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Abstra
tWe investigate variants of Goddard's problems for nonverti
al traje
-tories. The 
ontrol is the thrust for
e, and the obje
tive is to maximizea 
ertain �nal 
ost, typi
ally, the �nal mass. In this arti
le, performingan analysis based on the Pontryagin Maximum Prin
iple, we prove thatoptimal traje
tories may involve singular ar
s (along whi
h the norm ofthe thrust is neither zero nor maximal), that are 
omputed and 
har-a
terized. Numeri
al simulations are 
arried out, both with dire
t andindire
t methods, demonstrating the relevan
e of taking into a

ount sin-gular ar
s in the 
ontrol strategy. The indire
t method we use is basedon our previous theoreti
al analysis and 
onsists in 
ombining a shootingmethod with an homotopi
 method. The homotopi
 approa
h leads to aquadrati
 regularization of the problem and is a way to ta
kle with theproblem of nonsmoothness of the optimal 
ontrol.Keywords: Optimal 
ontrol, Goddard's problem, singular traje
tories, shoot-ing method, homotopy, dire
t methods.1 Introdu
tionThe 
lassi
al Goddard's problem (see [10, 20, 22℄) 
onsists in maximizing the�nal altitude of a ro
ket with verti
al traje
tory, the 
ontrols being the normand dire
tion of the thrust for
e. Due to nonlinear e�e
ts of aerodynami
 for
es,the optimal strategy may involve subar
s along whi
h the thrust is neither zeronor equal to its maximal value, namely, sin
e the 
ontrol variable enters linearlyin the dynami
s and the 
ost fun
tion is over the �nal 
ost, singular ar
s. A
1



natural extension of this model for nonverti
al traje
tories is the 
ontrol system
ṙ = v,

v̇ = −
D(r, v)

m

v

‖v‖
− g(r) + C

u

m
,

ṁ = −b‖u‖,

(1)where the state variables are r(t) ∈ IR3 (position of the spa
e
raft), v(t) ∈ IR3(velo
ity ve
tor) and m(t) (mass of the engine). Also, D(r, v) > 0 is the drag
omponent, g(r) ∈ IR3 is the usual gravity for
e, and b is a positive real numberdepending on the engine. The thrust for
e is Cu(t), where C > 0 is the maximalthrust, and the 
ontrol is the normalized thrust u(t) ∈ IR3, submitted to the
onstraint
‖u(t)‖ ≤ 1. (2)The real number b > 0 is su
h that the speed of eje
tion is C/b. Here, andthroughout the paper, ‖ ‖ denotes the usual Eu
lidean norm in IR3.We 
onsider the optimal 
ontrol problem of steering the system from a giveninitial point

r(0) = r0, v(0) = v0, m(0) = m0, (3)to a 
ertain target M1 ⊂ IR7, in time tf that may be �xed or not, while maxi-mizing a �nal 
ost. For the moment, there is no need to be more spe
i�
 with�nal 
onditions and the 
ost. In real appli
ations, the problem is typi
ally torea
h a given orbit, either in minimal time with a 
onstraint on the �nal mass,or by maximizing the �nal mass, or a 
ompromise between the �nal mass andtime to rea
h the orbit. In our numeri
al experiments we will study the problemof maximizing the �nal mass (i.e., minimizing the fuel 
onsumption) subje
t toa �xed �nal position r(tf ) = rf , the �nal velo
ity ve
tor and �nal time beingfree. 2



Depending on the features of the problem (initial and �nal 
onditions, mass/thrustratio, et
), it is known that 
ontrol strategies that 
onsist in 
hoosing the 
on-trol so that ‖u(t)‖ is pie
ewise 
onstant all along the �ight, either equal to 0or to the maximal authorized value 1, may not be optimal, as a 
onsequen
eof the high values of the drag for high speed. Optimal traje
tories may indeedinvolve singular ar
s, and it is pre
isely the aim to this arti
le to perform su
han analysis and prove that the use of singular ar
s is relevant in the problem oflaun
hers.The arti
le is stru
tured as follows. In Se
tion 2, we re
all the PontryaginMaximum Prin
iple, and the 
on
ept of singular traje
tories. A pre
ise analysisof the optimal 
ontrol problem is performed in Se
tion 3, where extremals arederived, and singular traje
tories are 
omputed. Theorem 1 makes pre
ise thestru
ture of the optimal traje
tories. Se
tion 4 is devoted to numeri
al simu-lations. The problem is �rst implemented with indire
t methods, based on ourtheoreti
al analysis with the maximum prin
iple, and, numeri
ally, our methoduses a shooting method 
ombined with an homotopi
 approa
h. The homotopi
method, leading to a quadrati
 regularization, permits to ta
kle with the prob-lem of nonsmoothness of the optimal 
ontrol. Experiments are also made usingdire
t methods, i.e., by dis
retizing 
ontrol variables and solving the resultingnonlinear optimization problem. Less pre
ise than the indire
t one, this methodpermits however to validate our approa
h by 
he
king that results are 
onsistentwith the previously 
omputed solution.Our results show, as expe
ted, that taking into a

ount singular ar
s in the
ontrol strategy permits to improve slightly the optimization 
riterion. Thenumeri
al simulations presented in this paper, using a simpli�ed and more a
a-demi
 model and set of parameters, 
onstitute the �rst step in the study of arealisti
 laun
her problem. 3



2 PreliminariesIn this se
tion we re
all a general version of the Pontryagin Maximum Prin
iple(see [16℄, and for instan
e [7℄ for its pra
ti
al appli
ation), and a de�nition and
hara
terizations of singular ar
s.Consider the autonomous 
ontrol system in IRn

ẋ(t) = f(x(t), u(t)), (4)where f : IR × IRn × IRm −→ IRn is of 
lass C1, and where the 
ontrols aremeasurable and bounded fun
tions de�ned on a subinterval [0, te(u)[ of IR+with values in Ω ⊂ IRm. Let M0 and M1 be subsets of IRn. Denote by U theset of admissible 
ontrols u, whose asso
iated traje
tories are well de�ned andjoin an initial point in M0 to a �nal point in M1, in time t(u) < te(u).De�ne the 
ost of a 
ontrol u on [0, t] by
C(t, u) =

