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Abstract

We investigate variants of Goddard’s problems for nonvertical trajec-
tories. The control is the thrust force, and the objective is to maximize
a certain final cost, typically, the final mass. In this article, performing
an analysis based on the Pontryagin Maximum Principle, we prove that
optimal trajectories may involve singular arcs (along which the norm of
the thrust is neither zero nor maximal), that are computed and char-
acterized. Numerical simulations are carried out, both with direct and
indirect methods, demonstrating the relevance of taking into account sin-
gular arcs in the control strategy. The indirect method we use is based
on our previous theoretical analysis and consists in combining a shooting
method with an homotopic method. The homotopic approach leads to a
quadratic regularization of the problem and is a way to tackle with the

problem of nonsmoothness of the optimal control.

Keywords: Optimal control, Goddard’s problem, singular trajectories, shoot-

ing method, homotopy, direct methods.

1 Introduction

The classical Goddard’s problem (see [10, 20, 22]) consists in maximizing the
final altitude of a rocket with vertical trajectory, the controls being the norm
and direction of the thrust force. Due to nonlinear effects of aerodynamic forces,
the optimal strategy may involve subarcs along which the thrust is neither zero
nor equal to its maximal value, namely, since the control variable enters linearly

in the dynamics and the cost function is over the final cost, singular arcs. A



natural extension of this model for nonvertical trajectories is the control system

=,
D
o= DY) v ool 1)
m ol m
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where the state variables are r(t) € R® (position of the spacecraft), v(t) € R?
(velocity vector) and m(t) (mass of the engine). Also, D(r,v) > 0 is the drag
component, g(r) € RR? is the usual gravity force, and b is a positive real number
depending on the engine. The thrust force is Cu(t), where C' > 0 is the maximal
thrust, and the control is the normalized thrust u(t) € R?, submitted to the
constraint

Ju(e)] < 1. @)

The real number b > 0 is such that the speed of ejection is C/b. Here, and
throughout the paper, || || denotes the usual Euclidean norm in R3.

We consider the optimal control problem of steering the system from a given
initial point

r(0) = 1o, v(0) = vy, m(0) = my, (3)

to a certain target M; C R7, in time ty that may be fixed or not, while maxi-
mizing a final cost. For the moment, there is no need to be more specific with
final conditions and the cost. In real applications, the problem is typically to
reach a given orbit, either in minimal time with a constraint on the final mass,
or by maximizing the final mass, or a compromise between the final mass and
time to reach the orbit. In our numerical experiments we will study the problem
of maximizing the final mass (i.e., minimizing the fuel consumption) subject to
a fixed final position r(t;) = 7y, the final velocity vector and final time being

free.



Depending on the features of the problem (initial and final conditions, mass/thrust

ratio, etc), it is known that control strategies that consist in choosing the con-
trol so that ||u(t)|| is piecewise constant all along the flight, either equal to 0
or to the maximal authorized value 1, may not be optimal, as a consequence
of the high values of the drag for high speed. Optimal trajectories may indeed
involve singular arcs, and it is precisely the aim to this article to perform such
an analysis and prove that the use of singular arcs is relevant in the problem of

launchers.

The article is structured as follows. In Section 2, we recall the Pontryagin
Maximum Principle, and the concept of singular trajectories. A precise analysis
of the optimal control problem is performed in Section 3, where extremals are
derived, and singular trajectories are computed. Theorem 1 makes precise the
structure of the optimal trajectories. Section 4 is devoted to numerical simu-
lations. The problem is first implemented with indirect methods, based on our
theoretical analysis with the maximum principle, and, numerically, our method
uses a shooting method combined with an homotopic approach. The homotopic
method, leading to a quadratic regularization, permits to tackle with the prob-
lem of nonsmoothness of the optimal control. Experiments are also made using
direct methods, i.e., by discretizing control variables and solving the resulting
nonlinear optimization problem. Less precise than the indirect one, this method
permits however to validate our approach by checking that results are consistent
with the previously computed solution.

Our results show, as expected, that taking into account singular arcs in the
control strategy permits to improve slightly the optimization criterion. The
numerical simulations presented in this paper, using a simplified and more aca-
demic model and set of parameters, constitute the first step in the study of a

realistic launcher problem.



2 Preliminaries

In this section we recall a general version of the Pontryagin Maximum Principle
(see [16], and for instance [7] for its practical application), and a definition and
characterizations of singular arcs.

Consider the autonomous control system in R™

&(t) = f(x(t), u(t)), (4)

where f : R x R” x R™ — R” is of class C', and where the controls are
measurable and bounded functions defined on a subinterval [0,t.(u)[ of RT
with values in Q C R™. Let My and M; be subsets of R™. Denote by U the
set of admissible controls u, whose associated trajectories are well defined and
join an initial point in My to a final point in M, in time t(u) < t.(u).

