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Abstract

Under the natural partial exchangeability assumption for multi-class interacting
particle systems, we prove that these converge to an independent system with
in�nite i.i.d. classes if and only if the empirical measure of each class satis�es a
weak law of large numbers. This extension of a classical result for exchangeable
systems (related to the de Finetti Theorem) is somewhat surprising, since
then convergence of each class to in�nite i.i.d. particles implies asymptotic
independence of particles of di�erent classes.
Keywords: Multiclass, multitype, multispecies, or multipopulation interacting
particle systems; partial exchangeability; chaoticity; weak law of large numbers
for empirical measures; de Finetti Theorem
2000 Mathematics Subject Classi�cation: Primary 60K35

Secondary 60B10; 60G09

1. Introduction

Families of exchangeable random variables (r.v.) are common, for instance in statis-
tical sampling procedures, or interacting particle models in statistical mechanics. See
e.g. Aldous [1] for many examples and results for �nite and in�nite families.

The related notion of chaoticity (convergence in law to an i.i.d. sequence) arises
in many contexts, such as estimation in statistics, asymptotic models in statistical
mechanics, and approximations for invariant laws for communication networks. It is
at the basis of many pertinent heuristics; for instance, Ludwig Boltzmann derived
the Boltzmann equation from particle dynamics by introducing the �molecular chaos
assumption� (Stosszahlansatz ) of independence of particles entering a collision. This

∗ Postal address: CMAP, École Polytechnique, CNRS, 91128 Palaiseau France.

1



2 Carl Graham

is patently false, since particles coming out of a collision are not independent, but may
nevertheless be asymptotically true in the large system limit. For a modern rigorous
perspective, see Cercignani, Illner and Pulvirenti [3], in particular Sections 2 and 4.

For exchangeable r.v. with Polish state space, chaoticity is equivalent to a weak
law of large numbers for the empirical measures. A.S. Sznitman used this to obtain
rigorous propagation of chaos results for many varied models of interest, introducing
compactness-uniqueness methods to prove the required law of large numbers; see [9]
for a survey and bibliography, and e.g. [7, 5, 4] for some developments.

Many interacting systems in statistical mechanics, chemistry, communication net-
works, algorithmics, biology, etc., involve dissimilar objects which we call particles,
which are classi�ed in a �nite number of types, particles of a class being similar and
numerous; see e.g. [2, 4, 6, 8] in just one recent monograph.

The scope of this short communication is to extend the above notions and results
to multi-class systems, in order to better understand their structure and to be able to
apply to them the compactness-uniqueness methods of Sznitman [9].

2. Classical notions for indistinguishable particles

A system (Xn)1≤n≤N of random variables with state space S is exchangeable if the
law of (Xn)1≤n≤N is invariant under permutation of the indices: for every permutation
σ of {1, . . . , N} we have L(Xσ(1), . . . , Xσ(N)) = L(X1, . . . , XN ). This expresses that
the r.v. are statistically indistinguishable.

The systems (XN
n )1≤n≤N for N ≥ 1 are P -chaotic if limN→∞ L(XN

1 , . . . , XN
k ) =

P⊗k for all k ≥ 1. The systems converge in law to an i.i.d. system of law P .

The following classical result is related to the de Finetti Theorem, see Aldous [1,
Prop. 7.20 p. 55]. We shall give a direct proof in a more involved setting.

Theorem 1. Let (XN
n )1≤n≤N be an exchangeable system of random variables on a

Polish state space S, for N ≥ 1, and P be a law on S. Then these systems are
P -chaotic if and only if limN→∞ 1

N

∑N
n=1 δXN

n
= P in law, hence in probability.

Convergence in law and in probability are equivalent for a deterministic limit. The
last property constitutes a (weak) law of large numbers for the empirical measures.
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3. The extension to multi-class systems

We consider multi-class interacting systems (XN
n,i)1≤n≤Ni, 1≤i≤C , where XN

n,i with
state space Si is the n-th particle of class i. We use N = N1 + · · · + NC as the main
parameter, even though the true one is (N1, . . . , NC).

Such a multi-class system is class-exchangeable if its law is invariant under permu-
tation of the indices within classes: for all permutations σi of {1, . . . , Ni},

L(XN
σi(n),i : 1 ≤ n ≤ Ni, 1 ≤ i ≤ C) = L(XN

n,i : 1 ≤ n ≤ Ni, 1 ≤ i ≤ C) .

It is equivalent to have this property when all σi but one are the identity. This
expresses that particles within one class are statistically indistinguishable, and implies
that (XN

n,i)1≤n≤Ni is exchangeable for 1 ≤ i ≤ C.