∫ t

0

f0(x(s), u(s))ds + g0(t, x(t)),where f0 : IRn × IRm −→ IR and g0 : IRn → IR are of 
lass C1, and x(·) is thetraje
tory solution of (1) asso
iated to the 
ontrol u.Consider the optimal 
ontrol problem of �nding a traje
tory joining M0 to
M1 and minimizing the 
ost. The �nal time may be free or not.2.1 Pontryagin Maximum Prin
ipleA

ording to the Pontryagin Maximum Prin
iple (see [16℄), if the 
ontrol u ∈

U asso
iated to the traje
tory x(·) is optimal on [0, T ], then there exists anabsolutely 
ontinuous mapping p(·) : [0, T ] −→ IRn 
alled adjoint ve
tor, and areal number p0 ≤ 0, su
h that the 
ouple (p(·), p0) is nontrivial, and su
h that,4



for almost every t ∈ [0, T ],
ẋ(t) =

∂H

∂p
(x(t), p(t), p0, u(t)),

ṗ(t) = −
∂H

∂x
(x(t), p(t), p0, u(t)),

(5)where H(x, p, p0, u) = 〈p, f(x, u)〉+p0f0(x, u) is the Hamiltonian of the optimal
ontrol problem. Moreover, the fun
tion
t 7−→ max

v∈Ω
H(x(t), p(t), p0, v)is 
onstant on [0, T ], and the maximization 
ondition

H(x(t), p(t), p0, u(t)) = max
v∈Ω

H(x(t), p(t), p0, v) (6)holds almost everywhere on [0, T ].Moreover, if the �nal time T to join the target set M1 is free, then
max
v∈Ω

H(x(t), p(t), p0, v) = −p0 ∂g
0

∂t
(T, x(T )). (7)for every t ∈ [0, T ].Furthermore, if M0 and M1 (or just one of them) are submanifolds of IRnhaving tangent spa
es in x(0) ∈ M0 and x(T ) ∈ M1, then the adjoint ve
tor
an be 
hosen so as to satisfy the transversality 
onditions at both extremities(or just one of them)

p(0) ⊥ Tx(0)M0 (8)and
p(T ) − p0 ∂g

0

∂x
(T, x(T )) ⊥ Tx(T )M1. (9)An extremal of the optimal 
ontrol problem is a fourth-tuple (x(·), p(·), p0, u(·))5



solution of (5) and (6). If p0 = 0, then the extremal is said to be abnormal , andif p0 6= 0 then the extremal is said to be normal .2.2 Singular ar
sGiven x0 ∈ IRn and two real numbers t0, t1, with t0 < t1, denote by Ux0,t0,t1 theset of 
ontrols u ∈ L∞([t0, t1],Ω1), with Ω1 an open subset of Ω, su
h that thetraje
tory t 7→ x(t, x0, t0, u), solution of (1), asso
iated with the 
ontrol u on
[t0, t1], and su
h that x(t0) = x0, is well de�ned on [t0, t1]. De�ne the end-pointmapping Ex0,t0,t1 by Ex0,t0,t1(u) := x(t1, x0, t0, u), for every u ∈ Ux0,t0,t1 . It is
lassi
al that Ex0,t0,t1 : Ux0,t0,t1 → IRn is a smooth map.A 
ontrol u ∈ Ux0,t0,t1 is said to be singular if u is a 
riti
al point of the end-point mapping Ex0,t0,t1 , i.e., its di�erential dEx0,t0,t1(u) at u is not surje
tive.In this 
ase, the traje
tory x(·, x0, t0, u) is said to be singular on [t0, t1].Re
all the two following standard 
hara
terizations of singular 
ontrols (see[5, 16℄). A 
ontrol u ∈ Ux0,t0,t1 is singular if and only if the linearized systemalong the traje
tory x(·, x0, t0, u) on [t0, t1] is not 
ontrollable. This is alsoequivalent to the existen
e of an absolutely 
ontinuous mapping p1 : [t0, t1] −→IRn \ {0} su
h that, for almost every t ∈ [t0, t1],

ẋ(t) =
∂H1

∂p
(x(t), p1(t), u(t)), ṗ(t) = −

∂H1

∂x
(t, x(t), p1(t), u(t)),

∂H1

∂u
(x(t), p1(t), u(t)) = 0,where H1(x, p1, u) = 〈p1, f(x, u)〉 is the Hamiltonian of the system.Note that singular traje
tories 
oin
ide with proje
tions of abnormal ex-tremals for whi
h the maximization 
ondition (6) redu
es to ∂H

∂u
= 0.For a given traje
tory x(·) of the system (1) on [0, T ], asso
iated to a 
ontrol

u ∈ Ux(0),0,T , we say that x(·) involves a singular ar
, de�ned on the subinterval6



[t0, t1] ⊂ [0, T ], whenever the 
ontrol u|[t0,t1] for the 
ontrol system restri
ted to
[t0, t1] is singular.In the 
ase when the dynami
s f and the instantaneous 
ost f0 are linear inthe 
ontrol u, a singular ar
 
orresponds to an ar
 along whi
h one is unable to
ompute the 
ontrol dire
tly from the maximization 
ondition of the Pontryaginmaximum prin
iple (at the 
ontrary of the bang-bang situation). Indeed, inthis 
ase, the above 
ondition ∂H1

