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Abstract. We are concerned in this work with simulations of the localization of a finite number of small
electromagnetic inhomogeneities contained in a three-dimensional bounded domain. Typically, the underlying
inverse problem considers the time-harmonic Maxwell equations formulated in electric field in this domain and
attempts, from a finite number of boundary measurements, to localize these inhomogeneities. Our simulations
are based on an approach that combines an asymptotic formula for perturbations in the electromagnetic fields,
a suited inversion process, and finite element meshes derived from a non-standard discretization process of the
domain. As opposed to a recent work, where the usual discretization process of the domain was employed in

the computations, here we localize inhomogeneities that are one order of magnitude smaller.
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1 Introduction

This work falls directly in the field of Electrical Impedance Tomography. We seek to recover unknown
inhomogeneities contained in a bounded domain from a finite number of measurements evaluated on its
boundary. From a practical point of view, such measurements are experimental (or physical) whereas
from a simulation point of view, they are numerically evaluated. Usually in this simulation context,
we solve the underlying inverse problem with the help of a localization procedure that considers, as
data, numerical boundary measurements. Typically, each one of these measurements results from a
numerical computation of the physical field present in the domain, due to a current applied on its
boundary.

In simulations of the localization of small electromagnetic inhomogeneities contained in a three-
dimensional bounded domain, we must for instance compute by a finite element method the electric

(or magnetic) field, induced by each prescribed boundary current, in order to evaluate numerically the
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corresponding boundary measurement of “voltage” type. When the required finite element method is
based on the usual triangulation process of the domain, we are concerned, for each prescribed bound-
ary current, with a discrete formulation in electric (or magnetic) field which is numerically expensive
to solve. In fact, the usual triangulation process generates a “full” conforming mesh of the domain
that implicitly takes into account the discretization of each inhomogeneity and leads to an excessive
number of degrees of freedom caused by the smallness of the inhomogeneities — especially as this is a
three-dimensional domain and as mixed finite elements are considered. The discrete system deriving
from the afore-mentioned formulation then has a very large number of unknowns and even by solving
this system with preconditioning techniques, we observe, as in [6], that the CPU time needed to eval-
uate numerically each boundary measurement remains important. In the presence of a large number
of small inhomogeneities, the number of degrees of freedom associated with the discrete formulation is
excessive and can forbid numerical simulations due now to the exorbitant requirement of the memory
storage. Considering then a full conforming mesh of the domain when it contains multiple small in-
homogeneities leads to some drastic drawbacks regarding the numerical localization as far as memory

storage and CPU time are concerned.

Here we are interested in simulations of the localization of small electromagnetic inhomogeneities in
a three-dimensional bounded domain, based on finite element meshes that derive from a non-standard
discretization process of the domain. This process is aimed at overcoming the drawbacks inherent in
full meshes.

As opposed to [6], where full meshes were considered for the localization of inhomogeneities and
where we were limited in simulations by the smallness of the inhomogeneities present in the domain,
we expect here to be able to perform localization of much smaller inhomogeneities.

Our approach will also be based on the framework recently proposed by H. Ammari, M.S. Vogelius
& D. Volkov [4]. Typically, this framework considers the time-harmonic Maxwell equations in a three-
dimensional bounded domain €2 containing a finite number m of unknown inhomogeneities of small
volume, and proposes to localize these inhomogeneities from an asymptotic expansion of the pertur-
bation in the (tangential) boundary magnetic field. In the presence of well-separated inhomogeneities,

and also distant from OS2, the boundary of §2, the asymptotic expansion states that, for any z € 012,

(Ho — Ho)(2) x v(z) — 2/aQ curl, (®F(z, 2)(H, — Ho)(z) x v(2)) x v(2) do,

= 20%w7) B0 (0 — 11)G (25, 2) x v(2) M7 (%) Ho() (1)
j=1

+20% (2 = ) ((ewrly G) (=5, 2))T x v(z) M (E2) (curl, Ho)(z) + O(a).
j=1

In (1), v is the common order of magnitude of the diameters of the inhomogeneities, and the points
zj, 1 < j < m, represent the 'centers’ of the inhomogeneities. The magnetic field is denoted by H, in

the presence of the inhomogeneities and by Hy in the absence of inhomogeneities. The outward unit



normal to Q is represented by v, and w is a given frequency. The (constant) background magnetic
permeability and complex permittivity are 119 and €y respectively. Also, p; and ¢; are the (constant)
magnetic permeability and the complex permittivity of the jth inhomogeneity, k? = w?eoug, ®* is the
“free space” Green’s function for the Helmholtz operator A + k2. The operators applied to the matrix
valued function G act column-by-column, and G(z, 2) is the “free space” Green’s function for the “back-
ground” magnetic problem: curl, (% curl,G(z,2)) — wW?uoG(w, 2) = =6, I3, with I3 the 3 x 3 identity
matrix, J, the Dirac mass at z. Also in (1), the superscript “IT” denotes the transpose, Mj('Z—g) and
M (%J) are the polarization tensors associated with the jth inhomogeneity (symmetric 3 x 3 matrices).

Finally, the notation O(a*) means a term that goes to zero like o*, uniformly in 2.

We will consider an analogous asymptotic expansion to (1), devoted to the study of perturbations
in the tangential boundary trace of the curl of the electric field due to the presence of inhomogeneities
in Q. Then a reformulation will lead to an asymptotic formula that will allow us to evaluate boundary
measurements of “voltage” type from prescribed boundary currents. This framework is well adapted
to the kinds of applications where it is not necessary to reconstruct the precise values of the electro-
magnetic parameters of the inhomogeneities or their shapes, but where we are primarily interested
in their positions in . Our localization approach will mainly consist of locating the ’centers’ of the
inhomogeneities and in some situations, when m = 1, of estimating moreover the diameter of the
inhomogeneity, all this at a fixed frequency w. For other numerical methods aimed at solving the re-
construction problem of inhomogeneities in different settings (conductivity context, dielectric context,
...), we refer to [3], [7], [9], [11], [15], [17], [19], [20], [21].

This work is subdivided into six sections. In Section 2, we introduce some notation and describe,
with the help of the time-harmonic Maxwell equations, the problem in electric field in the presence of
inhomogeneities in €. In Section 3, we introduce the weak formulation of this problem and consider the
asymptotic formula for generating boundary measurements of “voltage” type. We start by describing
in Section 4 a non-standard discretization process of {2 aimed at generating meshes, called the reduced
meshes, allowing us to overcome the drawbacks inherent in the use of full finite element meshes.
Typically, a reduced mesh represents a conforming mesh of 2 whose size is bigger than the largest of
the diameters of the inhomogeneities present in 2, and which is (explicitly) combined with integration
meshes for taking into account the characteristics of these inhomogeneities. Namely, a reduced mesh
is (uniquely) made up of tetrahedra of two types: the inhomogeneous tetrahedra and the others. An
inhomogeneous tetrahedron corresponds to a tetrahedron which surrounds an inhomogeneity, and with
which an integration mesh is explicitly associated. Since we are concerned with inhomogeneities of
very small diameters, the size of a reduced mesh of €2 can be taken as small as the size of a “fine” mesh
of  that could be considered in the absence of the inhomogeneities. By using a reduced mesh of Q2
in association with edge elements, we also describe in this section the discrete formulation that allows
us to compute the electric field from each prescribed boundary current for evaluating numerically the

corresponding boundary measurement. Section 5 presents numerical results obtained from extensive



simulations by distinctly considering three localization procedures: the procedure based on the Current
Projection method, the procedure deriving from the MUSIC (MUltiple SIgnal Classification) approach,
and the one based on an inverse Fourier method. Each one of these procedures, defined in association
with the asymptotic formula that allows us to generate boundary measurements, was already presented
in the numerical localization context considering full finite element meshes [6]. Using then reduced
meshes here, we first describe numerical results that derive from the procedure based on the Current
Projection method, namely in the single inhomogeneity configuration. We next present results obtained
from the procedures based on the MUSIC approach and on an inverse Fourier method, both in the
configuration of a single inhomogeneity and in that of multiple inhomogeneities. Finally, we report in

Section 6 some conclusions and perspectives.

2 Some Notation and the Problem in Electric Field
2.1 Some Notation

Let Q be a bounded open subset of R?, with a smooth boundary 9. For simplicity we take 99 to

be C'*, but this regularity condition could be considerably weakened. The domain {2 contains here

a finite number m of inhomogeneities, each one of the form z; + aB;, where B; C R3 is a bounded,

smooth (C°*°) domain containing the origin. The total collection of inhomogeneities thus takes the form
m

I, = U (zj+aBj). The points z; € Q, 1 < j < m, that determine the locations of the inhomogeneities

=1
are assumed to satisfy:

do < |zj — 2l Vj#k,
do < dist(zj,(?Q) \V/j,

(2)

where dyp € R is fixed. The parameter o > 0, the common order of magnitude of the diameters of
the inhomogeneities, is sufficiently small in such a way that these inhomogeneities are disjoint and
their distance to R3\ Q is larger than dy/2. As a consequence of the assumption (2), it follows that:

m < 6/2|/md}. Hereafter, we call each one of these small inhomogeneities, an imperfection.

2.2 Problem in Electric Field

If we denote by p the magnetic permeability and by ™ the (real) electric permittivity of the domain
Q) containing different materials, the time-dependent linear Maxwell equations in 2 take the form:
VereQ, t>0,

curl E(z,t) = —u(aj)aa—}tl(a:,t), curl H(z,t) = Jf(x,t)+€re(x)88—}f(a:,t),

where E is the electric field and H is the magnetic field (R3-valued fields). In these equations, J¢ is
the free current related to the field E as follows: Jf = oE, where o represents the conductivity of the

medium.