The multi-class systems (XN
n,i)1≤n≤Ni, 1≤i≤C for N ≥ 1 are (P1, . . . , PC)-chaotic if

limNi = ∞ and Pi is a law on Si and

limL(XN
n,i : 1 ≤ n ≤ k, 1 ≤ i ≤ C) = P⊗k

1 ⊗ · · · ⊗ P⊗k
C for all k ≥ 1 .

Any �xed �nite sub-system of the multi-class system is asymptotically independent
with particles of class i having law Pi. In particular (XN

n,i)1≤n≤Ni is Pi-chaotic.

Class-exchangeability is a much weaker property than exchangeability, in particular
its symmetry order is N1! · · ·NC ! ¿ (N1 + · · · + NC)! = N !. Nevertheless, if it holds
true, laws of large numbers for empirical measures within classes force asymptotic
independence between particles in di�erent classes, and thus, Pi-chaoticity for all
classes i is equivalent to (P1, . . . , PC)-chaoticity, which is somewhat unexpected.

Theorem 2. Let (XN
n,i)1≤n≤Ni, 1≤i≤C be class-exchangeable systems, and for every i

the XN
n,i have Polish state space Si. Then these multi-class systems are (P1, . . . , PC)-

chaotic if and only if lim 1
Ni

∑Ni

n=1 δXN
n,i

= Pi in law, hence in probability, for 1 ≤ i ≤ C.
This happens if and only if (XN

n,i)1≤n≤Ni is Pi-chaotic for 1 ≤ i ≤ C.

Proof. Let ΛN
i = 1

Ni

∑Ni

n=1 δXN
n,i

. For f in Cb(Si), exchangeability within class i and
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developing the square yields

E
(〈f, ΛN

i − Pi〉2
)

= E

((
1
Ni

Ni∑
n=1

(f(XN
n,i)− 〈f, Pi〉)

)2
)

=
1
Ni

E
(
(f(XN

1,i)− 〈f, Pi〉)2
)

+
Ni − 1

Ni
E

(
(f(XN

1,i)− 〈f, Pi〉)(f(XN
2,i)− 〈f, Pi〉)

)

which has limit 0 considering the Pi-chaoticity assumption for k = 2. A separability
argument (the state space is Polish) implies limΛN

i = Pi.
Reciprocally, let k ≥ 1 and fi be in Cb(Sk

i ), and (m)k = m(m− 1) · · · (m− k + 1).
Class-exchangeability yields

E

(
C∏

i=1

fi(XN
1,i, . . . X

N
k,i)

)

=
1

(N1)k · · · (NC)k

∑

1≤n1,1,...,nk,1≤N1 distinct
...

1≤n1,C ,...,nk,C≤NC distinct

E

(
C∏

i=1

fi(XN
n1,i,i, . . . X

N
nk,i,i

)

)

= E




C∏

i=1

1
(Ni)k

∑

1≤n1,...,nk≤Ni
distinct

fi(XN
n1,i, . . . , X

N
nk,i)




= E




C∏

i=1

〈
fi,

1
(Ni)k

∑

1≤n1,...,nk≤Ni
distinct

δXN
n1,i,...,X

N
nk,i

〉
 .

This features the empirical measure for distinct k-uplets corresponding to sampling
without replacement, which factorizes nicely in the limit, in which it is equivalent to
sampling with replacement: we have

(ΛN
i )⊗k =

1
Nk

i

∑

1≤n1,...,nk≤Ni
distinct

δXN
n1,i,...,X

N
nk,i

+
1

Nk
i

∑

1≤n1,...,nk≤Ni
not distinct

δXN
n1,i,...,X

N
nk,i

so that, in total variation norm ‖µ‖ = sup{ 〈φ, µ〉 : ‖φ‖∞ ≤ 1 },
∥∥∥∥∥∥∥
(ΛN

i )⊗k − 1
(Ni)k

∑

1≤n1,...,nk≤Ni
distinct

δXN
n1,i,...,X

N
nk,i

∥∥∥∥∥∥∥
≤ 2

Nk
i − (Ni)k

Nk
i

≤ k(k − 1)
Ni

where we bound Nk
i − (Ni)k by counting k(k−1)/2 possible positions for two identical
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indices with Ni choices and Nk−2
i choices for the other positions. We conclude that

lim

〈
fi,

1
(Ni)k

∑

1≤n1,...,nk≤Ni
distinct

δXN
n1,i,...,X

N
nk,i

〉
= lim〈fi, (ΛN

i )⊗k〉 = 〈fi, P
⊗k
i 〉

and the dominated convergence Theorem yields

lim E

(
C∏

i=1

fi(XN
1,i, . . . X

N
k,i)

)
=

C∏

i=1

〈fi, P
⊗k
i 〉

which implies by a density argument that

limL(XN
n,i : 1 ≤ n ≤ k, 1 ≤ i ≤ C) = P⊗k

1 ⊗ · · · ⊗ P⊗k
C

proving the reciprocal (�if�) statement.
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