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Abstract

If a physical object has a smooth or piecewise smooth boundary, its images obtained by
cameras in varying positions undergo smooth apparent deformations. These deformations are
locally well approximated by affine transforms of the image plane.

In consequence the solid object recognition problem has often been led back to the com-
putation of affine invariant image local features. Such invariant features could be obtained by
normalization methods, but no fully affine normalization method exists for the time being. As
a matter of fact, the scale invariance, which actually means invariance to blur, is only dealt
with by methods inspired from the scale space theory, like the SIFT method. By simulating
zooms out, this method normalizes the four translation, rotation and scale (blur) parameters,
out of the six parameters of an affine transform. Affine normalization methods like MSER
normalize with respect to all six parameters of the affine transform, but this normalization is
imperfect, not dealing rigorously with blur.

The method proposed in this paper, affine SIFT (A-SIFT), simulates all image views
obtainable by varying the two camera parameters left over by the SIFT method. Then it nor-
malizes the other four parameters by simply using the SIFT method itself. The two additional
parameters are the angles (a longitude and a latitude) defining the camera axis orientation.
Mathematical arguments are developed to prove that the resulting method is fully affine in-
variant, up to an arbitrary precision.

Against any prognosis, simulating all views depending on the two camera orientation pa-
rameters is feasible with no dramatic computational load. The method permits to reliably
identify features that have undergone tilts of large magnitude, up to 30 and more, while
state-of-the-art methods do not exceed tilts of 2.5 (SIFT) or 4.5 (MSER). The report puts
in evidence the role of high transition tilts: while a tilt from a frontal to an oblique view
exceeding 6 is rare, higher transition tilts are common as soon as two oblique views of an
object are compared. Thus, a fully affine invariance is required for 3D scene analysis. This
fact is substantiated by many experiments.
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1 Introduction

Image matching aims at establishing correspondences between similar objects that appear in differ-
ent images. This is a fundamental step is many computer vision and image processing applications
such as image recognition, 3D reconstruction, object tracking, robot localization and image regis-
tration (see, for example, [14]).

1.1 The shape recognition problem

The general shape recognition problem starts with several photographs of a physical object, possibly
taken with different cameras and view points. These digital images are the query images. Given
other digital images, the search images, the question is whether some of them contain, or not, a
view of the object taken in the query image. This problem is by far more restrictive than the
categorization problem, where the question is to recognize a class of objects, like chairs or cats,
from some learning instances. This paper only deals with several instances of the very same object,
or of copies of this object.

An object’s view can deform from an image to another for two obvious reasons: First, because
it underwent a physical deformation, and second, because the change of camera position induced
an apparent deformation.

The most successful image matching algorithms usually first detect points of interest in the
compared images, then select a region around each point of interest and finally associate an invari-
ant descriptor or feature to each region. Correspondences may then be established by matching
the descriptors. Detectors and descriptors should be as invariant as possible.

In recent years local image detectors have bloomed. All of them are translation invariant.
The Harris point detector [20] is also rotation invariant. The Harris-Laplace and Hessian-Laplace
region detectors [36, 38] are invariant to rotation and changes of scale. Some moment-based
region detectors [29, 6] including the Harris-Affine and Hessian-Affine region detectors [37, 38], an
edge-based region detector [65, 64], an intensity- based region detector [63, 64], an entropy-based
region detector [23], and two independently developed level line-based region detectors MSER
(“maximally stable extremal region”) [33] and LLD (“level line descriptor”) [46, 47, 48] are designed
to be invariant to affine transformations. MSER, in particular, has been demonstrated to have
often better performance than other affine invariant detectors [40]. (A short description of MSER is
given in Section 8.1.) However, these detectors aren’t fully affine invariant. As pointed out in [31],
they start with initial feature scales and locations selected in a non-affine invariant manner. For
instance, MSER and LLD are not fully scale invariant [48]. This is also the case for other image
local descriptors, such as the distribution-based shape context [7], the geometric histogram [3]
descriptors, the derivative-based complex filters [6, 57], and the moment invariants [67].

In his milestone paper [31], Lowe has proposed a scale-invariant feature transform (SIFT) de-
scriptor that is invariant to image scaling and rotation and partially invariant to illumination and
viewpoint changes. Although this detector is a priori less invariant to affine transforms than others,
its performance turns out to be comparable. Furthermore, it really is scale invariant (see the math-
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ematical analysis in [44]. Based on the scale-space theory [28], the SIFT procedure consists in nor-
malizing local patches around robust scale covariant image key points. A number of SIFT variants
and extensions, including PCA-SIFT [24] and gradient location-orientation histogram (GLOH) [39],
that claim to have better robustness and distinctiveness with scaled-down complexity have been
developed ever since [16, 27]. Demonstrated to be superior to other many descriptors [22, 39], SIFT
and its variants have been popularly applied for scene recognition [13, 42, 56, 68, 18, 59, 72, 43]
and detection [17, 49], robot localization [8, 60, 50, 21], image registration [71], image retrieval [19],
motion tracking [66, 25], 3D modeling and reconstruction [54, 69], building panoramas [1, 9], photo
management [70, 26, 61, 10], as well as symmetry detection [32].

In this impressive body of work, many methods achieve success in certain image matching
applications. Nevertheless none of them is fully affine invariant. Being singled out for its sometimes
superior performance [40, 39], MSER is only approximately special affine invariant, and misses the
crucial zoom invariance. The mathematical analysis of the SIFT method proposed in [44] shows
that with little approximation, the SIFT method is optimal in retrieving images up to a zoom,
a rotation, and a translation. Thus, SIFT is fully similarity invariant, but it is not fully affine
invariant.

The present paper proposes an image matching algorithm, Affine SIFT (A-SIFT) that is fully
affine invariant (up to a prefixed precision). A fast multi-resolution version of this algorithm
that has a reasonably small complexity of 1.5 to 5 times a single SIFT routine will be described.
Experiments will show that A-SIFT achieves considerably better performance than SIFT and
MSER under large viewpoint changes. To explain why and how, the notion of transition tilt from a
view to another will be introduced (see Fig. 1). It will be proved that the transition tilts between
compared images attainable with A-SIFT are ten times larger than the transition tilts attained by
state-of-the art methods like SIFT or MSER.

Figure 1: High transition tilts

The focus here is on affine invariance only. Other invariance requirements will not be discussed.
For instance, photometric invariance of image matching methods is also required, because the
lighting and observation conditions affect the color scales. In general, this photometric invariance
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is correctly dealt with by state of the art methods like SIFT, MSER, or LLD, that retain only
photometric invariants (image level lines, or gradient orientations).

Other issues are also at stake to achieve a final recognition decision: probably the most chal-
lenging is to define rejection and acceptation thresholds. This matter is also amply dealt with in
recent literature. We refer to the empirical threshold of SIFT, that achieves acceptable results,
and to the much accurate shape recognition thresholds used in the a contrario theory [53, 47, 12].

Section 2 describes the main ideas, the algorithm, and discusses precursors. Section 4 presents
and discusses the crucial notion of transition tilt, that permits to evaluate the affine invariance of
algorithms. It shows that very high tilts are likely, and can indeed be handled. Section 5 gives
the mathematical formalism and a mathematical proof that A-SIFT is affine invariant. Section 6
addresses the critical sampling issues for the new-simulated parameters, and provides a complexity
analysis and a fast version of the method. Section 7 is devoted to many comparative experiments.

Figure 2: Local planar homographies are equivalent to multiple local cameras at infinity.

2 A fast presentation of the method

2.1 The affine simplification

Image distortions arising from viewpoint changes can be locally modeled by affine planar trans-
forms, provided the object’s boundaries are piecewise smooth [40]. In other terms, a perspective
effect can be modeled by a combination of several different affine transforms in different image
regions (see Fig. 2). The A-SIFT method described in this section simulates, up to some precision,
all affine transforms of the image. It is in that sense invariant to all viewpoint changes. Indeed,
by order 1 Taylor formula, any planar smooth deformation (x, y) → (X,Y ) = (F1(x, y), F2(x, y))
can be locally approximated around each point (x0, y0) → (X0, Y0) by the affine map

(
X −X0

Y − Y0

)
=

[
∂F1
∂x (x0, y0) ∂F1

∂y (x0, y0)
∂F2
∂x (x0, y0) ∂F2

∂y (x0, y0)

] (
x− x0

y − y0

)
+O

(
(x− x0)2 + (y − y0)2

(x− x0)2 + (y − y0)2)

)
.
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Thus, all object deformations and all camera motions are locally approximated by affine trans-
forms. For example, in the case of a flat object, the deformation induced by a camera motion is a
planar homographic transform, which is smooth and therefore locally tangent to affine transforms.
Conversely, any affine transform with positive determinant can be interpreted as the apparent de-
formation induced on a planar object by a camera motion, the camera being assumed far away
from the object. Thus, under the local smoothness assumption of the object’s boundary, the (local)
deformation model of an image u(x, y) under a deformation of the object or under a camera motion
is

u(x, y) → u(ax+ by + e, cx+ dy + f),

where the mapping (
x
y

)
→

[
a b
c d

](
x
y

)
+

(
e
f

)
depicts any affine transform of the plane with positive determinant.

2.2 The affine challenge

How to recognize a portion of a planar image that has undergone an arbitrary affine transform?
Since the affine transform depends upon six parameters, it is out of the question to just simulate all
of them and compare the original image to all deformed images by all possible affine deformations.
However, simulation can be a solution for a few parameters: the SIFT method actually simulates
zooms out.

The other way that has been tried by many authors is normalization. Normalization is a magic
method that, given a patch that has undergone an unknown affine transform, transforms the patch
into a standardized one, where the effect of the affine transform has been eliminated (see Fig. 3).
Normalization by translation is easily achieved: A patch around (x0, y0) is translated back to a
patch around (0, 0). A rotational normalization requires a circular patch. In this patch, a principal
direction is found, and the patch is rotated so that this principal direction coincides with a fixed
direction. Thus, of the six parameters in an affine transform, at least three are easily eliminated
by normalization.

Figure 3: Normalization methods can eliminate the effect of a a class of affine transforms by
associating the same standard patch to all transformed patches.