Figure 1: An example of a domain containing imperfections.

When we study the time-harmonic solutions to these equations, we consider special solutions of

the form
E(z,t) = Re{E(x)e '} and H(z,t) = Re{H(z)e ™}, z€Q, t>0,

where w > 0 denotes the given frequency, and the €3-valued fields E, H are such that: ¥V z € ,
curl E(z) = iwp(x)H(z), curlH(z) = —iwe(x)E(x).

By dividing the above first equation by © and taking the curl, we obtain the following equation for F:
Ve,
curl E(z)) — w’e(z)E(z) = 0. (3)

curl( L
p(x)
Here, e(x) = re(a:)—l—i@ represents the complex permittivity. We shall prescribe non-trivial boundary
conditions for F x v, on the boundary 0f, in order to arrive at particular non-trivial solutions to (3).
The outward unit normal to €2 is denoted by v.

Let o > 0, eff > 0, and op > 0 denote the permeability, the (real) permittivity, and the con-
ductivity of the background medium, with g9 = " +i7% the background complex permittivity. Let
also p; >0, €°>0,0; >0and g; = + i% denote the permeability, the (real) permittivity, the
conductivity, and the complex permittivity of the jth imperfection z; + aB;. For simplicity, we shall
assume here that all these parameters are constants. Introduce thus the piecewise constant magnetic

permeability p, and the piecewise constant complex permittivity eo: V x € €,

po, if z€Q\I,, go, if 2€Q\I,,
pa(z) = . ea(z) = .

i, if xe€zj+aBj, 1<j<m, gj, if ze€zj+abB;, 1<j<m.
If we allow the degenerate case « = 0, then the function p,(x) equals the constant g and the function

eqo(x) equals the constant &g.



The electric field denoted FE,, in the presence of imperfections, is the solution to:

1 2 _ :
curl('u—a curl By) —w®eq By = 0 in ()
E,xv = g on 09,
with g a given datum on 0f).
The electric field denoted Ep, in the absence of all imperfections, satisfies:
curl(% curl Bg) —w?e0Ey = 0 in Q,

(5)
Eoyxv = g on 09Q.

3 Formulation in Electric Field and Asymptotic Formula for Pertur-
bations

We consider in this section the weak problems associated with (4) and (5) respectively, and an asymp-

totic formula for perturbations in the electric field in the presence of imperfections.

3.1 Formulation in Electric Field

Let
H(curl; Q) = {u € (L*(Q))?; curlu € (L*(Q))*}

be endowed with its usual Hermitian product denoted here by (., . ) (cu1; 0)- The corresponding norm

is denoted by || . || fr(curl; 0)- By representing the surface divergence by divaq, let us consider the space
TH2(div; 0Q) = {g € (H 2(0Q))3; divagqg € H 2(dQ), ¢-v =0 on 09},

with its usual norm denoted here by || . || . The vector fields E, and FEy, satisfying (4) and

1
TH™ 2 (div; 89)
(5) respectively, will be sought in H (curl; €2), and the datum ¢ will be taken in TH_%(div; 0R). For

such a datum g, let us consider uy € H(curl; Q) such that (see e.g. [5]):
ugXv = g on 0,

(6)

lugllmew; @) < CQ”gHTH*%(div-aQ)’

where C > 0 is a constant depending only on 2. With the extension field u,, the determination of

E, satisfying (4) is reduced to the problem that consists of finding &, such that:

curl(ﬂ% curl£,) — w?enba = — curl(u—la curlug) + w?equy, in  Q,

(7)
Eaxv = 0 on Of.

Also with the same extension field, the determination of Ej satisfying (5) is reduced to the one that
consists of finding & such that:

curl(% curl &) — w?ep&y = — curl(% curlu,) +w?sou, in €,

0 on Of).

(8)

50><I/



Of course, knowing u,, while &£, and & are in accordance with (7) and (8) respectively, we determine
the physical fields:
Ey = & +uy, Ey:= & +uy. (9)

These vector fields &£, and & will be sought in
H={ue H(curl; Q); uxv =0 on 00N}.

For g given in TH -2 (div; 02), and therefore u, taken as in (6), the weak formulation associated with
(8) consists of finding & € H such that:

Jo % curl & - curlvde — w? [ e0&y - Dda =

N (10)
— fQ % curlug - curlv dw + w? sz—:oug -vdr YveH.
The weak formulation associated with (7) is defined in the same way.
Find &, € 'H satisfying:
1 ST o A 2 ST —
Jo o curl&, - curlvde — w? [, 0o - Tdr = (1)

—fﬂu%curlug-curlvdw+w2f95aug'de VveH.

Remark 3.1 In the present framework, the essential hypothesis is that: k> = w?uoeq is taken such

that (10) has a unique solution.

The existence and uniqueness of the solution of (11) will be specified in the next subsection (see
Theorem 3.1).

3.2 Asymptotic Formula for Perturbations

For perturbations in the electric field due to the presence of imperfections, we consider here an anal-
ogous asymptotic expansion to the formula proposed by H. Ammari, M.S. Vogelius & D. Volkov [4].
Let us first introduce some additional notation and definitions.

Let {yn}o<n<m be a set of complex constants with Re(y,) > 0, for 0 < n < m. Typically,
{Vn }o<n<m will be related to either the set {1, fo<n<m or the set {e, }o<n<m. For any fixed 1 < jo < m,
let v denote the function defined as: V z € R?,

Y, if x€R3\ By,

V(z) = _
Yo > if ze Bjo .

Let 1 <1< 3. We denote by ¢; the solution to the problem such that:

7

div(yograd¢y) = 0 in R3\ B,
div (yj,grad¢;) = 0 in  Bjy,
¢ —¢; =0 on 0B, (12)
0 Oy \—
WG =G =0 o 0By,

\ ¢(z) —2g —0 as |z| — oco.



In (12), the outward unit normal to the boundary 0B, of Bj, is also denoted by v, and the super-
scripts 4, — indicate the limiting values as 05;, is approached from outside B}, and from inside Bj,
respectively. As mentioned in [4], the existence and uniqueness of ¢; can be established (in the real as
well as in the complex case) by using single layer potentials with suitably chosen densities ([10], [12]).
The function ¢; depends only on 7o and ~;, through the ratio ¢ = ,;,Y—]O Here, the essential assumption
is that the constant ¢ cannot be zero or a negative real number. With this aspect ratio, we define (as
in [4]) the polarization tensor, M7°(c), of the inhomogeneity Bj, as follows: V 1 <i,1 < 3,

Ig
5 O dz . (13)

M (c) = ¢t
Following [4], the tensor M7°(c) is symmetric, and is furthermore positive definite if ¢ € R.

Let us introduce, for z # z € R3, the scalar function

ik|z—z|
dk(z, 2) ©

- Ait|lw — 2|’
with the constant k defined as in Remark 3.1. Of course, ® is a “free space” Green’s function for the

Helmholtz operator A + k2, i.e., it satisfies:
(A +E*)®F(-,2) = =6, in R3.

Let us now define the matrix valued function G(z, z), for z # z € R?, as
1

G(:z:,z) = _NO(q)k(m?Z) I3 + k2

D;9"(z,2)),

where D? denotes the Hessian, and G(x, z) is a “free space” Green’s function for the “background”
electric problem:

curl, (Iui curl, G(z, 2)) — w?eG(x,2) = —0.13.
0

The operator curl, applies here to matrices, column-by-column.
Let us now reconsider the physical fields F, and Ey defined through the vector fields &,, & from
(9). Although these vector fields, as well as u4 given in (6), have been defined only in a weak sense

on 09, elliptic regularity results ensure that ug, &, & are infinitely smooth vector fields (when g is

infinitely smooth) and therefore the term (,u_la curl B, — % curl Ep)|sq is infinitely smooth.

The framework of this paper is the main result proposed in [4]. We recall below this result which

establishes an asymptotic formula for studying the perturbation (L curl £, — L Ey) x v]pq, in

Ha Ho
the tangential boundary trace of the curl of the electric field due to the presence of imperfections.
Theorem 3.1 Let (2) be satisfied, and k* = w?poeo be taken such that (10) has a unique solution.
There exists g > 0 such that, given an arbitrary g € TH_%(div; 00), and any 0 < o < «y, the
boundary value problem (4) has a unique (weak) solution. The constant «y depends on {Bj}i<j<m, €,

{1 }o<j<m, {€j}o<j<m, w, and dy, but is otherwise independent of the points z;, 1 < j < m. Let E,



denote the unique (weak) solution to (4), and let Ey be the unique (weak) solution to the boundary

value problem (5) corresponding to the same g € TH_%(diV; o). For any z € 0N), we then have:

(,U_la curl B, — % curl Ep)(2) x v(z)

- 2/89 curlz(CIJZ(a:, z)(ﬂ% curl B, — % curl By)(x) x v(z)) X v(z)do, =
2a3w22(5—3 —1)G(zj,2) x v(z)M7 (5—3)(%1«1 Eo)(z) + (14)
7j=1

2070y (2 — 25)((ewrly G) (25, 2))T x v(z) M (E2) Eo(z) + O(a?).
j=1

The term O(a) is bounded by C o, uniformly in z. The positive constant C' depends on {B;}i1<j<m,

Q, {,uj}ogjgm, {€j}0§j§m; w, |9l
1<j<m.

