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HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE HEATTRANSFER PROBLEM∗GRÉGOIRE ALLAIRE † AND KARIMA EL GANAOUI ‡Abstrat. This paper is devoted to the homogenization of a heat ondution problem in aperiodially perforated domain with a nonlinear and nonloal boundary ondition modeling radiativeheat transfer in the perforations. Beause of the onsidered ritial saling it is essential to use amethod of two-sale asymptoti expansions inside the variational formulation of the problem. Weobtain a nonlinear homogenized problem of heat ondution with e�etive oe�ients whih areomputed via a ell problem featuring a radiative heat transfer boundary ondition. We rigorouslyjustify this homogenization proess for the linearized problem by using two-sale onvergene. Weperform numerial simulations in 2-d: we reonstrut an approximate temperature �eld by addingto the homogenized temperature a orretor term. The omputed numerial errors agree with thetheoretial predited errors and prove the e�etiveness of our method for multisale simulation ofondutive and radiative heat transfer problems in periodially perforated domains.Key words. Homogenization, two-sale onvergene, radiative transfer, heat ondution.AMS subjet lassi�ations.1. Introdution. The goal of this paper is to theoretially and numeriallystudy the homogenization of a ondutive and radiative heat transfer problem in aperforated periodi media. The motivation of this problem omes from the nulearreator industry: an alternative onept to the usual pressurized water reators isthat of gas ooled reators. Typially, a graphite matrix (playing the role of neutronmoderator) is periodially perforated by long hannels ontaining either the uraniumfuel or a gas oolant whih is helium. Reall that the �ssion nulear reations produea large amount of heat whih should be removed from the reator ore by a oolant inorder to ativate a steam generator (through a heat exhanger) and �nally to produeeletriity. Here we fous only on the heat transfer problem in suh an heterogeneousmedium. To simplify the exposition, we assume that the graphite and uranium matrixis already homogenized and an be onsidered as a single homogeneous material. In-side this matrix heat is transmitted by simple linear ondution. On the other hand,the helium heat ondutivity is ompletely negligible with respet to the radiativetransfer taking plae inside the hannels. We therefore fae a oupled problem ofheat ondution and radiation where the number of helium hannels is very large,typially of the order of 104. For dimensioning purposes as well as safety studiesmany numerial simulations have to be performed for whih a diret approah (mesh-ing all the geometri details) is impossible, or at least muh too ostly. Therefore,homogenization is a neessary ingredient for the study of suh devies.In this problem the goal of homogenization is twofold: �rst, it must yield a learde�nition of what is the homogenized problem, and seond, it has to give expliitformulas for the e�etive parameters as well as a reipe to approximate the exatsolution. Indeed, sine the original model is a mixture of two di�erent type of equa-tions (ondution and radiative transfer), the preise form of the homogenized systemis not lear a priori. Conerning the seond point, the original problem is posedin a perforated medium while the homogenized problem is posed in a homogeneous
∗This work has been supported by the Frenh Atomi Energy Commission, DEN/DM2S at CEASalay.
†CMAP, (gregoire.allaire�polytehnique.fr).
‡CMAP, (ganaoui�map.polytehnique.fr). 1



2 G. ALLAIRE AND K. EL GANAOUImedium, so taking into aount orretor terms is of paramount importane if onewants a geometrially sound reonstrution of an approximate solution.Let us ome bak to the physial modeling of the original problem. The trueproblem is three-dimensional but the helium hannels are long parallel tubes, so ho-mogenization takes plae only in the ross setion. Therefore, it is not a severerestrition to onsider only the two-dimensional homogenization of a ross setion ofthe geometry (see Figure 2.1) as we shall do below. As usual in homogenization wedenote by ε the period. The matrix perforated domain is Ωε where energy transferis done by ondution. The tubes or holes are τε,i, with boundaries Γε,i whih aregrey-di�use surfaes, and are �lled by helium, assumed to be a transparent mediawithout heat ondution nor absorption of radiation. Under these assumptions, theradiation equation an be integrated inside eah hole τε,i to produe a ompliated(non linear and non loal) boundary ondition on the wall Γε,i. Setion 2.2 givesa preise desription of this boundary ondition. Let us simply gives the ompletemodel when the emissivity is equal to one. For given bulk and surfae heat soureterms f and g, the temperature Tε is a solution of





−div(Kε∇Tε) = f in Ωε,

Kε∇Tε · n = g on ∂Ω,

−Kε∇Tε · n =
σ

ε

(
T 4

ε (x) −
∫

Γε,i

F (x, s)T 4
ε (s)dγ(s)

) on Γε,i,

(1.1)where F (x, s) is the so-alled view fator for the wall Γε,i. The saling ε−1 in theright hand side of the boundary ondition yields a perfet balane, in the limit as εgoes to zero, between the bulk heat ondution and the surfae radiative transfer. Adi�erent saling was studied in [7℄.Sine the seminal paper [12℄ it is known that the use of two-sale asymptotiexpansions in perforated domains is sometimes deliate, espeially when the boundaryonditions are non linear and non loal as here. Indeed, the homogenization of (1.1)by the formal method of two-sale asymptoti expansions (as presented in [8℄, [9℄,[11℄, [21℄) is not ompletely obvious, all the more if one works with the strong from ofthe equations. As explained in Setion 3 it is muh simpler to perform the two-saleasymptoti expansions in the variational formulation of (1.1), symmetrially in theunknown and in the test funtion (following an idea of J.-L. Lions [16℄). As a resultwe obtain that the leading term T (x) in the ansatz of Tε(x) is the solution of thefollowing non linear homogenized problem
{

−div(K∗(T )∇T ) = mes(Y ∗)
mes(Y ) f in Ω,

K∗(T )∇T · n = g on ∂Ω,
(1.2)where K∗(T ) is the e�etive ondutivity, depending on the marosopi temperature

T , and de�ned through a loal ell problem (3.3) whih is a linearized ondutive andradiative transfer problem in the unit ell (see Proposition 3.1).In Setion 4 we give a rigorous justi�ation of suh an homogenization resultfor the linearized version of (1.1) (see Theorem 4.6). Our main tools are two-saleonvergene [2℄, [20℄ and suitable Taylor expansions of the test funtion on eah holeboundary Γε,i in order to take advantage of the view fator properties.Eventually Setion 5 is onerned with numerial simulations for this problem.Following a lassial idea in periodi homogenization, we approximate the solution Tε



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 3of (1.1) by the two �rst terms of its ansatz, i.e., the homogenized solution T plus theso-alled orretor term
Tε(x) ≈ T (x) + ε

d∑

i=1

ωi

(
T 3(x),

x

ε

) ∂T
∂xi

(x), (1.3)where ωi are the solutions of the ell problems. Sine T is de�ned in the full domain
Ω while Tε is merely de�ned in the perforated domain Ωε, the orretor term isruial for a good approximation. We make omparisons between the exat solution
Tε (or, at least, a onverged numerial approximation of it, when available) and thereonstrution (1.3). We obtain a numerial error estimate of the order of ε in L2(Ω),as predited by homogenization theory [9℄. Of ourse, the gain in terms of CPUtime and memory storage is enormous when using (1.3) instead of solving the exatproblem (1.1) sine the homogenized problem (1.2) requires only a oarse mesh. Notehowever that the ell problem must be solved for di�erent values of the marosopitemperature T . Finally let us mention that a slightly simpler model is studied in [6℄and that more details an be found in [14℄.2. Setting of the problem. The goal of this setion is to de�ne preisely thegeometry of the perforated periodi medium, to introdue the model of ondutiveand radiative heat transfer problem and to give some notations.

