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Abstract. In this paper, we study quasi-stationarity for a large class of Kolmogorov diffu-
sions, that is, existence of a quasi-stationary distribution, conditional convergence to such
a distribution, construction of a Q-process (process conditioned to be never extinct). The
main novelty here is that we allow the drift to go to −∞ at the origin, and the diffusion to
have an entrance boundary at +∞.

These diffusions arise as images, by a deterministic map, of generalized Feller diffusions,
which themselves are obtained as limits of rescaled birth–death processes. Generalized Feller
diffusions take non-negative values and are absorbed at zero in finite time with probability
1. A toy example is the logistic Feller diffusion.

We give sufficient conditions on the drift near 0 and near +∞ for the existence of quasi-
stationary distributions, as well as rate of convergence, and existence of the Q-process.

We also show that under these conditions, there is exactly one conditional limiting dis-
tribution (which implies uniqueness of the quasi-stationary distribution) if and only if the
process comes down from infinity.

Proofs are based on spectral theory. Here the reference measure is the natural symmetric
measure for the killed process, and we use in an essential way the Girsanov transform.

Key words. quasi-stationary distribution, birth-death process, population dynamics, density-
dependence, logistic growth, diffusion approximation, generalized Feller diffusion, Dirichlet
form, spectral theory, Yaglom limit, convergence rate, Q-process, return from infinity.
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1. Introduction.

The main motivation of this work is the existence, domain of attraction, and uniqueness, of
a quasi-stationary distribution for some diffusion models arising from population dynamics.
After a change of function, the problem is stated in the framework of Kolmogorov diffusion
processes with a drift behaving like −1/2x near the origin. Here, we study quasi-stationarity
for a slightly larger class of one-dimensional Kolmogorov diffusions, with drift possibly ex-
ploding near the origin.

Date: April 3, 2007.
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1.1. Population Dynamics and Quasi-Stationary Distributions. Our aim is to
study the asymptotic behavior of the size (Zt; t ≥ 0) of some isolated biological population.
Since competition for limited resources impedes natural populations with no immigration to
grow indefinitely, they are all doomed to become extinct after some finite time T0. However,
T0 can be large compared to human timescale and it is common that population sizes fluc-
tuate for large amounts of time before extinction actually occurs. This behavior is captured
by the mathematical notion of quasi-stationarity. (See [23] for a regularly updated extensive
bibliography, [24, 27] for a description of the biological meaning, [10, 13, 26] for the Markov
chain case).
Specifically, a quasi-stationary distribution (in short QSD) for Z is a probability measure ν
satisfying

Pν(Zt ∈ A | T0 > t) = ν(A), ∀ Borel set A ⊆ (0,∞). (1.1)

A specific quasi-stationary distribution is defined, if it exists, as the limiting law, as t→∞,
of Zt conditioned on T0 > t, when starting from a fixed population. That is, if the limit

µ(A) = lim
t→∞

Px(Zt ∈ A | T0 > t)

exists and defines a probability distribution, then it is a QSD called quasi-limiting distribu-
tion, or (as we will do here) Yaglom limit.
We will also study the existence of the so-called Q-process which is obtained as the the law of
the process Z conditioned to be never extinct, and it is defined as follows. For any B which
is Fs-measurable, consider

Qx(B) = lim
t→∞

Px(Z ∈ B | T0 > t).

When it exists, this limit procedure defines a diffusion that never reaches 0.

Here, we want to study quasi-stationarity for diffusions that arise as scaling limits of general
birth–death processes. More precisely, let (ZN

t )N be a sequence of birth–death processes
renormalized by the weight N−1, hence taking values in N−1N. Assume that their birth and
death rates from state x are respectively equal to bN (x) and dN (x), and bN (0) = dN (0) = 0,
ensuring that the state 0 is absorbing. We also assume that for each N and for some constant
BN , bN (x) ≤ (x+1)BN , x ≥ 0 and that there exist a non-negative constant γ and a function
h ∈ C1([0,+∞)), h(0) = 0, such that

∀x ∈ (0,+∞) : lim
N→∞

1
N

(bN (x)−dN (x)) = h(x) ; lim
N→∞

1
2N2

(bN (x)+dN (x)) = γ. (1.2)

Assuming further that (ZN
0 )N converges as N →∞ (we thus model the evolution of a popu-

lation whose size is of order N), we may prove, following Lipow [18] or using the techniques
of Joffe-Métivier [15], that the sequence (ZN

t , t ≥ 0) converges weakly to a continuous limit
(Zt, t ≥ 0). The parameter γ can be interpreted as a demographic parameter describing the
ecological timescale. There is a main qualitative difference depending on whether γ = 0 or
not.
If γ = 0, then the limit Z is a deterministic solution to the dynamical system Żt = h(Zt).
Since h(0) = 0, the state 0 is always an equilibrium, but it can be unstable, and in many
usual cases, one can prove the existence of a non-trivial asymptotically stable equilibrium.
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If γ > 0, the sequence (ZN )N converges in law to the process Z, solution to the following
stochastic differential equation

dZt =
√
γZtdBt + h(Zt)dt. (1.3)

The acceleration of the ecological process has generated the noise. The function h thus
models the growth function of the population. Note that h′(0+) is the mean per capita
growth rate for small populations. The fact that it is finite is mathematically convenient,
and biologically reasonable. Since h(0) = 0, the population undergoes no immigration, so
that 0 is an absorbing state. One can easily check that when time goes to infinity, either Z
goes to ∞ or is absorbed at 0.
When h ≡ 0, we get the classical Feller diffusion, so we call generalized Feller diffusions the
diffusions driven by (1.3). Notice that when h is linear, we get the general continuous-state
branching process with continuous paths. When h is quadratic, we get the logistic Feller
diffusion [9, 16].
The latter comes from one of the most simple and familiar biological examples. Indeed,
suppose that bN (x) = (γN+λ)Nx and dN (x) = (γN+µ)Nx+ c

NNx(Nx−1). The quadratic
term in the death rate describes the interaction between individuals. Remark that since the
number of individuals is of order N , the biomass of each individual is of order N−1, which
explains the value c/N of the interaction coefficient. In this case, (ZN )N converges when
γ = 0 to a solution of the famous logistic equation

ż = (λ− µ)z − cz2.

The parameter r = λ − µ describes the intrinsic growth rate of the population. It is easily
checked that when r > 0, this equation has two equilibria, 0 which is unstable, and r/c
(called carrying capacity) which is asymptotically stable. When γ 6= 0, the sequence (ZN )N

converges to the logistic Feller equation

dZt =
√
γZtdBt + (rZt − cZ2

t )dt.

It is easy to see (e.g. by stochastic domination) that the process Z becomes extinct in finite
time, and we will show in Section 7 that the absorption time from infinity has exponential
moments.

Other famous ecological examples concerned by our results are (i) the linear Malthusian case,
where the individual growth rate r is negative and c = 0 (subcritical branching process); (ii)
dynamics governed by an individual growth rate of the form r( z

K0
− 1)(1 − cz

r ), where the
population size has a threshold K0 to growth, below which it cannot take over. Observe that
in this last case, the individual growth rate is no longer a monotonically decreasing function
of the population size k and instead shows an Allee effect, i.e. a positive density-dependence
for certain ranges of density, corresponding to cooperation in natural populations.

1.2. The growth function. As we said, referring to the previous construction of the gen-
eralized Feller diffusion (1.3), h(z) can be viewed as the expected growth rate of a population
of size z and h(z)/z as the mean per capita growth rate. Indeed, h(z) informs of the result-
ing action of density upon the growth of the population, and h(z)/z indicates the resulting
action of density upon each individual. In the range of densities z where h(z)/z increases
with z, the most important interactions are of the cooperative type, one speaks of positive
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density-dependence. On the contrary, when h(z)/z decreases with z, the interactions are of
the competitive type, and density-dependence is said to be negative. In many cases, such as
the logistic one, the limitation of resources forces harsh competition in large populations, so
that, as z → ∞, h(z)/z is negative decreasing, and in particular h(z) goes to −∞ . The
shape of h at infinity determines the long time behavior of the diffusion Z.
Let us examine the case of the continuous-state branching process, where h(z) = rz. In the
subcritical case r < 0 it is shown in [17] that there are infinitely many QSD’s, but no QSD
when r = 0 (critical case). When r > 0 (supercritical case), the Yaglom limit is meaningless,
since the conditioning to be non extinct at time t forces the process to go to infinity as t→∞.
However, the process Z conditioned on extinction is exactly the subcritical branching process
with h(z) = −rz, which allows to study quasi-stationarity of the process, provided it is first
conditioned on its eventual extinction.
Now, let h be a general function. If we assume that there exists h∞ := lim

z→∞
h(z) with

h∞ ∈ [−∞,+∞], we can distinguish three cases, exactly as in the case of the branching
process. If h∞ = −∞, then the process is almost surely absorbed at 0 at a finite time, and
we will be able to prove the existence of the Yaglom limit. We will also show that when 1/h is
integrable at +∞, then the diffusion Z comes down from infinity, and the Yaglom limit is the
unique QSD. If h∞ ∈ (−∞,+∞) the case is critical, and nothing seems to be known about
the existence of any QSD. When h∞ = +∞, then the absorption at 0 is not certain, but
we can go back to the previous case by conditioning the process on its eventual extinction.
Indeed, the following statement ensures that, similarly to the branching case, conditioning
on extinction roughly amounts to replacing h with −h.
Proposition 1.1. Assume that Z is given by (1.3), where h ∈ C1([0,+∞)), h(0) = 0,
limx→∞ h(x) = +∞ and h satisfies the technical assumption limx→∞ xh′(x)h(x)−2 = 0. De-
fine u(x) := Px( lim

t→∞
Zt = 0) and let Y be the diffusion Z conditioned on eventual extinction.

Then Y is given by

dYt =
√
γYtdBt +

(
h(Yt) + γYt

u′(Yt)
u(Yt)

)
dt.

In addition

h(y) + γy
u′(y)
u(y)

∼y→∞ −h(y).

The proof of this result is postponed to the appendix.

From now on, we make the following assumptions on h.

Definition 1.2. (HH) We say that h verifies the condition (HH) if

(i) lim
x→∞

h(x)√
x

= −∞, (ii) lim
x→∞

xh′(x)
h(x)2

= 0.

In particular (HH) holds for any subcritical branching diffusion, and any logistic Feller dif-
fusion. Concerning Assumption (i), the fact that h goes to −∞ indicates strong competition
in large populations resulting in negative growth rates (as in the logistic case). On the other
hand, in the spirit of the previous discussion, (i) can be turned into limx→∞

h(x)√
x

= ±∞,
provided that the population is conditioned to eventually become extinct. Assumption (ii) is
fulfilled for most classical biological models, and it appears as a mere technical condition.

4



We may state one of the main results of this work.

Theorem 1.3. Let Z be the solution of (1.3). If h satisfies Assumption (HH), then for all
initial laws with bounded support, the law of Zt conditioned on {Zt 6= 0} converges exponen-
tially fast to a probability measure ν, called the Yaglom limit.
The law Qx of the process Z starting from x and conditioned to be never extinct exists and
defines the so-called Q-process. This process converges, as t → ∞, in distribution, to its
unique invariant probability measure. This probability measure is absolutely continuous w.r.t.
ν with a nondecreasing Radon-Nikodym derivative.
If in addition, the following integrability condition is satisfied∫ ∞

1

dx

−h(x)
<∞,

then Z comes down from infinity and the convergence of the conditional one-dimensional
distributions holds for all initial laws, so that the Yaglom limit ν is the unique quasi-stationary
distribution.