However, when it comes to the other three parameters, things get difficult and controversial.
At least two methods have been recently proposed to perform a full affine normalization: MSER
[33] and LLD [47]. Both of them apply to image level lines, or to image pieces of level lines, an
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affine normalization in the spirit of the translation and rotation normalization explained above.
Unfortunately, both of these methods miss a point, namely the fact that the three remaining
parameters (zoom, camera axis longitude and latitude) cannot stricto sensu be normalized. Indeed,
they depend on the irreversible image blur. The trouble comes from the fact that affine transforms
do not commute with the convolution by a radial blur kernel, with the only exception of rotations
and translations. Thus, the parameters in the affine transform do not play at all equivalent roles:
some can be normalized and some cannot, and therefore must be simulated.

Thus, to make short a long story, this paper is dedicated to the proof that the three other
parameters, which will be called zoom, longitude and latitude (tilt) parameters, can be simulated.
The idea of combining simulation and normalization is not new. It is actually the main successful
ingredient of the SIFT method. This method simulates all zooms out of the query and search
images. Quoting D. Lowe [31]:

Recently, there has been an impressive body of work on extending local features to
be invariant to full affine transformations (Baumberg, 2000; Tuytelaars and Van Gool,
2000; Mikolajczyk and Schmid, 2002; Schaffalitzky and Zisserman, 2002; Brown and
Lowe, 2002). This allows for invariant matching to features on a planar surface under
changes in orthographic 3D projection, in most cases by resampling the image in a local
affine frame. However, none of these approaches are yet fully affine invariant, as they
start with initial feature scales and locations selected in a non-affine-invariant manner
due to the prohibitive cost of exploring the full affine space. The affine frames are
also more sensitive to noise than those of the scale-invariant features, so in practice the
affine features have lower repeatability than the scale-invariant features unless the affine
distortion is greater than about a 40 degree tilt of a planar surface (Mikolajczyk, 2002).
Wider affine invariance may not be important for many applications, as training views
are best taken at least every 30 degrees rotation in viewpoint (meaning that recognition
is within 15 degrees of the closest training view) in order to capture non-planar changes
and occlusion effects for 3D objects.”

Lowe considers that exploring the full affine space would have a prohibitive cost –the aim here
is to prove that it is not so. He soundly argues that the actual affine normalization methods are
not really affine invariant, since they start with initial feature scales and locations selected in a
non-affine invariant manner. Lowe also gives a cue on how to compensate for the lack of affine
invariance of the SIFT method: by taking views of the object to be recognized every 30 degrees
rotation in viewpoint. Notice that the talk is about real snapshots and not simulated views. David
Pritchard’s master thesis is actually a first step toward the method developed here. Quoting [51]
in his 2003 master thesis on cloth parameters and motion capture:

Cloth strongly resists stretching, but permits substantial bending; folds and wrinkles
are a distinctive characteristic of cloth. This behaviour means that sections of the cloth
are often seen at oblique angles, leading to large affine distortions of features in certain
regions of the cloth. Unfortunately, SIFT features are not invariant to large affine
distortions.(...) To compensate for this, we use an expanded set of reference features.
We generate a new reference image by using a 2 x 2 transformation matrix T to scale the
reference image by half horizontally. We repeat three more times, scaling vertically and
along axes at 45 degrees, as shown in Figure 5.3. This simulates different oblique views
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of the reference image. For each of these scaled oblique views, we collect a set of SIFT
features. Finally, these new SIFT features are merged into the reference feature set.
When performing this merge, we must adjust feature positions, scales and orientations
by using T-1. This approach is compatible with the recommendations made by Lowe
for correcting SIFT’s sensitivity to affine change.

Figure 4: Geometric interpretation of the decomposition formula (1). This figure illustrates the
four main parameters in the affine image deformation caused by a camera motion, starting from
a frontal view u. The camera is assumed to stay far away from the image. The camera can first
move parallel to the observed surface: this motion induces a translation T that is not represented
here. Its optical axis can take a θ angle with respect to the normal to the image plane u. This
parameter is called latitude. The plane containing the normal and the new position of the optical
axis makes an angle φ with a fixed vertical plane. This angle is called longitude. The camera can
also rotate around its optical axis (rotation parameter ψ). Last but not least, the camera can move
forward or backward, or change focal length. This is the zoom parameter λ. If λ and µ are large
with respect to the object’s size, the image deformation of a frontal view λ, t = 1, φ = ψ = 0 to a
slanted view λ′, t′, φ′, ψ′ corresponds to an image deformation u(x, y) → u(A(x, y)) as in Formula
(1)

Given an affine map of the plane with positive determinant, consider its unique decomposition

A = HλR1(ψ)TtR2(φ) = λ

[
cosψ − sinψ
sinψ cosψ

] [
t 0
0 1

] [
cosφ − sinφ
sinφ cosφ

]
(1)

where λ > 0, λt is the determinant of A, Ri are rotations, φ ∈ [0, 180◦[, and Tt is a tilt, namely
a diagonal matrix with a first eigenvalue equal to t ≥ 1 and the second one equal to 1. Fig. 4
shows a camera motion interpretation of this affine decomposition: φ and θ = arccos 1/t are the
viewpoint angles and ψ parameterizes the camera spin. Thus, this figure illustrates the four main
parameters in the affine image deformation caused by a camera motion, starting from a frontal
view u. The camera is assumed to stay far away from the image. The camera can first move
parallel to the object’s plane: this motion induces a translation T that is not represented here.
The camera can rotate around its optical axis (rotation parameter ψ). Its optical axis can take a
θ angle with respect to the normal to the image plane u. This parameter is called latitude. The
plane containing the normal and the new position of the optical axis makes an angle φ with a fixed
vertical plane. This angle is called longitude. Last but not least, the camera can move forward or
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backward. This is the zoom parameter λ. The motion of a frontal view λ = 1, t = 1, φ = ψ = 0
to a slanted view corresponds to the image deformation u(x, y) → u(A(x, y)) given by (1).

3 The algorithm

The proposed method simulates with enough accuracy all distortions caused by a variation of the
direction of the optical axis of a camera (two parameters). Then it normalizes the other four by
the SIFT method, or any other method that is rotation, translation, and scale invariant. More
specifically, the method proceeds by the following steps. (See Fig. 5.)

1. Each image is transformed by simulating all possible affine distortions caused by the change
of orientation of the camera axis of camera from a frontal position. These distortions depend
upon two parameters: the longitude φ and the latitude θ. The images undergo φ-rotations
followed by tilts with parameter t = | 1

cos θ | (a tilt by t in the direction of x is the operation
u(x, y) → u(tx, y)). For digital images, the tilt is performed as t-subsampling, and therefore
requires the previous application of an antialiasing filter in the direction of x, namely the
convolution by a gaussian with standard deviation c

√
t2 − 1 (for good antialiasing, c ' 0.6,

see [44].

2. These rotations and tilts are performed for a finite and small number of latitudes and longi-
tudes, the sampling steps of these parameters ensuring that the simulated images keep close
to any other possible view generated by other values of φ and θ.

3. All simulated images are compared to each other by a scale invariant, rotation invariant,
and translation invariant algorithm (typically SIFT). SIFT normalizes the translation of the
camera parallel to its focal plane, the rotation of the camera around its optical axis, and
simulates the scale change, namely any camera motion that does not change the camera axis.

4. To be more specific, the latitudes θ are such that the associated tilts follow a geometric series
1, a, a2, , . . . , an, with a > 1. Section 6.2 shows that a =

√
2 is a good compromise between

accuracy and sparsity. The value n can go up to 6 or more, if the tilts are simulated on the
query and the searched image, and up to 10 and more if the tilts are simulated on one image
only. That way, transition tilts going up to 64 and more can be explored.

5. The longitudes φ are for each tilt an arithmetic series 0, b/t, . . . , kb/t, where b ' 72◦ seems
again a good compromise, and k is the last integer such that kb/t < 180◦.

6. Complexity: Each tilt is a t subsampling. Thus, the image area is divided by t. Counting all
rotations associated with a tilt, the overall simulated image area for each tilt is (180/72)t =
2.5t. This implies that the method complexity is proportional to the number of tilts and not
to the number of generated views, that is much larger. Controlling the overall simulated area
means is equivalent to controlling the algorithm complexity. Indeed, the search time and
the memory size of similarity invariant indicators are proportional to the image area. This
complexity can be further downgraded by a) subsampling the query and search images; b)
identifying the pairs (t, φ) that give positive results; c) going back to the original resolution
only for these pairs.
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7. This description ends with a concrete example of how the multiresolution search strategy
can actually make the algorithm no slower than SIFT. Take a =

√
2, n = 4 (maximal tilt

for each image is 4). Thus, the simulated image area is 4× 2.5 = 10 times the original area.
By making a 3-subsampling of the original, this area is reduced to 1, 11 times the one of the
original image. If this trick is applied to both the query and the search image, the overall
complexity is equivalent to 1.23 the one of SIFT, but allows for a search with transition tilts
going up to 4×4 = 16. This is to be compared to the 2.5 limit for the transition tilts attained
in SIFT and the 4 limit for transition tilts in MSER.

Figure 5: Overview of the A-SIFT algorithm. The square images A and B represent the compared
images u and v. A-SIFT simulates arbitrary camera changes of direction by applying rotations
followed by a tilts to both images. The simulated images, represented by the parallelograms,
are then compared with an image matching algorithm like SIFT, that is invariant to similarity
transformations, i.e., invariant to scale change, rotation and translation.

4 High transition tilts

Equation (1) and its geometric interpretation in Fig. 4 are crucial to the scopes of this study.
This last figure associates any linear map A with positive determinant with the planar deforma-
tion u(A(x, y)) of a frontal view u(x, y), when the camera changes position. The parameter λ
corresponds to a change of scale. The non critical translation parameter has been eliminated by
assuming that the camera axis meets the image plane at a fixed point. Let us now consider the
case where two camera positions, not necessarily frontal are at stake, corresponding to two differ-
ent linear maps A and B. (Again, the translation parameter is left out of the discussion by fixing
the intersection of the camera axis with image plane.) This physical situation is the generic one;
when taking several snapshots of a scene, there is no particular reason why objects would be taken
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frontally. The resulting images are u1(x, y) = u(A(x, y)) and u2(x, y) = u(B(x, y)). Let us now
take one of these images as reference image, and the other one as search image.

Figure 6: Illustration of the difference between absolute tilt and transition tilt. Left: The camera
is put in two positions corresponding to tilts t and t′, but with φ = φ′. The transition tilt between
the resulting images v and v′ is t′/t. Right: when φ = φ′ + π/2, the transition tilt between v and
v′ is tt′. Thus, two moderate absolute tilts can lead to a huge transition tilt! In the left hand case,
the transition tilt is

√
3 and therefore smaller than the absolute tilts. In the right hand case, the

tilt is tt′ = 8. The rectangles in the bottom show the image deformation after tilt. Compare v
and v′ in both cases.