TH} (div; 50)’ and dy, but is otherwise independent of the points z;,

It can now be specified in particular that the consideration of k% such that the weak formulation (10)
has a unique solution is also a hypothesis leading to the existence and uniqueness of the solution of
the weak formulation (11).

In (14), and hereafter, the superscript “7” denotes the transpose. The following result is a conse-

quence of Theorem 3.1 and is presented in [4] as a basis for some approximate inversion techniques.

Corollary 3.1 Let us consider the assumptions of Theorem 3.1, and denote by w any smooth vector-
valued function such that:

curl(curlw) — k*w = 0 in W, (15)

where W is an open neighborhood of Q). There ezists a constant oy > 0 depending on {Bj}1<j<m, €,
{1 }o<j<m, {€j}o<j<m, w, and dy, but independent of w, of the points z;, 1 < j < m, and such that
for a given g € TH_%(diV; 0Q) and any 0 < o < «p, the physical fields E, and Ey satisfy:

/ curlEQXI/-wda—/ curlw x v- (v x (Eq X v))do =
o0

o0
03 weoun(2) — 1) [MIEEu(z)] - () + (16)
j=1
aS;(ﬁ—? -1) [Mj(ﬁ—?)curlEo(zj)] 'Curlw(zj) + O(a4).

This statement presents of course a version of the boundary perturbation in the curl of the electric field
and appears well suited to applications since, as shown in [6], it allows us, with the help of inversion

processes, to localize the imperfections from the consideration of some special test fields w.

4 Numerical Discretizations

In numerical experiments of the localization of the imperfections, we will use the asymptotic formula

(16) and therefore a discrete field associated with the solution of the weak formulation (11). In this



part, we first describe a non-standard triangulation process of the domain 2. Then, with the help
of a finite element method based on a mesh obtained from this process, we introduce the discrete

formulation associated with (11).

4.1 Preliminaries

In order to simplify the presentation, we assume, in this section and in the following ones, that
each imperfection present in the domain is a polyhedron. Usually, when we are concerned with the
discretization of a nonhomogeneous weak formulation, such as (11), we consider a mesh which implicitly
takes into account the inhomogeneities of the domain. Typically, the conforming mesh of 2 is made
up of tetrahedra in such a way that the collection of tetrahedra associated with each imperfection
covers entirely the geometry of the imperfection and constitutes in particular a conforming mesh of
this imperfection. In general, this conforming mesh of ) results from a triangulation 7, of Q which is
regular in the sense that there exists a constant ¢ > 0 such that supyr, Z—Ifg < ¢, where hx denotes
the diameter of the tetrahedron K and gx is the diameter of the largest sphere included in K. By
combining this conforming mesh of 2 with edge elements (see Nédélec [18]), we can introduce (as in [6])
a discrete formulation associated with (11). Such a mesh will be called hereafter the full finite element
mesh of 2. Since this mesh is as “fine” both inside and outside the smallest imperfection, we obtain, in
the presence of a large number of small imperfections in €2, a far too large number of degrees of freedom
associated with the above-mentioned discrete formulation — especially as this is a three-dimensional
mesh and as mixed finite elements are considered. As noticed in [6], this excessive number of degrees
of freedom leads to some drawbacks in investigations regarding the numerical localization, as far as
memory storage and CPU time are concerned.

Our attention in this paper being oriented towards the numerical simulations of the localization of

very small imperfections, we will henceforth not consider full finite element meshes in our experiments.

4.2 Discretization Process of the Domain

We are interested in this subsection in a discretization process of the domain (2 aimed at generating
meshes that allow us to overcome the drawbacks inherent in the use of full finite element meshes. For
the sake of simplicity in the presentation, let us assume here that (2 contains only one imperfection,
that is very small. Also, 2 as well as the imperfection are polyhedric. The process starts by the
construction of one tetrahedron (in ) surrounding the imperfection, and performs next a conforming
discretization of the rest of the domain {2 with tetrahedra as geometric elements. The tetrahedron
surrounding the imperfection, called the inhomogeneous tetrahedron, is also a geometric element in this
process. Typically, the collection 7 formed by the inhomogeneous tetrahedron and by the tetrahedra of
the rest of the domain constitutes a conforming mesh of 2, and must derive from a regular discretiza-
tion in the sense that there exists a constant ¢ > 0 such that sup s Z—g < ¢, where hg denotes the
diameter of the tetrahedron K and gy is the diameter of the largest sphere included in K. The mesh

size h of Q, h = supy <7 hi, depends in particular on the diameter of the inhomogeneous tetrahedron

10



and therefore on o the diameter of the imperfection. It is already important to mention that this
mesh size can be reduced until a limiting value dependent on «*. Hereafter, such a conforming mesh
of Q is called the reduced mesh of €). This discretization process prohibits mesh sizes smaller than o*
and accordingly any mesh which is too fine. Nevertheless, since we are concerned with an imperfection
of very small diameter, the mesh size of {2 can be taken as small as the size of a “fine” mesh of {2 that

could be considered in the absence of the imperfection.

By combining the reduced mesh of {2 with edge elements, and with a composite integration method
for taking into account the characteristics of the imperfection, we can introduce a discrete formulation
associated with (11). Typically, the integration method is based on an integration mesh of the inhomo-
geneous tetrahedron and on the use of a composite numerical integration formula, for the calculation
of the integral term (of the formulation) supported by this inhomogeneous tetrahedron. For suppleness
of the implementation, the integration mesh is also constructed with tetrahedra. More precisely, this
mesh is composed of two collections of tetrahedra covering in a conforming way the inhomogeneous
tetrahedron: the set of tetrahedra covering in a conforming way the imperfection and the collection
of tetrahedra outside the imperfection. It is already important to specify that there can exist large

disproportions here between the volumes of tetrahedra inside and/or outside the imperfection.

Different reduced mesh “levels” can be built. In fact, from a homothetic transformation applied to
the inhomogeneous tetrahedron of the initial reduced mesh, we obtain a new inhomogeneous tetrahe-
dron with which we build a new reduced mesh of €2 by performing the discretization process previously
described. Typically, an isotropic shrinking of the inhomogeneous tetrahedron allows us to derive a
reduced mesh having a larger number of geometric elements in contrast with a reduced mesh based
on a same balancing and deriving from an isotropic dilation of this inhomogeneous tetrahedron. A
recursive construction of reduced meshes of €2 can then be achieved by defining different reduced mesh
levels in such a way that each level corresponds to a specific homothetic transformation of the initial
inhomogeneous tetrahedron, and is hence associated with a specific reduced mesh. Three reduced mesh
levels are illustrated in Figure 2 (with two-dimensional representations, where () has the shape of the

unit disk and contains one disk-like shaped imperfection of center (0.5,0) and of 'radius’ 0.02).
The stages of our approach are summarized as follows:
1. construct (in §2) an inhomogeneous tetrahedron of diameter hg, > o*,
2. perform the discretization of the rest of the domain 2, in order to obtain a reduced mesh of 2,

3. construct an integration mesh of the inhomogeneous tetrahedron,

4. combine the reduced mesh with edge elements, and with the integration mesh, to introduce the

discrete formulation associated with (11).

11



Of course, in the presence of multiple (polyhedric) imperfections, the same discretization process is
also performed; an inhomogeneous tetrahedron is constructed for each imperfection and an integration
mesh is associated with each inhomogeneous tetrahedron.

In Figure 2, illustrating both stages 1 and 2, the edges of each inhomogeneous geometric element
are represented in bold. The reduced mesh of the /th level contains more geometric elements than the

reduced mesh of the (I 4 1)th level, from a same balancing.
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Figure 2: An illustration of three reduced mesh levels; [ = 1 (first level) at left, [ = 2 at middle, and
I = 3 at right.

Figure 3 illustrates stage 3 and presents three integration meshes associated respectively with the

three inhomogeneous geometric elements of the reduced meshes of Figure 2.

044 046 048 05 052 054 056 A 044 046 048 05 052 054 056 A 044 046 048 05 052 054 056

Figure 3: Representations of the integration meshes associated with the inhomogeneous geometric
elements of the previous reduced meshes.

4.3 Discrete Formulation

Let P; be the space of polynomials of degree less than or equal to d, and P, be the space of homogeneous
polynomials of degree d, with d a positive integer.

Consider the following vectorial subspaces (see Nédélec [18]):
S'={ue(P)?; u-z=0}, R'=(R)*®s"

For a reduced mesh of €2, of level [, we denote by h; the corresponding mesh size and by 7j, the

associated collection of tetrahedra. Let us assume that an integration mesh is systematically associated
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with each inhomogeneous tetrahedron of this reduced mesh, and is combined with a second-order
accurate numerical integration formula.

The discrete space associated with H is given by

Hp, = {up, € H(curl; Q); Re(un,)|x, Im(up,)|x € R* VK € Ty, , up, x v =0 on 99},

l

and is a Hilbert space when endowed with the norm of H. The expression of any vector field of ‘Hp, in
each tetrahedron K € 7, can be written as in [16] in view of a practical implementation.

The discrete formulation associated with (11), and based on this reduced mesh, consists of finding
En, € Hp, such that:

Jo /%a curl &, - curlvy, do — w? [ €a&p, - Oy, do = an)

— fQ i curlug 'CUT%d:E + w? fQ Eqllg * Vp, dx ¥V vy, € Hp, .

We mention that, due to the conforming finite element method used here, the proof of the existence and

uniqueness of the solution of (11), given in [4], implies also (under the same hypotheses) the existence
and uniqueness of the solution of the associated discrete formulation (17).