1.3. Outline. Starting from (1.3), the change of variable x = 2
√
z/γ yields a new diffusion

process X of Kolmogorov type, that is a drifted Brownian motion. Of course the study of
QSD for the initial Z reduces to the study of QSD for X up to a change of variable in the
corresponding QSD’s.
For such Kolmogorov diffusions, the study of QSD is a long standing problem starting with
Mandl’s paper [20] in 1961, and developed by many authors (see in particular [5, 21, 28]). All
these works assume Mandl’s conditions. Mandl’s conditions are not satisfied in the situation
described above, since in particular the drift of X behaves like −1/2x near 0. For instance
in the logistic case the drift is given by −q(x) where

q(x) =
1
2x

− rx

2
+
cγx3

8
.

It is worth noticing that the behavior of q at infinity also violates Mandl’s conditions, since
1/q is integrable at +∞.
This unusual behavior is due to the square root in the diffusive term in (1.3), and prevents
us from using earlier results on QSD’s of solutions of Kolmogorov equation. Hence we are
led to develop new techniques allowing to cope with this situation.
In Section 2 we start with the study of a general Kolmogorov diffusion process on the half
line and introduce the hypothesis (H1) which is equivalent to reaching 0 in finite time with
probability 1. Then we introduce its symmetric measure µ, describe the Girsanov transform
and show how to use it in order to obtain L2(dµ) estimates for the heat kernel. In the present
paper we work in Lp(dµ) spaces rather than Lp(dx), because it simplifies the presentation of
the spectral theory.
This spectral theory is done in Section 3, where we introduce the hypothesis (H2) ensuring
the discreteness of the spectrum.
Section 4 gives some sharper properties on the eigenfunctions defined in the previous section,
using in particular properties of the Dirichlet heat kernel. Either of hypotheses (H3) or (H4)
ensures that the eigenfunctions belong to L1(dµ).
Section 5 contains the proofs of the existence of the Yaglom limit as well as the exponential
decay to equilibrium, under hypotheses (H1) and (H2), along with (H3) or (H4).

5



In Section 7 we introduce condition (H5) which is equivalent to the existence of an entrance
law at +∞. Condition (H5) is satisfied for the biological model as soon as

∫ +∞−1/h < +∞.
Under (H5), the repelling force at infinity imposes to the process starting from infinity to
reach any finite interval in finite time. The process is then said to ‘come down from infinity’.
We show that the process comes down from infinity if and only if the Yaglom limit is the
conditional limit distribution starting from any initial law. It is then the unique QSD. We
do not know if this relationship between uniqueness of QSD’s and return from +∞ has been
noticed in any previous study.
Appendix A is devoted to the proofs of Proposition 1.1 and Theorem 1.3. Appendix B
contains the proof of a intermediate technical lemma.

2. One dimensional diffusion processes on the positive half line.

We consider a one dimensional drifted Brownian motion on (0,+∞)

dXt = dBt − q(Xt) dt , X0 = x > 0 (2.1)

where q is defined and C1 on (0,+∞). In particular q is allowed to explode at the origin. A
pathwise unique solution of (2.1) thus exists up to the explosion time τ = T0 ∧ T+∞ where
Ty is the first time the process hits y. The law of the process starting from x will be denoted
by Px. In the sequel, we shall often make an abuse of notation, writing X. instead of ω. for
the canonical path.
Define

Q(x) =
∫ x

1
2q(u)du , (2.2)

Λ(x) =
∫ x

1
eQ(y) dy and κ(x) =

∫ x

1
eQ(y)

(∫ y

1
e−Q(z) dz

)
dy . (2.3)

We shall from now on assume
Hypothesis (H1):

for all x > 0 , Px(τ = T0 < +∞) = 1 . (2.4)
It is well known (see e.g. [14] Theorem 3.2 p.450) that (2.4) holds if and only if

Λ(+∞) = +∞ and κ(0+) < +∞ . (2.5)

Example 2.1. The main cases that we are interested in are the following ones.

(1) Consider the generalized Feller diffusion defined in (1.3)

dZt =
√
γZt dBt + h(Zt)dt , Z0 = z > 0 .

with h(0) ≥ 0. If we define Xt = 2
√
Zt/γ then

dXt = dBt +
1
Xt

(
2
γ
h

(
γX2

t

4

)
− 1

2

)
dt , X0 = x = 2

√
z/γ > 0 ,

so that X. is a drifted Brownian motion as before. Of particular interest is the case
when h vanishes at the origin. In this case, Q(x) behaves like log(x) near 0 hence
κ(0+) < +∞. Notice that if z = 0, Zt = 0 for all t is then the unique solution of
(1.3) (see [14]), so that as soon as the diffusion reaches 0 it stays at 0.
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The logistic Feller diffusion corresponds to h(z) = rz − cz2 for some constants c
and r, hence to

q(x) =
1
2x

− rx

2
+
cγx3

8
.

It is easily seen that (2.5) is satisfied in this case provided c > 0 or c = 0 and r < 0.

Conversely, starting with (2.1), define Zt = X2
t . It holds

dZt = 2
√
Zt dBt + h(Zt) dt

where
h(z) = 1− 2

√
zq(

√
z) .

Hence h(0) = 0 if and only if limz→0 zq(z) = 1/2. ♦

(2) limx→0+ q(x) exists and is finite, hence κ(0+) < +∞.

We shall now discuss some properties of the law of X. up to T0. The first result is a Girsanov
type result.

Proposition 2.2. Assume (H1). For any Borel bounded function F defined on Ω = C0([0, t], (0,+∞))
it holds

Ex

[
F (ω) 1It<T0(ω)

]
= EWx

[
F (ω) 1It<T0(ω) exp

(
1
2
Q(x)− 1

2
Q(ωt)−

1
2

∫ t

0
(q2 − q′)(ωs)ds

)]
where EWx denotes the expectation w.r.t. the Wiener measure starting from x.

Proof. It is enough to show the result for F non-negative and bounded. Let ε ∈ (0, 1) and
τε = Tε ∧ T1/ε. Choose some ψε which is a non-negative C∞ function with compact support
included in ]ε/2, 2/ε[ such that ψε(u) = 1 if ε ≤ u ≤ 1/ε. For all x such that ε ≤ x ≤ 1/ε
the law of the diffusion (2.1) coincides up to τε with the law of a similar diffusion process
Xε obtained by replacing q with the cutoff qε = qψε. For the latter we may apply Novikov
criterion ensuring that the law of Xε is given via Girsanov formula. Hence

Ex

[
F (ω) 1It<τε(ω)

]
= EWx

[
F (ω) 1It<τε(ω) exp

(∫ t

0
−qε(ωs)dωs −

1
2

∫ t

0
(qε)2(ωs)ds

)]
= EWx

[
F (ω) 1It<τε(ω) exp

(∫ t

0
−q(ωs)dωs −

1
2

∫ t

0
q2(ωs)ds

)]
= EWx

[
F (ω) 1It<τε(ω) exp

(
1
2
Q(x)− 1

2
Q(ωt)−

1
2

∫ t

0
(q2 − q′)(ωs)ds

)]
integrating by parts the stochastic integral. But 1It<τε is non-decreasing in ε and converges
almost surely to 1It<T0 both for Px (thanks to (H1)) and Wx. Indeed, almost surely,

lim
ε→0

Xτε = lim
ε→0

XTε = lim
ε→0

ε = 0

so that limε→0 Tε ≥ T0. But Tε ≤ T0 yielding the equality. It remains to use Lebesgue
monotone convergence theorem to finish the proof. �
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The next theorem is inspired by the calculation in Theorem 3.2.7 of [25]. It will be useful to
introduce the following measure defined on (0,+∞)

µ(dy) = e−Q(y) dy . (2.6)

It is a non-negative but non necessarily bounded measure.

Theorem 2.3. Assume (H1). For all x > 0 and all t > 0 there exists some density r(t, x, .)
that verifies

Ex[f(Xt) 1It<T0 ] =
∫ +∞

0
f(y) r(t, x, y)µ(dy)

for all bounded Borel f .
If in addition there exists some C > 0 such that q2(y) − q′(y) ≥ −C for all y > 0, then for
all t > 0 and all x > 0, ∫ +∞

0
r2(t, x, y)µ(dy) ≤ (1/2πt)

1
2 eCt eQ(x) .

Proof. Define

G(ω) = 1It<T0(ω) exp
(

1
2
Q(ω0)−

1
2
Q(ωt)−

1
2

∫ t

0
(q2 − q′)(ωs)ds

)
.

Denote by

e−v(t,x,y) = (2πt)−
1
2 exp

(
−(x− y)2

2t

)
the density at time t of the Brownian motion starting from x. According to Proposition 2.2
we have

Ex[f(Xt) 1It<T0 ] = EWx [f(ωt)EWx [G|ωt]]

=
∫

f(y) EWx [G|ωt = y] e−v(t,x,y) dy

=
∫ +∞

0
f(y) EWx [G|ωt = y] e−v(t,x,y)+Q(y) µ(dy) ,

because EWx [G|ωt = y] = 0 if y ≤ 0. In other words, the law of Xt restricted to non extinction
has a density with respect to µ given by

r(t, x, y) = EWx [G|ωt = y] e−v(t,x,y)+Q(y) .

Hence∫ +∞

0
r2(t, x, y)µ(dy) =

∫ (
EWx [G|ωt = y] e−v(t,x,y)+Q(y)

)2
e−Q(y)+v(t,x,y) e−v(t,x,y) dy

= EWx

[
e−v(t,x,ωt)+Q(ωt)

(
EWx [G|ωt]

)2
]

≤ EWx

[
e−v(t,x,ωt)+Q(ωt) EWx [G2|ωt]

]
≤ eQ(x) EWx

[
1It<T0(ω) e

−v(t,x,ωt) e−
R t
0 (q2−q′)(ωs)ds

]
,

where we have used Cauchy-Schwarz’s inequality. Since e−v(t,x,.) ≤ (1/2πt)
1
2 the proof is

completed. �
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Remark 2.4. It is interesting to discuss a little bit the conditions we have introduced.

(1) Since q is assumed to be regular, the condition q2− q′ bounded from below has to be
checked near +∞ or near 0.

(2) Consider the behavior near +∞. Let us show that if lim infy→+∞(q2(y)− q′(y)) =
−∞ then lim supy→+∞(q2(y) − q′(y)) > −∞ i.e. the drift q is strongly oscillating.
Indeed, assume that q2(y) − q′(y) → −∞ as y → +∞. It follows that q′(y) → +∞,
hence q(y) → +∞. For y large enough we may thus write q(y) = eu(y) for some u
going to infinity at infinity. So e2u(y)(1−u′(y)e−u(y)) → −∞ implying that u′e−u ≥ 1
near infinity. Thus if g = e−u we have g′ ≤ −1 i.e. g(y) → −∞ as y → +∞ which is
impossible since g is non-negative.

(3) If X comes from a generalized Feller diffusion, we have

q(y) =
1
y

(
1
2
− 2
γ
h

(
γy2

4

))
.