Definition 1. Given two views of a planar image, u1(x, y) = u(A(x, y)) and u2(x, y) = u(B(x, y)),
we call transition tilt τ(u1,u2) and transition rotation φ(u1,u2) the unique parameters such that

BA−1 = HλR1(ψ)TτR2(φ), (2)

with the notation of Formula (1).

It is an easy check that the transition tilt is symmetric, namely τ(u1,u2) = τ(u2,u1). Fig. 6
illustrates the affine transition between two images taken from different viewpoints, and in particu-
lar the difference between absolute tilt and transition tilt. The camera is first put in two positions
corresponding to absolute tilts t and t′, but with φ = φ′. The transition tilt between the resulting
images v and v′ is τ = t′/t, assuming t′ = max(t′, t). On the second illustration of Fig. 6, the tilts
are made in two orthogonal directions: φ = φ′ + π/2. Then an easy calculation shows that the
transition tilt between v and v′ is the product τ(v,v′) = tt′. Thus, two moderate absolute tilts can
lead to a large transition tilt! In the first case considered in the figure, the transition tilt is

√
3 and

therefore smaller than the absolute tilts. In the second case, the tilt is tt′ = 8. Since in realistic
cases the tilt can go up to 6 or even 8, is easily understood that the transition tilt can go up to 36,
84, and more. Fig. 7 shows the regions of the observation half sphere that can be attained with
a given transition tilt from a fixed viewpoint with latitude 80◦ (absolute tilt t = 5.85). From this
strong latitude, it needs a τ = 40 transition tilt to attain most other viewpoints. SIFT and MSER
only attain small regions.
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τ < 2.5 (SIFT) τ < 5 (MSER) τ < 40 (A-SIFT)

θ = 80◦

Figure 7: High transition tilts. The bright regions are the parts of the observation half sphere
that can be attained with a given transition tilt from a fixed viewpoint with latitude 80◦ (absolute
tilt t = 5.85). From this strong latitude, it needs a τ = 40 transition tilt to attain most other
viewpoints. SIFT and MSER only attain small regions.

Fig. 8 shows the A-SIFT results for a pair of images under orthogonal viewpoints (transition
rotation φ = 90◦) that leads to an extreme transition tilt t ≈ 37. This is not at all an exceptional
situation. It just so happens that the object’s planar surface is observed at the same latitude by
both views with a tilt t ' t′ ' 6. This figure shows two snapshots of a magazine lying on a table,
not even really flat, and with a non lambertian surface plagued with reflections. The difference
of longitudes being about 90 degrees, the transition tilt between both images is surprisingly high:
τ = tt′ ' 37. Thus, it is many times larger than the transition tilt attainable with SIFT or MSER.
A-SIFT finds 120 matches out of which only 4 are wrong.

The relevance of the notion of transition tilt is corroborated by the fact that the highest
transition tilt τmax permitting to match two images with absolute tilts t and t′ is fairly independent
from t and t′. It has been experimentally checked that for SIFT τmax ' 2.5 and for MSER τmax ' 4.

To demonstrate this for SIFT, the transition tilts attainable by SIFT have been explored by
systematic tilt simulations and tests. The experiments have been performed in the most favorable
conditions for SIFT. The seed image u0 is a high quality frontal view of the Graffiti series. Tilted
views from this frontal view were simulated by subsampling the image in one direction by a factor√
t, and oversampling the image in the orthogonal direction by the same factor. That way, the

absolute tilt is t, but the image area is not decreased. A set of tilted-rotated images u1 = u0(t1, 0)
and u2 = u(t2, φ) was generated by this method from u with absolute tilts t1 = (

√
2)k, k = 1,

2, . . . , 5, t2 = (2
1
4 )l, l = 1, 2, . . . , 14, and φ2 in a dense subset of [0, 90◦]. The table shows for

each pair t1, t2 the maximal longitude φmax ensuring that u1(t1, 0◦) and u2(t2, φmax) match. On
the right of φmax, the table displays in each box the corresponding transition tilt τ(t1, 0, t2, ϕmax).
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Figure 8: Top: Image pair with transition tilt t ≈ 37. (SIFT and MSER fail completely.) Bottom:
A-SIFT finds 120 matches out which 4 are false. See comments in text.

Conspicuously enough, τmax is most of the time close to 2.5. This experiment, and other similar
ones, substantiate the empirical law that SIFT works for comparing images with transition tilts
smaller than 2.5. In all of these tests, success with SIFT means that at least 20 correct SIFT
descriptors, or SIFs, have been found. For a short description of SIFs, see Section 8.2.

SIFT is not affine invariant, however, it is robust to moderate affine transform as SIFT de-
scriptors encode local patches which may be covariant to small affine transform. The examples
illustrated in Fig. 10 show that SIFT continues to work well when there is a tilt of t = 2 between
the two images but the performance drops dramatically when t > 2.

5 The mathematical justification

5.1 Image operators formalizing A-SIFT

All continuous image operators applied to a continuous image u, including the sampling operator
that gives back a digital image, will be written in bold capital letters A, B. For a sake of simplicity,
the operator composition A◦B will be written as a mere juxtaposition AB. Given a transformation
of the image plane A, define the associated transform of u by Au(x) =: u(Ax). For instance, if
Hλ(x, y) = (λx, λy) is a homothety Hλu(x) = u(λx), Hλu(x) = u(λx) is the corresponding
expansion of u by a λ−1 factor. In the same way if R is a rotation, Ru = u ◦ R is the image
rotation by R−1, and so on.

The next list gives the main notations for images and image operators.
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Figure 9: Transition tilt values, both perspective view (odd rows) and view from zenith (even
rows) are shown. From top to bottom: latitude angle of the first image θ = 45, 60, 70, 80◦ that
correspond to respectively absolute tilts t =

√
2, 2, 2.9, 5.8. From left to right: transition tilt

< 2.5, 5, 40 (gray part).
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Figure 10: Top and bottom: SIFT detects respectively 234 and 28 matches between a frontal image
and two images with tilts t ≈ 2 and t ≈ 2.3. This latter value is close the limiting tilt for SIFT to
work.
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t1 =
√

2 t1 = 2 t1 = 2
√

2 t1 = 4 t1 = 4
√

2
t2 = 21/4 90◦/1.7 60◦/2.2 0◦/2.4
t2 = 21/2 90◦/2.0 56◦/2.4 11◦/2.1
t2 = 23/4 90◦/2.4 50◦/2.6 20◦/2.1 0◦/2.4
t2 = 2 63◦/2.6 36◦/2.4 20◦/2.1 9◦/2.2

t2 = 2× 21/4 37◦/2.4 30◦/2.3 23◦/2.3 9◦/1.9
t2 = 2× 21/2 18◦/2.6 22◦/2.2 24◦/2.6 12◦/2.0 0◦/1.4
t2 = 2× 23/4 6◦/2.4 16◦/2.2 21◦2.6 16◦/2.5 5◦/1.4

t2 = 4 0◦/2.8 9◦/2.2 18◦/2.6 14◦/2.4 9◦/1.8
t2 = 4× 21/4 4◦/2.4 11◦/2.2 12◦/2.3 8◦/2.0
t2 = 4× 21/2 6◦/2.2 7◦/1.9 8◦/2.3
t2 = 4× 23/4 0◦/2.4 5◦/2.0 8◦/2.5

t2 = 8 0◦/2.0 7◦/2.5
t2 = 8× 21/4 4◦/2.6
t2 = 8× 21/2 3◦/2.9

Table 1: m/n in each entry means the longitude angle φ between the two viewpoints / the transition
tilt τ(t1, t2, φ). This Table shows that SIFT covers a transition tilt τ ≈ 2.5.

• u(x): a continuous and bounded image defined for every x = (x, y) ∈ R2.

• u: a digital image, only defined for (n1, n2) ∈ Z2.

• Sδ: the sampling operator at rate δ > 0. Let u be a continuous image on R2. The associated
sampled digital image Sδu is defined on Z2 by

Sδu(n1, n2) = u(n1δ, n2δ); (3)

• u = Iu: the Shannon interpolate of a digital image. The definition of the Shannon interpola-
tor I is as follows. Let u be a digital image, defined on Z2 and such that

∑
n∈Z2 |u(n)|2 <∞

and
∑

n∈Z2 |u(n)| <∞. (Of course, these conditions are automatically satisfied if the digital
has a finite number of non-zero samples, which is the case here.) We call Shannon interpolate
of u the only L2(R2) function having u as samples and with spectrum support contained in
(−π, π)2. We recall that Iu is defined by the Shannon-Whittaker formula

Iu(x, y) =:
∑

(n1,n2)∈Z2

u(n1, n2)sinc(x− n1)sinc(y − n2),

where sinc x =: sin πx
πx . The Shannon interpolation has the fundamental property S1Iu = u.

Conversely, if u is L2 and band-limited in (−π, π)2, then

IS1u = u. (4)

In that case we simply say that u is band-limited. We shall also say that a digital image
u = S1u is well-sampled if it is the good sampling of a band-limited image u.
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• Gδ(x1, x2) = 1
2π(cδ)2 e

−
x2
1+x2

2
2(cδ)2 , : a gaussian kernel scaled by δ, that is, a function on R2 with

integral 1 and standard deviation proportional to δ. Thus,
∫

R2 Gδ(x)dx = 1 and Gδ(x) =
1
δ2G1(x

δ ). Gδ also denotes the associated convolution operator Gδu(x) =: (G ∗ u)(x) =∫
R2 G(y)u(x− y)dy. By the classical semigroup property:

GδGβ = G√
δ2+β2 (5)

5.2 The affine camera model

The whole image comparison process, based on local features, can proceed as though images where
(locally) obtained by using digital cameras far away (at infinity). The geometric deformations
induced by the motion of such cameras are affine maps. A model is also needed for the two main
camera parameters not deducible from its position, namely sampling and blur. The digital image is
defined on the camera CCD plane. The pixel width can be taken as length unit, and the origin and
axes chosen so that the camera pixels are indexed by Z2. The associated image sampling operator
will be denoted by S1. The digital initial image is always assumed well-sampled and obtained by
a gaussian blur with standard deviation 0.6. (See [44] for a detailed analysis of why this model
is sufficient and coherent for most digital images, and compatible with the SIFT method.) In all
that follows, u0 denotes the (theoretical) infinite resolution image that would be obtained by a
frontal snapshot of a plane object with infinitely many pixels. The digital image obtained by any
camera at infinity is u = S1G1AT u0, where A is any linear map with positive determinant and T
any plane translation. Thus we can summarize the general image formation model with cameras
at infinity as follows.

