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Priing and hedging gap risk∗Peter TankovCentre de Mathématiques AppliquéesEole Polytehniquee-mail: peter.tankov�polytehnique.orgSeptember 4, 2008AbstratWe analyze a new lass of exoti equity derivatives alled gap options orgap risk swaps. These produts are designed by major banks to sell o� therisk of rapid downside moves, alled gaps, in the prie of the underlying.We show that to prie and manage gap options, jumps must neessarily beinluded into the model, and present expliit priing and hedging formulasin the single asset and multi-asset ase. The e�et of stohasti volatilityis also analyzed.Key words: Gap risk, gap option, exponential Lévy model, quadrati hedg-ing, Lévy opula1 IntrodutionThe gap options are a lass of exoti equity derivatives o�ering protetion againsrapid downside market moves (gaps). These options have zero delta, allowingto make bets on large downside moves of the underlying without introduingadditional sensitivity to small �utuations, just as volatility derivatives allow tomake bets on volatility without going short or long delta. The market for gapoptions is relatively new, and they are known under many di�erent names: gapoptions, rash notes, gap notes, daily liquets, gap risk swaps et. The gap riskoften arises in the ontext of onstant proportion portfolio insurane (CPPI)strategies [9, 17℄. The sellers of gap options (who an be seen as the buyers ofthe protetion against gap risk) are typially major banks who want to get o�their books the risk assoiated to CPPI produts. The buyers of gap options andthe sellers of the protetion are usually hedge funds looking for extra returns.
∗This researh is part of the Chair Finanial Risks of the Risk Foundation sponsored bySoiété Générale, the Chair Derivatives of the Future sponsored by the Fédération BanaireFrançaise, and the Chair Finane and Sustainable Development sponsored by EDF and Ca-lyon. 1



The pay-o� of a gap option is linked to the ourene of a gap event, thatis, a 1-day downside move of su�ient size in the underlying. The followingsingle-name gap option was ommerialized by a big international bank in 2007under the name of gap risk swap:Example 1 (Single-name gap option).
• The protetion seller pays the notional amount N to the protetion buyerat ineption and reeives Libor + spread monthly until maturity or the�rst ourene of the gap event, whihever omes �rst, plus the notionalat maturity if no gap event ours.
• The gap event is de�ned as a downside move of over 10% in the DJ EuroStoxx 50 index within 1 day (lose to lose).
• If a gap event ours between dates t − 1 and t, the protetion sellerimmediately reeives the redued notionalN(1−10∗(0.9−R))+, whereR =

St

St−1
is the index performane at gap, after whih the produt terminates.The gap options are therefore similar to equity default swaps, with a veryimportant di�erene, that in EDS, the prie hange from the ineption date ofthe ontrat to a given date is monitored, whereas in gap options, only 1-daymoves are taken into aount.The pay-o� of a multi-name gap option depends of the total number of gapevents ouring in a basket of underlyings during a referene period. We aregrateful to Zareer Dadahanji from Credit Suisse for the following example.Example 2 (Multiname gap option).

• As before, the protetion seller pays the notional amount N to the pro-tetion buyer and reeives Libor + spread monthly until maturity. If nogap event ours, the protetion seller reeives the full notional amountat the maturity of the ontrat.
• A gap event is de�ned as a downside move of over 20% during one businessday in any underlying from a basket of 10 names.
• If a gap event ours, the protetion seller reeives at maturity a reduednotional amount kN , where the redution fator k is determined from thenumber M of gap events using the following table:

M 0 1 2 3 ≥ 4
k 1 1 1 0.5 0The gap options are designed to apture stok jumps, and learly annot bepried within a di�usion model with ontinuous paths, sine any suh modelwill largely underestimate the gap risk. For instane, for a stok with a 25%volatility, the probability of having an 10% gap on any one day during one yearis 3 × 10−8, and the probability of a 20% gap is entirely negligible. In thispaper we therefore suggest to prie and hedge gap options using models basedon proesses with disontinuous trajetories.2