Hence, since h is of class C1, and under the absorption assumption h(0) = 0, q2(y)−
q′(y) behaves near 0 like 3/4y2 so that q2 − q′ is bounded from below near 0 (see
Appendix for further conditions fulfilled by h to get the same result near ∞). ♦

3. L2 and spectral theory of the diffusion process.

Theorem 2.3 shows that for a large family of initial laws, the law of Xt before extinction has
a density belonging to L2(µ). This measure µ is natural since the kernel of the killed process
is symmetric in L2(µ), which allow us to use spectral theory.
Let C∞

0 ((0,+∞)) be the vector space of infinitely differentiable functions on (0,+∞) with
compact support. We denote

〈f, g〉µ =
∫ +∞

0
f(u)g(u)µ(du) .

Consider the symmetric form

E(f, g) = 〈f ′, g′〉µ , D(E) = C∞
0 ((0,+∞)). (3.1)

This form is Markovian and closable. The proof of the latter assertion is similar to the one of
Theorem 2.1.4 in [11] just replacing the real line by the positive half line. Its smallest closed
extension, again denoted by E , is thus a Dirichlet form which is actually regular and local.
According to the theory of Dirichlet forms (see [11] or [12]) we thus know that

• there exists a non-positive self adjoint operator L on L2(µ) with domain D(L) such
that for all f and g in C∞

0 ((0,+∞)) the following holds (see [11] Theorem 1.3.1)

E(f, g) = − 2
∫ +∞

0
f(u)Lg(u)µ(du) = − 2 〈f, Lg〉µ . (3.2)

We point out that for g ∈ C∞
0 ((0,+∞)),

Lg =
1
2
g′′ − qg′.
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• L is the generator of a strongly continuous symmetric semi-group of contractions
on L2(µ) denoted by (Pt)t≥0. This semi-group is (sub)-Markovian, i.e. 0 ≤ Ptf ≤ 1
µ a.e. if 0 ≤ f ≤ 1. (see [11] Theorem 1.4.1)

• There exists a unique µ-symmetric Hunt process with continuous sample paths (i.e.
a diffusion process) up to its explosion time τ whose Dirichlet form is E . (see [11]
Theorem 6.2.2)

The last assertion in particular implies that for µ quasi-all x > 0 one can find a probability
measure Qx on C0(R+, (0,+∞)) such that for all f ∈ C∞

0 ((0,+∞)),

f(ωt∧τ )− f(x)−
∫ t∧τ

0
Lf(ωs)ds

is a local martingale with quadratic variation
∫ t∧τ
0 |f ′|2(ωs)ds. Due to our hypotheses we

know that this martingale problem admits a unique solution given by Px.

In other words, the semi-group Ptf(x) = E[f(Xx
t ) 1It<T0 ] defined for all smooth and compactly

supported f , Xx being the solution of (2.1) starting from x, extends to a symmetric sub-
Markovian semi-group of contractions on L2(µ).

Let (Eλ : λ ≥ 0) be the spectral family of −L. We can restrict to λ ≥ 0 because −L is
non-negative. Then ∀ t ≥ 0, f, g ∈ L2(µ),∫

Ptf g dµ =
∫ +∞

0
e−λt d〈Eλf, g〉µ , (3.3)

see e.g. [11] p.16 for the definitions.
Note that for f ∈ L2(µ) and all closed interval K ∈ (0,+∞),∫

(Ptf)2dµ =
∫

(Pt(f1IK + f1IKc))2dµ

≤ 2
∫

(Pt(f1IK))2dµ+ 2
∫

(Pt(f1IKc))2dµ

≤ 2
∫

(Pt(f1IK))2dµ+ 2
∫

(f1IKc)2dµ .

We may choose K large enough in order that the second term in the latter sum is bounded
by ε. Similarly we may approximate f1IK in L2(µ) by f̃1IK for some continuous and bounded
f̃ , up to ε (uniformly in t). Now, thanks to (H1), that is Px( lim

t→∞
Xt = 0) = 1, we know that

Pt(f̃1IK)(x) goes to 0 as t goes to infinity for any x. Since∫
(Pt(f̃1IK))2dµ =

∫
K
f̃ P2t(f̃1IK) dµ ,

we may apply Lebesgue bounded convergence theorem and conclude that
∫

(Pt(f̃1IK))2dµ→ 0
as t→ +∞. Hence, we have shown that,

for any f ∈ L2(µ),
∫

(Ptf)2dµ → 0 as t → +∞ . (3.4)

Now we shall introduce the main assumption for the spectral aspect of the study.
10



Definition 3.1. (H2) We say that hypothesis (H2) holds if infy>0 q
2(y) − q′(y) = −C

0 < C < +∞ and if in addition

lim
y→+∞

q2(y)− q′(y) = +∞ . (3.5)

Proposition 3.2. If (H2) holds then |q(x)| tends to infinity as x grows to infinity, and
q−(x) = (−q(x)) ∨ 0 or q+(x) = q(x) ∨ 0 tend to 0 as x ↓ 0. Moreover if (H1) holds then
q(x) → +∞, as x→ +∞.

Proof. Since q2− q′ tends to +∞, as x→ +∞, q does not change sign for large x. Indeed, if
q is bounded near infinity, we arrive at a contradiction because q′ tends to −∞ and therefore
q tends to −∞ as well. So we may assume that q is unbounded and has constant sign for
large x. If lim inf

x→∞
|q(x)| = a <∞ then we can construct a sequence xn →∞ of local maxima,

or local minima of q whose value |q(xn)| < a + 1, but then q2(xn) − q′(xn) stays bounded,
which is a contradiction.
Now we prove that q−(x) or q+(x) tend to 0 as x ↓ 0. In fact, assume there exist ε > 0
and a sequence xn ↓ 0 such that q(x2n) = −ε, q(x2n+1) = ε. Then we can construct another
sequence zn ↓ 0 such that |q(zn)| ≤ ε and q′(zn) →∞, contradicting (H2).
Finally, assume (H1) and assume q(x) ≤ −1 for all x > x0. Then for all t

Px0+1(T0 > t) ≥ Px0+1(Tx0 > t) ≥ Px0+1(Tx0 = ∞) ≥ 1− e−2,

where the last quantity comes from the Brownian motion with constant drift 1. This contra-
dicts (H1), and therefore under (H2) we have q(x) → +∞ as x→ +∞. �

We may now state

Theorem 3.3. If (H2) is satisfied, −L has a purely discrete spectrum 0 ≤ λ1 < λ2 < ....
Furthermore each λi is associated to a unique (up to a multiplicative constant) eigenfunction
ηi of class C2((0,∞)) and they satisfy the ODE

1
2
η′′i − qη′i = −λiηi. (3.6)

(ηk)k≥1 is an orthonormal basis of L2(µ), η1 can be chosen nonnegative and if so this
eigenfunction is strictly positive in (0,∞).
For g ∈ L2(dµ),

Ptg =
∑

k

e−λkt〈ηk, g〉µηk, in L2(dµ),

and then for f, g ∈ L2(dµ),

lim
t→+∞

eλ1t〈g, Ptf〉µ = 〈η1, f〉µ 〈η1, g〉µ .

If in addition (H1) holds then λ1 > 0.

Proof. For f ∈ L2(dx) define P̃t(f) = e−Q/2Pt(f eQ/2) which exists since f eQ/2 ∈ L2(dµ).
(P̃t)t≥0 is then a strongly continuous semi-group in L2(dx), whose generator L̃ coincides on
C∞

0 ((0,+∞)) with 1
2 d

2/dx2− 1
2 (q2−q′). The spectral theory of such a Schrödinger operator

on the line (or the half line) is well known, but here the potential v = (q2 − q′)/2 does not
necessarily belong to L∞loc near 0 as it is generally assumed. We shall use [3] chapter 2.

11



First we follow the proof of Theorem 3.1 in [3]. Since we have assumed that v is bounded
from below by −C, we may consider H = L̃− (C + 1), i.e. replace v by v + C + 1 = w ≥ 1,
hence translate the spectrum. But since

−(Hf, f) = −
∫ +∞

0
Hf(u) f(u) du =

∫ +∞

0

(
|f ′(u)|2/2 + w(u)f2(u)

)
du ≥ (f, f) , (3.7)

H has a bounded inverse operator. Hence the spectrum of H (hence of L̃) will be discrete
as soon as H−1 is a compact operator, i.e. as soon as M = {f ∈ D(H) ; −(Hf, f) ≤ 1} is
relatively compact. But this is shown in [3] when w is locally bounded, in particular bounded
near 0. If w goes to infinity at 0, the situation is even better since our set M is included
into the corresponding one with w ≈ 1 near the origin, which is relatively compact thanks to
the asymptotic behavior of v. The conclusion of Theorem 3.1 in [3] is thus still true in our
situation, i.e. the spectrum is discrete.
But the discussion in Section 2.3 of [3] pp.59-69 is only concerned with the asymptotic
behavior (near infinity) of the solutions of f ′′ − 2wf = 0, hence all the discussion applies
to our case. All eigenvalues are thus simple (Proposition 3.3 in [3]), and of course the
corresponding set of eigenfunctions (ψk)k≥1 is an orthonormal basis of L2(dx).
The system (eQ/2 ψk)k≥1 is thus an orthonormal basis of L2(dµ), each ηk = eQ/2 ψk being an
eigenfunction of L. We can choose them to be C2((0,∞)) and they satisfy (3.6).
For every t > 0, and for every g, f ∈ L2(dµ) we have

∞∑
k=1

e−λkt〈ηk, g〉µ〈ηk, f〉µ = 〈g, Ptf〉µ =
∫ ∫

g(x)f(y)r(t, x, y)e−Q(x)−Q(y)dxdy.

In addition if g and f are nonnegative we get

0 ≤ lim
t→+∞

eλ1t〈g, Ptf〉µ = 〈η1, f〉µ 〈η1, g〉µ .

It follows that 〈η1, f〉µ and 〈η1, g〉µ have the same sign. Changing η1 into −η1 if necessary,
we may assume that 〈η1, f〉µ ≥ 0 for any non-negative f , hence η1 ≥ 0. Since Ptη1(x) =
e−λ1tη1(x) and η1 is continuous and not trivial, we deduce that η1(x) > 0 for all x > 0.
Since L is non-positive, λ1 ≥ 0. Now assume that (H1) holds. If g ∈ L2(dµ) then g =∑

k 〈g, ηk〉µ ηk. Hence

lim
t→+∞

〈Ptg, Ptg〉µ = lim
t→+∞

e−2λ1t〈g, η1〉2µ = 0

thanks to (3.4) showing that λ1 > 0. �

We are moreover able to obtain a pointwise representation of the density r.

Proposition 3.4. Uniformly on compact sets of (0,∞)× (0,∞)× (0,∞), we have

r(t, x, y) =
∞∑

k=1

e−λktηk(x)ηk(y). (3.8)

Therefore on compact sets of (0,∞)× (0,∞) we have

lim
t→∞

eλ1tr(t, x, y) = η1(x)η1(y). (3.9)

12



Proof. For every smooth function g compactly supported on (0,∞) we have

n∑
k=1

e−λkt〈ηk, g〉2µ ≤
∞∑

k=1

e−λkt〈ηk, g〉2µ =
∫ ∫

g(x)g(y)r(t, x, y)e−Q(x)−Q(y)dxdy.

Then using the regularity of ηk and r we obtain

n∑
k=1

e−λktηk(x)2 ≤ r(t, x, x).

We also have that the series
∞∑

k=1

e−λktηk(x)2 converges pointwise, which by Cauchy Schwarz

implies the pointwise absolute convergence of ζ(t, x, y) :=
∞∑

k=1

e−λktηk(x)ηk(y) and the bound

for all n
n∑

k=1

e−λkt|ηk(x)ηk(y)| ≤
√
r(t, x, x)

√
r(t, y, y).