∂u
= 0 along the ar
 means that some fun
tion(
alled swit
hing fun
tion) vanishes identi
ally along the ar
. Then, it is wellknown that, in order to derive an expression of the 
ontrol along su
h an ar
,one has to di�erentiate this relation until the 
ontrol appears expli
itly. It isalso well known that su
h singular ar
s, whenever they o

ur, may be optimal.Their optimal status may be proved using generalized Legendre-Clebs
h type
onditions or the theory of 
onjugate points (see [17, 11℄, or see [1, 4℄ for a
omplete se
ond-order optimality theory of singular ar
s).3 Analysis of the optimal 
ontrol problemWith respe
t to the notations used in the previous se
tion, we set

x =













r

v

m













∈ IR3 × IR3 × IR, f(x, u) =













v

−D(r,v)
m

v
‖v‖ − g(r) + C u

m

−b‖u‖













,and f0 = 0. Here, the set Ω of 
onstraints on the 
ontrol is the 
losed unit ballof IR3, 
entered at 0.Consider the optimal 
ontrol problem of minimizing some �nal 
ost g0(tf , x(tf )),for the 
ontrol system (1), with initial 
onditions (3) and �nal 
onditions x(tf ) ∈

M1 in time tf whi
h may be free or not.We make the following assumption.7



Assumption (H). The fun
tion g0 is su
h that:
• either the �nal mass m(tf ) is free, and ∂g0

∂m
6= 0,

• or the �nal time tf is free, and ∂g0

∂t
6= 0.In the �rst situation, the target setM1 ⊂ IR7 
an be written asM1 = N1×IR,where N1 is a subset of IR6. A typi
al example is the problem of maximizingthe �nal mass, for whi
h g0(t, x) = −m. If the �nal 
ondition is r(tf ) = r1 and

‖v(tf )‖ = a, then M1 = {r1} × S(0, a) × IR, where S(0, a) is the sphere of IR3,
entered at 0, with radius a.In the se
ond situation, a typi
al example is the minimal time problem torea
h some target. In this 
ase, g0(t, x) = t.3.1 Computation of extremalsA

ording to Se
tion 2.1, the Hamiltonian of the optimal 
ontrol problem under
onsideration is
H = 〈pr, v〉 +

〈

pv,−
D(r, v)

m

v

‖v‖
− g(r) + C

u

m

〉

− pmb‖u‖, (10)where 〈 , 〉 denotes the usual s
alar produ
t in IR3. Here, the adjoint ve
tor isdenoted by
p(t) =













pr(t)

pv(t)

pm(t)













∈ IR3 × IR3 × IR.

8



In what follows, we assume the mappings D and g to be of 
lass C1. ApplyingPontryagin's Maximum Prin
iple leads to the adjoint equations
ṗr =

1

m

〈pv, v〉

‖v‖

∂D

∂r
+

〈

pv,
∂g

∂r

〉

,

ṗv = −pr +
1

m

〈pv, v〉

‖v‖

∂D

∂v
+
D

m

pv

‖v‖
−
D

m
〈pv, v〉

v

‖v‖3
,

ṗm =
1

m

〈

pv,−
D(r, v)

m

v

‖v‖
+ C

u

m

〉

.

(11)
Moreover, if u is an optimal 
ontrol on [0, tf ], then, for almost every t ∈ [0, tf ],
u(t) maximizes the fun
tion

Φt(w) :=
C

m(t)
〈pv(t), w〉 − bpm(t)‖w‖,among all possible w ∈ IR3 su
h that ‖w‖ ≤ 1.The next te
hni
al lemma is the �rst step in the analysis of extremals.Lemma 3.1. If there exists t0 ∈ [0, tf ] su
h that pr(t0) = pv(t0) = 0, then

pr(t) = pv(t) = 0, and pm(t) = pm(tf ), for every t ∈ [0, tf ]. Moreover, pm(tf ) 6=

0, and if pm(tf ) > 0 then u(t) = 0 on [0, tf ], otherwise ‖u(t)‖ = 1 on [0, tf ].Proof. The �rst statement follows immediately from a uniqueness argumentapplied to the system (11). It follows from the expression of the Hamiltonianfun
tion that, if pm(t) > 0, then u(t) = 0, and if pm(t) < 0, then ‖u(t)‖ = 1.In the �rst 
ase of Assumption (H), the transversality 
ondition (9) yields inparti
ular
pm(tf ) = p0 ∂g

0

∂m
(tf , x(tf )).Therefore, pm(t) 
annot be equal to zero (otherwise the adjoint ve
tor (p, p0)would be zero, 
ontradi
ting the maximum prin
iple). In the se
ond 
ase of

9



Assumption (H), it follows from (7) and (10) that
pm(t)b‖u(t)‖ = p0 ∂g

0

∂t
(tf , x(tf )).Therefore, similarly, pm(t) 
annot be equal to zero. The 
on
lusion follows.An extremal satisfying the 
onditions of Lemma 3.1 (ie pr(t) = pv(t) = 0for every t ∈ [0, tf ]) is 
alled degenerate. For su
h extremals, the 
ontrol iseither identi
ally equal to zero, or or maximal norm, along the whole traje
tory.Su
h kind of traje
tories 
an be ex
luded for pra
ti
al appli
ations and are thusdis
arded in the sequel.Lemma 3.2. Consider a nondegenerate extremal. Then:1. The set T := {t ∈ [0, tf ] | pv(t) = 0} has a �nite 
ardinal.2. There exists a measurable fun
tion α on [0, tf ], with values in [0, 1], su
hthat

u(t) = α(t)
pv(t)

‖pv(t)‖
, a.e. on [0, tf ]. (12)3. Set Ψ(t) := C

m(t)‖pv(t)‖ − bpm(t). Then,
α(t) =











0 if Ψ(t) < 0,

1 if Ψ(t) > 0.Proof. If t ∈ T , then by the 
ostate equation (11), ṗv(t) = −pr(t) is not zero(sin
e the extremal is not degenerate). Therefore T has only isolated points,and hen
e, has a �nite 
ardinal.Writing w = αd, with α = ‖w‖ and d of unit norm, we get Φt(w) =

α
(

C
m(t)〈pv(t), d〉 − bpm(t)

)

. Sin
e pv(t) 6= 0 a.e., points 2 and 3 of the lemmafollow immediately from the maximization 
ondition.10