Define the cost of a control w on [0, ¢] by

Ot u) = / FO(a(s), u(s))ds + 0t (),

where f9: R" x R™ — R and ¢° : R” — R are of class C*, and z(-) is the
trajectory solution of (1) associated to the control wu.
Consider the optimal control problem of finding a trajectory joining My to

M; and minimizing the cost. The final time may be free or not.

2.1 Pontryagin Maximum Principle

According to the Pontryagin Maximum Principle (see [16]), if the control u €
U associated to the trajectory z(-) is optimal on [0,7], then there exists an
absolutely continuous mapping p(-) : [0,7] — R" called adjoint vector, and a

real number p° < 0, such that the couple (p(-),p°) is nontrivial, and such that,



for almost every ¢ € [0,7],

B(t) = —(x(t), p(t),p°, u(t)),
o (5)
p(t) = —%(w(t),p(t),po, u(t)),

where H(z,p,p°,u) = (p, f(z,u)) +p°f°(x,u) is the Hamiltonian of the optimal
control problem. Moreover, the function

t —s ma&( H(x(t),p(t),po, v)
ve

is constant on [0, 7], and the maximization condition

H(x(t), p(t), p°, u(t)) = max H(x(t), p(t), p°, v) (6)

holds almost everywhere on [0, 7.

Moreover, if the final time T to join the target set M is free, then

0

ma H(2(1),p(1), ) = " 2o (T, (1)), (7)

for every t € [0, T1.

Furthermore, if My and M; (or just one of them) are submanifolds of R"
having tangent spaces in z(0) € My and z(T") € M;, then the adjoint vector
can be chosen so as to satisfy the transversality conditions at both extremities

(or just one of them)

p(0) L Ty0)Mo (8)
and
0890
p(T) —p %(T,x(T)) L Ty M. (9)

An extremal of the optimal control problem is a fourth-tuple (z(-), p(-), p°, u(-))



solution of (5) and (6). If pp = 0, then the extremal is said to be abnormal, and

if p° # 0 then the extremal is said to be normal.

2.2 Singular arcs

Given zp € R™ and two real numbers tg, t1, with ¢ < ¢1, denote by Uy, 4., the
set, of controls u € L>®([to, t1], 1), with Q1 an open subset of €, such that the
trajectory t — x(t, xo,to, ), solution of (1), associated with the control u on
[to, t1], and such that z(tg) = xo, is well defined on [tg,¢1]. Define the end-point
mapping Egg 0.4, DY Exg 10,4, (@) := x(t1, To, b0, u), for every u € Uy 1o.¢,- It is
classical that Eg; 14, @ Uzg,te.t, — R™ is a smooth map.

A control u € Uy, +, 1, is said to be singular if u is a critical point of the end-
point mapping Eu ¢, .+, i.€., its differential dEy, 1+, () at w is not surjective.

In this case, the trajectory z(-, o, to, ©) is said to be singular on [to,t1].

Recall the two following standard characterizations of singular controls (see
[5, 16]). A control u € Uy, 1.+, is singular if and only if the linearized system
along the trajectory z(-,xq,t9,u) on [tg,t1] is not controllable. This is also
equivalent to the existence of an absolutely continuous mapping p; : [to, t1] —
R"™ \ {0} such that, for almost every t € [to, t1],

 0H,

(1) = =, @®,p1(B)u(t),  p(t) = =7 =t 2(0), pr(t), u(t)),

0H,
W(x(t),m (t),u(t)) =0,
where Hi(z,p1,u) = (p1, f(xz,u)) is the Hamiltonian of the system.

Note that singular trajectories coincide with projections of abnormal ex-

tremals for which the maximization condition (6) reduces to %—’Z =0.

For a given trajectory z(-) of the system (1) on [0, T, associated to a control

u € Uy(0),0,7, We say that x(-) involves a singular arc, defined on the subinterval



[to, t1] C [0,T], whenever the control up, ;] for the control system restricted to
[to,t1] is singular.

In the case when the dynamics f and the instantaneous cost f° are linear in
the control u, a singular arc corresponds to an arc along which one is unable to
compute the control directly from the maximization condition of the Pontryagin
maximum principle (at the contrary of the bang-bang situation). Indeed, in

this case, the above condition 8;3 = 0 along the arc means that some function

(called switching function) vanishes identically along the arc. Then, it is well
known that, in order to derive an expression of the control along such an arc,
one has to differentiate this relation until the control appears explicitly. It is
also well known that such singular arcs, whenever they occur, may be optimal.
Their optimal status may be proved using generalized Legendre-Clebsch type
conditions or the theory of conjugate points (see [17, 11], or see [1, 4] for a

complete second-order optimality theory of singular arcs).

3 Analysis of the optimal control problem

With respect to the notations used in the previous section, we set

r v
v=|v | ERXR xR, flo,u)= |2 o) 4oL,
m —b]ull

and f° = 0. Here, the set Q of constraints on the control is the closed unit ball
of R3, centered at 0.