There is ample evidene for rash fears and jump risk premia in quotedEuropean option pries [4, 6, 12, 16℄ and many authors have argued that jumpmodels allow a preise alibration to short-term European alls and puts andprovide an adequate vision of short-term rash risk [1, 3, 8℄. Gap options aptureexatly the same kind of risk; we will see in setion 4 that an approximatehedge of a gap option an be onstruted using out of the money puts. It istherefore natural to prie and risk manage gap options within a model withjumps, alibrated to market quoted near-expiry Europeans.The rest of the paper is strutured as follows. Setion 2 deals with therisk-neutral priing of single-name gap options, disusses the neessary approx-imations and provides expliit formulas. The e�et of stohasti volatility isalso analyzed here. In setion 3, we show how gap notes an be approximatelyhedged with short-dated OTM European options quoted in the market, derivethe hedge ratios and illustrate the e�ieny of hedging with numerial experi-ments. Multiname gap options are disussed in setion 4.2 Priing single asset gap optionsSuppose that the time to maturity T of a gap option is subdivided onto Nperiods of length ∆ (e.g. days): T = N∆. The return of the k-th period willbe denoted by R∆
k = Sk∆

S(k−1)∆
. For the analyti treatment, we formalize thesingle-asset gap option as follows.De�nition 1 (Gap option). Let α denote the return level whih triggers thegap event and k∗ be the time of �rst gap expressed in the units of ∆: k∗ :=

inf{k : R∆
k ≤ α}. The gap option is an option whih pays to its holder theamount f(R∆

k∗) at time ∆k∗, if k∗ ≤ N and nothing otherwise.Supposing that the interest rate is deterministi and equal to r, it is easyto see that the pay-o� struture of example 1 an be expressed as a linearombination of pay-o�s of de�nition 1.We �rst treat the ase where the log-returns are independent and stationary.Proposition 1. Let the log-returns (R∆
k )N

k=1 be i.i.d. and denote the distribu-tion of log R∆
1 by p∆(dx). Then the prie of a gap option as of de�nition 1 isgiven by
G∆ = e−r∆

∫ β

−∞

f(ex)p∆(dx)
1 − e−rT

(

∫∞

β
p∆(dx)

)N

1 − e−r∆
∫∞

β p∆(dx)
, (1)with β := log α < 0.
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Proof.
G∆ = E

[

e−∆k∗rf(R∆
k∗)1k∗≤N

]

=

N
∑

n=1

P[k∗ = n]E[f(R∆
n )|k∗ = n]e−∆nr

=

N
∑

n=1

P[R∆
n ≤ α]E[f(R∆

n )|R∆
n ≤ α]e−∆nr

n−1
∏

l=1

P[R∆
l > α]

= e−r∆

∫ β

−∞

f(ex)p∆(dx)
1 − e−rT

(

∫∞

β
p∆(dx)

)N

1 − e−r∆
∫∞

β p∆(dx)
.Numerial evaluation of pries Formula (1) allows to ompute gap op-tion pries by Fourier inversion. For this, we need to be able to evaluate theumulative distribution funtion F∆(x) :=

∫ x

−∞
p∆(dξ) and the integral

∫ β

−∞

f(ex)p∆(dx). (2)Let φ∆ be the harateristi funtion of p∆, and suppose that p∆ satis�es
∫

|x|p∆(dx) < ∞ and ∫
R

|φ∆(u)|
1+|u| du < ∞. Let F ′ be the CDF and φ′ the har-ateristi funtion of a Gaussian random variable with zero mean and standarddeviation σ′ > 0. Then by Lemma 1 in [9℄,

F∆(x) = F ′(x) +
1

2π

∫

R

e−iux φ′(u) − φ∆(u)

iu
du. (3)The Gaussian random variable is only needed to obtain an integrable expressionin the right hand side and an be replaed by any other well-behaved randomvariable.The integral (2) is nothing but the prie of a European option with payo�funtion f and maturity ∆. For arbitrary f it an be evaluated using the Fouriertransform method proposed by Lewis [15℄. However, in pratie, the pay-o� of agap option is either a put option or a put spread. Therefore, for most pratialpurposes it is su�ient to ompute this integral for f(x) = (K − x)+, in whihase a simpler method an be used. From [7, hapter 11℄, the prie of suh aput option with log forward moneyness k = log(K/S) − r∆ is given by

P∆(k) = PBS
∆ (k) +

S0

2π

∫

R

e−ivk ζ̃∆(v)dv, (4)where
ζ̃∆(v) =

φ∆(v − i) − φσ
∆(v − i)

iv(1 + iv)
,4



φσ
∆(v) = exp

(

−σ2T
2 (v2 + iv)