Figure 2.1. Referene ell and periodi domain2.1. Geometry. Let Ω be a smooth bounded open set in R
d (d = 2 or 3 in theappliations). We de�ne a periodi perforated domain Ωε, where ε denotes its period,by removing from Ω a olletion of holes (τε,k)k=1,...,M(ε) in a periodi manner. Eahhole τk

ε is equal, up to a translation, to the same unit hole τ resaled at size ε. Thedomain Ω is also subdivided in N(ε) periodiity ells (Yε,i)i=1,...,N(ε), eah of thembeing equal, up to a translation, to the same unit ell Y =
∏d

j=1(0, ℓj). The numberof periodiity ells is not equal to the number of holes sine, in the appliation to gasooled reators, there are several holes per ell (see Figure 2.1). We denote by Y ∗ the



4 G. ALLAIRE AND K. EL GANAOUIsolid part of Y , i.e., Y ∗ = Y \ τ , and by Γ the boundary of τ (by a slight abuse oflanguage we denote by τ an individual hole as well as all the holes ontained in theunit ell Y ). To avoid some unneessary tehnialities (see [1℄ for details), we assumethat, if a periodiity ell uts the boundary of Ω, then it does not ontain any hole.The holes τε,k orrespond to helium hannels in our appliation where radiative heattransfer takes plae, while Ωε orresponds to the solid domain where ondution takesplae. In summary we have
Ωε = Ω \

M(ε)⋃

k=1

τε,k, ∂Ωε = ∂Ω ∪ Γε with Γε =

M(ε)⋃

k=1

∂τε,k =

N(ε)⋃

i=1

Γε,i, (2.1)where Γε,i denotes the boundaries of the holes τε,k inside the ell Yε,i. Denoting bymes the measure (surfae or volume, depending on the ontext) of a set, we reall thefollowing identities
mes(Y ) εd =

mes(Ω)

N(ε)
(1+O(ε)), mes(Γε,i) = εd−1mes(Γ), mes(Yε,i) = εdmes(Y ).Denoting by dγ(x) the surfae measure on Γε, we de�ne the enter of mass x0,i of Γε,iby

x0,i =
1

mes(Γε,i)

∫

Γε,i

x dγ(x) or equivalently ∫

Γε,i

(x− x0,i)dγ(x) = 0.Similarly, y0 denotes the enter of mass of the unit hole boundary Γ. We reall thefollowing obvious identities.Lemma 2.1. A smooth funtion f satis�es
∫

Γε,i

f
(x
ε

)
dx = εd−1

∫

Γ

f(y)dy,

∫

Γε,i

f
(x
ε

)
(x− x0,i)dx = εd

∫

Γ

f(y)(y − y0)dy,

∫

Γε,i

f
(x
ε

)
(x− x0,i) ⊗ (x− x0,i)dx = εd+1

∫

Γ

f(y)(y − y0) ⊗ (y − y0)dy,

ε

N(ε)∑

i=1

mes(Γε,i)f(x0,i) =
mes(Γ)

mes(Y )

∫

Ω

f(s)ds+ O(ε).2.2. Boundary onditions. As already said the holes are atually helium han-nels where radiative heat transfer takes plae. Sine helium is assumed to be trans-parent (no heat ondution nor absorption of radiation), this proess is modeled by aboundary ondition on the holes boundaries. Let us reall the modeling of radiativeexhanges between grey-di�use surfaes [15, 17℄. A grey-di�use surfae emits andabsorbs radiation in the same manner in all diretions. Part of the reeived radiationsan be re�eted: a surfae is thus haraterized by its emissivity e whih takes val-ues between 0 (full re�etion) and 1 (no re�etion). Denoting by T the temperatureand by R the radiosity, i.e. the intensity of emitted radiation, we have the followingrelationship
R(x) = eσT 4(x) + (1 − e)J(x), (2.2)



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 5

Figure 2.2. Domain with a radiative avity Σwhere σ is the Stefan-Boltzmann onstant and J is given by
J(x) =

∫

Σ

F (x, s)R(s)dγ(s),where F (x, s) is the view fator (a geometrial quantity) between two di�erent points
x and s of a avity Σ (see Figure 2.2). Thus, the radiosity is given as the solutionof an integral equation in terms of the temperature. For our appliation, the expliitformula of the view fator in 2-d for a onvex avity is

F (x, s) =
ns · (x− s)nx · (s− x)

2|s− x|3where nz denotes the unit normal at the point z. However, our mathematial studydoes not rely on this spei� formula and we simply need the following properties ofthe kernel F : for any (x, s) ∈ Σ2, it satis�es
• F (x, s) ≥ 0,
• F (x, s) = F (x, s),
•
∫
Σ F (x, s)ds = 1.Let J be the operator going from Lp(Σ), 1 ≤ p ≤ +∞, into itself de�ned by

J(f)(x) =

∫

Σ

F (x, s)f(s)dγ(s). (2.3)Denoting by E the operator onsisting of multiplying by the emissivity value e, (2.2)an be rewritten
R = (Id − (Id − E)J)

−1
EσT 4.On the avity wall the energy balane reads

q −R+ J = 0, (2.4)where q is the heat �ux transmitted by ondution from the solid Ω to the avity Σ,from whih we dedue
q = G(σT 4),where G is a linear non-loal operator de�ned by

G(ϕ) = [Id − J] [Id − (Id − E)J]
−1

E(ϕ) ∀ϕ ∈ Lp(Σ). (2.5)



6 G. ALLAIRE AND K. EL GANAOUILet us reall some properties of J de�ned by (2.3) (see [22℄).Lemma 2.2. The operator J going from Lp(Σ) to Lp(Σ), 1 ≤ p ≤ ∞, satis�es
• J(c) = c, ∀c ∈ R;
• ‖J‖ ≤ 1;
• J is non negative: ∀f ∈ Lp(Σ), f ≥ 0 ⇒ J(f) ≥ 0;
• J is symmetri (self-adjoint for p = 2) in the sense that

∫

Σ

J(ϕ)ψ =

∫

Σ

J(ψ)ϕ, ∀ϕ ∈ Lp(Σ), ψ ∈ Lp′

(Σ), with 1

p
+

1

p′
= 1.We easily dedue from Lemma 2.2 that (Id − ςJ), 0 ≤ ς < 1, is invertible (for