Consider the optimal control problem of minimizing some final cost ¢°(t, z(t)),
for the control system (1), with initial conditions (3) and final conditions z(tf) €
M, in time ¢y which may be free or not.

We make the following assumption.



Assumption (H). The function ¢° is such that:
e cither the final mass m(ty) is free, and g_ij #0,
e or the final time ¢ is free, and aa—g; #0.

In the first situation, the target set My C R” can be written as My = N1 xR,
where Ny is a subset of R®. A typical example is the problem of maximizing
the final mass, for which ¢°(¢,z) = —m. If the final condition is r(¢;) = r; and
|v(ts)]| = a, then My = {r1} x S(0,a) x R, where S(0,a) is the sphere of R?,
centered at 0, with radius a.

In the second situation, a typical example is the minimal time problem to

reach some target. In this case, ¢°(¢,z) = t.

3.1 Computation of extremals

According to Section 2.1, the Hamiltonian of the optimal control problem under

consideration is

P Do) v e\
H = )+ (=2 () 4 O ) bl (10

where ( , ) denotes the usual scalar product in R®. Here, the adjoint vector is

denoted by



In what follows, we assume the mappings D and g to be of class C'. Applying

Pontryagin’s Maximum Principle leads to the adjoint equations

_ 1 {py,v) 0D < 8g>7

"Tm ol o \Par
. 1 {py,v)0D D p, D v
p1):_pr+_ - _—__<pvvv> 5 (11)
m || dv  mul] m [0l
1 D(r,v) v U
pm:_ Pv, — ( )_+C_ .
m m ol " m

Moreover, if u is an optimal control on [0,t¢], then, for almost every t € [0,t¢],

u(t) maximizes the function

Qy(w) = m—<pv(t),w> — bpp (1) [|w]l,

among all possible w € R? such that |jw| < 1.

The next technical lemma, is the first step in the analysis of extremals.

Lemma 3.1. If there exists to € [0,t¢] such that p.(to) = py(to) = 0, then

pr(t) = pu(t) =0, and pm(t) = pm(ty), for everyt € [0,t¢]. Moreover, p,,(ty) #
0, and if pm(ty) > 0 then u(t) = 0 on [0,tf], otherwise ||u(t)|| =1 on [0,ts].

Proof. The first statement follows immediately from a uniqueness argument
applied to the system (11). It follows from the expression of the Hamiltonian
function that, if p,,(t) > 0, then u(t) = 0, and if p,,(¢) < 0, then ||u(t)|| = 1.
In the first case of Assumption (H), the transversality condition (9) yields in

particular
0

pnts) = 125, a(t).

Therefore, p,,(t) cannot be equal to zero (otherwise the adjoint vector (p,p°)

would be zero, contradicting the maximum principle). In the second case of



Assumption (H), it follows from (7) and (10) that

0
P OB = 22 (17, 2(17)).

Therefore, similarly, p,,(t) cannot be equal to zero. The conclusion follows. O

An extremal satisfying the conditions of Lemma 3.1 (ie p,(t) = p,(t) = 0
for every t € [0,ty]) is called degenerate. For such extremals, the control is
either identically equal to zero, or or maximal norm, along the whole trajectory.
Such kind of trajectories can be excluded for practical applications and are thus

discarded in the sequel.
Lemma 3.2. Consider a nondegenerate extremal. Then:
1. The set T :={t € [0,tf] | pv(t) = 0} has a finite cardinal.

2. There exists a measurable function o on [0,tf], with values in [0, 1], such

that
u(t) =« _polt) a.e. on
(0 =a 20 ae. on bt (12
3. Set U(t) := %Hpv(t)ﬂ — bpm (t). Then,
olt) = 0 ifU(t) <0,
1 if¥(t) > 0.

Proof. If t € T, then by the costate equation (11), p,(t) = —p,-(¢) is not zero
(since the extremal is not degenerate). Therefore 7 has only isolated points,
and hence, has a finite cardinal.

Writing w = ad, with @ = ||w|| and d of unit norm, we get ®;(w) =
o (%(pv (t),d) — bpm(t)) . Since p,(t) # 0 a.e., points 2 and 3 of the lemma

follow immediately from the maximization condition. O

10



The continuous function ¥ defined in Lemma 3.2 is called switching function.
In the conditions of the lemma, the extremal control is either equal to 0, or
saturating the constraint and of direction p,(¢). The remaining case, not treated
in this lemma and analyzed next, is the case where the function ¥ vanishes on

a (closed) subset I C [0,ty] of positive measure.

Remark 3.1. Let [to,t1] be a subinterval of I on which a(t) > 0. Then, the
control us, ¢, is singular.

Indeed, it suffices to notice that, using (12)

3

pu(t)
[po (@)’

Po(t)
P ()l

= w()

and to use the Hamiltonian characterization of singular controls recalled in

Section 2.2.

Singular arcs may thus occur in our problem whenever ¥ vanishes, and we
next provide an analysis of that case, and show how to derive an expression of

such singular controls.

