optimal ontrol, and is muh easier to solve than (P ) = (P1). As-suming we have found a solution of (P0), we want to follow the zero path of thehomotopy h until λ = 1, in order to obtain an approximate solution of (P ) (orat least su�ient information). The ontinuation an be onduted manually,by �nding a suitable sequene (λk) from 0 to 1. However, �nding suh a se-quene an be quite di�ult in pratie, whih is why we hose here to performa full path-following ontinuation. Extensive doumentation about path follow-ing methods an be found in [2℄. We use here a pieewise-linear (or simpliial)method, whose priniple is realled brie�y below. The reason behind the hoieof this method over a more lassial preditor-orretor ontinuation (suh asdetailed for instane in [9℄) is that we expet the problem to be ill-onditioned,due to the presene of singular ars, whih is indeed the ase in the numerialexperiments.Simpliial methods. PL ontinuation methods atually follow the zero pathof the homotopy h : R
n+1 → R

n by building a pieewise linear approximationof h. The searh spae R
n+1 is subdivided into ells, most often in a partiularway alled triangulation in simplies. This is why PL ontinuation methods areoften referred to as simpliial methods. The main advantage of this approahis that it imposes extremely low requirements on the homotopy h: sine noderivatives are used, ontinuity is in partiular su�ient, and should not evenbe neessary in all ases.De�nition 4.1 (Simplies and faes). A simplex is the onvex hull of n + 1a�nely independent points (alled the verties) inR

n, while a k-fae of a simplexis the onvex hull of k verties of the simplex (k is typially omitted for n-faes,whih are just alled faes, or faets).De�nition 4.2 (Triangulation). A triangulation is a ountable family T ofsimplies of R
n suh that the intersetion of two simplies of T is either a fae20



or empty, and suh that T is loally �nite (a ompat subset of Rn meets �nitelymany simplies).
Figure 1: Illustration of some well known triangulations of R × [0, 1] ([0, 1[ for
J3): Freudenthal's uniform K1, and Todd's re�ning J4 and J3De�nition 4.3 (Labeling). We all labeling a map l that assoiates a value tothe verties vi of a simplex. We label here the simplies by the homotopy h:
l(vi) = h(zi, λi), where vi = (zi, λi). A�ne interpolation on the verties thusgives a PL approximation hT of h.De�nition 4.4 (Completely labeled fae). A fae [v1, .., vn] of a simplex issaid ompletely labeled if and only if it ontains a solution vǫ of the equation
hT (v) = ~ǫ = (ǫ, .., ǫn), for every ǫ > 0 su�iently small.Lemma 4.1 ([2, Chapter 12.4℄). Eah simplex possesses either zero or exatlytwo ompletely labeled faes (alled a transverse simplex in the latter ase).The onstrutive proof of this property, whih gives the other ompletelylabeled fae of a simplex that already has a known one, is often referred to asPL step, linear programming step, or lexiographi minimization. Then thereexists a unique transverse simplex sharing this seond ompletely labeled fae,that an be determined via the pivoting rules of the triangulation.21



A simpliial algorithm thus basially follows a sequene of transverse sim-plies, from a given �rst transverse simplex with a ompletely labeled fae at
λ = 0, to a �nal simplex with a ompletely labeled fae at λ = 1 (or 1 − ǫfor re�ning triangulations that never reah 1), whih ontains an approximatesolution of h(z, 1) = 0.4.2.2 Preliminary ontinuation on the atmosphere densityIn our ase, even solving the regularized problem (P0) is not obvious, due to theaerodynami fores (drag). For this reason, we introdue a preliminary ontinu-ation on the atmosphere density, starting from a problem without atmosphere.Tehnially, this is done by using an homotopy with the modi�ed parameter

Kθ
D = θKD, θ ∈ [0, 1],where KD appears in the model of the drag. The shooting method for theproblem without atmosphere at θ = 0 onverges immediately with the trivialstarting point z0 = (0.1 0.1 0.1 0.1 0.1 0.1 0.1). We would like to emphasize thefat that we have here no di�ulties to �nd a starting point for the shootingmethod. The path following is then ahieved with an extremely rough integra-tion formula (Euler with only 25 steps), sine we just seek a starting point forthe main homotopy. Thanks to the robustness of the simpliial method, we ana�ord suh a low preision to save omputational time. The border at θ = 1 isreahed after rossing about 120 000 simplies, for a CPU time of 48 seonds.Remark 4.1. The adaptive meshsize algorithm desribed in [14℄ here stronglyredues the osillations along the zero path, as shown on Figure 2, whih de-reases the number of simplies required to reah θ = 1. We an see that thepath following using a �xed uniform meshsize atually onverges to another22