The matrix of the discrete system resulting from (17) is of a drastically reduced size, in contrast
with the matrix of the system that would result from a discrete formulation based on a full finite
element mesh of €2, and will be inverted with the help of a GMRES algorithm preconditioned by an
incomplete LU factorization. We expect that the formulation (17) will allow us to achieve numerical
simulations of the localization of imperfections with a saving of memory storage and reasonable CPU

times, contrary to a discrete formulation based on a full finite element mesh.

5 Numerical Localization

This section is subdivided into four parts and deals with the effective localization of the imperfections
in various contexts. We start by describing some computational configurations and are next concerned
with numerical experiments based on three localization procedures. Each one of these procedures
combines the asymptotic formula (16) with one of the following inversion processes: the Current
Projection method, the MUSIC approach, or an inverse Fourier method. Typically, four stages define
each procedure. The first stage is that of the illumination of the domain from a well-chosen setting
with incident waves. The second stage concerns the computation of the discrete electric field, through
the formulation (17), and for each applied boundary current. The third stage makes use of both the
asymptotic formula (16) and the discrete electric field, as well as particular test fields, for the numerical
evaluation of boundary measurements. The last stage is the application of the considered inversion
process.

In the second part of this section, we present the numerical results obtained from the procedure
based on the Current Projection method, namely when the domain contains a single imperfection. The

results of the localization of multiple imperfections are described in the third part of the section from
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the procedure based on the MUSIC approach, and in the last part of the section from the procedure
now based on an inverse Fourier method. As opposed to [6] where these procedures are introduced for
achieving numerical localizations using full finite element meshes, we specify that only reduced meshes
will be required here.

We already mention that the integration method that we use does not deteriorate the order of
accuracy of the finite element discretization associated with the considered reduced mesh. Thus, the
localization accuracy will only depend on this discretization order, besides the error inherent in the

used inversion procedure.

5.1 Computational Configurations

Two distinct configurations of the (polyhedric) domain €2, having the shape of the unit ball, are
taken into account: the case where {2 contains a single imperfection and when it contains multiple
imperfections. For the first configuration, the single imperfection is a polyhedron having the shape of
a ball of center (p1,p2,p3)? = (0.23,—0.31,0.15)7 and of radius a = 0.02. We perform, as described
in Subsection 4.2, the discretization process of the domain 2 and retain for this configuration three

reduced meshes obtained recursively. Namely, we denote by

e 73, the collection of tetrahedra corresponding to the initial reduced mesh of €2. This is a mesh
built from an inhomogeneous tetrahedron of small diameter (approximately equal to 5a), and
identified hereafter as the reduced mesh of Q of first level (I = 1);

e 7}, the collection of tetrahedra associated with the reduced mesh of € of second level (I = 2),
built from a dilation of the initial inhomogeneous tetrahedron with a homothetic parameter equal
to 1.05;

e T}, the collection of tetrahedra corresponding to the reduced mesh of Q of third level (I = 3),
also obtained from a dilation of the initial inhomogeneous tetrahedron but with a homothetic

parameter now equal to (1.05)2.

We have used more or less the same balancing (of the order of %) in the construction of these reduced
meshes and their sizes h;, 1 <[ < 3, are such that: h; < ho < hs. In the following table, we give some
characteristics of these meshes — denoting by NK, NIFE, NIV the number of tetrahedra, internal
edges and internal vertices respectively, as well by nf, ne the number of boundary faces and boundary

edges respectively.

NK | NIE | NIV | nf ne hy

Ty, || 46402 | 51734 | 6969 | 3276 | 4914 | 0.17152
Th, || 31081 | 34252 | 4545 | 2750 | 4125 | 0.19100
16021 | 17538 | 2309 | 1586 | 2379 | 0.22639

The discretization approach of Subsection 4.2 leads us to consider moreover, for each inhomogeneous

tetrahedron present, a corresponding integration mesh. This is of course a conforming mesh for which
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large disproportions exist between the volumes of tetrahedra inside and outside the imperfection (see
Figure 3 for some examples of two-dimensional representations). The collection of tetrahedra associated
with the integration mesh of the inhomogeneous tetrahedron of 75, (1 <1 < 3) is then not necessarily
very large (about 1500 elements constitute each one of the three integration meshes considered here).

In the second configuration, 2 contains more than one imperfection and each imperfection is a
ball-like or ellipsoid-like shaped polyhedron. The collections of tetrahedra associated with the reduced

meshes of € are represented by

. Th4 when {2 contains three imperfections one of which has the shape of a ball of radius 0.016 and of
center (0.23,—0.31,0.15)7". The second one is ellipsoid-shaped, centered at (—0.17, —0.43, —0.11)7
with ’semi-axes’ of lengths 0.016, 0.016, 0.018 in the directions Oz, Oy, Oz respectively. The
last imperfection is also ellipsoid-shaped, but centered at (—0.5,0.25,0.1)7 with the ’semi-axes’
(on Ozy) rotated about Oz by an angle of % The lengths of the ’semi-axes’ of this imperfection
are 0.016, 0.017 and 0.019. We denote in this case by a (o = 0.019) the maximal value of the

semi-axes lengths and the 'radius’ of the first imperfection;

° ’2;15 when 2 contains five imperfections, where each one has the shape of a ball of radius 0.01. We
set here: o = 0.01. These imperfections are respectively centered at (0,0,0)7, (0.25,0.25,0.25)7,
(0.5,0.5,0.5)T, (—0.25,—-0.25, —0.25)T ) and (—0.5, —0.5, —0.5)T".

For these settings of multiple imperfections, we retain thus two reduced meshes of {2, where each mesh
corresponds to a specific physical setting and is obtained by performing the discretization process
described in Subsection 4.2. The mesh size, denoted here by h, differs of course depending on whether
we are concerned with Th4 or Th5. We also mention that neither of these meshes is linked to any
of previous meshes of the single imperfection configuration, in the sense that any inhomogeneous
tetrahedron of 7;} or of 7,7 is not built from that of 7;,,. Using the same notation as above, we give in

the following table some characteristics of the two reduced meshes with multiple imperfections.

NK | NIE | NIV | nf ne h

T}f 66347 | 74349 | 10085 | 4168 | 6252 | 0.14546

7,0 || 77263 | 86614 | 11753 | 4806 | 7209 | 0.13951

Of course, as previously for the single imperfection configuration, an integration mesh is systemati-
cally associated here with each inhomogeneous tetrahedron of 7;* and 7,7. We distinguish thus three
integration meshes associated with the three inhomogeneous tetrahedra of 7,*, whereas we retain a
unique integration mesh in the case of the inhomogeneous tetrahedra of 7,> (all the imperfections hav-
ing here both the same shape and size, and the same type of tetrahedron being used to surround each
imperfection — the inhomogeneous tetrahedra have a unique shape and identical diameters).

As opposed to the context of full finite element meshes, the mesh size h; or h resulting from
each reduced mesh is systematically larger than the largest of the diameters and ’axes lengths’ of the

imperfections: hy, h > 2a.
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In the construction of the reduced meshes associated with T}f and ’Th5, we have used more or less
the same balancing (of the order of % as before). With such a balancing, the usual discretization
process of the domain results in a full mesh having an exorbitant number of tetrahedra, in each one
of the previous settings (for example, more than 1140000 tetrahedra result from the full mesh of the
domain, with approximately 0.0619 as mesh size, when it contains a single imperfection of radius 0.08
only!). Let us mention also that, by using similar balancings in the constructions of meshes, a reduced
mesh of the domain containing multiple imperfections (with « the common order of magnitude of their
diameters) does not necessarily have a larger number of tetrahedra than a reduced mesh of the same
domain with a single imperfection (with an order of magnitude of its diameter close to ).

Let us specify that in comparison with the imperfections considered in [6], those present in the

above configurations are one order of magnitude smaller.

5.2 From a Procedure based on a Current Projection Method

We describe in this subsection the results obtained from a localization procedure uniquely devoted to
the case where the domain contains a single imperfection. This procedure, combining the asymptotic
formula (16) and a Current Projection method, is presented in [6] and is aimed at determining the
center of the imperfection. To begin, let us recall briefly how the formula (16) is used. We denote by
p = (p1,p2,p3)” the center of the imperfection, by M its “rescaled” polarization tensor (% —1)M? (%),
and by N its other “rescaled” polarization tensor (g—(l) —1)M! (g—(l)) When we neglect the asymptotically

small remainder term in (16), it follows that:

r ::/ curlEQXI/-wda—/ curlw x v+ (v x g)do =
89 89 (18)

a®k% (N Ey(p)) - w(p) + a3 (M curl Ey(p)) - curlw(p) ,

with w any smooth vector-valued function satisfying
curl(curlw) —k*w = 0 in W,

where W is an open neighborhood of €.

According to (9), we recall that E, = &, +u,, where &, is the solution to (7). The datum g in (6),
that defines ug, is considered from a physical point of view as a current applied on 9€). The discrete
field &, associated with &, is the solution of the discrete formulation (17), and the discrete electric
field associated with E, is defined as: E := &, + ug. The inversion process is established by using
in (18) particular currents as well as special test fields, and by evaluating the corresponding numerical
measurements from the left-hand side of (18).