3.2 Analysis of singular arcs

Throughout this section, we assume that

¥(t) = s (Ol = ) =0 (13)

for every t € I, where I is a (closed) measurable subset of [0,t¢] of positive
Lebesgue measure.

Usually, singular controls are computed by derivating this relation with re-
spect to ¢, until u appears explicitly. The following result is required (see [18,

Lemma p. 177]).

11



Lemma 3.3. Let a, b be real numbers such that a < b, and f : [a,b] — R be
an absolutely continuous function. Let J be a subset of {t € [a,b] | f(t) =0} os

positive Lebesque measure. Then f'(t) =0 a.e. on J.

Using this lemma, and extremal equations (11), one gets, for a.e. t € I,

bC

= e

(P Ol[e@)] = (pu(8), u(@))) +E (), v(t), m(t),p(t)) = 0, (14)

where the function

_ Db C v, 0) /9D
:(r,v,m,p) = —<pvvv> + (<pvapr> + <p > <%7Pv>

m?|v]| m||p,|| ml|v]|
aD p.|*> D <pv,v>2>

Ommllvf| — m o]®

does not depend on u. From Lemma 3.2, the relation (12) holds almost every-

where, and hence the first term of (14) vanishes. Therefore,

U(t) = E(r(t), v(t), m(t), p(t) = 0, (15)

for almost every ¢ € T (actually over every subinterval of positive measure, since
the above expression is continuous).
Relations (13) and (14) are two constraint equations, necessary for the exis-

tence of a singular arc. Derivating once more, using Lemma 3.3, leads to
U(t) =0, ae. onl. (16)

The control u is expected to appear explicitly in this latter relation. However,
since calculations are too lengthy to be reported here, we next explain how (16)
permits to derive an expression for «(t), and hence, from (12), an expression for

u(t). When derivating (15), the terms where the control u appears are the terms

D(r,v)

containing o, p,, and 7. Recall that 1h = —b||ul|, that p,, = L (p,, — T+

12



C), and that v is affine in u. Hence, since a(t) > 0, it is not difficult to see

that this derivation leads to an equation of the form

A(Tvvvmvprvpvvpm)a = B(Tvvvmvprvpvvpm)v (17)

" nontrivial, that

almost everywhere on I. This relation should be "generically
is, the coefficient A should not be equal to zero. This fact proves to hold true on
numerical simulations. We explain below rigorously why this is true generically

at least in the case of a scalar control (recall that we deal here with a three-

dimensional control). For a scalar control, the control system (1) is of the form

q = folq) +ufi(q), (18)

where fo and f; are smooth vector fields, and ¢ is the state. In this case, it is
well known (see e.g. [5]) that, if u is a singular control on I, then there must

exist an adjoint vector p such that

p, fi(g)) = 0 onl, (19)
(p,[fo, fi(g))) = 0 onl, (20)
<pa [f()v [fovfl(Q)]>+u<pa [flv[vafl(Q)D = 0 ae onl. (21)

The situation encountered here for 3D Goddard’s problem is similar to that case:
Equations (19), (20), (21), are respectively similar to Equations (13), (15), (16);
Equations (19), (20) (similarly, Equations (13), (15)) are constraint equations,
and Equation (21) (similarly, Equation (16)) permits in general to derive an
expression for the control u. The vocable "generic" employed above can now be

made more precise: it is proved in [6] that there exists an open and dense (in the

sens of Whitney) subset G of the set of couples of smooth vector fields such that,

13



for every control system (18) with (fo, f1) € G, the set where (p, [f1, [fo, f1(¢)])
vanishes has measure zero, and hence Equation (21) always permits to derive w.
Additionaly, we can notice that the classical one-dimensional Goddard problem
can be formulated as a particular case of the general 3D problem described here.
In this case, it is well known that the second derivative of the switching function
provides the expression of the singular control, so we can safely assume that 17 is
nontrivial for the restriction to the 1D problem. Based on these arguments, we
should expect the coefficient A of Equation (17) to be non zero in general. This
is indeed the case in our numerical simulations presented next. Of course, once
a(t) has been determined, one has to check (numerically) that 0 < a(t) < 1, so
that the constraint ||u|| < 1is indeed satisfied. Here also, numerical simulations

show the existence and admissibility of such singular arcs (see Section 4).

3.3 Conclusion
We sum up the previous results in the following theorem.

Theorem 1. Consider the optimal control problem of mazximizing a final cost
g°(ts,x(ty)), for the control system (1), with initial conditions (3) and final
conditions x(ty) € My. We assume that Assumption (H) holds. Let u be an
optimal control defined on [0,tf], associated to the trajectory (r(-),v(-),m(-)).
Then, there exist absolutely continuous mappings p,(-) : [0,t;] — R*, p,(-) :
0,tf] — R, pu(-) : [0,t;] — R, and a real number p° < 0, such that
(p2(+), po(-); Pm(-), p°) is nontrivial, and such that Equations (11) hold a.e. on

[0,tf]. Define the switching function ¥ on [0,tf] by

¥(t) = s (Bl = b0

Then,

14



o if U(t) <0 then u(t) =0;

o if U(t) >0 then u(t) = L2

llp. (D117

e if U(t) = 0 on a subset I C [0,tf] of positive Lebesque measure, then

Equation (15) must hold on I, and

pu(t)
[po @)

u(t) = a(t)

a.e. on I,

where a(t) € [0,1] is determined by (17).