The 
ontinuous fun
tion Ψ de�ned in Lemma 3.2 is 
alled swit
hing fun
tion.In the 
onditions of the lemma, the extremal 
ontrol is either equal to 0, orsaturating the 
onstraint and of dire
tion pv(t). The remaining 
ase, not treatedin this lemma and analyzed next, is the 
ase where the fun
tion Ψ vanishes ona (
losed) subset I ⊂ [0, tf ] of positive measure.Remark 3.1. Let [t0, t1] be a subinterval of I on whi
h α(t) > 0. Then, the
ontrol u|[t0,t1] is singular.Indeed, it su�
es to noti
e that, using (12),
∂Φt

∂w
(u(t)) =

(

C

m(t)
‖pv(t)‖ − bpm(t)

)

pv(t)

‖pv(t)‖
= Ψ(t)

pv(t)

‖pv(t)‖
,and to use the Hamiltonian 
hara
terization of singular 
ontrols re
alled inSe
tion 2.2.Singular ar
s may thus o

ur in our problem whenever Ψ vanishes, and wenext provide an analysis of that 
ase, and show how to derive an expression ofsu
h singular 
ontrols.3.2 Analysis of singular ar
sThroughout this se
tion, we assume that

Ψ(t) =
C

m(t)
‖pv(t)‖ − bpm(t) = 0 (13)for every t ∈ I, where I is a (
losed) measurable subset of [0, tf ] of positiveLebesgue measure.Usually, singular 
ontrols are 
omputed by derivating this relation with re-spe
t to t, until u appears expli
itly. The following result is required (see [18,Lemma p. 177℄). 11



Lemma 3.3. Let a, b be real numbers su
h that a < b, and f : [a, b] → IR bean absolutely 
ontinuous fun
tion. Let J be a subset of {t ∈ [a, b] | f(t) = 0} ospositive Lebesgue measure. Then f ′(t) = 0 a.e. on J .Using this lemma, and extremal equations (11), one gets, for a.e. t ∈ I,
Ψ̇(t) =

bC

m(t)2
(‖pv(t)‖‖u(t)‖ − 〈pv(t), u(t)〉)+Ξ(r(t), v(t),m(t), p(t)) = 0, (14)where the fun
tion

Ξ(r, v,m, p) =
Db

m2‖v‖
〈pv, v〉 +

C

m‖pv‖

(

〈pv, pr〉 +
〈pv, v〉

m‖v‖

〈

∂D

∂v
, pv

〉

+
∂D

∂m

‖pv‖
2

m‖v‖
−
D

m

〈pv, v〉
2

‖v‖3

)does not depend on u. From Lemma 3.2, the relation (12) holds almost every-where, and hen
e the �rst term of (14) vanishes. Therefore,
Ψ̇(t) = Ξ(r(t), v(t),m(t), p(t)) = 0, (15)for almost every t ∈ I (a
tually over every subinterval of positive measure, sin
ethe above expression is 
ontinuous).Relations (13) and (14) are two 
onstraint equations, ne
essary for the exis-ten
e of a singular ar
. Derivating on
e more, using Lemma 3.3, leads to

Ψ̈(t) = 0, a.e. on I. (16)The 
ontrol u is expe
ted to appear expli
itly in this latter relation. However,sin
e 
al
ulations are too lengthy to be reported here, we next explain how (16)permits to derive an expression for α(t), and hen
e, from (12), an expression for
u(t). When derivating (15), the terms where the 
ontrol u appears are the terms
ontaining v̇, ṗm, and ṁ. Re
all that ṁ = −b‖u‖, that ṗm = 1

m
〈pv,−

D(r,v)
m

v
‖v‖+12



C u
m
〉, and that v̇ is a�ne in u. Hen
e, sin
e α(t) ≥ 0, it is not di�
ult to seethat this derivation leads to an equation of the form

A(r, v,m, pr, pv, pm)α = B(r, v,m, pr, pv, pm), (17)almost everywhere on I. This relation should be "generi
ally" nontrivial, thatis, the 
oe�
ient A should not be equal to zero. This fa
t proves to hold true onnumeri
al simulations. We explain below rigorously why this is true generi
allyat least in the 
ase of a s
alar 
ontrol (re
all that we deal here with a three-dimensional 
ontrol). For a s
alar 
ontrol, the 
ontrol system (1) is of the form
q̇ = f0(q) + uf1(q), (18)where f0 and f1 are smooth ve
tor �elds, and q is the state. In this 
ase, it iswell known (see e.g. [5℄) that, if u is a singular 
ontrol on I, then there mustexist an adjoint ve
tor p su
h that

〈p, f1(q)〉 = 0 on I, (19)
〈p, [f0, f1(q)]〉 = 0 on I, (20)

〈p, [f0, [f0, f1(q)]〉 + u〈p, [f1, [f0, f1(q)]〉 = 0 a.e. on I. (21)The situation en
ountered here for 3D Goddard's problem is similar to that 
ase:Equations (19), (20), (21), are respe
tively similar to Equations (13), (15), (16);Equations (19), (20) (similarly, Equations (13), (15)) are 
onstraint equations,and Equation (21) (similarly, Equation (16)) permits in general to derive anexpression for the 
ontrol u. The vo
able "generi
" employed above 
an now bemade more pre
ise: it is proved in [6℄ that there exists an open and dense (in thesens of Whitney) subset G of the set of 
ouples of smooth ve
tor �elds su
h that,13