We apply different currents for g that correspond to the following background vector potentials

0 elkas 0
ESY (21,22, 23) = 0 . B (21,00, 73) = 0 B (w1, w0,25) = | ek |
eikrg 0 0
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and evaluate from the left-hand side of (18) the terms Liys 1 < 4,5 <3, defined as:

Ly = / curl E" G XV wi) do — / curl w¥) x v+ (v x g do . (19)
09 ’ o0

)

Namely, for each current ¢(?) = E(()i x v, we put g := ¢ in (6) in order to compute by (17) the

corresponding discrete electric field denoted here by EZ (i)’ and consider the test vector fields

0 o—lka2 0
w D (zy, 29, 3) = 0 , wD (21,29, 23) = 0 s WD (g, 00,03) = 0
ke 0 elkz2
T 0 etk
w (21,29, 23) = 0 , wPP (@, wy) = | et | w® (@, @y, 05) = 0
0 0 0
0 0 0
w(1,3)(x17m27m3) _ o—ikz1 7 w(2’3)(a:1,a:2,a:3) = 0 , w(?”?’)(xl,a:g,a:g) = | el
0 ke 0

Each I'; ), 1 < 4,5 < 3, is called the numerical boundary measurement. It follows from the formula
(18) and with these considerations that:

7

Q

Ty ~ o*k2Ng +ak2My

Ly = a3k®Ny3 — a3k Msyy |

L1y ~ (aPk?Nasz — a3k2M11)ezikp2 ,

Laa ~ a®k®Ni 4 a®k* My,

Lo ~ a®k*Nyp —a®k* My, (20)
Tiaa) =~ (Q3k2Niy — aPk?May)e?hps,

Las ~ a®k*Nog 4+ a®k*Mas,

L3 =~ a3k?N3y — a3k? Mo ,

P(373) ~ (a3k:2N22 — a3k2M33)e2ikp1 N

where the terms M;; and N;j, 1 <i,7 < 3, are respectively the coefficients of M and IN. As specified
in [6], the measurements I'(; ;), (24, 1 <14 < 3, in (20), allow us to provide an approximation of the
rescaled tensor a®k?M or a®k*N depending on whether e; = ¢ or p; = jg. Once an approximation
of the tensor a3k?M or a®k?N is determined, we can localize the center of the imperfection from the
measurements ['3;), 1 < i < 3, in (20), for certain values of k and when po > 0, u1 > 0, g9 > 0,
g1 > 0.

We mention that the measurements in (20) are not however sufficient to determine the approxima-

tions of a®k?M and o®k%N in the general case, where both ju; # pg and e1 # eo.
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Ho
M1

imperfection can be determined from one of the measurements I'( ;), 1 <@ < 3, even if u3 # po and

When the polarization tensors M1 (£2) and M 1(%(1)) are known, an approximation of the size of the
€1 # €p, with of course pp > 0, p1 > 0, €9 > 0, 1 > 0. Following [6], we determine the approximations
of M 1(%) and M 1(g—(l)) without any relation to reduced meshes. In fact, for evaluating numerically
M 1(%) or M l(g—?), we first consider a weak formulation in scalar potential making use of a boundary
integral operator, and associated with (12). After discretizing this formulation from a combination
of interior nodal finite elements with boundary finite elements of first-order (see e.g. [16] for the
approximation of the mentioned boundary integral operator), we compute the discrete scalar potential
associated with (12), and then use it to evaluate numerically from (13) the coefficients of the tensor.
In what follows, we fix g = €9 = 1, and present the numerical results of the localization of a single
imperfection contained in 2. We make use of (20) by distinguishing the cases: 1 = pg with €1 # &,
as well as p1 # po with e = g9. Here and in the following subsections, all our numerical results will

be described with respect to the parameter
TiI=ow. (21)

Let us mention that this parameter would be defined as 7 := aw/r if Q was a ball of radius r. Based
on the numerical study of the asymptotic formula (14) done in [6], each considered frequency must be
such that £ is in accordance with Remark 3.1, and must not lead to a large or a too small value of 7.
Consequently, we will not use here frequencies that are too high and each considered frequency will be
such that k < % for example, in the case of the reconstruction of the center of the imperfection in 2

(domain having here the shape of the unit ball).
We respectively denote by o — o , [P — phlg:

|al Plgs

errors on the radius « and the center p of the imperfection, when «y4,, p;, are the radius and the center

, where | . |gs is the infinity norm on R3, the relative

of the localized imperfection.

Figures 4 - 5 present results obtained from 7, 1 <1 < 3, with 1 = 1, e1 = 3,5,10. We observe
an asymptotic behaviour of the relative error on the radius of the imperfection with respect to 7.

We observe in the case where 1 = 1 that the relative error on the radius increases with respect to
7, independently of the considered reduced mesh. On the other hand, for a large range of values of 7,
this relative error increases with respect to the contrast of the domain. Figures 4 - 5 show moreover
that this relative error becomes more important when we augment the reduced mesh level and that,
for the low contrasts, the two first reduced mesh levels lead to errors on the radius that are not very

different for a large range of values of 7.

We mention that an asymptotic behaviour of the relative error on the radius, with respect to 7, is
also observed from simulations in the case where u; = 3,5,10 with ¢y = 1. For a range of values of
7 (1 < 1071), this relative error increases slightly when the contrast becomes important. We observe
from experiments, for £ = 1 and for such values of 7, that the relative error on the radius is asymptot-

ically slightly more accurate than the one obtained by taking py = 1, independently of the considered

18



0 075
——l= ——1=1
—o— =2 07p —e1=2| 4
o7} ——1=3| { 13
065
0sf 06
055
osf
05
04
0.45-
04
03f
035
02}
& P=—=—F —> 03 B P———F =%
. . . . . .
10* 10° 10? 10 100 10* 107 107 10" 10°

Figure 4: Semi-log representation of the relative error on the radius with respect to some values of 7,
for p1n = 1 with e; = 3 (at left) and e; = 5 (at right), from 73, 1 <1 < 3.
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reduced mesh.

In the case of low contrasts, we represent in Figures 6 - 7 the cross-sections at © = p1, y = p2 and

z = p3, of the original imperfection (with center (p;,po,p3)?) and of the reconstructed imperfection

resulting from the first level of the reduced mesh.
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Figure 6: Respective cross-sections at x = p1, y = p2 and z = p3, from 73, and with ;1 =1, ¢y = 3,
7 = 1.71072. Superposition of the original imperfection (——) whose center is marked by “4-”, and of
the reconstructed imperfection (— — —) with its center marked by “x”.
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Figure 7: Respective cross-sections at = p1, y = p2 and z = p3, from 7, and with p; =
7 = 2.61072. Superposition of the original imperfection (——) whose center is marked by “+”, and of
the reconstructed imperfection (— — —) with its center marked by “x”.

028

1, €1 :5,

As indicated in Figure 8, we observe from simulations an asymptotic behaviour of the relative error

on the center of the imperfection with respect to 7, independently of the considered reduced mesh and

when g1 = 1. On the other hand, this relative error varies with respect to the contrast of the domain

and it appears, contrary to the error on the radius, that it does not systematically increase significantly

(for a large range of values of 7) when we augment the reduced mesh level or when the contrast of

the domain increases. Also, from experiments we observe that the relative error on the center, when

€1 = 1, is not systematically more accurate than the one obtained by taking p; = 1, independently of

the considered reduced mesh.
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Figure 8: Semi-log representation of the relative error on the center with respect to some values of 7,
from 7, (—>—) and 73, (—o—), for u1 = 1 with &1 = 10.

The behaviours of the relative errors on the radius and the center, with respect to 7, indicate to
us that accurate reconstructions of the imperfection cannot be expected in the case of too small or
large values of 7. Moreover, it appears more efficient to consider, in simulations, the second level of
the reduced mesh instead of the first level due to a more reasonable CPU time and the fact that the
relative errors obtained from 7, are not numerically very different from those resulting from 7j,,, for
a large range of values of 7. On the other hand, since the relative errors on the radius from 7j, are
significantly better than those obtained from 7}, we present below the results of experiments based

mainly on 7p,.
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Figure 9: Respective cross-sections at * = p1, y = p2 and z = p3, from 73, and with 1 =1, 1 =5,
T = 2.61072. Superposition of the original imperfection (——) whose center is marked by “4-7, and of
the reconstructed imperfection (— — —) with its center marked by “x”.

Figure 9 allows us to notice that the imperfection reconstructed from 7, is of similar size to the
one of the imperfection reconstructed from 75, (see Figure 7), at the same frequency and for the same
contrast, but has a slightly different center.

The results represented in Figure 10 are obtained for a stronger contrast and at a lower frequency.

As opposed to this case where y; = 1 with &1 = 10, the reconstructed imperfection at the same
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Figure 10: Respective cross-sections at © = p1, y = p2 and z = p3, from 7}, and with p; =1, e = 10,
7 = 1.171072. Superposition of the original imperfection (—) whose center is marked by “+”, and of
the reconstructed imperfection (— — —) with its center marked by “x”.

frequency and when p; = 10 with e; = 1 is of smaller size.

In comparison with the results of Figure 9, the reconstructed imperfection in Figure 10 is of larger
size and its center is less accurate. We also notice from simulations with 7, that the localization of
the imperfection becomes in fact less accurate, when using the same contrast as before in Figure 9,

but in the case where 7 = 1.171072.

By reducing (again) the frequency, we obtain the results represented in Figure 11 - 12, from the
same reduced mesh level and with different contrasts.
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Figure 11: Respective cross-sections at * = p1, y = p2 and z = p3, from 73, and with 1 =1, &1 = 10,
7 = 8.21073. Superposition of the original imperfection (——) whose center is marked by “4-7, and of
the reconstructed imperfection (— — —) with its center marked by “x”.