Remark 3.2. The optimal control is piecewise either equal to zero, or saturating
the constraint with the direction of p,(t), or is singular. Notice that, in all cases,

it is collinear to p,(t), with the same direction.

Remark 3.3 (Optimality status). The maximum principle is a necessary condi-
tion for optimality. Second-order sufficient conditions are usually characterized
in terms of conjugate points (see e.g. [1, 4]. Unfortunately standard theories
do not apply here for two reasons: first, the equation in m(t) involves the term
|lu(®)|| which is not smooth; second, the structure of trajectories stated in the
theorem involves both bang arcs and singular arcs, and up to now a theory of
conjugate points that would treat this kind of trajectory.

We mention however below a trick, specific to the form of our system, which
permits to apply the standard theory of conjugate points on every subinterval J
of [0,t¢] on which u is singular and 0 < ||u(t)|| < 1. Let J be such a subinterval.
Then, 2 # 0 a.e. on J, and the system can be reparametrized by —m(¢). Then,
denoting ¢ = (r,v), system (1) yields
us3

g2(m, q) + m93(m7 q)-

U
m, q) + —gl(mv Q) +

dq 1
= (

U
dm  |lull

[l

15



Now, set

1 . .
v=—, and = cos 6 cos By, = cos 6 sin 6, = sin @,

Uy U2 us
[l [l [l [l
and consider as new control the control @ = (v, 61, 62). Notice that the controls
#, and 65 are unconstrained, and that v must satisfy the constraint v > 1. How-
ever, along the interval J it is assumed that 0 < |Ju(t)|| < 1, and thus v does not
saturate the constraint. Hence, the standard theory of conjugate points applies
and the local optimality status of the trajectory between its extremities on J
can be numerically checked, for instance using the code COTCOT (Conditions
of Order Two and COnjugate times), available on the web', developed in [4].
This reference provides algorithms to compute the first conjugate time (where
the trajectory ceases to be optimal) along a smooth extremal curve, based on
theoretical developments of geometric optimal control using second order opti-
mality conditions. The computations are related to a test of positivity of the
intrinsic second order derivative or a test of singularity of the extremal flow.

It can be checked as well that every smooth sub-arc of the trajectory is locally
optimal between its extremities. However, the problem of proving that the
whole trajectory (i.e., a succession of bang and singular arcs) is locally optimal
is open. Up to now no conjugate point theory exists to handle that type of
problem. Of course, one could make vary the times of switchings but this only
permits to compare the trajectory with other trajectories having exactly the

same structure. A sensitivity analysis is actually required to treat trajectories

involving singular subarcs.

Thttp://www.n7.fr/apo/cotcot

16



4 Numerical experiments

In this section, we provide numerical simulations showing the relevance of sin-
gular arcs in the complete Goddard’s Problem. For given boundary conditions,
the optimal trajectory is first computed using indirect methods (shooting algo-
rithm) combined with an homotopic approach. Then we use a direct method
(based on the discretization of the problem) to check the obtained solution. All

numerical experiments were led on a standard computer (Pentium 4, 2.6 GHz).

4.1 Numerical values of the parameters of the model

We implement the optimal control problem of maximizing m(ty) for the system
(1), with the constraint (2). The equations of motion can be normalized with
respect to r(0), m(0), and go. We follow [15] (in which 2D-trajectories with

maximization of the final velocity are studied), and set the following parameters.
e The distance unit is the Earth radius Ry = 6378 103 m.

e Maximal thrust modulus C = 3.5; b = 7.

Gravity g(r) = gﬂg r, with go = 1.

I3

Drag D(r,v) = Kpljv||2e~®00U"I=1) with Kp = 310.

Initial and final conditions

ro = (0.999949994 0.0001 0.01), v = (00 0), mo = 1,
ry=(1.0100), wvyisfree, my is free.
ty is free.

4.2 Numerical simulations with indirect methods

In our simulations presented hereafter, we prefer to express the objective of the

optimal control problem in the following form.

17



Maximizing m(ty) is equivalent to minimizing the cost

/ﬁnwwwu
0

and we assume that there are no minimizing abnormal extremals, therefore the
adjoint vector can be normalized so that p° = —1. The results of the simulations

are consistent with this assumption.