Using Harnack inequality, compactness and the dominated convergence Theorem we obtain
that for all Borel functions g, f with compact support in (0,∞)∫ ∫

g(x)f(y)ζ(t, x, y)e−Q(x)−Q(y)dxdy =
∫ ∫

g(x)f(y)r(t, x, y)e−Q(x)−Q(y)dxdy.

Therefore ζ(t, x, y) = r(t, x, y) dxdy-a.s., which proves the almost sure version of (3.8).

On the other hand, since ηk are smooth eigenfunctions we get the pointwise equality

e−λktηk(x)2 =
∫ ∫

r(t/3, x, y)r(t/3, x, z)e−λkt/3ηk(y)ηk(z)e−Q(z)−Q(y)dydz

= e−λkt/3〈r(t/3, x, •), ηk〉µ〈r(t/3, x, •), ηk〉µ

which together with the fact r(t/3, x, •) ∈ L2(dµ) allow us to deduce∑∞
k=1 e

−λktηk(x)2 =
∫ ∫

r(t/3, x, y)r(t/3, x, z)
∑∞

k=1 e
−λkt/3ηk(y)ηk(z)e−Q(z)−Q(y)dydz

=
∫ ∫

r(t/3, x, y)r(t/3, x, z)r(t/3, y, z)e−Q(z)−Q(y)dydz = r(t, x, x).

Dini’s theorem then proves the uniform convergence in compacts of (0,∞) for the series

∞∑
k=1

e−λktηk(x)2 = r(t, x, x),

and (3.8) follows, which together with the dominated convergence Theorem yields (3.9).

�

In the previous theorem, notice that
∑

k e
−λkt =

∫
r(t, x, x)e−Q(x)dx is the L1(dµ) norm of

r(t, x, x). This is finite if and only if Pt is Hilbert-Schmidt.
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4. Properties of the eigenfunctions

In this section, we study some properties of the eigenfunctions ηi, including their integrability
with respect to µ.

Proposition 4.1. Assume that (H1) and (H2) are satisfied. Then
∫∞
1 η1e

−Qdx <∞, F (x) =
η′1(x)e

−Q(x) is a nonnegative decreasing function and the following limits exist

F (0+) = lim
x↓0

η′1(x)e
−Q(x) ∈ (0,∞], F (∞) = lim

x→∞
η′1(x)e

−Q(x) ∈ [0,∞).

Moreover
∞∫
0

η1(x)e−Q(x)dx = F (0+)−F (∞)
2λ1

. In particular

η1 ∈ L1(dµ) if and only if F (0+) <∞.

Note that g = η1e
−Q satisfies the adjoint equation 1

2g
′′ + (qg)′ = −λ1g, and then F (x) =

g′(x) + 2q(x)g(x) represents the flux at x. Then η1 ∈ L1(dµ) or equivalently g ∈ L1(dx) if
and only if the flux at 0 is finite.

Proof. Since η1 satisfies η′′1(x)− 2qη′1(x) = −2λ1η1(x), x ∈ (0,∞), we obtain

η′1(x)e
−Q(x) = η′1(x0)e−Q(x0) − 2λ1

∫ x

x0

η1(y)e−Q(y)dy, (4.1)

and F = η′1e
−Q is decreasing. Integrating further gives

η1(x) = η1(x0) +
∫ x

x0

(
η′1(x0)e−Q(x0) − 2λ1

∫ z

x0

η1(y)e−Q(y)dy

)
eQ(z)dz.

If for some z0 > x0 it holds that η′1(x0)e−Q(x0)−2λ1

∫ z0

x0
η1(y)e−Q(y)dy < 0, then this inequal-

ity holds for all z > z0 which implies that for large x the function η1 is negative, because
eQ(z) tends to ∞ as z →∞. This is a contradiction and we deduce that for all x > 0

2λ1

∫ ∞

x
η1(y)e−Q(y)dy ≤ η′1(x)e

−Q(x).

This implies that η1 is increasing and, being nonnegative, it is bounded near 0. Moreover
η1(0+) exists. We can take the limit as x→∞ in (4.1) to get

F (∞) = lim
x→∞

η′1(x)e
−Q(x) ∈ [0,∞),

and η′1(x0)e−Q(x0) = F (∞) + 2λ1

∫∞
x0
η1(y)e−Q(y)dy. From this the result follows.

�

We give some sufficient conditions, in terms of q, for the integrability of the eigenfunctions
in the next results.

Proposition 4.2. Assume that (H1) and (H2) are satisfied. Let c be defined as −C =
inf
x>0

(q2(x)− q′(x)). Assume in addition that the following hypothesis is satisfied

Hypothesis (H3):∫ +∞

1
e−Q(y)dy < +∞ and

∫ 1

0

1
q2(y)− q′(y) + C + 1

µ(dy) < +∞ .

Then ηi belongs to L1(dµ) for all i.
14



Proof. Recall that ψi = e−Q/2ηi is an eigenfunction of the Schrödinger operator H introduced
in the proof of Theorem 3.3. Replacing f by ψi in (3.7) thus yields

(C + 1 + λi)
∫ +∞

0
ψ2

i (y)dy =
∫ +∞

0
(|ψ′i|2(y)/2 + w(y)ψ2

i (y))dy .

Since the left hand side is finite, the right hand side is finite, in particular∫ +∞

0
w(y)η2

i (y)µ(dy) =
∫ +∞

0
w(y)ψ2

i (y)dy < +∞ .

As a consequence, using Cauchy-Schwarz inequality we get on one hand∫ 1

0
|ηi(y)|µ(dy) ≤

(∫ 1

0
w(y) η2

i (y)µ(dy)
) 1

2
(∫ 1

0

1
w(y)

µ(dy)
) 1

2

< +∞

thanks to (H3). On the other hand∫ +∞

1
|ηi(y)|µ(dy) ≤

(∫ +∞

1
η2

i (y)µ(dy)
) 1

2
(∫ +∞

1
µ(dy)

) 1
2

< +∞

according to (H3). We have thus proved that ηi ∈ L1(dµ). �

We now obtain sharper estimates using properties of the Dirichlet heat kernel.

Proposition 4.3. Assume (H2) holds and that the function Q satisfies
Hypothesis (H4): ∫ ∞

1
e−Q(x)dx <∞ and

∫ 1

0
x e−Q(x)/2dx <∞.

Then all eigenfunctions ηk belong to L1(dµ), and satisfy a bound

|ηk| ≤ K1 e
λk e

Q
2

for some constant K1 independent of k. Moreover η1 is strictly positive on R+, and there is
a constant K2 > 0 such that for any x ∈ (0, 1] and any k

|ηk(x)| ≤ K2 x e
2λk e

Q(x)
2 .

Proof. In Section 3, we introduced the semigroup P̃t associated with the Schrödinger equa-
tion, and showed that ηk = e

Q
2 ψk, where ψk is the unique eigenfunction related to the

eigenvalue λk for P̃t. Using estimates on this semigroup, we will get some properties of ψk,
and will deduce the theorem.
The semigroup P̃t is given for f ∈ L2

(
R+, dx

)
by

P̃tf(x) = EWx

[
f(ω(t)) 1It<T0 exp

(
− 1

2

∫ t

0
(q2 − q′)(ωs)ds

)]
.

We first establish a basic estimate on its kernel p̃t(x, y).

Lemma 4.4. Assume condition (H2) holds. There exists a constant K > 0 and a continuous
function B defined on R+, bounded below and satisfying limz→∞B(z) = ∞ such that for any
x > 0, y > 0 we have

0 < p̃1(x, y) ≤ e−(x−y)2/4e−B(max{x,y}) . (4.2)
15



and
p̃1(x, y) ≤ K pD

1 (x, y) , (4.3)
where pD

t is the Dirichlet heat semigroup in R+ given for x, y ∈ R+ by

pD
t (x, y) =

1√
2πt

(
e
−(x−y)2

2t − e
−(x+y)2

2t

)
.

The proof of this lemma is postponed to the Appendix.

It follows immediately from Lemma 4.4 that the kernel p̃1(x, y) defines a bounded operator
from L2

(
R+, dx

)
to L∞

(
R+, dx

)
. As a byproduct, we get that all eigenfunctions ψk of P̃ are

bounded, and more precisely
|ψk| ≤ K1 e

λk .

One also deduces from the previous lemma that the kernel defined for M > 0 by

p̃M
1 (x, y) = 1Ix<M1Iy<M p̃1(x, y)

is Hilbert-Schmidt. In addition, it follows at once again from Lemma 4.4 that if P̃M
1 denotes

the operator with kernel p̃M
1 , we have∥∥P̃M

1 − P̃1

∥∥ ≤ Ce−B(M)

where C is a positive constant independent of M . Since limM→∞B(M) = ∞, the operator
P̃1 is a limit in norm of compact operators and hence compact. Since p̃1(x, y) > 0, the
operator P̃1 is positivity improving and it follows that the eigenvector ψ1 is positive (see [7]).
We now show that |ψk(x)| ≤ K2 x e

λk for 0 < x ≤ 1. We have from Lemma 4.4 and the
explicit expression for pD

1 (x, y) that∣∣∣e−λkψk(x)
∣∣∣ ≤ C

∫ ∞

0
pD
1 (x, y) |ψk(y)| dy ≤ C‖ψk‖∞

√
2
π
e−x2/2

∫ ∞

0
e−y2/2 sinh(xy) dy .

We now estimate the integral in the right hand side as follows.∫ ∞

0
e−y2/2 sinh(xy) dy ≤

∫ 1/x

0
e−y2/2 sinh(xy) dy +

∫ ∞

1/x
e−y2/2 sinh(xy) dy

≤ x cosh(1)
∫ 1/x

0
y e−y2/2 dy + e−1/(4x2)

∫ ∞

1/x
e−y2/4 sinh(xy) dy

≤ x cosh(1) + x−1 e−1/(4x2)

∫ ∞

1
e−z2/(4x2) sinh(z) dz

which is obviously O(x) for 0 < x < 1.

Since
ηk(x) = ψk(x) eQ(x)/2,

the results stated in Theorem 4.3 follow immediately from the previous bounds and Assump-
tions (H4), using Cauchy-Schwarz’s inequality. �

Remark 4.5. (1) If q extends continuously up to 0, hypotheses (H2), (H3) and (H4)
reduce to their counterpart at infinity.
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(2) Consider q(x) = a
x + g(x) with g a C1 function up to 0 and a > −1

2 , for (2.5) at
the origin to hold. Recall that a = 1

2 if X comes from a generalized Feller diffusion.
Then µ(dx) = Kx−2adx near the origin, while q2(x)− q′(x) ≈ (a+ a2)/x2. Hence for
(H3) to hold, we need a ≥ 0. Then∫ ε

0
1/(q2(x)− q′(x) + c+ 1)µ(dx) ≈

∫ ε

0
Kx2(1−a)dx ,

and ∫ ε

0
xe

−Q(x)
2 dx ≈

∫ ε

0
Kx(1−a)dx ,

so that at the origin, (H3) holds for a < 3
2 and (H4) holds for a < 2. ♦

(3) If q(x) ≥ 0 for x large, hypothesis (H2) implies the first part of hypotheses (H3) and
(H4). Indeed, let y = e−Q/2, this function satisfies y′ = −qy and y′′ = (q2− q′)y. Let
a > 0 be such that for any x ≥ a we have q(x) > 0 and q2(x)− q′(x) > 1 (from (H2)).
For b > a we get after integration by parts

0 =
∫ b

a

(
(q2 − q′)y2 − yy′′

)
dx =

∫ b

a

(
(q2 − q′)y2 + y′

2
)
dx− y(b)y′(b) + y(a)y′(a) .