Figure 11: The projective camera model u = S1G1Au0. A is a planar projective transform (a
homography). G1 is an anti-aliasing gaussian filtering. S1 is the CCD sampling.

Definition 2. Image formation model. Digital images of a planar object whose frontal infinite
resolution image is u0, obtained by a digital camera far away from the object, satisfy

u =: S1G1AT u0 (6)
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where A is any linear map and T any plane translation. G1 denotes a gaussian kernel broad
enough to ensure no aliasing by 1-sampling, namely IS1G1AT u0 = G1AT u0.

The formal description of A-SIFT will be by far simpler if sampling issues do not interfere.
All operations and all reasoning will be made with continuous well sampled images. It is easy to
deduce afterwards the discrete operators acting on samples. T denotes an arbitrary translation,
R an arbitrary rotation, Hλ an arbitrary homothety, and G an arbitrary gaussian convolution,
all applied to continuous images. In the particular case in the digital image formation model (6)
where A is a frontal view of u0, A = HRT is the composition of a translation T , a homothety
H, and a rotation R. Thus the digital image is u = S1G1HTRu0. The following lemma is easily
proven for the SIFT method (see [44] or the appendix, section 8.4).

Lemma 1. For any rotation R and any translation T , the SIFT descriptors of S1G1RT u0

are identical to those of S1G1u0. For any rotation R, translation T and homothety H, the
SIFT descriptors of u = S1G1u0 with scales larger than

√
λ2 − 1 are identical to those of

v = S1G1HλRT u0.

5.3 Inverting tilts

We shall denote by ∗y the 1-D convolution convolution operator in the y-direction. When we write
G∗y, we mean that G is a one-dimensional gaussian, depending on y, and the 1-D convolution
means

G ∗y u(x, y) =:
∫

G(z)u(x, y − z)dz.

There are three different notions of tilt, that we must carefully distinguish.

Definition 3. Given t > 1, the tilt factor, define

• the absolute tilt : Tx
t u0(x, y) =: u0(tx, y). In case this tilt is made in the y direction. It will

be denoted by Ty
t u0(x, y) =: u0(x, ty);

• the simulated tilt (taking into account camera blur): Tx
t v =: Tx

t G√
t2−1 ∗x v. In case the

simulated tilt is done in the x direction, it is denoted Ty
t v =: Ty

t G√
t2−1 ∗y v.

• the digital tilt (transforming a digital image u into a digital image) : u → S1Tx
t Iu. This is

the one that is used in the algorithm. It is correct because, as we shall see, the simulated tilt
yields a blur permitting S1-sampling.

If u0 is an infinite resolution image observed with a t camera tilt in the x direction, the
observed image is G1Tx

t u0. Our main problem is to reverse such tilts. This operation is in
principle impossible, because absolute tilts do not commute with blur. However, the next lemma
shows that Ty

t is actually a pseudo inverse to Tx
t .

Lemma 2. One has
Ty

t = HtG√
t2−1 ∗y (Tx

t )−1.
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Proof Since (Tx
t )−1u(x, y) = u(x

t , y),(
Gy√

t2−1
∗y (Tx

t )−1u
)

(x, y) =
∫

G√
t2−1(z)u(

x

t
, y − z)dz.

Thus
Ht

(
Gy√

t2−1
∗y (Tx

t )−1u
)

(x, y) =
∫

G√
t2−1(z)u(x, ty − z)dz =(

G√
t2−1 ∗y u

)
(x, ty) =

(
Ty

t G√
t2−1 ∗y u

)
(x, y).

�

The meaning of the next result is that a tilted digital image G1Tx
t u can be tilted back by

tilting in the orthogonal direction. The price to pay is a t zoom out. The second relation in the
theorem means that the application of the simulated tilt to an image that can be well sampled by
S1 yields an image that keeps that well sampling property.

Theorem 1. Let t ≥ 1. Then
Ty

t (G1Tx
t ) = G1Ht; (7)

Ty
t G1 = G1T

y
t . (8)

Proof By Lemma 2,
Ty

t (G1Tx
t ) = HtG√

t2−1 ∗y ((Tx
t )−1G1Tx

t ). (9)

By a variable change in the integral defining the convolution, it is an easy check that

(Tx
t )−1G1Tx

t u =
(

1
t
G1(

x

t
, y)

)
∗ u, (10)

and by the separability of the 2D gaussian in two 1D gaussians,

1
t
G1(

x

t
, y) = G1(x)G1(y). (11)

From (10) and (11) one obtains

(Tx)−1G1Tx
t u = ((Gt(x)G1(y)) ∗ u = Gt(x) ∗x G1(y) ∗y u,

which implies

G√
t2−1 ∗y (Tx)−1G1Tx

t u = G√
t2−1 ∗y (Gt(x) ∗x G1(y) ∗y u) = Gtu.

Indeed, the 1D convolutions in x and y commute and Gt∗G√
t2−1 = Gt by the Gaussian semigroup

property (5). Substituting the last proven relation in (9) yields

Ty
t G1Tx

t u = HtGtu = G1Htu.

The second relation (8) follows immediately by noting that Ht = Ty
t T

x
t . �
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5.4 Proof that A-SIFT works

The meaning of Theorem 1 is that we can design an exact algorithm that simulates all inverse
tilts for comparing two images. After interpolation, A-SIFT handles two images u = G1AT1u0

and v = G1BT2u0 that are two snapshots from different view points of a flat object whose front
infinite resolution image is denoted by u0. For a sake of simplicity, we break the symmetry, and
set ũ0 =: AT1u0, so that u = G1ũ0 and v = G1BT2T −1

1 A−1ũ0 = G1BA−1T ũ0 for a translation
T that depends on T1, T2, and A. Let us use the decomposition given by (1),

BA−1 = R1Tx
t HλR2,

where R1, R2 are rotations, Hλ a zoom, and Tx
t (x, y) = (tx, y) is the transition tilt from u to v.

In summary A-SIFT has to compare the interpolated images

v = G1R1Tx
t HλR2T ũ0 and u = G1ũ0.

5.4.1 The A-SIFT formal algorithm

The following algorithm, where image sampling issues are eliminated by interpolation, is actually
a proof that A-SIFT manages to compare u and v obtained from u0 by arbitrary camera positions
at infinity. In this ideal algorithm, a “‘dense enough” set of rotations and tilts is applied to v, so
that each one of the simulated rotation-tilts is “close enough” to any other rotation-tilt. In the
mathematical setting, this approximation must be infinitesimal. In the practical empirical setting,
we’ll have to explore how dense the sets of rotations and tilts must be (see Section 6).

A-SIFT Algorithm (formal)

1. Apply a dense set of all possible rotations (and therefore also a rotation close to R−1
1 ) to v.

Thus, some of the simulated images will be arbitrary close to v → R−1
1 G1R1HλTx

t R2T ũ0 =
G1Tx

t HλR2T ũ0;

2. apply in continuation a dense set of simulated tilts Ty
t , and therefore also one arbitrary close

to the right one Ty
t =, to R−1

1 v = G1Tx
t HλR2T ũ0. By Theorem 1, this yields

Ty
t R

−1
1 v = G1HtHλR2T ũ0 = G1HtλR2T ũ0;

3. perform a SIFT comparison of G1HtλR2T ũ0, which is a frontal view of ũ0, with u = G1ũ0

which also is a frontal view of ũ0. By Lemma 1, the application of SIFT to both images
detects their common SIFs for scales larger than

√
(tλ)2 − 1.

The above algorithm description is also a proof of the following consistency theorem.

Theorem 2. Let u = G1AT1u0 and v = BT2u0 be two images obtained from an infinite resolution
image u0 by cameras at infinity with arbitrary position and focal lengths. Then A-SIFT, applied
with a dense set of tilts and longitudes, simulates two views of u and v that are obtained from each
other by a translation, a rotation, and a camera zoom. As a consequence, these images match by
the SIFT algorithm.
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Remark 1. Even if the above proof, and the statement of Lemma 1, deal with asymptotic state-
ments when the sampling steps tend to infinity or when the SIFT scales tend to infinity, the rate
approximation is very quick, a fact that can only be checked experimentally. This fact is actually
extensively verified by the huge amount of experimental evidence on SIFT, that shows first that the
recognition of scale invariant features (SIFs) is robust to a substantial variation of latitude and
longitude, and second that the scale invariance is quite robust to moderate errors on scale. The
next section evaluates the adequate sampling rates and ranges for tilts and longitudes.

5.4.2 Simulating midway tilts

The algorithm of Section 5.4.1 can be implemented in several ways. In the above description,
the transition tilt Tx

t is directly inverted on one of the images. This strategy is consistent, but
not optimal. As we have seen, the transition tilt can be very large. It is preferable to simulate
moderate tilts on two images that large tilts on one of them. To this aim a midway image can be
reached from both images by applying a

√
t tilt to one of them and a

√
t tilt to the other one. The

only change to the formal algorithm will be that rotations and tilts are applied to both images,
not just to one of them.

Midway A-SIFT (formal)

1. Apply a dense set of all possible rotations to both images, and therefore R2 to u and R−1
1

to v;

2. apply in continuation a dense set of simulated tilts Tx
t in a fixed [0, tmax] range;

3. perform a SIFT comparison of all pairs of resulting images.

Let us now prove that this algorithm works, namely that two of the simulated images are deduced
from each other by a similarity. The query and target images are u = G1AT1u0 and v = G1BT2u0.
By the usual decomposition of a linear map (1),

BA−1 = R1T
x
t R2Hλ = (R1T√t

x)(T x√
t
R2Hλ).

Notice that by the relation
Tx

t R(−π
2

) = R(
π

2
)Ty

t , (12)

the algorithm also simulates tilts in the y direction, up to R(π
2 ) rotation. In particular, the above

algorithm applies:

1. Tx√
t
R2 to G1AT1u0, which by (8) yields ũ = G1Tx√

t
R2AT1u0 =: G1ÃT1u0;

2. R(π
2 )Ty√

t
R−1

1 to G1BT2u0, which by (8) yields G1R(π
2 )Ty√

t
R−1

1 BT2u0 =: G1B̃T2u0.

Let us show that Ã and B̃ only differ by a similarity. Indeed,

B̃−1R(
π

2
)H√

tÃ = B−1R1T
y√

t
−1T

x√
t
H√

tR2A =
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B−1R1T
y√

t
−1T

x√
t
H√

tR2A = B−1R1T
x
t R(

π

2
)R2A = B−1(BA−1)A = I,

where I is the identity. It follows that B̃ = R(π
2 )H√

tÃ. Thus,

ũ = G1ÃT1u0 and ṽ = G1R(
π

2
)H√

tÃT2u0,

that are two of the simulated images, are deduced from each other by a rotation and a
√
t zoom.