ς = 1, (Id− ςJ) is not invertible sine ker(Id− J) = R). In partiular we dedue that
G is well de�ned, symmetri and non negative (this is lear for 0 < e ≤ 1 and for
e = 0 we �nd G ≡ 0).Remark 2.3. The operators de�ned by (2.3), (2.5) will be denoted by Jε, Gεrespetively, if ating on Γε instead of Γ.2.3. Governing equations. Let K be the ondutivity tensor of the unit ell
Y ∗. We assume K to be symmetri, uniformly oerive and bounded (in norm L∞),i.e., there exist two positive onstants 0 < α ≤ β suh that

∀v ∈ R
d , for a.e. y ∈ Y ∗, α|v|2 ≤

d∑

i,j=1

Ki,j(y)vivj ≤ β|v|2 . (2.6)As usual, K(y) being a Y -periodi funtion, we de�ne its Yε-periodi extension
Kε(x) = K

(x
ε

)
.For given bulk and surfae soure terms f and g, we onsider the following mixedproblem of ondution and radiative heat transfer for the unknown temperature Tε





−div(Kε∇Tε) = f in Ωε,
Kε∇Tε · n = g on ∂Ω,

−Kε∇Tε · n = 1
εGε(σT

4
ε ) on Γε,

(2.7)where G is the operator de�ned by (2.5). For non-negative soures, the boundaryvalue problem (2.7) admits a unique positive solution as was proved in [22℄. The maindi�ulty in (2.7) is the non-linear and non-loal boundary ondition on Γε. Note alsothe ε−1 saling in the boundary ondition whih insures that the radiative onditionwill not disappear when passing to the limit ε → 0 and will be represented in thehomogenized model.2.4. Notations. The subsript # in the de�nition of funtional spaes on theunit ell Y indiates that we onsider Y -periodi funtions. We denote by L2(Ω;C#(Y ))the spae of measurable and square summable funtions of x ∈ Ω with values in the Ba-nah spae of ontinuous and Y -periodi funtions of y. We denote by L2(Ω;H1
#(Y ∗))the spae of measurable and square summable funtions of x ∈ Ω with values in theSobolev spae H1

#(Y ∗) of Y -periodi funtions de�ned only on Y ∗. We all ell-problem a problem that we solve only on the elementary ell of the periodi domain.Cell-problems usually take into aount the mirostruture behavior and ontributeto the e�etive parameters alulation. We denote by O(εp), p ∈ R a funtion of ε > 0suh that there exists a onstant C not depending on ε so that we have |O(εp)| ≤ Cεpfor all ε > 0.



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 73. Asymptoti expansions. The mathematial theory of periodi homogeniza-tion is based on two-sale asymptoti analysis (see e.g. the books [3, 8, 9, 11, 21℄).Two variables have to be onsidered: the marosopi variable x and the mirosopione y with y = x
ε . The starting point of the heuristi method of two-sale asymptotiexpansions is to assume that the solution Tε of the problem to homogenize is givenby the following series

Tε(x) =

∞∑

j=0

εjTj

(
x,
x

ε

) (3.1)where eah funtion Tj(x, y) is de�ned on Ω× Y and is Y -periodi with respet to y.The lassial method of homogenization proeeds by injeting the ansatz (3.1) in theequations of the problem (i.e., in the strong formulation of the problem). It turns outthat this approah fails here or is, at least, very di�ult to properly ahieve.Indeed, the ombination of the large saling ε−1 and of the non-loal harater ofthe radiative boundary ondition on the perforations makes the proess of identifyingsuessive powers of ε in the asade of equations very involved, not to say triky.Following an idea of J.-L. Lions [16℄, it is atually muh safer to perform the two-sale asymptoti expansion in the variational formulation (i.e., in the weak form ofthe problem). In partiular, the omparison between bulk and surfae terms is muhsimpler and, the ansatz being symmetri between the unknown and tests funtion, itis enough to stop it at �rst order. Furthermore, working diretly in the variationalformulation allows us to take advantage of the symmetry properties of J and yieldssome (most welome) geometrial simpli�ations.Before we go into the numerous tehnial details, let us explain our main resultsobtained by applying this formal proedure. The homogenized problem for (2.7) is anon-linear ondutivity equation in a ontinuous domain with a ondutivity matrixdepending on the temperature of the medium.Proposition 3.1. The two �rst terms of the asymptoti expansion of the solution
Tε of (2.7) are given by

Tε(x) = T (x) + ε

d∑

i=1

ωi

(
T 3(x),

x

ε

) ∂T
∂xi

(x) + O(ε2),where T is the solution of the homogenized problem
{

−div(K∗(T )∇T ) = mes(Y ∗)
mes(Y ) f in Ω,

K∗(T )∇T · n = g on ∂Ω,
(3.2)with an homogenized ondutivity given by

K∗
ij(T ) =

1

mes(Y )

(∫

Y ∗

K(∇yωi + ei) · (∇yωj + ej) + 4σT 3

∫

Γ

G(ωi + yi)(ωj + yj)
)
,and (ωi(T

3(x), y))1≤i≤d are the solutions of the ell problems
{

−divy(K ∇y(ei + ωi)) = 0 in Y ∗,
−K ∇y(ei + ωi) · n = 4σT 3(x)G(ωi + yi) on Γ.

(3.3)



8 G. ALLAIRE AND K. EL GANAOUIThe homogenized problem (3.2) is a nonlinear ondution model with a ondu-tivity matrix depending on the temperature. Radiative transfer is taken into aountat the mirostruture level in the ell problems whih are ondution problems witha linearized radiative boundary ondition on the wall of the holes.The rigorous onvergene of the homogenization proess for the non linear model(2.7) is an open problem. Atually we are able to prove the onvergene of Tε to thehomogenized temperature T only for a linearized version of (2.7) (see setion 4). Themain di�ulty for the non linear model is that it laks any property of onvexity orof monotony (whih are the usual simple assumptions required for homogenizing nonlinear problems). Another possibility would be to have at our disposal a omparisonpriniple between two solutions whih will be uniform in ε. Indeed, we know thata maximum priniple applies to (2.7) (see [22℄) but it seems deliate to obtain aomparison priniple whih is uniform in ε (at least we do not know how to proeed).The rest of this setion is devoted to the proof of proposition 3.1 whih is dividedin several subsetions for the sake of larity.3.1. Ansatz. Beause of the boundary onditions imposed on the perforations,the homogenization of the strong form (2.7) is not simple. Therefore, to obtain thehomogenized problem for (2.7) we apply the formal two-sale asymptoti expansionmethod to its variational formulation
∫