Using y′ = −qy we obtain∫ b

a
y2dx ≤

∫ b

a

(
(q2 − q′)y2 + y′

2
)
dx = q(a)y(a)2 − q(b)y(b)2 ≤ q(a)y(a)2 < +∞

and the result follows by letting b tend to infinity.

5. Quasi-stationary distribution and Yaglom limit.

Existence of the Yaglom limit and of QSD for killed one-dimensional diffusion processes have
already been proved by various authors, following the pioneering work by Mandl [20] (see
e.g. [5, 21, 28] and references therein). One of the main assumptions in these works is
κ(+∞) = +∞ and ∫ ∞

1
e−Q(y)

(∫ y

1
eQ(z) dz

)
dy = +∞

which is not necessarily satisfied in our case. Indeed, under mild conditions, Laplace method
yields that

∫ y
1 eQ(z) dz behaves like eQ(y)/2q(y) at infinity, so the above equality will not hold

if q grows too fast to infinity at infinity. Actually, we will be particularly interested in these
cases (our forthcoming assumption (H5)), since they are exactly those when the diffusion
“comes down from infinity”, which ensures uniqueness of the QSD. The second assumption
therein is that q is C1 up to the origin which is not true in our case of interest.
We first introduce (H)

Definition 5.1. Hypothesis (H):
We say that condition (H) is verified if (H1) and (H2) hold, and moreover η1 ∈ L1(dµ)
(which is the case for example under (H3) or (H4)).

We now study the existence of QSD and Yaglom limit in our framework. When η1 ∈ L1(dµ),
a natural candidate for being a QSD is the normalized measure η1µ/〈η1, 1〉µ, which turns to
be the conditional limit distribution.
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Theorem 5.2. Assume that hypothesis (H) holds. Then dν1 = η1dµ/
∫ +∞
0 η1(y)µ(dy) is a

quasi-stationary distribution, namely for every t ≥ 0 and any Borel subset A of (0,+∞),

Pν1(Xt ∈ A |T0 > t) = ν1(A) .

Also for any x > 0 and any Borel subset A of (0,+∞),

lim
t→+∞

eλ1t Px(T0 > t) = η1(x) , (5.1)

lim
t→+∞

eλ1t Px(Xt ∈ A , T0 > t) = ν1(A) η1(x) .

This implies immediately

lim
t→+∞

Px(Xt ∈ A |T0 > t) = ν1(A) ,

and the probability measure ν1 is the Yaglom limit distribution. Moreover, for any probability
measure ρ with compact support in (0,∞) we have

lim
t→+∞

eλ1t Pρ(T0 > t) =
∫
η1(x)ρ(dx); (5.2)

lim
t→+∞

eλ1t Pρ(Xt ∈ A , T0 > t) = ν1(A)
∫
η1(x) ρ(dx); (5.3)

lim
t→+∞

Pρ(Xt ∈ A | T0 > t) = ν1(A). (5.4)

Proof. Thanks to the symmetry of the semi-group, we have for all f in L2(µ),∫
Ptfη1dµ =

∫
fPtη1dµ = e−λ1t

∫
fη1dµ .

Since η1 ∈ L1(dµ) this equality extends to all bounded f . In particular we may use it for
f = 1IA or f = 1I(0,+∞). Noticing that∫

Pt(1I(0,+∞)) η1dµ = Pν1(T0 > t)〈η1, 1〉µ

and
∫
Ptfη1dµ = Pν1(Xt ∈ A , T0 > t)〈η1, 1〉µ, we have shown that ν1 is a QSD.

The rest of the proof is divided into two cases. First assume that µ is a bounded measure.
Thanks to Theorem 2.3, we know that for any x > 0, any set A ⊂ (0,+∞) such that
1IA ∈ L2(µ) and for any t > 1

Px(Xt ∈ A , T0 > t) =
∫

Py(Xt−1 ∈ A , T0 > t− 1) r(1, x, y)µ(dy)

=
∫
Pt−1(1IA)(y) r(1, x, y)µ(dy)

=
∫

1IA(y) (Pt−1r(1, x, .))(y)µ(dy) .

Since both 1IA and r(1, x, .) are in L2(µ) and since (H2) is satisfied, we obtain

lim
t→+∞

eλ1(t−1) Px(Xt ∈ A , T0 > t) = 〈1IA, η1〉µ 〈r(1, x, .), η1〉µ . (5.5)

This is enough to get the Yaglom limit starting from x.
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If µ is not bounded (i.e. 1I(0,+∞) /∈ L2(µ)) we need an additional result to obtain the Yaglom
limit.

Lemma 5.3. Assume η1 ∈ L1(dµ) then for all x > 0, there exists C(x) such that for all
y > 0 and all t > 1,

r(t, x, y) ≤ C(x) e−λ1t η1(y) . (5.6)

We postpone the proof of the lemma and indicate how it is used to conclude the proof of the
theorem.
If (5.6) holds, for t > 1, eλ1t r(t, x, .) ∈ L1(dµ) and is dominated by C(x) η1. Writing again
r(t, x, .) = Pt−1r(1, x, .) µ a.s., we know that limt→+∞ eλ1t r(t, x, .) exists in L2(µ) and is
equal to

eλ1〈r(1, x, .), η1〉µ η1(.) = η1(x) η1(.) ,

since ∫
r(1, x, y)η1(y)µ(dy) = (P1η1)(x) = e−λ1η1(x) .

Recall that convergence in L2 implies almost sure convergence along subsequences. Therefore,
for any sequence tn → +∞ there exists a subsequence t′n such that

lim
n→+∞

eλ1t′n r(t′n, x, y) = η1(x) η1(y) for µ-almost all y > 0 .

Since

Px(T0 > t′n) =
∫ +∞

0
r(t′n, x, y)µ(dy) ,

Lebesgue bounded convergence theorem yields

lim
n→+∞

eλ1t′n Px(T0 > t′n) = η1(x)
∫ +∞

0
η1(y)µ(dy) ,

that is (5.5) with A = (0,+∞) for the sequence t′n. Since the limit does not depend on the
subsequence, limt→+∞ eλ1t Px(T0 > t) exists and is equal to the previous limit, hence (5.5)
is still true.
For the last part of the theorem we just use Harnack’s inequality (C(.) is bounded on compact
sets), which gives a uniform bound on compacts included in (0,∞) and then, the result follows
from the dominated convergence theorem.

It remains to prove Lemma 5.3.
Proof of the Lemma. According to the parabolic Harnack inequality, for all x > 0, one can
find C(x) > 0 such that for all t > 1, y > 0 and z with |z − x| ≤ ρ(x) = 1

2 ∧
x
4

r(t, x, y) ≤ C(x) r(t+ 1, z, y) .
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It follows that

r(t, x, y) =

(∫
|z−x|≤ρ(x) r(t, x, y)η1(z)µ(dz)

)
(∫

|z−x|≤ρ(x) η1(z)µ(dz)
)

≤ C(x)

(∫
|z−x|≤ρ(x) r(t+ 1, z, y)η1(z)µ(dz)

)
(∫

|z−x|≤ρ(x) η1(z)µ(dz)
)

≤ C(x)

(∫
r(t+ 1, z, y)η1(z)µ(dz)

)(∫
|z−x|≤ρ(x) η1(z)µ(dz)

)
≤ C(x)

e−λ1(t+1) η1(y)(∫
|z−x|≤ρ(x) η1(z)µ(dz)

) .
But

∫
|z−x|≤ρ(x) η1(z)µ(dz) = c(x) > 0, otherwise η1, which is a solution of the linear o.d.e.

1
2g

′′ − qg′ + λ1g = 0 on (0,+∞), would vanish on the whole interval |z − x| ≤ ρ(x), hence
on (0,+∞) according to the uniqueness theorem for linear o.d.e’s. The proof of the lemma
is thus completed. �

λ1 is the natural killing rate of the process. Indeed, the limit (5.1) obtained in Theorem 5.2
shows for any x > 0 and any t > 0,

lim
s→+∞

Px(T0 > t+ s)
Px(T0 > s)

= e−λ1t .

Let us also remark that
Pν1(T0 > t) = e−λ1t.

In order to control the speed of convergence to the Yaglom limit, we first establish the
following lemma.

Lemma 5.4. Under conditions (H2) and (H4), the operator P1 is bounded from L∞(dµ) to
L2(dµ). Moreover, for any compact subset K of (0,+∞), there is a constant CK such that
for any function f ∈ L1(dµ) with support in K we have

‖P1f‖L2(dµ) ≤ CK ‖f‖L1(dµ)

Proof. Let g ∈ L∞(dµ), since ∣∣P1g
∣∣ ≤ P1

∣∣g∣∣ ≤ ‖g‖L∞(dµ) ,

we get from (H4) ∫ ∞

1

∣∣P1g
∣∣2dµ ≤ ‖g‖2

L∞(dµ)

∫ ∞

1
e−Q(x)dx .

We now recall that (see section 3)

P1g(x) = eQ(x)/2P̃1

(
e−Q/2g

)
(x) .

20



It follows from Lemma 4.4 that uniformly in x ∈ (0, 1] we have using hypothesis (H4)∣∣∣P̃1

(
e−Q/2g

)
(x)

∣∣∣ ≤ O(1) ‖g‖L∞(dµ)

∫ ∞

0
e−Q(y)/2e−y2/4y dy ≤ O(1) ‖g‖L∞(dµ) .

This implies ∫ 1

0

∣∣P1g
∣∣2dµ =

∫ 1

0

∣∣P̃1

(
e−Q/2g

)
(x)

∣∣2dx ≤ O(1)‖g‖2
L∞(dµ) ,

and the first part of the lemma follows. For the second part, we have from the Gaussian
bound of Lemma 4.4 that for any x > 0 and for any f integrable and with support in K∣∣∣P̃1

(
e−Q/2f

)
(x)

∣∣∣ ≤ O(1)
∫

K
e−Q(y)/2e−(x−y)2/2|f(y)| dy

≤ O(1) sup
z∈K

eQ(z)/2 sup
z∈K

e−(x−z)2/2

∫
K
e−Q(y)|f(y)| dy ≤ O(1) e−x2/4

∫
K
e−Q(y)|f(y)| dy

since K is compact. This implies∫ ∞

0

∣∣P1f
∣∣2dµ =

∫ ∞

0

∣∣P̃1

(
e−Q/2f

)
(x)

∣∣2dx ≤ O(1) ‖f‖2
L1(dµ) .

�

We can now use the spectral decomposition of r(1, x, .) to obtain the following convergence
result.

Proposition 5.5. Under conditions (H2) and (H4), for all x > 0 and all measurable subset
B of (0,∞), we have

lim
t→+∞

e(λ2−λ1)t (Px(Xt ∈ B | T0 > t)− ν1(B)) =
η2(x)
η1(x)

(
〈1IR+ , η1〉µ〈1IB, η2〉µ − 〈1IR+ , η2〉µ〈1IB, η1〉µ

(〈1IR+ , η1〉µ)2

)
.