point, whih orresponds to an inorret solution (the �nal ondition on r2 isnot satis�ed).
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Figure 2: Path following for the atmosphere homotopy: �xed uniform triangu-lation (grey) and adaptive meshsize (blak).The solution we obtain is su�ient to initialize the shooting method at thebeginning of the main homotopy. Figure 3 represents the solutions of the regu-larized problem (P0) for θ = 0 and θ = 1, i.e., without atmosphere and with anormal atmosphere.Notie that a diret ontinuation on the atmosphere with the original nonregularized problem (P ) fails. During the ontinuation, the proess abruptlydiverges at a ertain value for θ, ertainly due to the appearane of the singularar.4.2.3 Main ontinuation on the quadrati regularizationWe now perform the main ontinuation on the ost (22). Figure 4 representsthe solutions for λ = 0, 0.5 and 0.8. It is visible that this ontinuation proesspermits to detet the singular struture of the solution. The shape on the23
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Figure 3: Regularized problem (P0): solutions for θ = 0 (no atmosphere) and
θ = 1 (normal atmosphere).swithing funtion and of the ontrol norm graphs are partiularly interestingonerning suspiion of singular ars. Indeed, we observe that, on a ertaintime interval (roughly [0.1, 0.4]), the swithing funtion omes loser to zero as
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IVP unknown at t0 (x1, p1) ... (xs, ps) t1 ... tsValue: SSing(z)

Switchcond(t1) Matchcond(t1) ... Switchcond(ts) Matchcond(ts) TC(tf )Here, mathing onditions redue to imposing state and ostate ontinuityat the swithing times.A swithing ondition indiates a hange of struture, whih orrespondshere to an extremity of a singular ar. Along suh a singular ar, it is requiredthat ψ = ψ̇ = 0. The ontrol is omputed using the relation ψ̈ = 0. Therefore,using this expression of the ontrol, swithing onditions onsist in imposingeither ψ = 0 at the extremities of the singular ar, or ψ = ψ̇ = 0 at thebeginning of the ar. In our simulations, we hoose the latter solution whihhappens to provide better and more stable results.The previous results, obtained with an homotopi approah, provide an in-diation on the expeted struture of the optimal trajetory for the originalproblem (P ). Inspetion of Figure 4 suggests to seek a solution involving a sin-gular ar on an interval [t1, t2], with t0 < t1 < t2 < tf . As a starting point of theshooting method, we use the solution previously obtained with the homotopyon the ost at λ = 0.8.The IVP integration is performed with the radau5 ode (see [12℄), withabsolute and relative toleranes of, respetively, 10−6 and 10−6. The shootingmethod onverges in 17 seonds, with a shooting funtion of norm 5 10−4. Theondition number for the shooting funtion is quite high (about 1012), whih wasexpeted. The overall exeution time of the whole approah (preliminary atmo-sphere homotopy, regularization homotopy, �nal shooting) is about 400 seonds.
26



At the solution, the free �nal is 0.2189, and the objetive value is 0.3994,whih orresponds to a �nal mass of 0.6006. The evolution of altitude, speedand mass during the �ight are represented on Figure 5.
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Figure 5: Solution with singular ar: altitude, speed and mass.We show on Figure 6 the ontrol and swithing funtion. The singular aris learly visible on the ontrol norm graph.
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4.3 Numerial simulations with diret methodsIn order to validate the solution obtained previously with the shooting algo-rithm, we next implement a diret method. Although diret methods an bevery sophistiated (see for instane [3, 23℄), we here use a very rough formula-tion, sine our aim is just to hek if the results are onsistent with our solution.We disretize the ontrol using pieewise onstant funtions, and the state isintegrated on [0, tf ] with a basi �xed step Runge-Kutta fourth order formula.The values of the ontrol at the disretization nodes, as well as the �nal time tf ,thus beome the unknowns of a nonlinear onstrained optimization problem, theonstraints being the �nal onditions for the state. To solve the optimizationproblem, we use the ipopt solver, whih implements an interior point algorithmwith a �lter line-searh method (see [23℄ for a omplete desription).With standard options, the algorithm onverges after 193 iterations (and 210seonds) to a solution with a �nal time of 0.2189 and a riterion value of 0.3997.This solution is learly onsistent with the results of the shooting method, asshown on Figure 7, whih represents the norm of the ontrol for the shootingmethod solution, the diret method solution, and a bang-bang referene solution(see below).Comparison with a bang-bang solutionReall that the usual launh strategy onsists in implementing pieewise on-trols either saturating the onstraint or equal to zero. To prove the relevane ofthe use of singular ontrols in the ontrol strategy, we next modify slightly theformulation above in order to �nd a bang-bang solution. Our aim is to demon-strate that taking into aount singular ars in the ontrol strategy atuallyimproves (as expeted) the optimization riterion.We implement a �on-o�� struture, with only one swithing time to�. The28



ontrol is hosen so as to satisfy ‖u(t)‖ = 1 for t0 < t < to�, and u(t) = 0 for
to� < t < tf . Here, the unknowns of the optimization problem are tf , to� andthe diretion of the ontrol at the disretization nodes before to�. We obtain asolution with tf = 0.2105, to� = 0.0580, and the value of the riterion is 0.4061,whih represents a loss of about 1.6% ompared to the solution with a singularar. On this aademi example, the gain of the optimal strategy, involving asingular ar, over a pure bang-bang strategy, is quite small. This simpli�edproblem is a �rst step in the study of a realisti launher problem, and permitsto illustrate the method.
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