It follows that their SIFs are identical as soon as the scale of the SIF exceeds
√
t.

5.5 Conclusion on the algorithms

The above descriptions have neglected the sampling issues, but care was taken that input images
and output images be always written in the G1u form. For the digital input images, that always
have the form u = S1G1u0, the Shannon interpolation algorithm is I is first applied, to give back
IS1G1u0 = G1u0. For the output images, that always have the form G1v, the sampling S1 gives
back a digital image.

Thus, the descriptions of the formal algorithm A-SIFT and of its “midway” version are changed
into a digital algorithm by:

• replacing everywhere the inputs G1u by their digital version S1G1u;

• by applying digital rotations to digital images : u→ Ru =: S1RIu;

• by applying digital tilts as defined in Def. 3, namely u→ S1T x
t Iu.

That way, the formal algorithms are transformed into digital algorithms. The proofs need not be
repeated, since by Shannon interpolation and sampling, it is equivalent to talk about S1G1u0 or
about G1u0.

Clearly the midway algorithm is better, because it only needs simulating tilts that are square
roots of the real transition tilts. Thus, all of the forthcoming discussion will focus on the midway
version, that we’ll simply call A-SIFT.

6 Parameter sampling and complexity

6.1 Sampling ranges

The camera motion depicted in Fig. 4 shows that φ should naturally cover all the directions from
0 to 2π. Under the affine camera model, the images taken at φ and φ + π are identical up to a
rotation of π, i.e., R1(ψ)TtR2(φ + π) = R1(ψ + π)TtR2(φ). Therefore it is enough to simulate φ
from 0 to π as the rotation-invariant SIFT is invariant to R1(ψ) and R1(ψ + π).

The sampling range of the tilt parameter t determines the degree of the tilt invariance the
algorithm can achieve. Image recognition under a remarkable viewpoint change in practice requires
that the scene is planar and Lambertian and its structures are not squashed when observed from
an oblique viewpoint. Due to these physical limitations, affine image recognition is impractical
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under too big a tilt t. The physical upper bound tmax can be obtained experimentally using some
images taken from indoor and outdoor scenes, each image pair being composed of a frontal view
and an oblique view.

The images used in the experiments satisfy as much as possible the physical conditions men-
tioned above. The indoor scene is a magazine placed on a table with the artificial illumination
coming from the ceiling as shown in Fig. 12. The outdoor scene is a building façade with some
graffiti as illustrated in Fig. 13. For each pair of images, the true tilt parameter t between them is
obtained by manual measurement. A-SIFT is applied with very large parameter sampling ranges
and small sampling steps, so that the simulated views cover accurately the true affine distortion.
The A-SIFT matching results depicted in Figs. 12 and 13 show that the limit is tmax ≈ 5.6 that
corresponds to a view angle θmax = arccos 1/tmax ≈ 80◦. A-SIFT finds a large number of matches
when the tilt between the frontal image and the oblique image is smaller than about 5.6. Therefore
we set the tilt simulation range tmax = 4

√
2.

Let us emphasize that when the two images under comparison are taken from orthogonal
longitude angles (see Fig. 8 as an example), i.e., φ = φ′ + π/2, the maximum tilt invariance
A-SIFT with tmax = 4

√
2 can achieve in theory is about t2max = 32.

However, these experiments only fix reasonable bounds for all purpose algorithms. For high
resolution images, for very flat lambertian surfaces, larger tilts might be recognizable.

6.2 Sampling steps

In order to have A-SIFT invariant to any affine transform, one needs to sample the tilt t and angle
φ with a high enough precision. The sampling steps 4t and 4φ will be fixed experimentally by
testing several natural images.

The camera motion model illustrated in Fig. 4 indicates that the sampling precision of the
latitude angle θ = arccos 1/t should increase with θ. A geometric sampling for t satisfies this
requirement. Naturally, the sampling ratio 4t = tk+1/tk should be independent of the angle φ.
Fig. 14-a illustrates the number ÑS(t1, t2) of SIFT matches (dark pixels represent large values)
between v1 = Tt1u and v2 = Tt2u, with t1, t2 ∈ [1, 8], where u is a natural image. When |t1 − t2|
increases, ÑS(t1, t2) decreases. This decay is faster when t1 and t2 are closer to 1. Fig. 14-b shows
a 1/4 threshold of ÑS(t1, t2)/NS(t1), where NS(t1) = ÑS(t1, t1) is the number of SIFT matches
between v1 = Tt1u and itself. (The values of NS(t1) appear on the diagonal of the ÑS image
shown in Fig. 14-a.) Thus, in Fig. 14-b, the white pixels correspond to ÑS/NS > 1/4. The dashed
lines in Fig. 14-b mark a geometrically sampled t grid, with sampling step 4t =

√
2. Following the

arrows in Fig. 14-b, one can verify that this sampling step ensures that ÑS/NS > 1/4, which means
that with 4t =

√
2, the number of A-SIFT matches exceeds 1/4 time the maximum number of

matches. This number is large enough to have A-SIFT algorithm robust to any tilt change. Thus,
in the sequel, the tilt sampling step will be 4t =

√
2.

As can be observed from the camera motion model in Fig. 4, one needs a finer φ sampling
when θ = arccos 1/t increases: the image distortion caused by a fixed longitude angle displacement
4φ, is much more drastic when the latitude angle θ increases. This fact is confirmed by the
experiments shown in Fig. 15. The curves plot for different tilt parameters t, different test images
and different tilt implementations the values ÑS(φ, t)/NS(t) versus φ, where ÑS(φ, t) is the number
of SIFT matches between v1 = R1(φ)Ttu and v2 = Ttu and NS(t) = ÑS(0, t) is the number of
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Figure 12: A-SIFT on an indoor scene. From top to bottom: tilt distortion t between the two
images are respectively t ≈ 3, 5.2, 8.5; the number of matches are respectively 107 (3 false), 25 (7
false), 7 (all false).
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Figure 13: A-SIFT on an outdoor scene. From top to bottom: tilt distortion t between the two
images are respectively t ≈ 3.8, 5.6, 8; the number of matches are respectively 71 (4 false), 33 (4
false), 6 (all false).
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Figure 14: Left: the number ÑS(t1, t2) of SIFT matches between v1 = Tt1u and v2 = Tt2u (black
pixels represent big values). Right: a thresholding on ÑS(t1, t2)/NS , where NS is the number of
SIFT matches between v1 = Tt1u and itself that corresponds to a perfect latitude normalization,
with white pixels corresponding to ÑS/NS > 1/4.

SIFT matches between v1 = Ttu and itself. One observes that the larger t, the faster the decay
of NS(φ, t) versus φ. Thresholding at ÑS/NS > 1/5, one observes from Table 2 that for all
the images and tilt implementations under test, φ in first approximation order proportional to
1/t. More precisely, with φ ≈ 18◦ × 2

t one obtains ÑS/NS > 1/5, which means that longitude
angle sampling step 4φ = 36◦

t ensures that the number of A-SIFT matches exceeds 1/5 time the
maximum number of matches. This number is large enough to have A-SIFT algorithm robust to
any longitude angle change. Since the quantification projects a value to its nearest sampled grid,
the longitude sampling step in the sequel will be 4φ = 2× 36◦

t = 72◦

t .
Fig. 16 illustrates the sampling of the parameters θ = arccos 1/t and φ. At bigger θ the sampling

of θ as well as the sampling of φ are denser.

6.3 Acceleration with multi-resolution

The multi-resolution procedure accelerates A-SIFT by selecting the transforms that yield SIFT
matches on low-resolution (LR) versions of the compared images. In case of success only, the
procedure simulates the identified affine transforms on the query, and applies SIFT to compare
them to the targets.

The multi-resolutions A-SIFT is summarized as follows.

1. Down-sample all compared images u and v by a K × K factor: u′ = SKGKu and v′ =
SKGKv, where GK is an anti-aliasing gaussian filtering.

2. Low-resolution (LR) A-SIFT: perform A-SIFT between u′ and v′.

3. Identify the M affine transforms yielding the biggest numbers of matches between u′ and
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Figure 15: The curves plot for different tilt parameters t, different test images and different tilt
implementations the values ÑS(φ, t)/NS(t) versus φ, where ÑS(φ, t) is the number of SIFT matches
between v1 = R1(φ)Ttu and v2 = Ttu and NS(t) = ÑS(0, t) is the number of SIFT matches
between v1 = Ttu and itself, which corresponds to a perfect longitude normalization. Top and
bottom rows: the images under test are respectively “Graffiti” and “Leuven”. Left and right
columns: a tilt of t is implemented respectively by t times subsampling in x direction and by

√
t

times subsampling in x direction together with
√
t times oversampling in y direction.
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t = 2 t = 2
√

2 t = 4 t = 4
√

2 t = 8
Graf, Tc 32 30 30 31 32
Graf, Tb 30 28 30 33 32

Leuven, Tc 31 33 29 27 24
Leuven, Tb 32 28 28 26 24

Table 2: The table shows for several values of the tilt parameter t, for several different images, and
for several tilt implementations the value of φ× t obtained when φ is the maximal value satisfying
ÑS(φ, t)/NS(t) > 1/5. Here, ÑS(φ, t) is the number of SIFT matches between v1 = R1(φ)Ttu
and v2 = Ttu and NS(t) = ÑS(0, t) is the number of SIFT matches between v1 = Ttu and itself.
“Graf” and “Leuven” stand for the tested images “Graffiti” and “Leuven”. Tc and Tb symbolize
two different tilt implementations. Tc implements the tilt by a t-sub-sampling in the x direction.
Tb implements the tilt by a

√
t-sub-sampling in the x direction together with a

√
t-over-sampling

in the y direction. The fact that the t× φ entries are roughly constant yields the simple empirical
law φ = C/t for the longitude step, where C is a constant.

v′. They are retained only if the matches are meaningful. In practice, it is enough to put a
threshold on the number k of matches, and k = 15 seems to be a good choice.

4. High-resolution (HR) A-SIFT: apply A-SIFT between u and v by simulating only the affine
transforms previously identified.