Ωε

Kε∇Tε · ∇ϕε +
σ

ε

N(ε)∑

i=1

∫

Γε,i

(Id − Jε)(Id − (Id − E)Jε)
−1EσT4

εϕε =

=

∫

Ωε

fϕε +

∫

∂Ω

gϕε. (3.4)The boundary ondition on Γε is ompliated sine it requires the inversion of anoperator. To avoid this inversion, we introdue two auxiliary variables δε and χεgiven by
δε = (Id − (Id − E)Jε)

−1E(σT 4
ε ) and χε = (Id − (Id − E)Jε)

−1ϕε. (3.5)In partiular, this implies that G(σT 4
ε ) = (Id−Jε)δε. To simplify the writing we de�neon eah boundary Γε,i the operators Aε and Bε, going from Lp(Γε,i) into Lp(Γε,i), by

Aε = (Id − (Id − E)Jε) and Bε = (Id − Jε)(Id − (Id − E)Jε)Then, the variational formulations of (2.7) and (3.5) are given by
∫

Ωε

Kε∇Tε · ∇ϕε +
1

ε

N(ε)∑

i=1

∫

Γε,i

Bεχεδε =

∫

Ωε

fϕε +

∫

∂Ω

gϕε, (3.6)
∫

Γε,i

Aεδεψε = eσ

∫

Γε,i

T 4
ε ψε, (3.7)

∫

Γε,i

Aεχεζε =

∫

Γε,i

ϕεζε, (3.8)where ϕε, ψε and ζε are test funtions.Remark 3.2. Atually χε is not really an unknown of (2.7) sine it depends solelyon the test funtion ϕε. However, introduing the supplementary test funtion χε



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 9allows us to keep a "symmetri" variational formulation where the unknowns (Tε, δε)and the test funtions (ϕε, χε) play a symmetri role.Remark 3.3. The operators A and B, just de�ned, have similar properties tothose of J. In partiular, they are symmetri, A(c) = ec and B(c) = 0 ∀c ∈ R, A isinvertible for 0 < e ≤ 1, and B is non negative.3.2. Homogenization results. We �rst onsider a two sale asymptoti ex-pansion of the unknowns and the test funtions
Tε(x) = T (x) + εT1

(
x,
x

ε

)
+ O(ε2), (3.9)

δε(x) = δ
(
x,
x

ε

)
+ εδ1

(
x,
x

ε

)
+ O(ε2), (3.10)

χε(x) = χ
(
x,
x

ε

)
+ εχ1

(
x,
x

ε

)
+ O(ε2), (3.11)

ϕε(x) = ϕ(x) + εϕ1

(
x,
x

ε

)
, (3.12)

ψε(x) = ψ
(
x,
x

ε

)
+ εψ1

(
x,
x

ε

)
, (3.13)

ζε(x) = ζ
(
x,
x

ε

)
+ εζ1

(
x,
x

ε

)
. (3.14)We diretly wrote T0(x, y) = T (x) sine we expet a marosopi behavior of thetemperature at its zero-th order. Then we perform a Taylor expansion of eah quantity

0,ix

x

i,H*Figure 3.1. Example of 2D avity with its enter of mass x0,inear the enter of mass x0 of the onsidered avity
T 4

ε (x) = T 4(x0) +4T 3(x0)∇T (x0) · (x− x0) +ε4T 3(x0)T1

(
x0,

x
ε

)
+O(ε2),

δε(x) = δ
(
x0,

x
ε

)
+∇xδ

(
x0,

x
ε

)
· (x− x0) +εδ1

(
x0,

x
ε

)
+O(ε2),

χε(x) = χ
(
x0,

x
ε

)
+∇xχ

(
x0,

x
ε

)
· (x− x0) +εχ1

(
x0,

x
ε

)
+O(ε2),

ϕε(x) = ϕ(x0) +∇ϕ(x0) · (x− x0) +εϕ1

(
x0,

x
ε

)
+O(ε2),

ψε(x) = ψ
(
x0,

x
ε

)
+∇xψ

(
x0,

x
ε

)
· (x− x0) +εψ1

(
x0,

x
ε

)
+O(ε2),

ζε(x) = ζ
(
x0,

x
ε

)
+∇xζ

(
x0,

x
ε

)
· (x− x0) +εζ1

(
x0,

x
ε

)
+O(ε2)Lemma 3.4. The �rst terms δ and χ of the asymptoti expansion (3.10) and(3.11) of δε and χε, respetively, are marosopi in the following sense

δ
(
x,
x

ε

)
≡ δ(x) = σT 4(x) and χ

(
x,
x

ε

)
≡ χ(x) =

1

e
ϕ(x),where T and ϕ are the �rst terms of the asymptoti expansion of Tε and ϕε, respe-tively.



10 G. ALLAIRE AND K. EL GANAOUIProof. We injet the appropriate expansion in the variational formulation (3.7).Identifying its terms of order ε0 leads to
eσ

∫

Γ

T 4(x0)ψ(x0, y)dy =

∫

Γ

Aδ(x0, y)ψ(x0, y)dy,whih simply implies
Aδ(x0, y) = eσT 4(x0) ∀y ∈ Γ. (3.15)The operator A is oerive sine 0 < e ≤ 1 and ‖J‖ ≤ 1. Thus (3.15) admits a uniquesolution. Sine Ac = ec for any onstant c ∈ R, we dedue that the unique solution of(3.15) is δ(x0, y) = σT 4(x0). In the same manner we an get the relationship between

χ and ϕ.Taking into aount the results of lemma 3.4 we now obtainLemma 3.5. For any x in Ω, the funtions T , T1 and δ1 and ϕ, ϕ1 and χ1 arelinked by the relationships
A
(
δ1(x, y) + 4σT 3(x)∇T (x) · (y − y0)

)
= 4eσT 3(x) (T1(x, y) + ∇T (x) · (y − y0))(3.16)and

A

(
χ1(x, y) +

1

e
∇ϕ(x) · (y − y0)

)
= ϕ1(x, y) + ∇ϕ(x) · (y − y0) ∀x ∈ Ω. (3.17)Proof. We onsider the asymptoti expansions in the variational formulation (3.7).Thanks to the equality δ = σT 4, many terms disappear from both sides of (3.7). The

ε order terms yield
∫

Γ

A
(
δ1(x0, y) + 4σT 3(x0)∇T (x0) · (y − y0)

)
ψ(x0, y)dy

= 4eσT 3(x0)

∫

Γε,i

(T1(x0, y) + ∇T (x0) · (y − y0))ψ(x0, y)dy,
(3.18)whih is preisely the variational formulation of (3.16). The same arguments appliedto (3.8) lead to (3.17).We now onsider the main variational formulation (3.4) orresponding to theboundary value problem (2.7). For the moment we simply fous on its more deliateterm, involving the radiative boundary ondition

1

ε

N(ε)∑

i=1

∫

Γε,i

Bεχεδε.For this term only we need to be a little bit more preise in our asymptoti expansions,pushing then to the seond order in ε. The reader should not be afraid by thisseemingly ontradition with our previous argument that �rst order ansatz are enough:atually the seond order terms will disappear in the limit. Thus we replae (3.10)and (3.11) (after Taylor expansion) by
χε(x) =