According to Section 2.1, the Hamiltonian of the optimal control problem
under consideration is

D(r,v) v

H:<prvv>+<pm_ m_

)+ O ) = (1 ),

The only difference with the Hamiltonian in 2.1 for the Maz m(ty) objective

is the additional “—1” in the |lu| term, which leads to the switching function

U(t) = s Ipe (O] = (1 + bpm (1)),

o if ¢(t) < 0 then u(t) = 0;

o if ¢(t) > 0 then u(t) = nggi;“;

e if Y(t) =0 on I C [0,¢s], then Equation (15) must hold on I, the control

u is singular, and

pu(t)

ult) = O ol

a.e.on I,

where «(t) € [0,1] is determined by (17). We check numerically that

0<a(t) <L

Furthermore, on a singular subarc, derivating the switching function twice

yields the expression of « via a relation of the form A(z,p)a = B(z,p), see 17.
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The computations are actually quite tedious to do by hand, and we used the
symbolic calculus tool MAPLE. The expressions of A and B are quite compli-

cated and are not reported here.

The free final time problem is formulated as a fixed final time one via the
usual time transformation ¢ = ¢ s, with s € [0,1] and ¢; an additional com-
ponent of the state vector, such that t; = 0 and t7(0),¢4(1) are free, with the

associated costate satisfying p;, = —H.

Transversality conditions on the adjoint vector yield p, (1) = (00 0), p,, (1) =

0, and py, (0) = pr, (1) = 0.

4.2.1 Homotopic approach

In the indirect approach, it is necessary to get some information on the structure
of the solutions, namely, to know a priori the number and approximate location
of singular arcs. To this aim, we perform a continuation (or homotopic) ap-
proach, and regularize the original problem by adding a quadratic (||ul|?) term
to the objective, as done for instance in [14, 19]. The general meaning of con-
tinuation is to solve a difficult problem by starting from the known solution of
a somewhat related, but easier problem. By related we mean here that there
must exist a certain application h, called a homotopy, connecting both problems.
Here, we regularize the cost function by considering an homotopic connection

with an energy,

/O " ()] + @ = Nu@)]?) dt. (22)

where the parameter of the homotopy is A € [0,1]. The resulting perturbed

problem (P,) has a strongly convex Hamiltonian (with respect to u), with a
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continuous optimal control, and is much easier to solve than (P) = (P;). As-
suming we have found a solution of (Fy), we want to follow the zero path of the
homotopy A until A = 1, in order to obtain an approximate solution of (P) (or
at least sufficient information). The continuation can be conducted manually,
by finding a suitable sequence (\;) from 0 to 1. However, finding such a se-
quence can be quite difficult in practice, which is why we chose here to perform
a full path-following continuation. Extensive documentation about path follow-
ing methods can be found in [2]. We use here a piecewise-linear (or simplicial)
method, whose principle is recalled briefly below. The reason behind the choice
of this method over a more classical predictor-corrector continuation (such as
detailed for instance in [9]) is that we expect the problem to be ill-conditioned,
due to the presence of singular arcs, which is indeed the case in the numerical

experiments.

Simplicial methods. PL continuation methods actually follow the zero path
of the homotopy h : R**! — R” by building a piecewise linear approximation
of h. The search space R"*! is subdivided into cells, most often in a particular
way called triangulation in simplices. This is why PL continuation methods are
often referred to as simplicial methods. The main advantage of this approach
is that it imposes extremely low requirements on the homotopy h: since no
derivatives are used, continuity is in particular sufficient, and should not even

be necessary in all cases.

Definition 4.1 (Simplices and faces). A simplex is the convex hull of n + 1
affinely independent points (called the vertices) in R™, while a k-face of a simplex
is the convex hull of k vertices of the simplex (k is typically omitted for n-faces,

which are just called faces, or facets).

Definition 4.2 (Triangulation). A triangulation is a countable family 7' of

simplices of R™ such that the intersection of two simplices of T is either a face
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or empty, and such that T is locally finite (a compact subset of R™ meets finitely

many simplices).

Figure 1: Tllustration of some well known triangulations of R x [0, 1] ([0, 1] for
J3): Freudenthal’s uniform K, and Todd’s refining Jy and Js

Definition 4.3 (Labeling). We call labeling a map [ that associates a value to
the vertices v; of a simplex. We label here the simplices by the homotopy h:
I(v") = h(z%, \'), where v* = (2%, \?). Affine interpolation on the vertices thus

gives a PL approximation hp of h.

Definition 4.4 (Completely labeled face). A face [vy,..,v,] of a simplex is
said completely labeled if and only if it contains a solution v, of the equation

hr(v) = €= (e, ..,€"), for every € > 0 sufficiently small.

Lemma 4.1 ([2, Chapter 12.4]). Each simplex possesses either zero or exactly

two completely labeled faces (called a transverse simplex in the latter case).

The constructive proof of this property, which gives the other completely
labeled face of a simplex that already has a known one, is often referred to as
PL step, linear programming step, or lexicographic minimization. Then there
exists a unique transverse simplex sharing this second completely labeled face,

that can be determined via the pivoting rules of the triangulation.
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A simplicial algorithm thus basically follows a sequence of transverse sim-
plices, from a given first transverse simplex with a completely labeled face at
A = 0, to a final simplex with a completely labeled face at A = 1 (or 1 — ¢
for refining triangulations that never reach 1), which contains an approximate

solution of h(z,1) = 0.