Fig. 17 shows an example. The low-resolution A-SIFT that is applied on the 3×3 sub-sampled
images finds 26 correspondences and identifies the 5 best affine transforms. The high-resolution
A-SIFT finds 245 matches.

6.4 A-SIFT Complexity

The complexity of the A-SIFT algorithm will be estimated under the recommended baseline config-
uration: The tilt and angle ranges are [tmin, tmax] = [1, 4

√
2] and [φmin, φmax] = [0◦, 180◦], and the

sampling steps are 4t =
√

2, 4φ = 36◦× t
2 . Each t tilt is simulated by image sub-sampling in one

direction by a t factor. All images are sub-sampled by a K×K = 3×3 factor for the low-resolution
A-SIFT. Finally, the high-resolution A-SIFT simulates the M = 5 best affine transformations that
are identified, but only in case they contain enough matches. When matching an image to a large
database, the most common event is failure. Thus, the final high-resolution step is only to be taken
into account when comparing images of the same scene.

The complexity of the descriptor computation is proportional to the input image area. This
area is proportional to the number of simulated tilts t. Indeed, the number of φ simulations is
proportional to t for each t, but the t sub-sampling for each tilt simulation divides the area by t.
More precisely, the image area input to low-resolution A-SIFT is

1 + (|Γt| − 1) 180◦

2×36◦

K2
=

1 + 5× 2.5
9

= 1.5

times as large as that of the original images, where |Γt| is the number of tilt simulations. Thus,
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Figure 16: Sampling of the parameters θ = arccos 1/t and φ. Black dots represent the sampling.
Left: perspective illustration (only t = 2, 2

√
2, 4 are shown). Right: zenith view of the observation

half sphere. The values of θ are indicated on the figure.

the complexity of the low-resolution A-SIFT is 1.5 times as much as that of a single SIFT routine,
and generates 1.5 as many SIFs. Here we must distinguish two cases:

1. If the comparisons involve a large database (where most comparisons will be failures), the
complexity is propositional to the number of SIFs in the queries multiplied by the number
of SIFs in the targets. Since A-SIFT introduces a a 1.5 area factor, the final complexity is
simply 1.52 = 2.25 times the SIFT complexity.

2. If the comparisons involve a set of images with high match likeliness, then the high resolution
step is no more negligible. Then, it can only be asserted that the complexity will be less
than 6.5 + 2.5 = 9 times a SIFT routine on the same images. However, in that case, A-SIFT
ensures many more detections than SIFT, because it explores many more viewpoint angles.
Thus, the complexity rate per detected SIF might be much closer to, or even smaller than the
per detection complexity in a SIFT routine.

For the high-resolution A-SIFT, this factor is M = 5. Therefore the total complexity of the
A-SIFT is 6.5 times a SIFT routine.

The SIFT subroutines can be implemented in parallel in A-SIFT (for both the low-resolution
and the high-resolution A-SIFT). Recently many authors have investigated SIFT accelerations [24,
16, 27]. A realtime SIFT implementation has been proposed in [62]. Obviously, all of these
accelerations directly apply to A-SIFT.

7 Experiments

A-SIFT image matching performance will be compared with the state-of-the-arts approaches
SIFT [31] and MSER [33]. SIFT is probably the most popular image matching algorithm for
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Figure 17: “77 Mass Ave”. Left: low-resolution A-SIFT. Right: high-resolution A-SIFT.
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its robust performance under image scale changes, rotation, translation, moderate illumination
changes and viewpoint changes [39]. MSER is the most robust to large viewpoint changes [40].
The Lowe [30] SIFT reference software and the Matas et al. [34] MSER online demo were used.
Applications of A-SIFT and comparisons with SIFT will also be performed for video matching,
object tracing and symmetry detection.

7.1 Image matching

The experiments will show images taken from different viewpoints with varying tilts, zooms, and
transition tilts. In the image pairs compared by A-SIFT or SIFT, correspondences will be connected
by white segments. Note that the parallelism or coherent directions of the connecting lines usually
indicates that most correspondences are correct. On the MSER results, the correspondences are
numerated. The blue lines represent the epipolar geometry and are not correspondences.

7.1.1 A systematic comparison with SIFT and MSER

t1 = 2 t1 = 2
√

2 t1 = 4
√

2
t2 = 2 45◦/2.8 45◦/3.7

t2 = 2
√

2 45◦/3.7 45◦/4.8
t2 = 4

√
2

Table 3: m/n in each entry with: m = longitude angle φ between the two viewpoints /n= transition
tilt τ(t1, t2, φ). This table illustrates the fact that MSER covers transition tilts up to τ ≈ 4.5.
The experiments were performed with the real images Magazine with t = 2, 2.8, 5.6, and φ =
0◦, 45◦, 90◦. In each entry the largest τ ensuring matching success is given. The blank entries
mean that MSER fails.

Fig. 18 shows the setting that we have adopted to make a systematic comparison between A-
SIFT, SIFT and MSER. A poster illustrated in Fig. 19 is photographed with a reflex camera, with
distances varying between ×1 and ×10, which is the maximum focal distance change, and with
viewpoint angles between the camera axis and the normal to the poster that varies from 0 degree
(frontal view) to 80 degrees. It is clear that beyond 80 degrees, to establish a correspondence
between the frontal image and the extreme viewpoint becomes absolutely haphazard. Even when
the photo acquisition conditions and the image resolution are excellent, with such a big view angle
change the observed surface becomes in general reflective, and the image in the resulting photo is
totally different from the frontal view. Nevertheless, A-SIFT works until 80 degrees, and it would
be unrealistic to insist on bigger angles.

Fig. 20 shows the thumbnails of the images taken from different viewpoints with a setting as
shown in Fig. 18. The triple of the numbers c/s/m placed above or below each image gives the
number of correct correspondences obtained by A-SIFT (c) compared with those obtained by SIFT
(s) and MSER (m). Table 4 summarizes in more detail the total number of correspondences and
the number of correct ones achieved by each approach. Some matching results are illustrated in
Figs. 22 to 25.
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One remarks first that MSER, which uses maximal stay level lines as features, obtains sys-
tematically much less correspondences than SIFT and A-SIFT whose features are based on local
maxima in the scale-space. This has been confirmed by LLD, a novel image matching approach
independently developed at ENS Cachan that applies also level lines as features [48, 47]. Let us
recall that robust image matching requires a sufficiently big number of correspondences.

For images taken at short distance, the number of SIFT correspondences drops dramatically
when the angle is bigger than 65 degrees (that corresponds to a tilt t ≈ 2.3) and it fails completely
when the angle exceeds 75 degrees (tilt t ≈ 3.8); the MSER correspondences remain rather stable
at a small number until 75 degrees and tends to fail completely under bigger angles; A-SIFT works
perfectly until 80 degrees (tilt t ≈ 5.8). Images taken at a camera-object distance multiplied by 10
exhibits less perspective effects but contains less meaningful pixels at big angles. For these images
the SIFT performance drops considerably: recognition is possible only with angles smaller than 45
degrees; MSER struggles at the angle of 45 degrees and fails at 65 degrees; A-SIFT again functions
perfectly until 80 degrees.

Figure 18: This figure and the following one show the setting adopted to compare SIFT, the most
popular method, with A-SIFT. A poster is photographed with a reflex camera from distances
varying between 1 and 10, which is the maximum focal distance change, and with a viewpoint
angle between the camera axis and the normal to the poster that varies from 0 degree (frontal
view) to 80 degrees.

7.1.2 Comparison with SIFT and MSER

Figs. 26-31 compare the A-SIFT image matching results with SIFT and MSER on various types of
images. On non flat or non coplanar objects, the absolute or transition tilts in the same scene may
considerably change. Thus it is important to allow for large transition tilts. Actually the absolute
and transition tilts can vary on the very same flat object, as illustrated in Fig. 21.

Fig. 26 illustrates the performance on an object that is almost flat but taken with a very
oblique view. A-SIFT works perfectly, SIFT fails completely, and MSER, the affine-invariant
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Figure 19: The poster that is photographed in the experiments.

Figure 20: This figure shows several images of the same flat object taken from different viewpoints
with the setting shown in Fig. 18. The triple of the numbers A/S/M placed below each image gives
the number of correct correspondences obtained by A-SIFT (A) compared with those obtained by
SIFT (S) and MSER (M).
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Figure 21: When the camera view angle is large, the absolute tilt of a plane object can vary
considerably in the same image. The performance of the recognition should be maintained anyway.

Angle: −80◦ −75◦ −65◦ −45◦ 45◦ 65◦ 75◦ 80◦

SIFT Zx1 2/1 24/24 117/117 246/245 197/195 92/92 15/15 3/2
MSER Zx1 0/0 17/14 15/8 23/19 22/15 15/13 10/7 11/8
A-SIFT Zx1 111/110 281/281 484/483 562/559 431/428 447/444 203/203 205/204
SIFT Zx10 2/1 2/0 10/10 183/182 171/171 5/5 2/2 5/3
MSER Zx10 0/0 7/0 16/13 28/11 23/22 9/9 0/0 0/0
A-SIFT Zx10 118/116 268/265 542/542 723/722 708/707 469/468 154/152 110/110

Table 4: Summary of the results of the experiments that compare A-SIFT with SIFT and MSER
for viewpoint angles between 45 and 80 degrees. m/n: number of matches/number of correct
matches.