1

e
ϕ(x0) +

1

e
∇ϕ(x0) · (x− x0) + εχ1

(
x0,

x

ε

)
+ ε2χ̃2,ε(x) + O(ε3),

δε(x) = σT 4(x0) + 4σT 3(x0)∇T (x0) · (x − x0) + εδ1

(
x0,

x

ε

)
+ ε2δ̃2,ε(x) + O(ε3),



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 11where we do not give any details on the seond-order terms χ̃2,ε and δ̃2,ε beause theywill disappear after this stage. We ompute
Bεχεδε =

Bε
1

e
ϕ(x0)

[
σT 4(x0) + 4σT 3(x0)∇T (x0) · (x− x0) + εδ1

(
x0,

x

ε

)
+ ε2δ̃2,ε(x)

]

+ Bε

(
1

e
∇ϕ(x0) · (x− x0)

)[
σT 4(x0) + 4σT 3(x0)∇T (x0) · (x− x0) + εδ1

(
x0,

x

ε

) ]

+ εBεχ1

(
x0,

x

ε

) [
σT 4(x0) + 4σT 3(x0)∇T (x0) · (x − x0) + εδ1

(
x0,

x

ε

) ]

+ ε2Bεχ̃2,ε(x)σT
4(x0) + O(ε3). (3.19)Beause Bε is symmetri and its kernel is R (the onstants), the terms in (3.19) whihontain χ̃2 and δ̃2 will disappear when integrating on Γε,i. Remark also that, afterintegration and summation over all ells, we obtain a remainder term given by

1

ε

N(ε)∑

i=1

mes (Γε,i)O(ε3) = O(ε−d)O(εd−1)O(ε2) = O(ε)whih an safely be negleted. Thus, integrating on Γε,i, multiplying by ε−1, summingon i and using lemma 2.1, we obtain the following limit
1

ε

N(ε)∑

i=1

∫

Γε,i

Bεχεδε =

1

mes(Y )

[ ∫

Ω

∫

Γ

B

(
1

e
∇ϕ(x) · (y − y0)

)
4σT 3(x)∇T (x) · (y − y0) dy dx

+

∫

Ω

∫

Γ

B
1

e
∇ϕ(x) · (y − y0)δ1(x, y) dy dx

+

∫

Ω

∫

Γ

Bχ1(x, y)4σT
3(x)∇T (x) · (y − y0) dy dx

+

∫

Ω

∫

Γ

Bχ1(x, y)δ1(x, y) dy dx
]

+ O(ε).

(3.20)
It is muh easier to pass to the limit in the other terms of the variational formulation(3.6) (so we skip the details) and we eventually obtain the following limit

1

mes(Y )

[ ∫

Ω

∫

Y ∗

K(y)(∇T (x) + ∇yT1(x, y)) · (∇ϕ(x) + ∇yϕ1(x, y)) dy dx

+

∫

Ω

4σT 3(x)

∫

Γ

(Id − J)
1

e
∇ϕ(x) · (y − y0)A [∇T (x) · (y − y0)] dy dx

+

∫

Ω

∫

Γ

(Id − J)
1

e
∇ϕ(x) · (y − y0)Aδ1(x, y)dy dx

+

∫

Ω

∫

Γ

(Id − J)χ1(x, y)A
[
4σT 3(x)∇T (x) · (y − y0)

]
dy dx

+

∫

Ω

∫

Γ

(Id − J)χ1(x, y)Aδ1(x, y)dy dx
]

=
mes(Y ∗)

mes(Y )

∫

Ω

fϕ dx+

∫

∂Ω

gϕ dγ(x). (3.21)



12 G. ALLAIRE AND K. EL GANAOUIFrom (3.17) and the equality G = (Id − J)A−1 we dedue
(Id − J)χ1 =

1

e
Gϕ1 +

1

e
G∇ϕ · (y − y0) − (Id − J)

1

e
∇ϕ · (y − y0). (3.22)Now we substitute in (3.21) formula (3.16) for Aδ1 and formula (3.22) for (Id− J)χ1.After some simpli�ations we obtain

1

mes(Y )

( ∫

Ω

∫

Y ∗

K(y) (∇T (x) + ∇yT1(x, y)) · (∇ϕ(x) + ∇yϕ1(x, y))

+ 4σ

∫

Ω

T 3(x)

∫

Γ

[
ϕ1(x, y) + ∇ϕ(x) · (y − y0)

]

G
[
T1(x, y) + ∇T (x) · (y − y0)

])

=
mes(Y ∗)

mes(Y )

∫

Ω

f(x)ϕ(x) +

∫

∂Ω

g(x)ϕ(x), (3.23)whih is just a variational formulation for the unknown (T, T1) with a test funtion
(ϕ,ϕ1).Taking ϕ = 0 in (3.23) yields the ell problem

∫

Ω

∫

Y ∗

K(∇T + ∇yT1) · ∇yϕ1 + 4σ

∫

Ω

T 3

∫

Γ

Gϕ1

[
T1 + ∇T · (y − y0)

]
= 0whih is the variational formulation of

{
−divy(K(∇T + ∇yT1)) = 0 in Y ∗,

−K(∇T + ∇yT1) · n = 4σT 3(x)G
(
T1 + ∇T · (y − y0)

) on Γ,
(3.24)from whih we dedue a formula for T1 in terms of T

T1(x, y) =

d∑

i=1

ωi(T
3(x), y)

∂T

∂xi
(x). (3.25)Taking ϕ1 = 0 in (3.23) and using (3.25) yields the variational formulation of thehomogenized problem (3.2) with the e�etive ondutivity tensor as announed inproposition 3.1.4. Rigorous homogenization for a linear model. In this setion we givea rigorous homogenization result for the linearized version of (2.7) using two-saleonvergene [2, 20℄. To simplify further the exposition we fous on the ase of so-alled blak walls, i.e., we assume that e = 1. It allows us to avoid the use of theadditional unknowns δε and χε. However, our method an extend without furtheroneptual di�ulty to the ase 0 < e < 1. Although the non-linear problem (2.7)admits a unique solution, it is not the ase of its linearized version whih admits asolution, unique up to the addition of a onstant. Therefore, to ensure the uniquenessof the solution, we replae the Neumann ondition on ∂Ω by a Dirihlet one. In otherwords, we now onsider






−div(Kε∇Tε) = f in Ωε,
Tε = 0 on ∂Ω,

−Kε∇Tε · n = 1
ε (Id − Jε)(σ̃Tε) on Γε,

(4.1)where σ̃ = σT 3
0 with T0 a positive onstant referene temperature. Reall that, sine

e = 1, we have G = (Id − J).