Similar results have been obtained from simulations with the same frequency, but for u; = 5 with
€1 = 1, and when py = 1 with ¢ = 5. It appears that the localization of the imperfection becomes
more and more inaccurate when the frequency decreases, and that following the case where 1 =1 or

€1 = 1, the reconstructed imperfection is of larger or smaller size respectively.
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Figure 12: Respective cross-sections at © = p1, y = p2 and z = p3, from 7}, and with p; =10, 1 =1,
7 = 8.21073. Superposition of the original imperfection (——) whose center is marked by “+”, and of
the reconstructed imperfection (— — —) with its center marked by “x”.

5.3 From a Procedure based on the MUSIC Approach

We describe in this subsection the numerical results obtained from a procedure aimed at localizing a
single imperfection as well as multiple imperfections. This procedure, presented in [6], also makes use of
the asymptotic formula (16), but now in combination with the MUItiple SIgnal Classification (MUSIC)
approach [1]. Before describing the numerical results, let us recall briefly how the MUSIC approach
is applied, for simplicity, when ) represents the unit ball. Let (61, ...,0,) € (S?)" be n directions of
incidence, and denote by (Z1, ..., &,), n directions of observation, where Z; = HIL for [ =1,...,n. Here,
the essential assumption is that n is bigger than m, the number of imperfections. By neglecting the

asymptotically small remainder term in (16), we get:

/ curlEQXV-wda—/ curlw X v- (v x g)do =
o0 o0

0¥ KA — 1) [MI(E) B ()] - wlz) + (22)
j=1
o83 (0 1) [ (4 curl By ()] - eurl (),
j=1

where g is defined as in (6), and FE, is determined through the solution &, of (7).

Let us apply different currents for g that correspond to the background vector potentials Ey ) (z) =
Qlleikel'w, 1 <1 < n. From each applied current ¢} = Eoqy x v, 1 <1< n, we take g := g® in (6)
and compute through (17) the ‘corresponding discrete electric field denoted by EZ’(Z). Now with the
test vector field w®)(z) = fietkor-e 1 <1 < n, we evaluate from the left-hand side of (22) the term
defined as follows,

Ay = / curl EZ W XV w® do — / curlw®) x v (v x g(l)) do ,
o0 ’ o0

that denotes a numerical boundary measurement. In this way we build numerically the matrix A :=

(A )i<ir<n- With these particular choices of background vector potentials and test vector fields, we
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get from the right-hand side of (22):

@30 1) ()0t ) 0 - (2 - 1) (M) 001 ) - 00 x )| s
= &j €j Hj Hj
If we replace the approximation in (22) by an equality, we may respectively write the coefficients of A

as below, when all the imperfections are uniquely electric or uniquely magnetic: for 1 < [,I’ < n,

j=1 J J

or

Aw = o YR 1) <Mj<@><el x o%)) (O x O et OrtOz
= M Hj

. —T .
Let us consider some constant vector ¢ € R3, and set A* = A . Depending on whether all the

imperfections are electric or magnetic, let us define, respectively for z € Q,
Goe = (c-0Fe*0rz . gLelhn)T
where c is such that c - Qll #0,foralll =1,...,n, or

9zc = (c- (01 % Oll)eikel'z, ey €+ (0, X 0i)eik9"'z)T,

)

with here ¢ such that c- (6" x 6)) #0, for all | = 1,...,n.
Referring now to [1], it can be shown that there exists ng € IN such that for any n > ny,
9zc € Range(AA*) if and only if z € {21, ..., 2 }.

An application of the singular-value decomposition of A is the determination of the number of imperfec-
tions, since the number of significant singular-values of A yields the number of detectable imperfections
(see [1], [2]). Typically, if there exist 3m significant singular-values of A, then there are m detectable
imperfections. If all the singular-values of A are zero or close to zero (when A does not have any
significant singular-value), then there are no detectable imperfections in the domain.

In the case where there are detectable imperfections in the domain, we can make use of the singular-
vectors of A to locate them. If we call Vg = [uj,ug, ..., up+] the matrix block built with significant
left singular-vectors of A, where n* is the number of these vectors, then VSVST defines the projection
onto the signal space of A and we consider P = I — ngsT, where [ is the n x n identity matrix, with

n > 3m. For any point z € €, let us define: W,(z) := #, where the 2-norm ||. ||z is applied

1Pg:.c|2
here to a vector of n components. The point z coincides with the location of an imperfection if and
only if Pg, . = 0. In this way, we can form an image of detected imperfections by plotting W, at each

point z of ; the resulting plot will have large peaks at the locations of the imperfections.

The process is similar in the case where all the imperfections are electromagnetic. For 1 < [,I' <n

fixed, and replacing the approximation in (22) by the equality, the terms of the matrix A are in this
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case:

Aw = 0432 [k‘Q(i—j -1) (Mj(i—g)%) - Opr
j=1
— K2 1) (M) 0 x 01)) - (0 x 0F) | el 0=
Now, g . is defined as follows:
T
oo = Ny elktrz c- b olktnz |
c- (6 x 07) c- (0, x 0F)

where ¢ € R? is some constant vector such that c - Hll #0, and ¢- (Qll x0)#0,foralll =1,...,n.
Referring again to [1], [2], if there exist 5m significant singular-values of A, then there are m de-
tectable imperfections, and if all the singular-values of A are zero or close to zero, then there are no de-
tectable imperfections. An image of detected imperfections is also formed by plotting W.(z) = m
at each point z of 2, where P is built as previously from significant left singular-vectors of A, n > bm

now, and the 2-norm ||. ||z is applied to an n x 2 matrix.

Hereafter, we present numerical results obtained from extensive simulations that make use of the
procedure (cf. [6]) based on this approach. Since the visual representation of the functional W,
depending in particular on the parameter c is required, all our results will be described with respect to
¢ in addition to the parameters pq, £, and 7 (see (21)). More precisely, as the same procedure enforces
an illumination of the domain €2, these results should be described also with respect to the number n of
incident waves used to illuminate €2. These waves are defined from certain points uniformly distributed
on the full boundary, 6, = (cos(27r%)Sin(ﬂé__ll),sin(%ré__ll)sin(wé__ll),cos(ﬁfl__ll)) , 1 <

I <n. In a general way, we will consider n = 3m + 2 incident waves in the case of electric or magnetic

imperfections, and n = 5m + 3 in the case of the localization of electromagnetic imperfections. In our
presentation of results, we will then specify the choice of n only when it differs from 3m + 2 or 5m + 3
following the case.

We fix here pg = €9 = 1. In order to compare the numerical results of the previous subsection with
those that will be obtained here in the case of the localization of a single imperfection (m = 1), we
first consider most of the previous values of 7, pu; and €1, as well as 7p,, 7p,. Let us recall that the
same notation as above, p = (p1, p2, p3)’, is used to indicate the center of this imperfection.

Figures 13 - 16 present results obtained from the first level of the reduced mesh by considering
pr =1, = 3,5, 7= 171072261072 and ¢ = (1.0,—2.0,1.0)7.  These results concerning the
location of the single imperfection seem more accurate than those of Figures 6 and 7 obtained in the
previous subsection.

By using now the second level of the reduced mesh in the latter case (u1 = 1 with ¢; = 5), we
obtain the results of Figure 17.

Though slightly less accurate, these results are similar to those of Figure 16 obtained at the same

frequency and with the same value of the parameter c. Similar conclusions are also reached when we
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Figure 14: Cross-section of W, at y = pa (at left) and corresponding contour-plot (at right), from 77,

and with 1 =1, 61 =3, 7 = 1.71072, ¢ = (1.0, —2.0,1.0)T.
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Figure 15: Cross-section of W, at z = p3 (at left) and corresponding contour-plot (at right), from 7p,
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26



1 1 1
20
80
08 08 08
14
18
06 06 06 20
04 04 2 04
16 5
o ® - .
10
N0l B oo > 0 50
02 02 02 ;
12 s 40
-04 : : 04 : : 04 :
06 0 -06 6 06 i
-08 -08 -08
s 20
4
4 ; ; ; ; i ; i ; ; " ; i ; ; i i ; i i . H ; ; H H ; ; H H
1 08 -06 -04 -02 0 02 04 06 08 1 1 08 06 -04 -02 0 02 04 06 08 1 1 -08 06 04 -02 0 02 04 06 08 1
y X X
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compare the results of Figures 13 - 15 with those obtained with the same values of parameters but
from 7,,. From this point on, we treat only experiments based on 7j,, due to the efficiency in CPU
time for simulations with this second level of the reduced mesh and the fact that the difference of the
localization results, between 7}, and 7j,, is not numerically very significant.

Let us also mention in a general way that the choice of values of ¢ will always be done as described
at the beginning of this subsection and that other admissible values for this parameter led to the same
kind of results as here.

As already observed in Figure 12, when the procedure based on the Current Projection was used, the
results of Figure 18 indicate, in the case of the present procedure, that the location of the imperfection

becomes less accurate when smaller frequencies are considered.
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Figure 18: Respective contour-plots of cross-sections of W, at z = p;, y = p2 and z = p3, from 7p,
and with 1 = 10, &1 = 1, 7 =8.21073, ¢ = (—1.0,1.0,1.0)T.