method, functions reasonably well for two reasons: first the existence of the highly contrasted
shapes meets the working condition of this method, and second the camera-object distances of the
two images are close. With a bigger angle on the same object (tilt about 2.5), as shown in Fig. 27,
SIFT fails logically, and MSER fails as well, since the shapes presented under such a big angle
tend to be mixed and therefore no longer provide “MSERs” (Maximal Stable Extremal Regions).
Fig. 28 presents an image pair with a considerable viewpoint change, on a desk supporting many
non-coplanar objects. A-SIFT finds 62 correspondences out of which 58 are correct. SIFT fails
completely. MSER finds 13 correspondences out of which only 2 are correct. Fig. 29 shows images
of a building façade taken from very different viewpoints. The transformation of the rectangle
façade on the left to a trapezia on the right indicates that the transformation is not affine, but
strongly perspective. Nevertheless, since a projective transformation can be locally modeled by
affine transforms, a large number of correspondences is established by A-SIFT. Fig. 30 shows the
results of the standard test pair Graffiti 1 and Graffiti 6 proposed by Mikolajczyk [35]. A-SIFT
finds 724 correspondences, out of which 3 are false. SIFT finds 6 correspondences: the τ = 3.2
transition tilt is just a bit too large. MSER finds 127 correspondences out of which 50 are correct.
Proposed by Matas et al. in their online demo [34] as a standard image to test MSER [33], the
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Figure 22: Correspondences between the poster images taken from short distance (zoom ×1) at
frontal view and at −45◦ angle. The absolute tilt varies: t = 2 (middle), t ≺ 2 (left part), t � 2
(right part). Top left: A-SIFT finds 562 correspondences out which 559 are correct. Top right:
SIFT finds 246 correspondences out which 245 are correct. Bottom: MSER finds 29 correspon-
dences, out of which 13 are correct.
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Figure 23: Correspondences between the poster images taken from short distance (zoom ×1) at
frontal view and at 75◦ angle. The local absolute tilt varies: t = 4 (middle), t ≺ 4 (right part),
t � 4 (left part). Top left: A-SIFT finds 203 correspondences, all correct. Top right: SIFT finds
15 correspondences, all correct and all on the right part, where the tilt is lower. Bottom: MSER
finds 10 correspondences, out of which 7 are correct.
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Figure 24: Correspondences between the poster images taken from long distance (zoom ×10) at
frontal view and at 65◦ angle, absolute tilt t = 2.4. Top left: A-SIFT finds 469 correspondences,
out of which 468 are correct. Top right: SIFT finds 5 correspondences, all correct. Bottom: MSER
finds 9 correspondences, all correct.
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Figure 25: Correspondences between the poster images taken from long distance (zoom ×10) at
frontal view and at −80◦ angle, absolute tilt t = 5.6. Top left: A-SIFT finds 118 correspondences,
out of which 116 are correct. Top right: SIFT finds 5 correspondences, all correct. Bottom: MSER
finds 0 correspondence.
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images in Fig. 31 show a number of containers placed on a desktop 1. A-SIFT finds 196 matches
out of which 2 are false. MSER find 70 matches out of which 50 are inliers. Let us note that
images in Figs. 30 and 31 provide optimal conditions for MSER: the camera-object distances are
similar and well contrasted shapes are present. But let us recall that MSER fails under large scale
changes or when well contrasted shapes are not present.

7.2 Video matching and object tracking

Object tracking in video is a challenging problem. Difficulties in tracking objects can arise due
to abrupt object motion, object pose change, object-to-object and object-to-scene occlusions, and
camera motion. Applications of object tracking include motion-based recognition, automated
surveillance, video indexing, human-computer interaction, vehicle and robot navigation, 3D re-
construction, image registration, etc. (see [73] for a survey). Due to its invariance to similarity
transformations and to the large number of feature points it usually detects, SIFT has been re-
cently applied in object tracking and video matching [25, 5, 62, 52, 55]. However, as SIFT is robust
only to tilts t < 2.5, its performance drops significantly if the object changes pose moderately or
deforms. In this subsection, A-SIFT is compared with SIFT in video matching and object tracking.

A video sequence at VGA resolution (640× 480) and frame rate 30 fps was used in the experi-
ments. Some frames are shown in Figs. 32 and 33. The camera position was fixed while the object
kept changing its pose and slightly deforming, thus inducing rotation, translation, change of scale
and oblique views of itself in the video.

For video matching, a query image was to be matched with the video frames. Fig. 32 shows
some result samples obtained with A-SIFT compared to SIFT. While SIFT fails completely because
of the object’s pose change and deformation, A-SIFT matches successfully the query images in all
video frames.

Instead of finding correspondences between a query image and the video frames, object tracking
in video is realized by finding correspondences between video frames. Fig. 33 illustrates some
samples of object tracking results obtained with A-SIFT and SIFT. Again A-SIFT succeeds and
SIFT fails, due to the pose changes and deformations of the object.

7.3 Symmetry detection in perspective

Symmetry detection has drawn considerable attention in computer vision and has been used for
numerous applications such as image indexing, completion of occluded shapes, object detection,
facial image analysis and visual attention (see, for example, [11] for a survey). The image projection
is usually approximated by plane affine transforms for symmetry detection in perspective [45].
Some recent works apply SIFT, MSER and other affine-invariant detectors and descriptors to
detect bilateral symmetry [32, 11]. Conversely, symmetry has been used to extract affine-invariant
image features [2].

A-SIFT can be used to detect bilateral symmetry in an image u, by simply looking for correspon-
dences between u(x, y) and its flipped version u(−x, y). After being flipped, symmetric structures
become either identical if taken in frontal view, or identical up to an oblique view otherwise. A
correspondence between u(x, y) and u(−x, y) therefore connects a pair of bilateral symmetrical

1We thank Michal Perdoch for having kindly provided us with the images.
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Figure 26: Correspondences between the images Magazine 1 and Magazine 2. The absolute tilts
for these objects are t = t′ ' 2.1. The transition tilt is larger, τ = 3.0. Top: A-SIFT finds
1667 correspondences, all correct. Middle: SIFT finds 3 correspondences (SIFT usually fails for
transition tilts larger than 2.5). Bottom: MSER finds 46 correspondences, out of which 35 are
correct.
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Figure 27: Correspondences between the images Magazine 1 and Magazine 3. Absolute tilts
t = 2.1 (left), t′ = 6.0 (right). transition tilt: τ = 2.9. Top: A-SIFT finds 338 correspondences,
out of which 2 are false. Middle: SIFT finds 5 correspondences. Bottom: MSER finds 3 false
correspondences in total that have been rejected. MSER fails because the shapes, submitted to
high absolute tilts, mix together. The ”Maximally Stable Extremal Regions” are no more stable
under such tilts.
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Figure 28: Correspondences between the images Bureau 1 and Bureau 8. Transition tilt: τ ≈ 3.
Top: A-SIFT finds 62 correspondences, out of which 4 are false. Middle: SIFT finds 0 correspon-
dences. Bottom: MSER finds 13 correspondences, out of which 2 are correct.
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Figure 29: Correspondences between the images Facade 1 and Facade 8. Absolute (and transition)
tilt t = 3.8 (θ = 74.7◦) Top: A-SIFT finds 71 correspondences, out of which 4 are false. Middle:
SIFT finds 1 correspondence. Bottom: MSER finds 34 correspondences, out of which only 2 are
correct.
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Figure 30: Correspondences between the images Graffiti 1 and Graffiti 6. Transition tilt: τ ≈
3.2. Top: A-SIFT finds 724 correspondences, out of which 3 are false. Middle: SIFT finds 6
correspondence. Bottom: MSER finds 127 correspondences, out of which 50 are correct. In this
example, MSER is successful. But MSER fails to work under big image zoom or if the shapes in
the images are not well contrasted.
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Figure 31: Image matching (images proposed by Matas et al [34]). Top: A-SIFT finds 255 matches
out of which 1 is false. Middle: SIFT finds 16 matches out of which 6 are false. Bottom: MSER
finds 70 tentative correspondences out of which there are 51 inliers.
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Figure 32: Video matching: one looks for correspondences between a query image and video frames.
First and third row: A-SIFT succeeds. (23, 34, 412, 94, 107, 89). Second and fourth row: SIFT
fails.
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Figure 33: Object tracking: one looks for correspondences between video frames. First and third
row: A-SIFT succeeds. Second and fourth row: SIFT fails.
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points in u(x, y). Fig. 34 shows some examples of bilateral symmetry detection. A-SIFT, invariant
to view point change, results in significantly better symmetry detection in perspective with respect
to SIFT.

Figure 34: Symmetry detection with A-SIFT by finding reflective correspondences. SIFT fails to
detect symmetry on these images where objects are not in frontal position.

8 Key notes

8.1 Maximally Stable Extremal Regions (MSER)

The MSER method introduced by Matas et al. [33] achieves the affine invariance by selecting the
most robust connected components of upper and lower level sets as image features.

Extremal regions is the name given by the authors to the connected components of upper or
lower level sets. Maximally stable extremal regions, or MSERs, are defined as maximally contrasted
regions in the following way. let Q1, ..., Qi−1, Qi, ... be a sequence of nested extremal regions, i.e.
Qi ⊂ Qi+1 where Qi is defined by a threshold at level i or, in other terms, Qi is an upper (resp.
lower) level set at level i. An extremal region in the list Qi0 is said to be maximally stable if the
area variation q(i) =: |Qi+1 \Qi−1|/|Qi| has a local minimum at i0, where |Q| denotes the area of
a region |Q|. Clearly the above measure is a measure of contrast along the boundary ∂Qi of Qi.
Indeed, assuming that u is C1 and that the grey level increment between i and i+1 is infinitesimal,
the area |Qi+1 \Qi−1| varies least when

∫
∂Qi

|∇u| is maximal. It is a straightforward consequence
of their definition that the MSERs possess the following robustness and invariance properties:

• invariance to every affine transformation of image intensities;

• covariance to all special affine transforms of the image domain if their “tilt” is not too large
(otherwise, the contrast on the regions boundary is affected, or the region’s boundaries mix);

• stability, since only extremal regions whose support is virtually unchanged over a range of
thresholds are selected;
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The MSER extraction is a first step of image matching. Once MSERs are computed, an affine
normalization is performed on the MSERs before they can be compared. The affine normalization
proposed in [33] is based on moment methods. Affine invariance up to a rotation is achieved
by diagonalizing the covariance matrix and then applying the linear transform that performs its
diagonalization to each region. Rotational invariants are then applied over the normalized region.
This procedure is affine invariant and yields potential candidates to a match. [33] use invariant
descriptions only as a preliminary test. The final check in the original method is made by using
correlation. The normalized circular regions are correlated (for all relative rotations).

8.2 Scale Invariant Features (SIFs) and other descriptors

SIFT interest points (or SIFs) are obtained as the maxima of the Laplacian of the image (ap-
proximated by a difference of Gaussians) through a Gaussian pyramid. Many variations exist on
the computation of interest points, following the pioneering work of Harris and Stephens [20]. In
particular, recent methods are affine invariant. In [40], an overview and a comparison between
the main affine invariant region detectors is presented. One of the conclusions is that no method
dramatically outperforms all the other ones, although the highest score is obtained by the MSER
detector [33].