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 134.1. Well-posedness and a priori estimates. First we disuss the existeneand uniqueness of the solution of (4.1), then we derive a priori estimates. The varia-tional formulation of (4.1) is, for any ϕε ∈ H1(Ωε) suh that ϕε = 0 on ∂Ω,
∫

Ωε

Kε∇Tε · ∇ϕε + σ̃
1

ε

∑

k

∫

Γε,k

(Id − Jε)(ϕε)Tε =

∫

Ωε

fϕε, (4.2)where we have used the symmetri harater of (Id − Jε). The operator (Id − Jε)is non-negative, so the linear problem (4.1) is oerive and has a unique solution in
H1(Ωε) by appliation of the Lax-Milgram lemma.We now reall a onvenient extension lemma due to [12℄.Lemma 4.1. There exists a ontinuous linear extension Pε from H1(Ωε) to H1(Ω)suh that

∀ϕε ∈ H1(Ωε) Pε(ϕε)|Ωε
= ϕε (4.3)and there exists a onstant C > 0, whih does not depend on ε, suh that

‖Pε(ϕε)‖H1(Ω) ≤ C‖ϕε‖H1(Ωε) ∀ϕε ∈ H1(Ωε).We also reall a lassial lemma.Lemma 4.2. There exists a onstant C > 0, not depending on ε, suh that
ε1/2‖ϕε‖L2(Γε) ≤ C‖ϕε‖H1(Ωε) ∀ϕε ∈ H1(Ωε). (4.4)We are ready to give the a priori estimate.Proposition 4.3. Let Tε be the solution of (4.1) (extended to Ω). There existsa onstant C independent on ε suh that

‖Tε‖H1(Ω) ≤ C (4.5)and
ε

∫

Γε

| Tε(x) |2 dγε(x) ≤ C. (4.6)Proof. Using the properties of the extension Pε and the Poinaré inequality in Ω,we easily �nd the estimate (4.5). Using lemma 4.2 and (4.5) we dedue (4.6).We �nally reall the de�nition and main results of two-sale onvergene [2, 20℄.Definition 4.4. A bounded sequene uε in L2(Ω) is said to two-sale onvergeto a funtion u0(x, y) ∈ L2(Ω × Y ) if there exists a subsequene still denoted by uεsuh that
lim
ε→0

∫

Ω

uε(x)ψ
(
x,
x

ε

)
dx =

1

mes(Y )

∫

Ω

∫

Y

u0(x, y)ψ(x, y)dx dy (4.7)for any Y -periodi test funtion ψ(x, y) ∈ L2(Ω;C#(Y )).A notion of two-sale onvergene on periodi surfaes was also introdued in[5, 19℄. We reall its neessary results.Proposition 4.5. Let uε be a sequene of L2(Γε) suh that
ε

∫

Γε

| uε(x) |2 dγε(x) ≤ C. (4.8)



14 G. ALLAIRE AND K. EL GANAOUIThere exists a subsequene, still denoted by uε and a funtion u0 ∈ L2(Ω;L2(Γ)) suhthat uε(x) two-sale onverge to u0(x, y) in the following sens
lim
ε→0

ε

∫

Γε

uε(x)ψ
(
x,
x

ε

)
dx =

1

mes(Y )

∫

Ω

∫

Γ

u0(x, y)ψ(x, y)dxdγ(y) (4.9)for any Y -periodi test funtion ψ(x, y) ∈ L2(Ω;C#(Y )).4.2. Homogenization results in the linear ase. The method of two-saleasymptoti expansions, as explained for the non-linear ase in setion 3, an also beapplied to the linear ase. There are some slight di�erenes in the results that we nowbrie�y summarize. The homogenized problem is the following linear equation
{

−div(K∗∇T ) = mes(Y ∗)
mes(Y ) f in Ω,

T = 0 on ∂Ω,
(4.10)where the homogenized ondutivity is given by

K∗
ij =

1

mes(Y )

∫

Y ∗

K(∇yωi +ei) · (∇yωj +ej)+ σ̃

∫

Γ

(Id−J)(ωi +yi)(ωj +yj), (4.11)and the ell problems are




−divy(K(ei + ∇yωi)) = 0 in Y ∗,
−K(ei + ∇yωi) · n = σ̃(Id − J)(ωi + yi) on Γ,

y 7→ ωi(y) is Y -periodi. (4.12)Clearly, (4.10) admits a unique solution T ∈ H1
0 (Ω) and (4.12) a unique solution

ωi ∈ H1
#(Y ∗), up to an additive onstant (whih does not play any role in the sequel).We de�ne a orretor funtion T1(x, y) ∈ L2(Ω;H1

#(Y ∗)) by
T1(x, y) =

d∑

i=1

ωi(y)
∂T

∂xi
(x). (4.13)Our main result in this setion is the followingTheorem 4.6. Let Tε be the sequene of solutions of (4.1). Let T be the solutionof the homogenized problem (4.10) and T1 be the funtion de�ned by (4.13). Then, Tεand ∇Tε, extended to the entire domain Ω, two-sale onverge to T and ∇xT +∇yT1,respetively.Proof. The a priori estimate (4.5) implies that Tε is bounded in H1(Ω). Thus,we an extrat a subsequene whih onverges weakly to a funtion T in H1(Ω) and,aording to Proposition 1.14 in [2℄, the subsequene ∇Tε two-sale onverges to

∇T (x) + ∇yT1(x, y) for some funtion T1 ∈ L2(Ω;H1
#(Y )). Similarly, aording toproposition 4.5, up to another subsequene, Tε two-sale onverges on the periodisurfae Γε to the limit T (x).In the variational formulation (4.2) we hoose an osillating test funtion ϕεde�ned by

ϕε(x) = ϕ(x) + εϕ1

(
x,
x

ε

) with ϕ1(x, y) =

d∑

i=1

∂ϕ

∂xi
(x)ωi(y)



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 15where ϕ ∈ C∞
c (Ω) and ωi are the solutions of ell problems (4.12). In order to evaluate

(Id − Jε)(ϕε), we write a Taylor expansion of ϕε around xε,k, the enter of mass of
Γε,k,
ϕε(x) = ϕ(xε,k)+∇ϕ(xε,k)·(x−xε,k)+

1

2
∇∇ϕ(xε,k)(x−xε,k)·(x−xε,k)+εϕ1

(
xε,k,

x

ε

)

+ ε∇xϕ1

(
xε,k,

x

ε

)
· (x− xε,k) + O(ε3). (4.14)Remark that ∇ϕ(xε,k) is onstant, so it an be fatorized out when applying theoperator Jε to ϕε. After applying Jε to (4.14), in order to reover ontinuous funtionswe shall apply the following Taylor expansion

∂ϕ

∂xi
(xε,k) =

∂ϕ

∂xi
(x) −∇ ∂ϕ

∂xi
(x) · (x− xε,k) + O(ε2).Therefore, we obtain

1

ε
(Id − Jε)(ϕε)(x) = ε

(
ψ1,ε(x) + ψ2,ε(x) + O(ε)

)with
ψ1,ε(x) =

1

ε

d∑

i=1

(Id − Jε)