(5.7)

Proof. Let h be a non negative bounded function, with compact support in (0,∞). We have,
using the semi-group property, Lemma 5.4 and the spectral decomposition

Ph(Xt ∈ B , T0 > t) = 〈heQ , Pt1IB〉µ = 〈P1

(
heQ

)
, P(t−2)P11IB〉µ

= 〈P1

(
heQ

)
, η1〉µ 〈η1 , P11IB〉µe−λ1(t−2) + 〈P1

(
heQ

)
, η2〉µ 〈η2 , P11IB〉µe−λ2(t−2) +R(h,B, t)

with
|R(h,B, t)| ≤ e−λ3(t−2)‖P1

(
heQ

)
‖L2(dµ)‖P11IB‖L2(dµ) .

Note that since P1 is symmetric with respect to the scalar product, we have 〈P1

(
heQ

)
, η1〉µ =

e−λ1〈heQ, η1〉µ and similarly for η2. We also have 〈η1 , P11IB〉µ = e−λ1〈η1 , 1IB〉µ and similarly
for η2. It follows immediately form Lemma 5.4 that for any fixed compact subset K of (0,∞),
we have for any B and any h satisfying the hypothesis of the proposition, the latter with
support in K,

|R(h,B, t)| ≤ O(1)e−λ3(t−2)‖h‖L1(dµ) .
21



Therefore, letting h tend to a Dirac mass, we obtain that for any compact subset K of (0,∞),
there is a constant DK such that for any x ∈ K, for any measurable subset B of (0,∞), and
for any t > 2, we have∣∣∣Px(Xt ∈ B , T0 > t)− eQ(x)η1(x) 〈η1 , 1IB〉µe−λ1t − eQ(x)η2(x) 〈η2 , 1IB〉µe−λ2t

∣∣∣ ≤ DK e−λ3t .

The proposition follows at once from

Px(Xt ∈ B |T0 > t) =
Px(Xt ∈ B , T0 > t)

Px(Xt ∈ (0,∞) , T0 > t)
.

�

6. The Q-process

As in [5] (Theorem B), we can also describe the law of the process conditioned to be never
extinct, usually called the Q-process (also see [17]).

Corollary 6.1. Assume (H). Let Bs be Fs measurable, where Fs is the natural filtration of
the process. Then for all x > 0,

lim
t→+∞

Px(X ∈ Bs | T0 > t) = Qx(Bs) ,

where Qx is the law of a diffusion process on (0,+∞), with transition probability densities
(w.r.t. Lebesgue measure) given by

q(s, x, y) = eλ1s η1(y)
η1(x)

r(s, x, y) e−Q(y) ,

that is, Qx is locally absolutely continuous w.r.t. Px and

Qx(Bs) = Ex

(
1IBs(ω) e

λ1s η1(ωs)
η1(x)

, T0 > s

)
.

Proof. First check thanks to Fubini’s theorem and κ(0+) < ∞ in Hypothesis (H1), that
Λ(0+) > −∞. We can thus slightly change the notation (for this proof only) and define Λ
as Λ(x) =

∫ x
0 e

Q(y) dy. From standard diffusion theory, (Λ(Xt); t ≥ 0) is a local martingale,
from which it is easy to derive that for any y ≥ x ≥ 0, Py(Tx < T0) = Λ(y)/Λ(x).

Now define v(t, x) = Px(T0>t)
P1(T0>t) . As in [5, proof of Theorem B], one can prove for any x ≥ 1,

using the strong Markov property at Tx of the diffusion X starting from 1, that v(t, x) ≤
Λ(x)/Λ(1). On the other hand, for x ≤ 1, v(t, x) ≤ 1, so that for any x ≥ 0, v(t, x) ≤
1 + Λ(x)/Λ(1).
Now thanks to Theorem 5.2, for all x, eλ1tPx(T0 > t) → η1(x) as t→∞, and

lim
t→+∞

v(t, x) =
η1(x)
η1(1)

.

Using the Markov property, it is easily seen that for t large,

Px(X ∈ Bs | T0 > t) = Ex [1IBs(X) v(t− s,Xs), T0 > s]
P1(T0 > t− s)

Px(T0 > t)
.
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The random variable in the expectation is (positive and) bounded from above by 1 +
Λ(Xs)/Λ(1), which is integrable (see below), so we obtain the desired result using Lebesgue
bounded convergence theorem.
To see that Ex (Λ(Xs) 1Is<T0) is finite, it is enough to use Itô’s formula with the harmonic
function Λ up to time T0∧TM . Since Λ is non-negative it easily yields Ex (Λ(Xs) 1Is<T0∧TM

) ≤
Λ(x) for all M > 0. Letting M go to infinity the indicator goes almost surely to 1 thanks
to Hypothesis (H1), so that the monotone convergence theorem yields Ex (Λ(Xs) 1Is<T0) ≤
Λ(x). �

Corollary 6.2. Assume (H). Then for any Borel subset B and any x,

lim
s→+∞

Qx(ωs ∈ B) =
∫

B
η2
1(y)µ(dy) .

Proof. We know that eλ1sr(s, x, .) converges to η1(x) η1(.) in L2(dµ). Hence, since 1IBη1 ∈
L2(µ),

η1(x)Qx(ωs ∈ B) =
∫

1IB(y)η1(y) eλ1sr(s, x, y)µ(dy) → η1(x)
∫

B
η2
1(y)µ(dy)

as s→ +∞. �

Remark 6.3. The previous statement gives the stationary measure of the Q-process as
η2
1(y)µ(dy). Notice that it can also be given in terms of the Yaglom limit ν1 as cη1(y)ν1(dy),

where c =
(∫
η1(dz)µ(dz)

)−1. Thus, the stationary measure of the Q-process is absolutely
continuous w.r.t. ν1, with Radon-Nikodym derivative cη1, which, thanks to Proposition 4.1,
is nondecreasing. In particular, the ergodic measure of the Q-process dominates stochastically
the Yaglom limit. We refer to [21, 17] for further discussion of the relationship between QSD
and ergodic measure of the Q-process.

7. Domain of attraction, return from infinity and uniqueness of QSD.

7.1. Main statement. Once we have proved that ν1 is a QSD and is the limit of the law of
the diffusion process conditioned on non-extinction (or non-killing) starting from any point,
it is natural to ask about its uniqueness. Here again, our assumptions on the behavior of q
at infinity will allow us to characterize the domain of attraction of the QSD ν1 associated to
η1. This turns out to be entirely different from the cases studied in [5] for instance.

We say that the diffusion process X comes down from infinity or returns from infinity, if
+∞ is an entrance boundary for X, that is, there is a nonnegative real number y and a time
t such that

lim
x↑∞

↓ Px(Ty < t) > 0.

Recall from Theorem 5.2 that under Hypothesis (H), the measure dν1 = η1dµ/
∫ +∞
0 η1(y)µ(dy)

is a quasi-stationary distribution, which in addition is the limiting conditional distribution
starting from any initial distribution with compact support.

Let us introduce the following condition.
23



Definition 7.1. Hypothesis (H5):
We say that condition (H5) is verified if∫ ∞

1
eQ(y)

(∫ ∞

y
e−Q(z) dz

)
dy < ∞.

Theorem 7.2. Assume (H) holds. Then the following are equivalent:

(i) X comes down from infinity
(ii) (H5)
(iii) ν1 is the unique limiting conditional distribution, namely

lim
t→∞

Pν(Xt ∈ A | T0 > t) = ν1(A),

for any Borel set A and any initial distribution ν.

Theorem 7.2 follows immediately from the next three lemmas, the first two of which are
general results that can be useful in other contexts.

Lemma 7.3. Assume (H1) holds. If there is a unique limiting conditional distribution π,
then X comes down from infinity.

Lemma 7.4. The following are equivalent

(i) X comes down from infinity
(ii) (H5)
(iii) for any A > 0 there exists yA > 0 such that supx>yA

Ex[eATyA ] <∞.

The previous two lemmas are proved in Subsection 7.2, and the next one in Subsection 7.3.

Lemma 7.5. Assume (H). If there is x0 such that supx≥x0
Ex(eλ1Tx0 ) < ∞, then ν1 is the

one and only limiting conditional distribution.

Remark 7.6. It is not obvious when Condition (H5) holds. Actually, the following conditions
are sufficient for (H5) to hold:

• q(x) ≥ a > 0 for all x ≥ x0

• lim infx→∞ q′(x)/2q2(x) > −1
•

∫∞ 1
q(x) dx <∞ .

Indeed, check first that these conditions imply that q(x) goes to infinity as x→∞. Then set
s(y) :=

∫∞
y e−Q(z) dz, show (thanks to the first condition) that seQ is bounded and integrate

it by parts as Q′eQ s/2q. Since seQ/2q vanishes at infinity, the integration by parts and
the third condition imply that seQ(1 + q′/2q2) is integrable. Conclude thanks to the second
condition.
On the other hand, if (H5) holds and q′(x) ≥ 0 for x ≥ x0, then q(x) goes to infinity as
x→∞ and

∫∞ 1
q(x) dx <∞ .

We can retain that under the assumption that q′(x) ≥ 0 for x ≥ x0 and q(x) goes to infinity
as x→∞, then

(H5) ⇐⇒
∫ ∞ 1

q(x)
dx <∞ .
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7.2. Proofs of Lemmas 7.3 and 7.4.

Proof of Lemma 7.3. Since π is a conditional limiting distribution, it is a QSD and it is
easy to prove that Pπ(T0 > t) is exponential in t, and we let α its decay parameter, that is
Pπ(T0 > t) = e−αt. Since absorption is certain, (H1), then α > 0. For the rest of the proof
let ν be any initial distribution.
We first prove that for any λ < α, Eν(eλT0) < ∞. The assumption in the lemma can be
stated as

lim
t→∞

∫ ∞

0
Pν(Xt ∈ dx | T0 > t)f(x) =

∫ ∞

0
f(x)π(dx)

for any bounded measurable f . Now take f(x) = Px(T0 > s) so that the expression in the
limit equals Pν(T0 > t + s | T0 > t) and the r.h.s. equals Pπ(T0 > s), which entails that for
any s

lim
t→∞

Pν(T0 > t+ s)
Pν(T0 > t)

= e−αs .

Now pick λ ∈ (0, α) and ε such that (1 + ε)eλ−α < 1. An elementary induction shows that
there is t0 such that for any t > t0, and any integer n

Pν(T0 > t+ n)
Pν(T0 > t)

≤ (1 + ε)e−αn .

Breaking down the integral
∫∞
t0

Pν(T0 > s) eλs ds over intervals of the form (n, n + 1] and
using the previous inequality, it is easily seen that this integral converges. This proves that
Eν(eλT0) <∞ for any initial distribution ν.

Now fix λ = α/2 and for any x ≥ 0, let g(x) = Ex(eλT0) < ∞. We want to show that g is
bounded, which trivially entails that X comes down from infinity. Thanks to the previous
step, for any nonnegative random variable Y with law ν

E(g(Y )) = Eν(eλT0) <∞.

Since Y can be any random variable, this implies that g is bounded. Indeed, observe that g
is increasing and g(0) = 1, so that a := 1/g(∞) is well defined in [0, 1). Then check that

ν(dx) =
g′(x)

(1− a)g(x)2
dx

is a probability density on (0,∞). Conclude computing
∫
g dν. �

Proof of Lemma 7.4. Observe that (iii) ⇒ (i) is immediate. We now prove (i) ⇒ (ii).
Because X comes down from infinity, there are y, t, h such that Px(Ty < t) ≥ h > 0 for all
x ≥ y. For any x > 0, set

f(x) = Ex(exp(−Ty)).