SIFT descriptors, or SIFs, are basically local histograms of the gradient direction, weighted by
the gradient norm, in the vicinity of the key point. These histograms are invariant to rotations of
the image domain and thresholding and normalization of image gradients is used in order to achieve
some invariance to illumination changes. In the recent years, several other local descriptors have
been proposed, incorporating further invariance to changes in viewing conditions. In particular,
MSER [33] uses moment invariants to describe the vicinity of the interest points. This approach
was also used by Monasse in [41]. A recent paper [39] aims at comparing the different descriptors.
Performance is evaluated by examining the so-called ROC curves plotting the number of false
positive detections as a function of false negative detections. While on one of the methods, the
gradient location and orientation histograms (GLOH [39]) seems slightly better than the other
ones, the difference (in particular with SIFT) is not that large. Let us remark that there are two
ways to achieve geometrical invariance: either descriptors are computed in invariant regions, or
they have a group invariance by themselves. For instance, in [6], skew and stretch are corrected in
the neighborhood computation. An affine contrast change is first applied. Then, descriptors are
rotation invariant gray level moments.

8.3 Matching and Grouping

Simple procedures, such as the thresholding of ratios between the best and second best matches
in SIFT, have been used in SIFT and A-SIFT. MSER [33] uses a voting procedure over the
nearest measurements comparing a set of invariants that form the descriptors. In [12, 53], some
improvements on the SIFT descriptors definition and on the matching step have been proposed,
based on a contrario techniques. The use of a grouping step improves the matching results. In
SIFT, a Hough transform procedure [4] is proposed, but other methods [58] use greedy procedures
based on RANSAC [15].
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8.4 Appendix: Scale and SIFT: consistency of the method

We denote by T an arbitrary translation, by R an arbitrary rotation, by H an arbitrary homothety,
and by G an arbitrary gaussian convolution, all applied to continuous images.

In the particular case of the digital image formation model (6) where A is a frontal view of
u0, A = HRT is the composition of a translation T , a homothety H, and a rotation R. Thus
the digital image is u = S1G1HTRu0, for some H, T , R as above. The following lemma is easily
proven for the SIFT method (see [44]).

Lemma 3. For any rotation R and any translation T , the SIFT descriptors of S1GδHRT u0 are
identical to those of S1GδHu0.

By Lemma 3 the only involved invariance claimed by the SIFT method, is the scale invariance.
The SIFT method deals with the space extrema of the Laplacian of the scale space of u0, u(σ,x) :=
(Gσu0)(x).

Proposition 1. Let u and v be two digital images that are frontal snapshots of the same continuous
flat image u0, u = S1GβHλu0 and v =: S1GδHµu0, taken at different distances, with different
gaussian blurs and possibly different sampling rates. Let w(σ,x) = (Gσu0)(x) denote the scale
space of u0. Then the scale spaces of u and v are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it corresponds to a key point of u
at the scale σ1 such that λ

√
σ2

1 + β2 = s0, whose SIFT descriptor is sampled with mesh σ1. In the
same way (s0,x0) corresponds to a key point of v at scale σ2 such that s0 = µ

√
σ2

2 + δ2, whose
SIFT descriptor is sampled with mesh σ2.

Proposition 2. Let u and v be two digital images obtained by frontal snapshots of a planar
surface. Then u and v have the same SIFT descriptors if and only if one of them is obtained by
over-sampling the other one, which also means that their blurs are identical.

Theorem 3. Let u and v be two digital images that are frontal snapshots of the same continuous
flat image u0, u = S1GβHλu0 and v =: S1GδHµu0, taken at different distances, with different
gaussian blurs and possibly different sampling rates. If λβ 6= µδ, the SIFT descriptors of u and v
are actually different. Indeed, the key points are in good correspondence, but their associated scales
should satisfy λσ1 = µσ2 and satisfy instead the scale approximate relation

λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2. (13)

Thus, if σ1 � β and σ2 � δ, then the SIFT descriptors of u and v are similar if not identical.
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[27] H. Lejsek, F.H. Ásmundsson, B.T. Jónsson, and L. Amsaleg. Scalability of local image de-
scriptors: a comparative study. Proceedings of the 14th annual ACM international conference
on Multimedia, pages 589–598, 2006.

[28] T. Lindeberg. Scale-space theory: a basic tool for analyzing structures at different scales.
Journal of Applied Statistics, 21(1):225–270, 1994.

[29] T. Lindeberg and J. Garding. Shape-adapted smoothing in estimation of 3-d depth cues from
affine distortions of local 2-d brightness structure. Proc. ECCV, pages 389–400, 1994.

[30] D.G. Lowe. SIFT Keypoint Detector: online demo http://www.cs.ubc.ca/∼lowe/keypoints/.

[31] D.G Lowe. Distinctive image features from scale-invariant key points. International Journal
of Computer Vision, 60(2):91–110, 2004.

[32] G. Loy and J.O. Eklundh. Detecting symmetry and symmetric constellations of features.
Proceedings of ECCV, 2:508–521, 2006.



REFERENCES 53

[33] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally
stable extremal regions. Image and Vision Computing, 22(10):761–767, 2004.

[34] J. Matas, O. Chum, M. Urban, and T.g Pajdla. Wbs image matcher: online demo
http://cmp.felk.cvut.cz/∼wbsdemo/demo/.

[35] K Mikolajczyk. http://www.robots.ox.ac.uk/∼vgg/research/affine/.

[36] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. Proc. ICCV,
1:525–531, 2001.

[37] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. Proc. ECCV,
1:128–142, 2002.

[38] K. Mikolajczyk and C. Schmid. Scale and Affine Invariant Interest Point Detectors. Interna-
tional Journal of Computer Vision, 60(1):63–86, 2004.

[39] K. Mikolajczyk and C. Schmid. A Performance Evaluation of Local Descriptors. IEEE Trans.
PAMI, pages 1615–1630, 2005.

[40] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir,
and L.V. Gool. A Comparison of Affine Region Detectors. International Journal of Computer
Vision, 65(1):43–72, 2005.

[41] P. Monasse. Contrast invariant image registration. Proc. of the International Conf. on
Acoustics, Speech and Signal Processing, Phoenix, Arizona, 6:3221–3224, 1999.

[42] P. Moreels and P. Perona. Common-frame model for object recognition. Proc. NIPS, 2004.

[43] P. Moreels and P. Perona. Evaluation of Features Detectors and Descriptors based on 3D
Objects. International Journal of Computer Vision, 73(3):263–284, 2007.

[44] J.M. Morel and G. Yu. On the consistency of the SIFT method. Technical Report Prepubli-
cation, CMLA, ENS Cachan, 2008.

[45] D. Mukherjee, A. Zisserman, and J. Brady. Shape from symmetry—detecting and exploiting
symmetry in affine images. Philosophical Transactions: Physical Sciences and Engineering,
351(1695):77–106, 1995.
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2007.

[54] F. Riggi, M. Toews, and T. Arbel. Fundamental Matrix Estimation via TIP-Transfer of
Invariant Parameters. Proceedings of the 18th International Conference on Pattern Recognition
(ICPR’06)-Volume 02, pages 21–24, 2006.

[55] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, and Matching
Video Clips Containing Multiple Moving Objects. IEEE Trans. PAMI, pages 477–491, 2007.

[56] J. Ruiz-del Solar, P. Loncomilla, and C. Devia. A New Approach for Fingerprint Verification
Based on Wide Baseline Matching Using Local Interest Points and Descriptors. Lecture Notes
in Computer Science, 4872:586, 2007.

[57] F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered image sets, or How do
I organize my holiday snaps?. Proc. ECCV, 1:414–431, 2002.

[58] C. Schmid, G. Dorko, S. Lazebnik, K. Mikolajczyk, and J. Ponce. Pattern recognition with
local invariant features. Handbook of Pattern Recognition and Computer Vision, World Sci-
entific, 3.

[59] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional SIFT descriptor and its application to
action recognition. Proceedings of the 15th international conference on Multimedia, pages
357–360, 2007.

[60] S. Se, D. Lowe, and J. Little. Vision-based mobile robot localization and mapping using
scale-invariant features. Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE In-
ternational Conference on, 2, 2001.

[61] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in 3D.
ACM Transactions on Graphics (TOG), 25(3):835–846, 2006.

[62] Marc Pollefeys Sudipta N Sinha, Jan-Michael Frahm and Yakup Genc. Gpu-based video
feature tracking and matching. EDGE 2006, workshop on Edge Computing Using New Com-
modity Architectures, Chapel Hill, 2006.

[63] T. Tuytelaars and L. Van Gool. Wide baseline stereo matching based on local, affinely invariant
regions. British Machine Vision Conference, pages 412–425, 2000.



REFERENCES 55

[64] T. Tuytelaars and L. Van Gool. Matching Widely Separated Views Based on Affine Invariant
Regions. International Journal of Computer Vision, 59(1):61–85, 2004.

[65] T. Tuytelaars, L. Van Gool, et al. Content-based image retrieval based on local affinely
invariant regions. Int. Conf. on Visual Information Systems, pages 493–500, 1999.

[66] L. Vacchetti, V. Lepetit, and P. Fua. Stable Real-Time 3D Tracking Using Online and Offline
Information. IEEE Trans PAMI, pages 1385–1391, 2004.

[67] L.J. Van Gool, T. Moons, and D. Ungureanu. Affine/Photometric Invariants for Planar
Intensity Patterns. Proceedings of the 4th European Conference on Computer Vision-Volume
I-Volume I, pages 642–651, 1996.

[68] M. Veloso, F. von Hundelshausen, and PE Rybski. Learning visual object definitions by
observing human activities. Humanoid Robots, 2005 5th IEEE-RAS International Conference
on, pages 148–153, 2005.

[69] M. Vergauwen and L. Van Gool. Web-based 3D Reconstruction Service. Machine Vision and
Applications, 17(6):411–426, 2005.

[70] K. Yanai. Image collector III: a web image-gathering system with bag-of-keypoints. Proceed-
ings of the 16th international conference on World Wide Web, pages 1295–1296, 2007.

[71] G. Yang, CV Stewart, M. Sofka, and CL Tsai. Alignment of challenging image pairs: Re-
finement and region growing starting from a single keypoint correspondence. IEEE Trans.
Pattern Anal. Machine Intell, 2007.

[72] J. Yao and W.K. Cham. Robust multi-view feature matching from multiple unordered views.
Pattern Recognition, 40(11):3081–3099, 2007.

[73] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys
(CSUR), 38(4), 2006.


	F: 
	 Cao, J: 
	-L: 
	 Lisani, J: 
	-M: 
	 Morel, Mus´e P: 
	, and F: 
	 Sur: 
	 A Theory of Shape Identification:  F. Cao, J.-L. Lisani, J.-M. Morel, Mus´e P., and F. Sur. A Theory of Shape Identification. Number Vol. 1948 in Lecture Notes in Mathematics. Springer Verlag, 2008. 