(
ωi

(x
ε

)
+
xi − xi

ε,k

ε

)(
∂ϕ

∂xi
(x) −∇ ∂ϕ

∂xi
(x) · (x− xε,k)

)
,

ψ2,ε(x) =
1

ε2

(1

2
∇∇ϕ(x)(Id − Jε)

(
(x− xε,k) · (x− xε,k)

)

+ ε

d∑

i=1

∇ ∂ϕ

∂xi
(x) · (Id − Jε)

(
(x− xε,k)ωi

(x
ε

)))
,where xi

ε,k denotes the ith omponent of xε,k. Remark that ψ2,ε(x) = ψ2

(
x, x

ε

) so
ψ2,ε(x) two-sale onverges to ψ2(x, y) given by
ψ2(x, y) =

1

2
∇∇ϕ(x)(Id−J) [(y − y0) · (y − y0)]+

d∑

i=1

∇ ∂ϕ

∂xi
(x)·(Id−J) [(y − y0)ωi(y)] .By virtue of proposition 4.5 we have

lim
ε→0

ε

N(ε)∑

k=1

∫

Γε,k

ψ2,εTε =
mes(Γ)

mes(Y )

∫

Ω

T (x)

∫

Γ

ψ2(x, y)dy dx = 0, (4.15)sine
∫

Γ

ψ2(x, y) dy = 0.Conerning the term ontaining ψ1,ε we use the lassial "ompensated ompatness"trik of H-onvergene [18℄ whih relies on a omparison with the variational for-mulation of the the ell problems (4.12). More preisely, after resaling (4.12) wehave
∫

Γε

σ̃(Id − Jε)
(
ωi

(x
ε

)
+
xi

ε

)(
T
∂ϕ

∂xi

)
= −ε

∫

Ωε

Kε∇
(
ωi

(x
ε

)
+
xi

ε

)
· ∇
(
T
∂ϕ

∂xi

)
.



16 G. ALLAIRE AND K. EL GANAOUIThis implies that
σ̃ε

∫

Γε

ψ1,ε(x)Tε(x) = −
d∑

i=1

∫

Ωε

Kε(∇yωi + ei) · ∇
(
Tε
∂ϕ

∂xi

)

− σ̃ε
d∑

i=1

∫

Γε

(Id − Jε)

(
ωi

(x
ε

)
+
xi − xi

ε,k

ε

)
∇ ∂ϕ

∂xi
(x) · (x − xε,k)

ε
Tε.(4.16)Passing to the two-sale limit leads to

lim
ε→0

σ̃ε

∫

Γε

ψ1,ε(x)Tε(x) = − 1

mes(Y )

∫

Ω

∫

Y ∗

K(∇yωi + ei) ·
(
∇
(
T
∂ϕ

∂xi

)
+
∂ϕ

∂xi
∇yT1

)
dx dy

− σ̃
1

mes(Y )

∫

Ω

∫

Γ

(Id − J)(ωi + yi)y · ∇
∂ϕ

∂xi
T dy dx. (4.17)In addition to the onvergenes given in (4.15) and (4.17) we have also the �usual�onvergene

lim
ε→0

∫

Ωε

K∇Tε · ∇ϕε =
1

mes(Y )

d∑

i=1

∫

Ω

∫

Y ∗

K(∇T + ∇yT1) · (∇yωi + ei)
∂ϕ

∂xi
dx dy.(4.18)So taking into aount (4.15), (4.17), (4.18) and also the fat that

∣∣∣∣ε
∫

Γε

O(ε)Tε

∣∣∣∣ ≤ Cε‖Tε‖H1(Ω) sine ‖O(ε)‖L∞(Ω) ≤ Cε,the limit of the whole variational formulation is given by
−
∫

Ω

d∑

i,j=1

[∫

Y ∗

K(∇yωi + ei) · ej + σ̃

∫

Γ

(Id − J)(ωi + yi)y · ej

]
ej · ∇

∂ϕ

∂xi
T dy dx

= mes(Y ∗)

∫

Ω

fϕ, (4.19)whih is nothing else than an ultra weak variational formulation of the homogenizedproblem (4.10). We reover the Dirihlet boundary ondition for T beause, as thelimit of a sequene Tε in H1
0 (Ω), it belongs to H1

0 (Ω). Sine (4.10) has a uniquesolution in H1
0 (Ω), the whole sequene Tε onverges to T and not only a subsequene.5. Numerial simulations. In order to show the e�ieny of our homogeniza-tion approah and to validate it, we perform some numerial simulations for the nonlinear problem (2.7) in a 2D periodi perforated domain. We use the �nite elementode CAST3M [10℄ developed at the Frenh Atomi Energy Commission (CEA). Weompare the numerial solution of the �exat� model (2.7) with the �reonstruted�solution of the homogenized model (i.e., inluding orretors, see below) for smallerand smaller values of ε. We evaluate the error in the L2-norm for the temperature�eld and its gradient whih allows us to ompute numerial rates of onvergene forthe homogenization proess.Let us note in passing that, in numerial pratie, our asymptoti analysis doesnot follow the usual mathematial proedure (whih amounts to let ε goes to 0 in a



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 17�xed domain Ω) but rather the following engineering approah. The periodi ellshave a �xed unit size and their number goes to in�nity whih implies that the sizeof the marosopi domain goes to in�nity like ε−1. In other words, we resale theproblem by applying the hange of variables x → x/ε. In any ase, this proedureis ompletely transparent from the point of view of the numerial results presentedhere.5.1. Geometries and meshes. The geometry orresponds to a ross-setion ofa typial fuel assembly for a gas-ooled nulear reator (see [14℄ for further referenes).The unit ell is made of two irular holes in a retangle (see Figures 5.6, 5.2). Typialmeshes of the perforated domain Ωε and homogenized domain Ω are displayed onFigure 5.1. They orrespond to the largest value of ε: more periodiity ells will beadded for smaller values of ε, and eah ell will have the same mesh as one ell inFigure 5.1.