for every 
ontrol system (18) with (f0, f1) ∈ G, the set where 〈p, [f1, [f0, f1(q)]〉vanishes has measure zero, and hen
e Equation (21) always permits to derive u.Additionaly, we 
an noti
e that the 
lassi
al one-dimensional Goddard problem
an be formulated as a parti
ular 
ase of the general 3D problem des
ribed here.In this 
ase, it is well known that the se
ond derivative of the swit
hing fun
tionprovides the expression of the singular 
ontrol, so we 
an safely assume that 17 isnontrivial for the restri
tion to the 1D problem. Based on these arguments, weshould expe
t the 
oe�
ient A of Equation (17) to be non zero in general. Thisis indeed the 
ase in our numeri
al simulations presented next. Of 
ourse, on
e
α(t) has been determined, one has to 
he
k (numeri
ally) that 0 ≤ α(t) ≤ 1, sothat the 
onstraint ‖u‖ ≤ 1 is indeed satis�ed. Here also, numeri
al simulationsshow the existen
e and admissibility of su
h singular ar
s (see Se
tion 4).3.3 Con
lusionWe sum up the previous results in the following theorem.Theorem 1. Consider the optimal 
ontrol problem of maximizing a �nal 
ost
g0(tf , x(tf )), for the 
ontrol system (1), with initial 
onditions (3) and �nal
onditions x(tf ) ∈ M1. We assume that Assumption (H) holds. Let u be anoptimal 
ontrol de�ned on [0, tf ], asso
iated to the traje
tory (r(·), v(·),m(·)).Then, there exist absolutely 
ontinuous mappings pr(·) : [0, tf ] → IR3, pv(·) :

[0, tf ] → IR3, pm(·) : [0, tf ] → IR, and a real number p0 ≤ 0, su
h that
(px(·), pv(·), pm(·), p0) is nontrivial, and su
h that Equations (11) hold a.e. on
[0, tf ]. De�ne the swit
hing fun
tion Ψ on [0, tf ] by

Ψ(t) =
C

m(t)
‖pv(t)‖ − bpm(t).Then, 14



• if Ψ(t) < 0 then u(t) = 0;
• if Ψ(t) > 0 then u(t) = pv(t)

‖pv(t)‖ ;
• if Ψ(t) = 0 on a subset I ⊂ [0, tf ] of positive Lebesgue measure, thenEquation (15) must hold on I, and

u(t) = α(t)
pv(t)

‖pv(t)‖
a.e. on I,where α(t) ∈ [0, 1] is determined by (17).Remark 3.2. The optimal 
ontrol is pie
ewise either equal to zero, or saturatingthe 
onstraint with the dire
tion of pv(t), or is singular. Noti
e that, in all 
ases,it is 
ollinear to pv(t), with the same dire
tion.Remark 3.3 (Optimality status). The maximum prin
iple is a ne
essary 
ondi-tion for optimality. Se
ond-order su�
ient 
onditions are usually 
hara
terizedin terms of 
onjugate points (see e.g. [1, 4℄. Unfortunately standard theoriesdo not apply here for two reasons: �rst, the equation in m(t) involves the term

‖u(t)‖ whi
h is not smooth; se
ond, the stru
ture of traje
tories stated in thetheorem involves both bang ar
s and singular ar
s, and up to now a theory of
onjugate points that would treat this kind of traje
tory.We mention however below a tri
k, spe
i�
 to the form of our system, whi
hpermits to apply the standard theory of 
onjugate points on every subinterval Jof [0, tf ] on whi
h u is singular and 0 < ‖u(t)‖ < 1. Let J be su
h a subinterval.Then, ṁ 6= 0 a.e. on J , and the system 
an be reparametrized by −m(t). Then,denoting q = (r, v), system (1) yields
dq

dm
=

1

‖u‖
f(m, q) +

u1

‖u‖
g1(m, q) +

u2

‖u‖
g2(m, q) +

u3

‖u‖
g3(m, q).

15



Now, set
v =

1

‖u‖
, and u1

‖u‖
= cos θ1 cos θ2,

u2

‖u‖
= cos θ1 sin θ2,

u3

‖u‖
= sin θ2,and 
onsider as new 
ontrol the 
ontrol ũ = (v, θ1, θ2). Noti
e that the 
ontrols

θ1 and θ2 are un
onstrained, and that v must satisfy the 
onstraint v ≥ 1. How-ever, along the interval J it is assumed that 0 < ‖u(t)‖ < 1, and thus v does notsaturate the 
onstraint. Hen
e, the standard theory of 
onjugate points appliesand the lo
al optimality status of the traje
tory between its extremities on J
an be numeri
ally 
he
ked, for instan
e using the 
ode COTCOT (Conditionsof Order Two and COnjugate times), available on the web1, developed in [4℄.This referen
e provides algorithms to 
ompute the �rst 
onjugate time (wherethe traje
tory 
eases to be optimal) along a smooth extremal 
urve, based ontheoreti
al developments of geometri
 optimal 
ontrol using se
ond order opti-mality 
onditions. The 
omputations are related to a test of positivity of theintrinsi
 se
ond order derivative or a test of singularity of the extremal �ow.It 
an be 
he
ked as well that every smooth sub-ar
 of the traje
tory is lo
allyoptimal between its extremities. However, the problem of proving that thewhole traje
tory (i.e., a su

ession of bang and singular ar
s) is lo
ally optimalis open. Up to now no 
onjugate point theory exists to handle that type ofproblem. Of 
ourse, one 
ould make vary the times of swit
hings but this onlypermits to 
ompare the traje
tory with other traje
tories having exa
tly thesame stru
ture. A sensitivity analysis is a
tually required to treat traje
toriesinvolving singular subar
s.1http://www.n7.fr/apo/
ot
ot
16



4 Numeri
al experimentsIn this se
tion, we provide numeri
al simulations showing the relevan
e of sin-gular ar
s in the 
omplete Goddard's Problem. For given boundary 
onditions,the optimal traje
tory is �rst 
omputed using indire
t methods (shooting algo-rithm) 
ombined with an homotopi
 approa
h. Then we use a dire
t method(based on the dis
retization of the problem) to 
he
k the obtained solution. Allnumeri
al experiments were led on a standard 
omputer (Pentium 4, 2.6 GHz).4.1 Numeri
al values of the parameters of the modelWe implement the optimal 
ontrol problem of maximizing m(tf ) for the system(1), with the 
onstraint (2). The equations of motion 
an be normalized withrespe
t to r(0), m(0), and g0. We follow [15℄ (in whi
h 2D-traje
tories withmaximization of the �nal velo
ity are studied), and set the following parameters.
• The distan
e unit is the Earth radius RT = 6378 103 m.
• Maximal thrust modulus C = 3.5; b = 7.
• Gravity g(r) = g0