By a standard coupling argument, f is non-increasing so that f(x) has a nonnegative limit,
say a, as x→∞. But

f(x) =
∫ ∞

0
Px(Ty < s) e−s ds ≥

∫ ∞

t
h e−s ds = he−t,

which entails that a is nonzero.
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Then check that f(Xt∧Ty)e−(t∧Ty) is a martingale, so that

1
t

(Ex(f(Xt))− f(x)) = Ex

(
f(Xt)

(
1− e−t

t

)
1It≤Ty

)
+

1
t
Ex

(
(f(Xt)− f(y)) e−Ty1It>Ty

)
.

Assume that x 6= y. As t → 0, the l.h.s. tends to Lf(x). By dominated convergence, the
first term in the r.h.s. converges to f(x). The absolute value of the second term is less than
Px(Ty < t)/t which converges to 0. The result is Lf = f , that is an ordinary differential
equation,

f ′′ − 2qf ′ = 2f.

This last equation ensures that f ′e−Q has nonnegative derivative equal to 2fe−Q. Then
f ′e−Q is nondecreasing and nonpositive, so it converges to a nonpositive limit D. We now
show that D < 0 leads to a contradiction. Indeed, if D is negative, then f ′ is equivalent to
DeQ. Since f ′ is integrable (f converges), we first get

∫∞
1 eQ <∞. In addition, since 2fe−Q

is also integrable (it is the derivative of f ′e−Q, which converges), and because f converges to
a > 0, we get

∫∞
1 e−Q < ∞. But applying the Cauchy-Schwarz inequality to the functions

eQ/2 and e−Q/2 shows that both integrals of eQ and e−Q cannot converge at the same time.
We conclude that D = 0 and use this fact to integrate the ordinary differential equation as

f ′(x) = −2eQ(x)

∫ ∞

x
f(z) e−Q(z) dz.

Again because f converges, the r.h.s. is integrable, that is,∫ ∞

1
eQ(x)

∫ ∞

x
f(z) e−Q(z) dz dx < ∞.

But since f decreases to a positive real number a, we get (H5).

We continue the proof with (ii) ⇒ (iii). Let A > 0, and pick xA large enough so that∫ ∞

xA

eQ(x)

∫ ∞

x
e−Q(z) dz dx ≤ 1

2A
.

Let H be the positive increasing function defined on [xA,∞) by

H(x) =
∫ x

xA

eQ(y)

∫ ∞

y
e−Q(z) dz dy.

Then check that H ′′ = 2qH ′ − 1, so that LH = −1/2. Finally, set yA = 1 + xA, and apply
Itô’s formula for x ≥ yA and t > 0, to get

Ex(eA(t∧TyA
)H(Xt∧TyA

)) = H(x) + Ex

(∫ t∧TyA

0
eAs (AH(Xs) + LH(Xs)) ds

)
.

But LH = −1/2, and H(Xs) < H(∞) ≤ 1/(2A) for any s ≤ TyA , so that

Ex[eA(t∧TyA
)H(Xt∧TyA

)] ≤ H(x) .

But H is increasing, hence for x ≥ yA, 1/(2A) > H(x) ≥ H(yA) > 0. It follows that
Ex(eA(t∧TyA

)) ≤ 1/(2AH(yA)) and finally Ex(eATyA ) ≤ 1/(2AH(yA)) using the Monotone
Convergence Theorem. �
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7.3. Proof of Lemma 7.5. In everything that follows, we assume (H), and that there is x0

such that supx≥x0
Ex(eλ1Tx0 ) <∞.

Lemma 7.7. Assume h ∈ L1(dµ) is strictly positive in (0,∞). Then

lim
ε↓0

lim sup
t→∞

R ε
0 h(x)Px(T0>t)µ(dx)R
h(x)Px(T0>t)µ(dx)

= 0 (7.1)

lim
M↑∞

lim sup
t→∞

R∞
M h(x)Px(T0>t)µ(dx)R

h(x)Px(T0>t)µ(dx)
= 0 (7.2)

Proof. We start with (7.1). Using Harnack’s inequality, we have for ε < 1 and large t

∫ ε
0 h(x)Px(T0 > t)µ(dx)∫
h(x)Px(T0 > t)µ(dx)

≤
P1(T0 > t)

∫ ε
0 h(z)µ(dz)

Cr(t− 1, 1, 1)
∫ 2
1 h(x)µ(dx)

∫ 2
1 µ(dy)

,

then

lim sup
t→∞

R ε
0 h(x)Px(T0>t)µ(dx)R
h(x)Px(T0>t)µ(dx)

≤ lim sup
t→∞

P1(T0>t)
R ε
0 h(z)µ(dz)

Cr(t−1,1,1)
R 2
1 h(x)µ(dx)

R 2
1 µ(dy)

= e−λ1
R ε
0 h(z)µ(dz)

η1(1)
R 2
1 h(x)µ(dx)

R 2
1 µ(dy)

,

and the first assertion of the statement follows.
For the second limit, we set A(x0) = sup

x≥x0

Ex(eλ1Tx0 ) <∞. Then for large M > x0, we have

Px(T0 > t) =
∫ t

0
Px0(T0 > u)Px(Tx0 ∈ d(t− u)) + Px(Tx0 > t).

Using that lim
u→∞

eλ1uPx0(T0 > u) = η1(x0) we obtain that B(x0) = sup
u≥0

eλ1uPx0(T0 > u) <∞.

Then

Px(T0 > t) ≤ B(x0)
∫ t
0 e

−λ1uPx(Tx0 ∈ d(t− u)) + Px(Tx0 > t)
≤ B(x0)e−λ1tEx(eλ1Tx0 ) + e−λ1tEx(eλ1Tx0 ) ≤ e−λ1tA(x0)(B(x0) + 1),

and (7.2) follows immediately. �

Lemma 7.8. Let ν a probability measure whose support is contained in (0,∞) then

h(y) =
∫
r(1, x, y)ν(dx)

belongs to L1(dµ) and it is strictly positive in (0,∞).

Proof. First notice that h(y) <∞. In fact from Tonelli’s theorem we have∫ ∫
r(t, x, y)ν(dx)µ(dy) =

∫ ∫
r(t, x, y)µ(dy) ν(dx) =

∫
Px(T0 > t)ν(dx) ≤ 1,

which implies that
∫
r(t, x, y)ν(dx) is finite dy−a.s.. The rest of the conclusion follows from

Harnack’s inequality. �
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Proof of Lemma 7.5. Thanks to the previous lemma, we can assume that ν has a density
h ∈ L1(dµ), with respect to µ(dx), which is strictly positive in (0,∞). Consider M > ε > 0
and A any Borel set included in (0,∞). Then∣∣∣∣∣

∫
h(x)Px(Xt ∈ A, T0 > t)µ(dx)∫

h(x)Px(T0 > t)µ(dx)
−

∫ M
ε h(x)Px(Xt ∈ A, T0 > t)µ(dx)∫ M

ε h(x)Px(T0 > t)µ(dx)

∣∣∣∣∣
is bounded by the sum of the following two terms

I1 =

∣∣∣∣∣
∫
h(x)Px(Xt ∈ A, T0 > t)µ(dx)∫

h(x)Px(T0 > t)µ(dx)
−

∫ M
ε h(x)Px(Xt ∈ A, T0 > t)µ(dx)∫

h(x)Px(T0 > t)µ(dx)

∣∣∣∣∣
I2 =

∣∣∣∣∣
∫ M
ε h(x)Px(Xt ∈ A, T0 > t)µ(dx)∫

h(x)Px(T0 > t)µ(dx)
−

∫ M
ε h(x)Px(Xt ∈ A, T0 > t)µ(dx)∫ M

ε h(x)Px(T0 > t)µ(dx)

∣∣∣∣∣ .
We have the bound

I1 ∨ I2 ≤
∫ ε
0 h(x)Px(T0 > t)µ(dx) +

∫∞
M h(x)Px(T0 > t)µ(dx)∫

h(x)Px(T0 > t)µ(dx)
.

Thus, from Lemma 7.7 we get

lim
ε↓0, M↑∞

lim sup
t→∞

∣∣∣∣∣
∫
h(x)Px(Xt ∈ A, T0 > t)µ(dx)∫

h(x)Px(T0 > t)µ(dx)
−

∫ M
ε h(x)Px(Xt ∈ A, T0 > t)µ(dx)∫ M

ε h(x)Px(T0 > t)µ(dx)

∣∣∣∣∣ = 0.

On the other hand we have

lim
t→∞

∫ M
ε h(x)Px(Xt ∈ A, T0 > t)µ(dx)∫ M

ε h(x)Px(T0 > t)µ(dx)
=

∫
A η1(z)µ(dz)∫

R+ η1(z)µ(dz)
,

independently of M > ε > 0, and the result follows. �

7.4. Further results and remarks. The following corollary of Lemma 7.4 describes how
fast the process comes down from infinity.

Corollary 7.9. Assume (H) and (H5). Then for all λ < λ1, supx>0 Ex[eλT0 ] < +∞.

Proof. We have seen in Section 5 that for all x > 0, limt→+∞ eλ1tPx[T0 > t] = η1(x) < ∞
i.e. Ex[eλT0 ] < ∞ for all λ < λ1. Applying Lemma 7.4 with A = λ and the strong Markov
property it follows that supx>yλ

Ex[eλT0 ] < +∞. Furthermore, thanks to the uniqueness of
the solution of (2.1), Xx

t < Xyλ
t a.s. for all t > 0 and all x < yλ, hence Ex[eλT0 ] ≤ Eyλ

[eλT0 ]
for those x, completing the proof. �

Remark 7.10. The previous corollary can be rephrased as follows : the explosion (absorp-
tion, killing) time for the process starting from infinity has exponential moments up to order
λ1. In [16] an explicit calculation of the law of T0 is done in the case of the logistic Feller
diffusion Z (hence the corresponding X) and also for other related models. In particular it
is shown in Corollary 3.10 therein, that the absorption time for the process starting from
infinity has a finite expectation. As we remarked in studying examples, a very general family
of diffusion processes (including the logistic one) satisfy all assumptions in Corollary 7.9,
which is thus an improvement of the quoted result.
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We end this section by gathering some results on birth–death processes that resemble our
findings.
Let Y be a birth–death process with birth rate λn and death rate µn when in state n. Assume
that λ0 = µ0 = 0 and that extinction (absorption at 0) occurs with probability 1. Let

S =
∑
i≥1

πi +
∑
n≥1

(λnπn)−1
∑

i≥n+1

πi ,

where

πn =
λ1λ2 · · ·λn−1

µ1µ2 · · ·µn
.

We may state

Proposition 7.11. For a birth–death process Y absorbed at 0 with probability 1, the following
are equivalent:

(i) Y comes down from infinity
(ii) There is one and only one QSD
(iii) limn↑∞ ↑ En(T0) <∞
(iv) S <∞.

Proof. In [8, Theorem 3.2], it is stated that either S = ∞ and there is no or infinitely many
QSD’s, or S <∞, and there is a unique QSD, that is (ii) and (iv) are equivalent. Let us now
examine how this criterion is related to the nature of the boundary at +∞. Set

Un =
n−1∑
k=1

µ1 · · ·µk

λ1 · · ·λk
.

According to basic theory of stochastic processes [1], extinction has probability 1 if and only
if the sequence (Un)n converges to +∞. Also extinction times have finite first-order moment
if and only if the sequence (πn)n is summable. In addition, the expected time to extinction
starting from n can be shown to be equal to

En(T0) =
∑
k≥1

πk(1 + Un∧k) .