Contrary to the localization procedure of the previous subsection, where a restriction was enforced
on the choice of frequencies for reconstructions, the present procedure allows us to achieve localizations
in a less restrictive context, namely with ’high’ frequencies. The results obtained by considering larger

values of 7 are represented in Figures 19 - 20, for weak and strong contrasts.
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Figure 19: Respective contour-plots of cross-sections of W, at x = p1, y = p2 and z = p3, from 7,
and with 1 =1, 61 =3, 7 =6.61072, ¢ = (1.0, —2.0,1.0)T".
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Figure 20: Respective contour-plots of cross-sections of W, at z = p;, y = p2 and z = p3, from 7p,
and with p; =1, &1 = 10, 7 = 1.06 107!, ¢ = (1.0, -2.0,1.0)T".

Contrary also to the previous subsection, we can achieve here simulations of the localization of an
electromagnetic imperfection. Figures 21 - 22 show results of such a localization obtained at different

frequencies.
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Figure 21: Respective contour-plots of cross-sections of W, at z = p;, y = p2 and z = p3, from 7},
and with pu; =5, ey = 10, 7 = 1.06 107!, ¢ = (—1.0,-0.5,0.5)T".

Let us mention that independently of the contrast of the domain, the localization of the center of
the imperfection becomes less and less accurate when 7 takes larger values. With 7 > 3.5107! for
example, we obtain disastrous results from the simulations.

We now treat the localization of multiple imperfections from the settings based on 7;14 and ’2;15.

The results represented in Figures 23 - 25 are obtained at a same frequency but with different
contrasts of the domain.

Figure 26 presents the results obtained by keeping the same values of p,, £, as in Figure 23 and
the same frequency, but by considering 7;15 with a larger number of incident waves.

We can already summarize this subsection by reporting that the localization of the imperfections
from the procedure based on the MUSIC approach is efficiently achieved whenever too small or large
values of 7 are not considered. As was also observed in [6], where full meshes were required, it appears

here that the accuracy of the localization of the imperfections varies also with respect to the contrast
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Figure 22: Respective contour-plots of cross-sections of W, at * = p1, y = p2 and z = p3, from 7,
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Figure 23: Contour-plot views of W, from the x—direction, the y—direction and the z—direction
respectively, when 7,2 is used, pu; =1, ; =3 (1 < j < 3), 7= 10071071 and ¢ = (1.5,-0.5,2.5)T".
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Figure 24: Contour-plot views of W, from the x—direction, the y—direction and the z—direction
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Figure 25: Contour-plot views of W, when ’T,:1 is used, 7 = 1.007107!, ¢ = (2.0,—2.5,1.5)T, with
pj =95,€1=¢e2=3,e3 =3+ 0.1i at left, and p; = 3, €; = 10 at right, 1 < j < 3.
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Figure 26: Contour-plot views of W, from the x—direction, the y—direction and the z—direction
respectively, when 7, is used, pu; = 1,¢;, =3 (1 < j < 5), 7 = 1.06107!, ¢ = (1.0,2.5,1.0)7 and
n = 30.
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of the domain. The results seem slightly more accurate in the case of electric imperfections than in

other cases, independently of the considered reduced meshes.

5.4 From a Procedure based on an Inverse Fourier Method

In this last subsection, we describe the numerical results obtained from a procedure aimed also at
localizing a single imperfection as well as multiple imperfections. As presented in [6], this procedure
makes use of the asymptotic formula (16) and of the original idea of Calderon [8] which was to reduce
the localization problem to the calculation of an inverse Fourier transform. Let us first of all recall

briefly the principle of this procedure by reconsidering the formula (16) as follows:

F::/ curl £, ><1/~wda—/ curlw x v- (v x g)do =
oN o0

i)““ 1) [M7 () Bozy)] - wizy) + (23)
a3Z('u—Q 1) MJ( )curlEO(z]) -curlw(z;) + O(at),
=

where g = E,, X v.
For an arbitrary n € R3, let us define 3 and ¢ in R? such that:

I8l = 1, B-n=0,
IKI? =1 ¢n=2¢pB=

with ||. || denoting the usual norm associated with the Hermitian product on ©3. Let p = 7+ ~f such
that p-p = k?, i.e., 7y is a complex number such that: v* = k? — ||5||?. In accordance with (15), we
consider w(z) = eiq'””C as the test vector field, where ¢ = n — (3. By taking g(z) = (e?*() x v(x) as
the boundary current, then associated with the background potential Ey(z) = eip'rC , it follows from
(23) that:
r=a*y <k2 —1) [Mj (%)eimg] celezic
J=1 ’ (24)
(B0 — 1) [MI(BL) (ielr=ip x ()] - (el x ()] + O(a?).

By viewing the measurement as a function of 1 now,

m

~ ) (w8 1) [wEhd] < -
=
(he - ﬂMwa<+wmxcﬂ«m—vmxcné%%,

and by inspecting the context where all the imperfections are balls — the tensors M7 (c) being accord-

ingly of the form m7(c)I3 with m7(c) a scalar depending on ¢ (cf. e.g. [6]), it follows that

m

~ a3 [ i (2) - By Bl ) [ @)

_ &j Hj Hj
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Since ||n||? is a polynomial in the coordinates 1;, 1 < i < 3, of 1, the expression in the right-hand side
of (25) is therefore, in this particular case, the Fourier transform of a linear combination of derivatives
of order less than or equal to 2 of delta functions centered at the points —2z;, 1 < j < m. More

precisely, the inverse Fourier transform of I'(7) is expressed as:

m

D(a) ~a® )y Li(0-as)(@),
j=1
where L; is a second order differential operator with constant coefficients depending on mj(g—g) and
mJ (ﬁ—‘;) In this approach, a numerical Fourier inversion of a sample of measurements should efficiently
pin down the z;’s.

When some of the imperfections are not balls, we may rewrite (24) as below, where the measurement

I" is viewed again as a function of #:

m

) % oY (B = e ) = (2 = 100 ) 27 (26

j=1
with Teye, (1) = (MI(22))-C and Ty, () = (M7 () ((5475) x ) ((n—5) ). The expression
in the right-hand side of (26) is in fact the Fourier transform of an operator of a more complicated
kind acting on delta functions centered at the points —2z;, 1 < j < m. The present localization
principle consists of sampling the values of I'(n) at some discrete set of points and then evaluating the
corresponding discrete inverse Fourier transform. After a rescaling (by —%), the support of this inverse
Fourier transform will provide the locations of the imperfections.

Typically, for each point 7 of the sampling, we consider g(x) = (ei(”J“Yﬁ)‘”C ¢) xv(z) as the boundary
current in (6) and compute through (17) the corresponding discrete electric field, denoted here by E".
After determining the discrete field, curl E" x v, we evaluate numerically the measurement I'(n) by
using of course w(z) = el(1=18)2¢ a5 the test field in Joqcurl Eq X v-wdo — [, curlw xv- (v x g)do,
and by replacing E, by E" in this difference of terms representing in fact the left-hand side of (24).

Let us now specify, following [21], a possible way to choose a step size for sampling with respect to
7 in the numerical simulations. First of all, let us assume that all the centers z; = (zjl, 2]2-, z;)’)T of the
imperfections (1 < j < m) lie in a domain [~ K, K3, where the bound K is known. To simplify the

presentation, let us consider the formula (25) and rewrite simply its right-hand side as:

m
3 1 2 3
E Cj o2 (mzj+n2zi+n327) , (27)
Jj=1

where the complex constants C; are unknown. As previously mentioned, for each n = (11,72, n3) T, we
are able to evaluate the measurement I'(n) and therefore we assume that (27) is known for (n1,n2,13)7 €
[~ Nmax;> Tmax)°, on a regular grid made up of n® points. We are then in possession of the sequence of
data: .

ZCJ A ((tmax + (L1 =1)p)2] +(—tmax+ (2= DA+ (nmaxt (=D))< | [y [s <

j=1
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where p = 2—7]7“11;“ After applying the inverse FFT to this sequence, we get

#ZCJ Z 621((_nmax+(ll_1)p)z}+(_77max+(l2_1)p)z]2‘+(_77max+(l3_l)p)z?)
7j=1

1<ly,la,l3<n (28)
w2 (= (51 -1)+ L2280 (55 —1) + L3 (55 1))

9

with 1 < s1, 89,83 < n. Let us now consider the module of the term in (28), reduced as follows:

i 1 < SIN (2N max 2} ) SIN(2Nmax 27) SN (2max 2} ) (20)
n3 o o1 . 22 . 23 .
j=1 n (eQﬂ'(ij"r%)l - 1)(e2w(p77+52T71)1 - 1)@2#(%4-%)1 - 1)

. . . pzl S1 — 1 pz2
Then, as n becomes large, the quantity in (29) is small unless one of the terms — + =-—, —L +

82—1
n

previous terms shall only approach the integers 0 or 1, in the case where n becomes large (n > 3).

3
23 _
, and pT] + S?’n—l is close to an integer. By enforcing (for example) % < %, each one of the

This relation provides a practical way to choose the step size p and also gives a link between 9yax, K

and n. In fact, we have p = 277% and take

We shall fix p according to (30) and consider simultaneously increasing values of n and of 7yax for more

accuracy. This is a resolution method whose centers z;, 1 < j < m, are localized from the sequence of

the modules of the terms in (28), with at best (theoretically) a resolution of order 7 -

As presented in [6], the procedure based on this approach incorporates additionally a cutoff process
aimed at overcoming numerical instabilities that could occur in presence of a large disproportion
between the magnitude of the remainder term of (24) for large values of ||7||, and the magnitude of
the right-hand side of (26), or then the magnitude of (27), for ||n|| near 0. In this cutoff process,
initially summarized in a two-dimensional situation by D. Volkov in [21], a threshold 7, (independent
of the centers and shapes of imperfections as well as of 115, €5, 1 < j < m) is introduced such that for
1l > (%, 7%, 7x) T ||, the quantity in (27) is set equal to 0. Consequently, finer grids for 7 are required
in order to compensate the induced loss of accuracy.