‖r‖3 r, with g0 = 1.
• Drag D(r, v) = KD‖v‖2e−500(‖r‖−1) with KD = 310.
• Initial and �nal 
onditions

r0 = (0.999949994 0.0001 0.01), v0 = (0 0 0), m0 = 1,

rf = (1.01 0 0), vf is free, mf is free.
tf is free.4.2 Numeri
al simulations with indire
t methodsIn our simulations presented hereafter, we prefer to express the obje
tive of theoptimal 
ontrol problem in the following form.17



Maximizing m(tf ) is equivalent to minimizing the 
ost
∫ tf

0

‖u(t)‖dt,and we assume that there are no minimizing abnormal extremals, therefore theadjoint ve
tor 
an be normalized so that p0 = −1. The results of the simulationsare 
onsistent with this assumption.A

ording to Se
tion 2.1, the Hamiltonian of the optimal 
ontrol problemunder 
onsideration is
H = 〈pr, v〉 +

〈

pv,−
D(r, v)

m

v

‖v‖
− g(r) + C

u

m

〉

− (1 + bpm)‖u‖,The only di�eren
e with the Hamiltonian in 2.1 for the Max m(tf ) obje
tiveis the additional �−1� in the ‖u‖ term, whi
h leads to the swit
hing fun
tion
ψ(t) = C

m(t)‖pv(t)‖ − (1 + bpm(t)),
• if ψ(t) < 0 then u(t) = 0;
• if ψ(t) > 0 then u(t) = pv(t)

‖pv(t)‖ ;
• if ψ(t) = 0 on I ⊂ [0, tf ], then Equation (15) must hold on I, the 
ontrol
u is singular, and

u(t) = α(t)
pv(t)

‖pv(t)‖
a.e. on I,where α(t) ∈ [0, 1] is determined by (17). We 
he
k numeri
ally that

0 ≤ α(t) ≤ 1.Furthermore, on a singular subar
, derivating the swit
hing fun
tion twi
eyields the expression of α via a relation of the form A(x, p)α = B(x, p), see 17.18



The 
omputations are a
tually quite tedious to do by hand, and we used thesymboli
 
al
ulus tool Maple. The expressions of A and B are quite 
ompli-
ated and are not reported here.The free �nal time problem is formulated as a �xed �nal time one via theusual time transformation t = tf s, with s ∈ [0, 1] and tf an additional 
om-ponent of the state ve
tor, su
h that ṫf = 0 and tf (0), tf (1) are free, with theasso
iated 
ostate satisfying ˙ptf
= −H .Transversality 
onditions on the adjoint ve
tor yield pv(1) = (0 0 0), pm(1) =

0, and ptf
(0) = ptf

(1) = 0.4.2.1 Homotopi
 approa
hIn the indire
t approa
h, it is ne
essary to get some information on the stru
tureof the solutions, namely, to know a priori the number and approximate lo
ationof singular ar
s. To this aim, we perform a 
ontinuation (or homotopi
) ap-proa
h, and regularize the original problem by adding a quadrati
 (‖u‖2) termto the obje
tive, as done for instan
e in [14, 19℄. The general meaning of 
on-tinuation is to solve a di�
ult problem by starting from the known solution ofa somewhat related, but easier problem. By related we mean here that theremust exist a 
ertain appli
ation h, 
alled a homotopy, 
onne
ting both problems.Here, we regularize the 
ost fun
tion by 
onsidering an homotopi
 
onne
tionwith an energy,
∫ tf

0

(‖u(t)‖ + (1 − λ)‖u(t)‖2) dt, (22)where the parameter of the homotopy is λ ∈ [0, 1]. The resulting perturbedproblem (Pλ) has a strongly 
onvex Hamiltonian (with respe
t to u), with a19




ontinuous optimal 
ontrol, and is mu
h easier to solve than (P ) = (P1). As-suming we have found a solution of (P0), we want to follow the zero path of thehomotopy h until λ = 1, in order to obtain an approximate solution of (P ) (orat least su�
ient information). The 
ontinuation 
an be 
ondu
ted manually,by �nding a suitable sequen
e (λk) from 0 to 1. However, �nding su
h a se-quen
e 
an be quite di�
ult in pra
ti
e, whi
h is why we 
hose here to performa full path-following 
ontinuation. Extensive do
umentation about path follow-ing methods 
an be found in [2℄. We use here a pie
ewise-linear (or simpli
ial)method, whose prin
iple is re
alled brie�y below. The reason behind the 
hoi
eof this method over a more 
lassi
al predi
tor-
orre
tor 
ontinuation (su
h asdetailed for instan
e in [9℄) is that we expe
t the problem to be ill-
onditioned,due to the presen
e of singular ar
s, whi
h is indeed the 
ase in the numeri
alexperiments.Simpli
ial methods. PL 
ontinuation methods a
tually follow the zero pathof the homotopy h : R
n+1 → R

n by building a pie
ewise linear approximationof h. The sear
h spa
e R
n+1 is subdivided into 
ells, most often in a parti
ularway 
alled triangulation in simpli
es. This is why PL 
ontinuation methods areoften referred to as simpli
ial methods. The main advantage of this approa
his that it imposes extremely low requirements on the homotopy h: sin
e noderivatives are used, 
ontinuity is in parti
ular su�
ient, and should not evenbe ne
essary in all 
ases.De�nition 4.1 (Simpli
es and fa
es). A simplex is the 
onvex hull of n + 1a�nely independent points (
alled the verti
es) inR