Then by Beppo Levi’s theorem, this quantity converges as n→∞ to
∑

k≥1 πk(1+Uk), which
after elementary transformations, can be seen to equal S:

S = lim
n↑∞

↑ En(T0) .

Hence (iv) and (iii) are equivalent. It is clear that (iii) implies (i), this shows in particular
that if S <∞ then Y comes down from infinity.
Now other elementary transformations on the expression given for S yield

S =
∑
n≥1

1
µn+1

(
1 +

λn

µn
+ · · ·+ λn · · ·λ1

µn · · ·µ1

)
.

Furthermore, Theorem II.2.3. in [1] states that the solutions to Kolmogorov forward equa-
tions associated with birth–death rate matrices are not unique if and only if S is finite. This
is precisely the case when the birth–death process comes down from infinity (and the rate
matrix is non conservative), since in that case both the minimal process and the minimal
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process resurrected at infinity at each killing time have transition functions which solve the
forward equations. Hence (i) implies (iv) and the proof is completed. �

Appendix A. Back to the biological models

We start with the proof of Proposition 1.1 given in the introduction.

Proof of Proposition 1.1. Recall that u(x) = Px(Extinction) = P(limt→∞ Zt = 0). Thanks
to the properties of h, one can easily prove that u is a smooth function satisfying u(0) = 1
and limx→+∞ u(x) = 0 (cf. [14]), so that

γ

2
xu′′(x) + h(x)u′(x) = 0 ∀x ≥ 0.

Introducing

H(x) :=
∫ x

0

2h(z)
γz

dz,

(well defined since h ∈ C1((0,+∞)) with h(0) = 0), the harmonic equation yields

u(x) = a

∫ ∞

x
e−H(z)dz,

with a = (
∫∞
0 e−H(z)dz)−1 (well defined because h tends to +∞). Also because u is harmonic,

u(Zt) is a martingale, and it is straightforward that

dP?
x|Ft

=
u(Zt)
u(x)

dPx|Ft
,

where P?
x := Px(· | Extinction). As a consequence, the generator L? of the diffusion Y , which

is by definition the diffusion Z conditioned on extinction, is given by

L?f(x) =
1

u(x)
L(uf)(x) x ≥ 0,

where L is the generator of Z, and f sufficiently smooth. The last displayed equation is well-
known, but we prove it again. Consider a function f such that uf belongs to the domain of
the extended generator of Z, and uf , L(uf) are non-negative or bounded. Then for s < t
and B in σ(Zu, u ≤ s),

Ex

(
1IB

(
(uf)(Zt)− (uf)(Zs)−

∫ t

s
L(uf)(Zs)ds

))
= 0.

Writing L(uf)(Zs)
u(x) as L(uf)(Zs)

u(Zs)
u(Zs)
u(x) , we deduce that

E∗x
(

1IB
(
f(Zt)− f(Zs)−

∫ t

s
L∗f(Zs)ds

))
= 0,

which ensures the result.
Let us compute the generator L? more explicitly. Because Lu = 0, it is easy to get

L?f(x) =
γ

2
xf ′′(x) +

(
h(x) + γx

u′(x)
u(x)

)
x ≥ 0,

which ends the first part of the proposition.
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For the second part, notice that H is strictly increasing after some x0, so we consider its
inverse ϕ on [H(x0),+∞). Next observe that for x > x0,

− u

u′
(x) = eH(x)

∫ ∞

x
e−H(z)dz = eH(x)

∫ ∞

H(x)
e−vϕ′(v)dv,

with the change v = H(z). As a consequence, we can write for y > H(x0)

− u

u′
(ϕ(y)) = ey

∫ ∞

y
e−vϕ′(v)dv =

∫ ∞

0
e−vϕ′(y + v)dv.

Because h tends to +∞, H(x) ≥ (1 + ε) log(x) for x sufficiently large, so that ϕ(y) ≤
exp(y/(1 + ε)), and ϕ(y) exp(−y) vanishes as y → ∞. Now since ϕ′ = γϕ/2h ◦ ϕ = o(ϕ),
ϕ′(y) exp(−y) also vanishes. Since h is differentiable, H is twice differentiable, and so is ϕ,
so performing an integration by parts yields

− u

u′
(ϕ(y)) = ϕ′(y) +

∫ ∞

0
e−vϕ′′(y + v)dv.

By the technical assumption given in the statement of the proposition,

ϕ′′ ◦H(x) = ϕ′ ◦H(x)
(

1
H ′

)′
(x) =

γ

2
ϕ′ ◦H(x)

(
1

h(x)
− xh′(x)

h(x)2

)
= o

(
ϕ′ ◦H(x)

)
.

Then the fact that ϕ′′ = o(ϕ′) entails that

− u

u′
(ϕ(y)) ∼y→∞ ϕ′(y).

This is equivalent to

γx
u′

u
(x) ∼x→∞ −γxH ′(x) = −2h(x),

which ends the proof. �

Finally we prove Theorem 1.3, which amounts to checking all hypotheses for the generalized
Feller diffusion.

Proof of Theorem 1.3. According to what precedes, we may limit ourselves to the case h→
−∞ at ∞.

For Z solution of (1.3), recall that Xt = 2
√
Zt/γ, so that X satisfies the SDE

dXt = dBt − q(Zt)dt,

with

q(x) =
1
2x

− 2h(γx2/4)
γx

x > 0,

so that

q′(x) = − 1
2x2

+
2h(γx2/4)

γx2
− h′(γx2/4)

and

q2(x)− q′(x) =
3

4x2
+ h(γx2/4)

(
4

γ2x2
h(γx2/4)− 4

γx2

)
+ h′(γx2/4).

We recall
Q(x) =

∫ x

1
2q(y)dy, Λ(x) =

∫ x

1
eQ(y)dy,
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and

κ(x) =
∫ x

1
eQ(y)

(∫ y

1
e−Q(z)dz

)
dy.

Straightforward calculations show that under Assumption (HH),

∀a > 0, lim
x→∞

xae−Q(x) = 0 and lim
x→0+

Q(x)− log(x) ∈ (−∞,+∞),

In particular, Λ(∞) = ∞, and the integrand in the definition of κ is equivalent to y log(y),
which ensures κ(0+) < +∞, so that X, and subsequently Z, is absorbed at 0 with probability
1.
In addition, check that under Assumption (HH), we have q(x) ∼x→0+ 1/2x, as well as

q2(x)− q′(x) ∼x→0+
3

4x2
and (q2 − q′)(2

√
x/γ) ∼x→∞

h(x)2

x

(
1
γ

+
xh′(x)
h(x)2

)
.

Then Assumption (H2), which ensures the discreteness of the spectrum L, is implied by
(HH)(i) and (ii).
Next, Assumption (H3), ensuring the existence of a quasi stationary probability measure,
always holds under (HH).
Recall that Assumption (H5) holds if and only if the process comes down from infinity.
Thanks to Remark 7.6, there is a simple sufficient condition for (H5) to hold, which has
three components. The first one is fulfilled thanks to (HH)(i). The second one can be shown
to be equivalent to

lim sup
x→∞

xh′(x)
h(x)2

< 2/γ, (A.1)

which is obviously true when h is non-increasing, and holds under (HH)(ii). The third one
is equivalent to ∫ ∞

1

dx

h(x)
> −∞. (A.2)

In conclusion, all assumptions necessary for our results to hold, are fulfilled under (HH),
except (H5). For (H5) to hold, one has to make the additional assumption (A.2), which, in
particular, does not hold for pure continuous-state branching processes, but holds for logistic
Feller diffusions. �

Appendix B. Proof of Lemma 4.4

We first prove the second bound. For any non negative and continuous function f with
support in R+ we have from hypothesis (H2)∫

p̃1(x, y) f(y)dy = EWx

[
f(ω(1)) 1I1<T0(ω) exp

(
− 1

2

∫ 1

0
(q2 − q′)(ωs)ds

)]
≤ eC/2EWx [f(ω(1)) 1I1<T0(ω)] .

The estimate (4.3) follows at once by a limiting argument (letting f tend to the Dirac measure
in y).
Let us now prove the upper bound in (4.2). Let B1 be the function defined by

B1(u) = inf
u≥z

(
q2(u)− q′(u)

)
.
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We have∫
p̃1(x, y) f(y)dy = EWx

[
f(ω(1)) 1I1<T01I1<Tx/3

exp
(
− 1

2

∫ 1

0
(q2 − q′)(ωs)ds

)]
+EWx

[
f(ω(1)) 1I1<T0 1I1≥Tx/3

exp
(
− 1

2

∫ 1

0
(q2 − q′)(ωs)ds

)]
.

For the first expectation we have

EWx

[
f(ω(1)) 1I1<T01I1<Tx/3

exp
(
− 1

2

∫ 1

0
(q2 − q′)(ωs)ds

)]
≤ e−B1(x/3)/2 EWx [f(ω(1)) 1I1<T0 ] .

For the second expectation, we obtain

EWx

[
f(ω(1)) 1I1<T0 1I1≥Tx/3

exp
(
− 1

2

∫ 1

0
(q2 − q′)(ωs)ds

)]
≤ eC/2 EWx

[
f(ω(1)) 1I1<T01I1≥Tx/3

]
= eC/2

(
EWx [f(ω(1)) 1I1<T0 ]− EWx

[
f(ω(1)) 1I1<Tx/3

])
.

Using a limiting argument as above and the invariance by translation of the law of the
Brownian motion, and firstly assuming that y/2 < x < 2y, we obtain

p̃1(x, y) ≤ e−B1(x/3)/2pD
1 (x, y) + eC/2

(
pD
1 (x, y)− pD

1 (2x/3, y − x/3)
)
.

From the explicit formula for pD
1 we have

pD
1 (x, y)− pD

1 (2x/3, y − x/3) =
1√
2π

(
e−(y+x/3)2/2 − e−(x+y)2/2

)
≤ 1√

2π
e−max{x,y}2/18 .

Since the function B1 is non decreasing, we get for y/2 < x < 2y

p̃1(x, y) ≤
1√
2π

(
e−B1(max{x,y}/6)/2 + e−max{x,y}2/18

)
.

If x/y /∈]1/2, 2[, we get from the estimate (4.3)

p̃1(x, y) ≤ O(1) e−(y−x)2/2 ≤ O(1)e−max{x,y}2/8 .

We now define the function B by

B(z) = O(1) + min
{
B1(z/6)/4 , z2/36

}
.

It follows from hypothesis (H2) that limz→+∞B(z) = +∞. Combining the previous estimates
we get for any x and y in R+

p̃1(x, y) ≤ e−2B(max{x,y}) .

The upper estimate (4.2) follows by taking the geometric average of this result and (4.3). We
now prove that p̃1(x, y) > 0. For this purpose, let a = min{x, y}/2 and b = 2max{x, y}. We
have as above for f a non negative continuous function with support in R+∫

p̃1(x, y) f(y)dy ≥ EWx

[
f(ω(1)) 1I1<T[a,b]

exp
(
− 1

2

∫ 1

0
(q2 − q′)(ωs)ds

)]
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where we denote by T[a,b] the exit time from the interval [a, b]. Let

Ra,b = sup
x∈[a,b]

(q2(x)− q′(x)) ,

this quantity is finite since q ∈ C1((0,+∞)). We obtain immediately∫
p̃1(x, y) f(y)dy ≥ e−Ra,b/2

∫
p
[a,b]
1 (x, y) f(y)dy

where we denote by p[a,b]
t the heat kernel with Dirichlet conditions in [a, b]. The result follows

from a limiting argument as above since p[a,b]
1 (x, y) > 0.
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