Figure 5.1. Initial omputational meshes Ωε (perforated domain) and Ω (solid domain).5.2. Computational parameters. We enfore homogeneous Neumann bound-ary onditions (adiabati walls) on the vertial boundaries of Ωε and Ω, and nonhomogeneous Dirihlet ones on the horizontal ones. The imposed temperatures are
Tsup = 1300K on the upper wall and Tinf = 600K on the lower wall. The ondu-tivity tensor is assumed to be isotropi with ondutivity equal to 30W. m−1. K−1.The emissivity of the holes boundaries is equal to e = 0.8. The thermal soures f and
g are set to zero.5.3. Algorithm. Our numerial omputations are done aording to the follow-ing steps:1. solve the ell problems (3.3) for a range of marosopi temperature values T ,2. ompute a range of homogenized ondutivity oe�ients K∗

ij(T
3) using theprevious ell solutions,



18 G. ALLAIRE AND K. EL GANAOUI3. solve the nonlinear homogenized problem (3.2) on the non perforated domain
Ω; the non-linearity is solved by a �xed-point iterative algorithm,4. evaluate the �utuation or orretor term

εT1(x,
x

ε
) = ε

2∑

i=1

∂T

∂xi
(x)ωi

(
T 3(x),

x

ε

)
;this step is not straightforward to implement sine the result T1 is de�ned on theperforated domain mesh while T lives on the domain mesh and ωi on the ell mesh,5. reonstrut approximations of the temperature Tε and of the temperaturegradient ∇Tε on the perforated mesh Ωε, T (x) + εT1(x,

x
ε ) and ∇T (x) + ∇yT1(x,

x
ε ),respetively,6. plot the relative errors Err(T) and Err(∇T) given by

Err(T) =

∥∥Tε(x) −
[
T (x) + εT1

(
x, x

ε

)]∥∥
L2(Ωε)

‖T (x)‖L2(Ω)
, (5.1)

Err(∇T) =

∥∥∇
[
Tε(x) − T (x) − εT1

(
x, x

ε

)]∥∥
L2(Ωε)

‖∇T (x)‖L2(Ω)
. (5.2)This proedure is repeated for various values of ε → 0 by using larger and largermeshes.5.4. Simulation results and disussion. We �rst ompute the the solutionsof the ell-problem (4.11) for di�erent temperatures: T = 0, 1500, 15.E3, 15.E6K.Figure 5.2 displays the solutions in the horizontal diretion, e1, and the vertial di-retion, e2, whih are not equivalent by a 90 degrees rotation. In Figure 5.3 we plotthe two diagonal omponents K∗

11 and K∗
22 of the homogenized ondutivity tensor

K∗ in terms of the marosopi temperature in the range 500K to 1500K. Note thatthese diagonal omponents have lose values so the homogenized medium seems al-most isotropi at low temperatures. However, the medium is not isotropi at very hightemperatures sine the e�et of radiation is more important (this will be on�rmedbelow by an asymptoti analysis as T tends to in�nity). Figure 5.4 makes a visualomparison between a numerially onverged temperature �eld Tε (obtained by diretsimulation on a �ne mesh) and the reonstruted �eld T + εT1 whih is the output ofthe homogenization proess.In Table 5.4 we display the relative errors on temperature Err(T) and Err(∇T).On Figure 5.5 we ompare these errors with the period ε and it squared root √
ε,respetively. The slopes are in very good agreement. This was theoretially preditedfor linear ondution (without radiation): the relative error Err(T) behaves like ε,while the relative error Err(∇T) sales like √ε (beause of boundary layer e�ets, see[4, 9℄).5.5. High temperature asymptoti. As part of the validation proess of ourhomogenization algorithm, it is interesting to study the limit of the ell problems andof the homogenized oe�ients when the marosopi temperature goes to in�nity. Aformal and simple asymptoti analysis of the ell problems shows that

lim
T→+∞

ωi(T
3, y) = ω0

i (y),whih leads to a limit of homogenized ondutivity given by
lim

T→+∞
K∗

ij(T ) = K0
ij =

∫

Y ∗

K(∇yω
0
i + ei) · (∇yω

0
j + ej), (5.3)
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Figure 5.2. Cell-problem solutions for inreasing temperatures
N(ε) ε Err(T) √

ε Err(∇ T)8 3.5355 10−1 2.33 10−3 5.946 10−1 3.92 10−218 2.357 10−1 1.32 10−3 4.854 10−1 3.15 10−232 1.7678 10−1 8.88 10−4 4.204 10−1 2.41 10−272 1.1785 10−1 5.22 10−4 3.432 10−1 2.20 10−298 1.0102 10−1 4.26 10−4 3.178 10−1 2.03 10−2128 8.84 10−2 3.68 10−4 2.973 10−1 1.89 10−2Table 5.1Relative errors (5.1) and (5.2) in terms of the number N(ε) of periodiity ells.where ω0
i , for 1 ≤ i ≤ d, are the solutions of ell problems in the limit T → +∞. Itis easily seen that the limit boundary ondition is of Dirihlet type, i.e.,

{
−divy(K(ei + ∇yω

0
i )) = 0 in Y ∗,

ω0
i + yi = C on Γ,

(5.4)
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Figure 5.3. Diagonal entries K∗
11

and K∗
22

of the homogenized ondutivity tensor

Figure 5.4. Comparison between the reonstruted temperature T + εT1 and the diret resolu-tion Tεwhere C is any onstant (its value does not matter sine only the gradient of ω0
i playsa role in the formula for the limit ondutivity K0). In Figure 5.6 we plot the two
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T
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-110-28. 10 -29. 10 -12. 10 -13. 10 -14. 10

-210
-39. 10

-22. 10

-23. 10

-24. 10

-25. 10

-26. 10

-27. 10

ERR(grad T)      
0.1*sqrt(Epsilon)Figure 5.5. Convergene of the relative error on the temperature (left) and its gradient (right)solutions of (5.4) whih are indeed very similar to the last line of Figure 5.2. Theorresponding limit ondutivity is

K0 =

(
54.021 21.797
21.797 79.217

) (5.5)whih is highly anisotropi. In Figures 5.7, 5.8 and 5.9 we plot the three di�erent en-tries of the homogenized ondutivity K∗ and hek that, for very high temperatures,they reah the theoretially predited asymptoti behavior (5.3).

Figure 5.6. High-temperature limit of the ell solutions6. Conlusion. We have studied the homogenization of a model of ombinedondution and radiative heat transfer problem in a perforated domain. By a formalmethod of two-sale asymptoti expansions we obtained the homogenized problemwhih is a non-linear ondutivity equation posed in a non-perforated domain. Itshomogenized oe�ients are omputed through a ell problem of linearized radiativeheat transfer. We rigorously proved the onvergene of the homogenization proess bythe method of two-sale onvergene for a linearization of this model. We exploit thehomogenization results to devise a numerial algorithm for the fast omputation ofapproximate reonstruted solutions. This yields a onsiderable saving in CPU time
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Figure 5.7. Asymptoti behavior of K∗
11 Figure 5.8. Asymptoti behavior of K∗

22

Figure 5.9. Asymptoti behavior of K∗
12and memory requirement sine only a oarse mesh of the marosopi domain (andof the unit ell) is required. A numerial validation of our homogenization proesshas been done for not too small values of ε. Of ourse, our algorithm will be used inpratie for muh smaller values of ε. Future work will onern the oupling of thismodel with a helium �ow model in the hannels and with a neutroni di�usion model.Aknowledgments. This researh has been supported by the Frenh AtomiEnergy Commission (DEN/DM2S at CEA Salay). The authors thank N. Coulonand A. Stietel for their help. REFERENCES[1℄ G. Allaire, Homogenization of the Stokes �ow in a onneted porous medium, AsymptotiAnal., 2, pp. 203�222, 1989.
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