4.2.2 Preliminary continuation on the atmosphere density

In our case, even solving the regularized problem (Pp) is not obvious, due to the
aerodynamic forces (drag). For this reason, we introduce a preliminary continu-
ation on the atmosphere density, starting from a problem without atmosphere.

Technically, this is done by using an homotopy with the modified parameter

K% =0Kp, 6¢]0,1],

where Kp appears in the model of the drag. The shooting method for the
problem without atmosphere at § = 0 converges immediately with the trivial
starting point zp = (0.1 0.1 0.1 0.1 0.1 0.1 0.1). We would like to emphasize the
fact that we have here no difficulties to find a starting point for the shooting
method. The path following is then achieved with an extremely rough integra-
tion formula (Euler with only 25 steps), since we just seek a starting point for
the main homotopy. Thanks to the robustness of the simplicial method, we can
afford such a low precision to save computational time. The border at § =1 is

reached after crossing about 120 000 simplices, for a CPU time of 48 seconds.

Remark 4.1. The adaptive meshsize algorithm described in [14] here strongly
reduces the oscillations along the zero path, as shown on Figure 2, which de-
creases the number of simplices required to reach §# = 1. We can see that the

path following using a fixed uniform meshsize actually converges to another

22



point, which corresponds to an incorrect solution (the final condition on 7o is

not satisfied).

1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
Q Q
O. —10 -5 (o] —0.1 o 0.1
z2 z3
1 1 1 1
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
~ ~< ~ ~
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
Q o o o
—0.5 -0.4 —0.3 —0.01 O 0.01 o] 0.1 0.2 o] 0.1 0.2
z5 ze z7 zs

Figure 2: Path following for the atmosphere homotopy: fixed uniform triangu-
lation (grey) and adaptive meshsize (black).

The solution we obtain is sufficient to initialize the shooting method at the
beginning of the main homotopy. Figure 3 represents the solutions of the regu-
larized problem (FP) for # = 0 and 6 = 1, i.e., without atmosphere and with a

normal atmosphere.

Notice that a direct continuation on the atmosphere with the original non
regularized problem (P) fails. During the continuation, the process abruptly
diverges at a certain value for @, certainly due to the appearance of the singular

arc.

4.2.3 Main continuation on the quadratic regularization

We now perform the main continuation on the cost (22). Figure 4 represents
the solutions for A = 0,0.5 and 0.8. Tt is visible that this continuation process

permits to detect the singular structure of the solution. The shape on the
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Control ul X 16:<3ntrol u2 Control u3

0.8

-0.05

-0.1

-0.15

-0.2
0 0.5 1 0 0.5 1
[full Switching function
---6=0
—0=1

Figure 3: Regularized problem (Pp): solutions for § = 0 (no atmosphere) and
6 =1 (normal atmosphere).

switching function and of the control norm graphs are particularly interesting
concerning suspicion of singular arcs. Indeed, we observe that, on a certain
time interval (roughly [0.1,0.4]), the switching function comes closer to zero as
A increases, while the control norm keeps values in (0,1). Along the solution
for A = 0.8, we can guess the appearance of a small arc where ||u| = 1 at the
beginning. These facts strongly suggest the appearance of a singular arc.

With a fixed meshsize of 1074, the path following takes about 900000 sim-
plices and 350 seconds to reach A = 0.8, again with an extremely rough integra-
tion (Euler, 25 steps). Trying to go further becomes extremely difficult since we
lose the singular structure and encounter trajectories with incorrect bang-bang
structures. However the knowledge of the solution for A = 0.8 happens to be
sufficient to solve the problem: it provides a good starting point for which the

shooting method applied to the original problem (P) converges.
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Control ul X 1%emtrol u2 Control u3

1 0 0.5 1 0 0.5 1

1
----- A=0 =
- --)=05 5
Cd
—— =038 0 7.

L

Figure 4: Main homotopy - solutions for A = 0,0.5 and 0.8.

Remark 4.2. This path is more difficult to follow than the previous one for the
atmosphere homotopy, and the adaptive meshsize algorithm does not work well.

We thus use a fixed meshsize to perform this homotopy.

4.2.4 Shooting method applied to the original problem (P)

When implementing a shooting method (see for instance [3, 8, 13, 21]), the
structure of the trajectory has to be known a priori. The structure of the control
must, be prescribed here by assigning a fixed number of interior switching times
that correspond to junctions between nonsingular and singular arcs. These
times (%;)i=1..nquieen are part of the shooting unknowns and must satisfy some

switching conditions. Each arc is integrated separately, and matching conditions

must, be verified at the switching times, as drawn on the diagram below.