The presentation of our results will consist here of representing, after a rescaling by —%, contour-
plots based on the sequence of modules of the terms that approximate those of (28), following the
asymptotic formula, furthermore enriched by a usual linear interpolation process. In addition to the
physical parameters p, €4 and 7, all our results will be then described with respect to 7max, 7 and
7. Of course, as in the previous localization approaches, each experiment considered here will make

use of computations in double precision.

We want to compare the numerical results of Subsections 5.2 and 5.3 with those that will be
described below in the case of the localization of a single imperfection (m = 1) and on the other

hand, to compare the results of Subsection 5.3 with those that will be obtained here in the case of the
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localization of multiple imperfections (m > 1). In all the cases we fix ug = €9 = 1 and the choices of
7% will result from numerical tests.
Figures 27 - 33 present the results of the localization of a single imperfection, in each one of the

settings defined from 7}, and 7j,; most of the values of i, €1, 7 considered in Subsections 5.2 and

s
27]max
Nmax = 10 and consider p = 2 as the step size for sampling, i.e. n = 10.

5.3 are used here. An order of resolution ~ 0.157 is expected for each experiment, since we fix

3325

04 315 04 2275 _04
332
3315

3505 3265

3305

L L L L L L L L L | _ L L L L L L L L L | L L L L L L L L L |
-1 -08 -06 04 -02 0 02 04 06 08 1 Sl -08 -06 -04 -02 0 02 04 06 08 1 Sl -08 -06 -04 -02 0 02 04 06 08 1
y x x

Figure 27: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7j, is
used, 1 =1, 1 =3, 7 = 1.71072, ax = 10, n = 10 and 7, = 10.
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Figure 28: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7j, is
used, 1 =1, 61 =5, 7 = 2.6 1072, ax = 10, n = 10 and 7, = 10.

The results of Figures 27 - 28 are accurate according to the expected order of resolution. However,
these results are less accurate when compared with those of Figures 6 - 7 that derive from the proce-
dure based on the Current Projection method. As opposed to that procedure, we can here perform
simulations with ’higher’ frequencies.

Figure 29 presents the results of the localization (of a same type of imperfection as previously)
obtained also from the first level of the reduced mesh, but at a higher frequency.

The results of Figure 30, that derive from the second level of the reduced mesh, are similar to those
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Figure 29: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 73, is
used, u1 =1, &1 =10, 7 = 1.06 1071, Nmax = 10, n = 10 and 7, = 5.

of Figure 29 obtained with the same values of p1, €1, fmax, 7, and at the same frequency.
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Figure 30: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7, is
used, 1 =1, &1 =10, 7 = 1.06 10~ npax = 10, n = 10 and 7, = 5.

Similar comparisons of experiments between these reduced mesh levels allow us to notice the ef-
ficiency of the localization with the second level of the reduced mesh with respect to the CPU time,
though slightly less accurate than the localization from the first level of the reduced mesh. We are thus
concerned with 75, in the experiments providing the results presented below in Figures 31 - 33. As
with the procedure of the previous subsection, we can localize an electromagnetic imperfection with
the present procedure.

The results of Figure 31 are less accurate than those of Figure 22 represented in the previous
subsection. In fact, from similar experiments, the results obtained from the present approach, and
with the considered value of 7.y, are less accurate than those provided from the MUSIC approach.
However, the accuracy of the present approach could be improved by increasing the value of Nyax.

Figures 32 - 33 present the localization of a single imperfection achieved at a higher frequency and

for different contrasts.
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Figure 31: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7, is
used, 1 =5, &1 = 10, 7 = 2.26 107!, nax = 10, n = 10 and 7, = 6.
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Figure 32: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7, is
used, 1 =1, 1 =3, 7 = 3.46 107", Nyax = 10, n = 10 and n, = 6.
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Figure 33: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7, is
used, u1 =5, &1 = 10, 7 = 3.46 10~L, Nax = 10, n = 10 and 7, = 6.
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The localization of the imperfection is again successfully achieved, but we obtain disastrous results

from the simulations when larger values of the frequency are used.

Let us now inspect the localization context of multiple imperfections, in various aspects. For this

inspection, we fix p = % and are led to use a bigger number of measurements than previously.

We first consider experiments regarding the configuration based on 7;14.
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Figure 34: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,

based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7;} is
used, p; =3,e; =10 (1 < j <3),7=1.00710""1, Nmax = 10, n = 16 and 7, = 5.
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Figure 35: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7,! is
used, p; =1,e; =3 (1 <j <3), 7 =2.14710"%, Nyax = 10, n = 16 and n, = 5.

Figures 34 - 35 present the results of the localization of three imperfections achieved at different
frequencies. In comparison with the results of Figure 25, obtained from the MUSIC approach, those
of Figure 34 are less accurate.

The experiments associated with Figures 36 - 37 use a same frequency as in the localization corre-
sponding to Figure 35, but consider stronger contrasts.

This localization based on ’2714 is also successfully obtained, in the limit of the resolution.

In what follows, we consider experiments regarding the configuration based on 7,°. Figure 38
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Figure 36: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7,} is
used, p; =3,e; =10 (1 < j <3), 7 =2.14710"1, Nmax = 10, n = 16 and 7, = 5.
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Figure 37: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7;} is
used, pj =5,6;=3 (1 <j<3),7=214710"", Npax = 10, n = 16 and 7, = 5.
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presents the results of the localization of five electric imperfections by considering the same number n
of measurements as in the previous multiple imperfections configuration, since we are dealing with the

same region of interest in the procedure, as for ’Th4.
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Figure 38: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7;15 is
used, p1; =1,e;=3 (1 <j <5), 7=22610""1, Nmax = 10, n = 16 and 7, = 4.5.

Figures 39 - 40 show the results of the localization in the electromagnetic case, also obtained
from ’Z}f’ Similar results come from simulations achieved with other physical contrasts (u; = 5,3,
gj = 10+ 0.1i for example), by using different frequencies and the same number of measurements as

here.
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Figure 39: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7;15 is
used, p1; =5,e;=3 (1 <j <5), 7=22610""1, Nmax = 10, n = 16 and 7, = 4.5.

As observed from simulations, the localization, both of a single imperfection and of multiple imper-
fections, is successfully achieved at frequencies that are not too low or too high. However, the present
procedure appears, with the chosen value for nmax, less efficient than the one based on the MUSIC
approach, since the obtained results are less accurate and a larger number of measurements is required
here. To improve the localization accuracy, large values for 7.« must be considered. However, for such

values, the number of measurements to evaluate becomes very important and leads to a disadvantage
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Figure 40: Contour-plot views respectively from the x—direction, the y—direction and the z—direction,
based on the enriched sequence, deriving from one of the modules of the terms in (28). Here, 7;15 is
used, pj =3,e;=10 (1 < j <5),7=22610""1, npax = 10, n = 16 and n, = 4.5.

of the procedure as regards the localization CPU time, despite the cutoff process of the Fourier domain.

Since we can consider the same number of measurements to locate, at a fixed order of resolution,
both the single imperfection (m = 1) as well as all the imperfections (m > 1), in the same region of
interest, we notice that the procedure appears more suitable for configurations with a large number of

imperfections.

6 Conclusions and Perspectives

A framework for numerical simulations of the localization of small electromagnetic imperfections, in a
three-dimensional bounded domain, has been described here. Based on the combination of an asymp-
totic formula for boundary measurements, a reduced mesh and a suited inversion algorithm, this
framework has been validated in various contexts. Cases of a single imperfection and of multiple im-
perfections have been considered on the one hand, and three inversion algorithms have been used: the
Current Projection method, the MUSIC algorithm, and an inverse Fourier method. Independently of
the inversion algorithms used, we conclude from simulations that it is not necessarily useful to consider
a “very fine” reduced mesh in order to obtain a pertinent localization. Comparisons performed in the
case of a single imperfection (with the Current Projection method) or in the settings of multiple imper-
fections (with the MUSIC approach) show that the localization based on the inverse Fourier method
is numerically less efficient. This inversion method requires a larger number of measurements in or-
der to provide an accurate localization and leads consequently to a very expensive CPU time — the
evaluation of each measurement having a relatively important cost (average CPU time of about 27.7 s.
on a “SGI Origin 3200” in the case of 7, for example, without taking into account the CPU time for
calculating the right-hand side of (17) associated with the measurement). Nevertheless this inversion
method appears more suitable for configurations with a large number of imperfections, contrary to the
MUSIC approach.

As opposed to a recent work developed in [6], and based on the use of full meshes, the present
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framework allows us:
e to achieve numerical simulations of the localization of imperfections of much smaller sizes,

e and to consider experiments in the configuration of a large number of small imperfections.

A first perspective of the present work concerns the numerical localization of imperfections as
small as here, from the same inversion procedures, but where the step of the numerical evaluation of
boundary measurements will be achieved with the help of integral equation techniques.

Another perspective would be to study the numerical localization of such small imperfections from
an approach using the same inversion procedures, but based on a variant of the multiscale finite element
method ([13], [14]) for numerically evaluating boundary measurements. In fact, this approach could

be helpful in the context of a large number of such imperfections in the domain.
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