n, while a k-fa
e of a simplexis the 
onvex hull of k verti
es of the simplex (k is typi
ally omitted for n-fa
es,whi
h are just 
alled fa
es, or fa
ets).De�nition 4.2 (Triangulation). A triangulation is a 
ountable family T ofsimpli
es of R
n su
h that the interse
tion of two simpli
es of T is either a fa
e20



or empty, and su
h that T is lo
ally �nite (a 
ompa
t subset of Rn meets �nitelymany simpli
es).
Figure 1: Illustration of some well known triangulations of R × [0, 1] ([0, 1[ for
J3): Freudenthal's uniform K1, and Todd's re�ning J4 and J3De�nition 4.3 (Labeling). We 
all labeling a map l that asso
iates a value tothe verti
es vi of a simplex. We label here the simpli
es by the homotopy h:
l(vi) = h(zi, λi), where vi = (zi, λi). A�ne interpolation on the verti
es thusgives a PL approximation hT of h.De�nition 4.4 (Completely labeled fa
e). A fa
e [v1, .., vn] of a simplex issaid 
ompletely labeled if and only if it 
ontains a solution vǫ of the equation
hT (v) = ~ǫ = (ǫ, .., ǫn), for every ǫ > 0 su�
iently small.Lemma 4.1 ([2, Chapter 12.4℄). Ea
h simplex possesses either zero or exa
tlytwo 
ompletely labeled fa
es (
alled a transverse simplex in the latter 
ase).The 
onstru
tive proof of this property, whi
h gives the other 
ompletelylabeled fa
e of a simplex that already has a known one, is often referred to asPL step, linear programming step, or lexi
ographi
 minimization. Then thereexists a unique transverse simplex sharing this se
ond 
ompletely labeled fa
e,that 
an be determined via the pivoting rules of the triangulation.21



A simpli
ial algorithm thus basi
ally follows a sequen
e of transverse sim-pli
es, from a given �rst transverse simplex with a 
ompletely labeled fa
e at
λ = 0, to a �nal simplex with a 
ompletely labeled fa
e at λ = 1 (or 1 − ǫfor re�ning triangulations that never rea
h 1), whi
h 
ontains an approximatesolution of h(z, 1) = 0.4.2.2 Preliminary 
ontinuation on the atmosphere densityIn our 
ase, even solving the regularized problem (P0) is not obvious, due to theaerodynami
 for
es (drag). For this reason, we introdu
e a preliminary 
ontinu-ation on the atmosphere density, starting from a problem without atmosphere.Te
hni
ally, this is done by using an homotopy with the modi�ed parameter

Kθ
D = θKD, θ ∈ [0, 1],where KD appears in the model of the drag. The shooting method for theproblem without atmosphere at θ = 0 
onverges immediately with the trivialstarting point z0 = (0.1 0.1 0.1 0.1 0.1 0.1 0.1). We would like to emphasize thefa
t that we have here no di�
ulties to �nd a starting point for the shootingmethod. The path following is then a
hieved with an extremely rough integra-tion formula (Euler with only 25 steps), sin
e we just seek a starting point forthe main homotopy. Thanks to the robustness of the simpli
ial method, we 
ana�ord su
h a low pre
ision to save 
omputational time. The border at θ = 1 isrea
hed after 
rossing about 120 000 simpli
es, for a CPU time of 48 se
onds.Remark 4.1. The adaptive meshsize algorithm des
ribed in [14℄ here stronglyredu
es the os
illations along the zero path, as shown on Figure 2, whi
h de-
reases the number of simpli
es required to rea
h θ = 1. We 
an see that thepath following using a �xed uniform meshsize a
tually 
onverges to another22



point, whi
h 
orresponds to an in
orre
t solution (the �nal 
ondition on r2 isnot satis�ed).
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Figure 2: Path following for the atmosphere homotopy: �xed uniform triangu-lation (grey) and adaptive meshsize (bla
k).The solution we obtain is su�
ient to initialize the shooting method at thebeginning of the main homotopy. Figure 3 represents the solutions of the regu-larized problem (P0) for θ = 0 and θ = 1, i.e., without atmosphere and with anormal atmosphere.Noti
e that a dire
t 
ontinuation on the atmosphere with the original nonregularized problem (P ) fails. During the 
ontinuation, the pro
ess abruptlydiverges at a 
ertain value for θ, 
ertainly due to the appearan
e of the singularar
.4.2.3 Main 
ontinuation on the quadrati
 regularizationWe now perform the main 
ontinuation on the 
ost (22). Figure 4 representsthe solutions for λ = 0, 0.5 and 0.8. It is visible that this 
ontinuation pro
esspermits to dete
t the singular stru
ture of the solution. The shape on the23
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Figure 3: Regularized problem (P0): solutions for θ = 0 (no atmosphere) and
θ = 1 (normal atmosphere).swit
hing fun
tion and of the 
ontrol norm graphs are parti
ularly interesting
on
erning suspi
ion of singular ar
s. Indeed, we observe that, on a 
ertaintime interval (roughly [0.1, 0.4]), the swit
hing fun
tion 
omes 
loser to zero as
λ in
reases, while the 
ontrol norm keeps values in (0, 1). Along the solutionfor λ = 0.8, we 
an guess the appearan
e of a small ar
 where ‖u‖ = 1 at thebeginning. These fa
ts strongly suggest the appearan
e of a singular ar
.With a �xed meshsize of 10−4, the path following takes about 900000 sim-pli
es and 350 se
onds to rea
h λ = 0.8, again with an extremely rough integra-tion (Euler, 25 steps). Trying to go further be
omes extremely di�
ult sin
e welose the singular stru
ture and en
ounter traje
tories with in
orre
t bang-bangstru
tures. However the knowledge of the solution for λ = 0.8 happens to besu�
ient to solve the problem: it provides a good starting point for whi
h theshooting method applied to the original problem (P ) 
onverges.
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Figure 4: Main homotopy - solutions for λ = 0, 0.5 and 0.8.Remark 4.2. This path is more di�
ult to follow than the previous one for theatmosphere homotopy, and the adaptive meshsize algorithm does not work well.We thus use a �xed meshsize to perform this homotopy.4.2.4 Shooting method applied to the original problem (P )When implementing a shooting method (see for instan
e [3, 8, 13, 21℄), thestru
ture of the traje
tory has to be known a priori. The stru
ture of the 
ontrolmust be pres
ribed here by assigning a �xed number of interior swit
hing timesthat 
orrespond to jun
tions between nonsingular and singular ar
s. Thesetimes (ti)i=1..nswitch
are part of the shooting unknowns and must satisfy someswit
hing 
onditions. Ea
h ar
 is integrated separately, and mat
hing 
onditionsmust be veri�ed at the swit
hing times, as drawn on the diagram below.Unknown: z 25