Unknown: z
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‘ IVP unknown at tg ‘ (=1, p1) ‘ ‘ (z%,p®) ‘ t1 ‘ ‘ ts

Value: Sging(2)

‘ Switcheong(t1) ‘ Matcheonq(ti) ‘ ‘ Switcheond(ts) ‘ Matcheona(ts) ‘ TC(ty) ‘

Here, matching conditions reduce to imposing state and costate continuity
at the switching times.

A switching condition indicates a change of structure, which corresponds
here to an extremity of a singular arc. Along such a singular arc, it is required
that ¢ = 1/1 = 0. The control is computed using the relation 1/1 = 0. Therefore,
using this expression of the control, switching conditions consist in imposing
either ¢» = 0 at the extremities of the singular arc, or ¢ = ¢ = 0 at the

beginning of the arc. In our simulations, we choose the latter solution which

happens to provide better and more stable results.

The previous results, obtained with an homotopic approach, provide an in-
dication on the expected structure of the optimal trajectory for the original
problem (P). Inspection of Figure 4 suggests to seek a solution involving a sin-
gular arc on an interval [t1, o], with ¢g < ¢1 < t2 < ty. As a starting point of the
shooting method, we use the solution previously obtained with the homotopy

on the cost at A = 0.8.

The IVP integration is performed with the RADAUS code (see [12]), with
absolute and relative tolerances of, respectively, 1076 and 1076. The shooting
method converges in 17 seconds, with a shooting function of norm 5 10=%. The
condition number for the shooting function is quite high (about 10'?), which was
expected. The overall execution time of the whole approach (preliminary atmo-

sphere homotopy, regularization homotopy, final shooting) is about 400 seconds.
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At the solution, the free final is 0.2189, and the objective value is 0.3994,
which corresponds to a final mass of 0.6006. The evolution of altitude, speed
and mass during the flight are represented on Figure 5.

ALTITUDE (Il SPEED (V) MASS
0012 0.14 1

0.12] 0.95
09

0.008| 085

0.006] B £ 08

lirli=Hrg Il

0.75
0.004

0.7,

0002
002 065

0.4 06 0. 6 . 0.6
TIME TIME TIME

Figure 5: Solution with singular arc: altitude, speed and mass.

We show on Figure 6 the control and switching function. The singular arc

is clearly visible on the control norm graph.

Control ul X 16:@ntrol u2 Control u3
1 0 0
-1 -0.1
0.5 -2 -0.2
-3 -0.3
0 -4 -0.4
0 0.5 1 0 0.5 1 0 0.5 1
[lul] Switching function
1r 1
0.5
0.5
e
0 -0.5
0 0.5 1 0 0.5 1

Figure 6: Solution with singular arc: control and switching function.
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4.3 Numerical simulations with direct methods

In order to validate the solution obtained previously with the shooting algo-
rithm, we next implement a direct method. Although direct methods can be
very sophisticated (see for instance [3, 23]), we here use a very rough formula-
tion, since our aim is just to check if the results are consistent with our solution.
We discretize the control using piecewise constant functions, and the state is
integrated on [0,¢f] with a basic fixed step Runge-Kutta fourth order formula.
The values of the control at the discretization nodes, as well as the final time ¢,
thus become the unknowns of a nonlinear constrained optimization problem, the
constraints being the final conditions for the state. To solve the optimization
problem, we use the IPOPT solver, which implements an interior point algorithm
with a filter line-search method (see [23] for a complete description).

With standard options, the algorithm converges after 193 iterations (and 210
seconds) to a solution with a final time of 0.2189 and a criterion value of 0.3997.
This solution is clearly consistent with the results of the shooting method, as
shown on Figure 7, which represents the norm of the control for the shooting
method solution, the direct method solution, and a bang-bang reference solution

(see below).

Comparison with a bang-bang solution

Recall that the usual launch strategy consists in implementing piecewise con-
trols either saturating the constraint or equal to zero. To prove the relevance of
the use of singular controls in the control strategy, we next modify slightly the
formulation above in order to find a bang-bang solution. Qur aim is to demon-
strate that taking into account singular arcs in the control strategy actually
improves (as expected) the optimization criterion.

We implement a “on-off ” structure, with only one switching time ¢,g. The
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control is chosen so as to satisfy ||u(t)|| = 1 for tg < t < tom, and u(t) = 0 for
tog <t < ty. Here, the unknowns of the optimization problem are t¢, t,g and
the direction of the control at the discretization nodes before t,g. We obtain a
solution with ¢t = 0.2105, t,g = 0.0580, and the value of the criterion is 0.4061,
which represents a loss of about 1.6% compared to the solution with a singular
arc. On this academic example, the gain of the optimal strategy, involving a
singular arc, over a pure bang-bang strategy, is quite small. This simplified
problem is a first step in the study of a realistic launcher problem, and permits

to illustrate the method.

CONTROL NORM

- Direct method
x  Bang bang solution
Shooting solution

1]

0.4r

0.2 b

0 0.2 0.4 0.6 0.8 1
TIME

Figure 7: Control norm for the shooting and direct method.
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