IVP unknown at t0 (x1, p1) ... (xs, ps) t1 ... tsValue: SSing(z)

Switchcond(t1) Matchcond(t1) ... Switchcond(ts) Matchcond(ts) TC(tf )Here, mat
hing 
onditions redu
e to imposing state and 
ostate 
ontinuityat the swit
hing times.A swit
hing 
ondition indi
ates a 
hange of stru
ture, whi
h 
orrespondshere to an extremity of a singular ar
. Along su
h a singular ar
, it is requiredthat ψ = ψ̇ = 0. The 
ontrol is 
omputed using the relation ψ̈ = 0. Therefore,using this expression of the 
ontrol, swit
hing 
onditions 
onsist in imposingeither ψ = 0 at the extremities of the singular ar
, or ψ = ψ̇ = 0 at thebeginning of the ar
. In our simulations, we 
hoose the latter solution whi
hhappens to provide better and more stable results.The previous results, obtained with an homotopi
 approa
h, provide an in-di
ation on the expe
ted stru
ture of the optimal traje
tory for the originalproblem (P ). Inspe
tion of Figure 4 suggests to seek a solution involving a sin-gular ar
 on an interval [t1, t2], with t0 < t1 < t2 < tf . As a starting point of theshooting method, we use the solution previously obtained with the homotopyon the 
ost at λ = 0.8.The IVP integration is performed with the radau5 
ode (see [12℄), withabsolute and relative toleran
es of, respe
tively, 10−6 and 10−6. The shootingmethod 
onverges in 17 se
onds, with a shooting fun
tion of norm 5 10−4. The
ondition number for the shooting fun
tion is quite high (about 1012), whi
h wasexpe
ted. The overall exe
ution time of the whole approa
h (preliminary atmo-sphere homotopy, regularization homotopy, �nal shooting) is about 400 se
onds.
26



At the solution, the free �nal is 0.2189, and the obje
tive value is 0.3994,whi
h 
orresponds to a �nal mass of 0.6006. The evolution of altitude, speedand mass during the �ight are represented on Figure 5.
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Figure 5: Solution with singular ar
: altitude, speed and mass.We show on Figure 6 the 
ontrol and swit
hing fun
tion. The singular ar
is 
learly visible on the 
ontrol norm graph.
0 0.5 1

0

0.5

1
Control u1

0 0.5 1
−4

−3

−2

−1

0
x 10

−3Control u2

0 0.5 1
−0.4

−0.3

−0.2

−0.1

0
Control u3

0 0.5 1
0

0.5

1
||u||

0 0.5 1
−0.5

0

0.5

1
Switching function ψ

Figure 6: Solution with singular ar
: 
ontrol and swit
hing fun
tion.
27



4.3 Numeri
al simulations with dire
t methodsIn order to validate the solution obtained previously with the shooting algo-rithm, we next implement a dire
t method. Although dire
t methods 
an bevery sophisti
ated (see for instan
e [3, 23℄), we here use a very rough formula-tion, sin
e our aim is just to 
he
k if the results are 
onsistent with our solution.We dis
retize the 
ontrol using pie
ewise 
onstant fun
tions, and the state isintegrated on [0, tf ] with a basi
 �xed step Runge-Kutta fourth order formula.The values of the 
ontrol at the dis
retization nodes, as well as the �nal time tf ,thus be
ome the unknowns of a nonlinear 
onstrained optimization problem, the
onstraints being the �nal 
onditions for the state. To solve the optimizationproblem, we use the ipopt solver, whi
h implements an interior point algorithmwith a �lter line-sear
h method (see [23℄ for a 
omplete des
ription).With standard options, the algorithm 
onverges after 193 iterations (and 210se
onds) to a solution with a �nal time of 0.2189 and a 
riterion value of 0.3997.This solution is 
learly 
onsistent with the results of the shooting method, asshown on Figure 7, whi
h represents the norm of the 
ontrol for the shootingmethod solution, the dire
t method solution, and a bang-bang referen
e solution(see below).Comparison with a bang-bang solutionRe
all that the usual laun
h strategy 
onsists in implementing pie
ewise 
on-trols either saturating the 
onstraint or equal to zero. To prove the relevan
e ofthe use of singular 
ontrols in the 
ontrol strategy, we next modify slightly theformulation above in order to �nd a bang-bang solution. Our aim is to demon-strate that taking into a

ount singular ar
s in the 
ontrol strategy a
tuallyimproves (as expe
ted) the optimization 
riterion.We implement a �on-o�� stru
ture, with only one swit
hing time to�. The28




ontrol is 
hosen so as to satisfy ‖u(t)‖ = 1 for t0 < t < to�, and u(t) = 0 for
to� < t < tf . Here, the unknowns of the optimization problem are tf , to� andthe dire
tion of the 
ontrol at the dis
retization nodes before to�. We obtain asolution with tf = 0.2105, to� = 0.0580, and the value of the 
riterion is 0.4061,whi
h represents a loss of about 1.6% 
ompared to the solution with a singularar
. On this a
ademi
 example, the gain of the optimal strategy, involving asingular ar
, over a pure bang-bang strategy, is quite small. This simpli�edproblem is a �rst step in the study of a realisti
 laun
her problem, and permitsto illustrate the method.
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Figure 7: Control norm for the shooting and dire
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