) and PBS
∆ (k) is the prie of a put option with log-moneyness k and time to maturity ∆ in the Blak-Sholes model with volatility

σ > 0. One again, the auxiliary Blak-Sholes prie is needed to regularize ζ̃and the exat value of σ is not very important.Equations (3) and (4) an be used to ompute the exat prie of a gap option.In pratie, the orresponding integrals will be trunated to a �nite interval
[−L, L]. Sine ∆ is small, the harateristi funtion φ∆(u) deays slowly atin�nity, whih means that L must be su�iently big (typially L ∼ 102), andthe omputation of the integrals will be ostly. On the other hand, preiselythe fat that ∆ is small allows, in exponential Lévy models, to onstrut anaurate approximation of the gap option prie.Approximate priing formula In this setion, we suppose that St = S0e

Xt ,where X is a Lévy proess. This means that p∆ as de�ned above is the distri-bution of Xt.Sine r∆ ∼ 10−4 and the probability of having a gap on a given day
∫ β

−∞ p∆(dx) is also extremely small, with very high preision,
G∆ ≈

∫ β

−∞

f(ex)p∆(dx)
1 − e−rT−N

R

β

−∞
p∆(dx)

r∆ +
∫ β

−∞ p∆(dx)
. (5)Our seond approximation is less trivial. From [18℄, we know that for all Lévyproesses and under very mild hypotheses on the funtion f , we have

∫ β

−∞

g(x)p∆(dx) ∼ ∆

∫ β

−∞

g(x)ν(dx),as ∆ → 0, where ν is the Lévy measure of X . Consequently, when ∆ is nonzerobut small, we an replae the integrals with respet to the density with the inte-grals with respet to the Lévy measure in formula (5), obtaining an approximatebut expliit expression for the gap option prie:
G∆ ≈ G0 = lim

∆→0
G∆ =

∫ β

−∞

f(ex)ν(dx)
1 − e−rT−T

R

β

−∞
ν(dx)

r +
∫ β

−∞
ν(dx)

. (6)This approximation is obtained by making the time interval at whih returnsare monitored (a priori, one day), go to zero. It is similar to the now standardapproximation used to repliate variane swaps:
T/∆
∑

i=1

(Xi∆ − X(i−1)∆)2 ≈ lim
∆→0

T/∆
∑

i=1

(Xi∆ − X(i−1)∆)2 =

∫ T

0

σ2
t dt.We now illustrate how this approximation works on a parametri example.Example 3 (Gap option priing in Kou's model). In this example we supposethat the stok prie follows the exponential Lévy model [14℄ where the driving5



Lévy proess has a non-zero Gaussian omponent and a Lévy density of theform
ν(x) =

λ(1 − p)

η+
e−x/η+1x>0 +

λp

η−
e−|x|/η−1x<0. (7)Here, λ is the total intensity of positive and negative jumps, p is the probabilitythat a given jump is negative and η− and η+ are harateristi lengths of re-spetively negative and positive jumps. In this ase, for most ommon hoiesof f , the integrals in (6) an be omputed expliitly:

∫ β

−∞

ν(dx) = λpeβ/η−and if we set f(x) = (K − x)+ with log K ≤ β then
∫ β

−∞

f(ex)ν(dx) =
λpη−
1 + η−

K1+1/η− .The model parameter estimation is a triky issue here: it is next to impossibleto estimate the probability of a 10% gap from historial data, sine the historialdata simply does not ontain negative daily returns of this size: for example,during the 6-year period from 2002 to 2008, the strongest negative return was
−7%. The fat that 10% gap options do have positive pries an be explainedby a peso e�et: even though 10% negative return has never oured yet, themarket partiipants believe that it has a positive probability of ourene in thefuture. The same e�et explains pries of short maturity OTM puts [4℄. Thissuggests to extrat the information about the probability of sharp downsidemoves from short maturity OTM put pries by alibrating an exponential Lévymodel to market option quotes, and use it to prie gap options.European options on the DJ Euro Stoxx 50 index are quoted on the Eurexexhange. Figure 1 shows the implied volatilities orresponding to the marketoption pries (observed on July 7, 2008) and the implied volatilities in theKou model alibrated to these pries. The alibration was arried out by leastsquares with several starting points hosen at random to avoid falling into a loalminimum. The alibrated parameter values are σ = 0.23, λ = 7.04, p = 0.985,
η+ = 0.0765 and η− = 0.0414. Sine the upward-sloping part of the smileis very small, the parameters of the positive jumps annot be alibrated in areliable manner but they are irrelevant for gap option priing anyway. Thegap option prie is most a�eted by the intensity pλ and the harateristisize η− of negative jumps, and these are alibrated quite preisely from thenegative-sloping part of the smile. The alibrated parameter values orrespondto approximately one negative jump greater than 10% in absolute values everytwo years.The alibrated parameter values were used to prie the single-asset gap op-tion of example 1 (with duration 1 year). With the exat formula (1) we obtaineda prie of 15.1% (this is interpreted as the perentage of the notional that the6
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Figure 1: Observed and alibrated implied volatilities of 10 day options on theDJ Euro Stoxx 50 index, as a funtion of moneyness K/S0.protetion buyer must pay to the protetion seller in exhange in the beginning),and the approximate formula (6) gives 14.3%. Sine the gap is a tail event andits probability annot be estimated with high preision anyway, we onludethat the approximate formula provides su�ient auray in this ontext, andan be used to prie and risk manage this produt.A modi�ed gap option For a better understanding of the risks of a gapoption, it is onvenient to interpret the priing formula (6) as an exat prie ofa modi�ed gap option rather than the true prie of the original option. Fromnow on, we de�ne the single-asset gap option as follows.De�nition 2 (Modi�ed gap option). Let τ = inf{t : ∆Xt ≤ β} be the time ofthe �rst jump of X smaller than β. The gap option as a produt whih pays toits holder the amount f
(

Sτ

Sτ−

)

= f(e∆Xτ ) if τ ≤ T and zero otherwise.The prie of this produt is given by
G = EQ[e−rτf(e∆Xτ )1τ≤T ]whih is easily seen to be equal to G0:Proposition 2. Suppose that the underlying follows an exponential Lévy model:

St = S0e
Xt , where X is a Lévy proess with Lévy measure ν. Then the prie ofthe gap option as of de�nition 2, or, equivalently, the approximate prie of thegap option as of de�nition 1 is given by

G =

∫ β

−∞

f(ex)ν(dx)
1 − e−rT−T

R

β

−∞
ν(dx)

r +
∫ β

−∞ ν(dx)with β := log α. 7



The gap option then arises as a pure jump risk produt, whih is only sen-sitive to negative jumps larger than β in absolute value, but not to small �u-tuations of the underlying. In partiular, it has zero delta. This new de�nitionof gap option pay-o� allows us to develop a number of extensions.Stohasti interest rates Formula (6) is easily generalized to the ase wherethe short interest rate rt is a stohasti proess. In this ase the prie of a gapoption is given by
G = EQ[e−

R

τ

0
rsdsf(e∆Xτ )1τ≤T ].Suppose that the proess (rt)t≥0 is independent from the jump part of X . Then,onditioning the expetation on (rt)t≥0, we obtain

G =

∫ β

−∞

f(ex)ν(dx)

∫ T

0

e−λ∗tB(t)dt,where λ∗ := ν((−∞, β]) is the intensity of gap events and B(t) is the prie of azero-oupon with maturity t (observed from the yield urve).Stohasti volatility Empirial evidene suggests that independene of in-rements is not a property observed in historial return time series: stylizedfats suh as volatility lustering show that the amplitude of returns is pos-itively orrelated over time. This and other deviations from the ase of IIDreturns an be aounted for introduing a �stohasti volatility" model for theunderlying asset. It is well known that the stohasti volatility proess withontinuous paths
dSt

St
= σtdWthas the same law as a time-hanged Geometri Brownian motion

St = e−
vt
2 +Wvt = E(W )vt

, where vt =

∫ t

0

σ2
sds,where the time hange is given by the integrated volatility proess vt, providedthat volatility is independent from the Brownian motion W governing the stokprie.In the same spirit, Carr et al. [5℄ have proposed to onstrut �stohastivolatility" models with jumps by time-hanging an exponential Lévy model forthe disounted stok prie:

S∗
t = E(L)vt

, vt =

∫ t

0

σ2
sdswhere L is a Lévy proess and σt is a positive proess. The stohasti volatilitythus appears as a random time hange governing the intensity of jumps, andan be seen as re�eting an intrinsi market time sale (�business time"). The8



volatility proess most ommonly used in the literature (and by pratitioners)is the proess
dσ2

t = k(θ − σ2
t )dt + δσtdW. (8)introdued in [11℄ whih has the merit of being positive, stationary and ana-lytially tratable. Other spei�ations suh as positive Lévy-driven Ornstein-Uhlenbek proesses [2℄ an also be used. The Brownian motion W drivingthe volatility is assumed to be independent from the Lévy proess L. For thespei�ation (8), the Laplae transform of the integrated variane v is known inexpliit form [11℄:

L(σ, t, u) := E[e−uvt |σ0 = σ] =
exp

(

k2θt
δ2

)

(

cosh γt
2 + k

γ sinh γt
2

)
2kθ

δ2

exp

(

− 2σ2
0u

k + γ coth γt
2

)with γ :=
√

k2 + 2δ2u. In this approah, the stohasti volatility modi�es theintensity of jumps, but not the distribution of jump sizes. The prie of a gapoption (de�nition 2) an be omputed by �rst onditioning the expetation onthe trajetory of the stohasti volatility. Sine the formula (6) is exponentialin T , we still get an expliit expression:
Gσ0 =

1 − L(σ0, T, r +
∫ β

−∞
ν(dx))

r +
∫ β

−∞ ν(dx)

∫ β

−∞

f(ex)ν(dx). (9)A few properties of gap option pries an be dedued from this formula diretly.
• The prie of gap risk protetion is inreasing in volatility σ0: greatervolatility makes time run faster and inreases the frequeny of gap events.
• Sine the formula (6) is onave in T , taking into aount the stohastinature of volatility will redue the prie of a gap option ompared to theonstant volatility ase.Figure 2 shows the gap option prie as funtion of the initial volatility level

σ0 with other parameters θ = 1, k = 2 and δ = 2. Sine the volatility hereis representing the intensity of the time hange, the ase σ0 = 1 orrespondsto the situation where the stohasti time runs, on average, at the same speedas the original time. As expeted, the gap option prie in this ase is slightlysmaller than in the onstant volatility ase.3 Hedging gap options with short-dated Euro-pean optionsAs remarked above, the (modi�ed) gap option is a zero-delta produt, whihmeans that the assoiated risk annot be delta-hedged and more generally, it9
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Figure 2: Solid line: the gap option prie as funtion of the initial volatilitylevel σ0. Dashed line: gap option prie with onstant volatility orrespondingto σ0 = 1.is hopeless to try to hedge it with the underlying. Moreover, the gap optionsare designed to o�set jump risk, and the markets with jumps are typiallyinomplete [7℄. Therefore, one an only try to approximately hedge a gap option,for example, in the sense of L2 approximation, and even then one would need to�nd a suitable hedging produt, whih is sensitive to extreme downside movesof the underlying and has little sensitivity to the small everyday movements. Anatural example of suh produt is an out of the money put option. As shown in�gure 1, the strikes of market-traded 10 day puts an be as far as 15% out of themoney. Sine a 15% donwside move in 10 days is highly unlikely in a di�usionmodel, we onlude that these put options o�er protetion against jumps, thatis, against the same kind of risk as the gap option. The gap option itself isnothing but a strip of 1-day puts, and if suh options were traded, this wouldenable us to onstrut a perfet hedge. However, options with maturity below 1week are not liquidly traded, so we will instead onstrut an approximate hedgeusing options maturing in 1-2 weeks.Our aim is now to ompute the optimal quadrati hedge ratio for hedging agap option with an OTM put, that is, the hedge ratio minimizing the expetedsquared hedging error. Following [10℄, we suppose that this expeted squarederror is omputed under the martingale probability. We start by expressing themartingale dynamis of a gap option prie.In this setion, we suppose that the underlying prie follows an exponentialLévy model St = S0e
Xt , and we denote by J the jump measure of X : J([s, t]×

A) := #{r ∈ [s, t] : ∆Xr ∈ A}. For details on jump measures of Lévy proessessee [7, hapter 3℄. The ompensated version of J will be denoted by J̃ : J̃([s, t]×
A) := J([s, t]×A)− (t− s)ν(A). Moreover, to simplify the notation, we assumezero interest rate (in this setion only). We use de�nition 2, and denote by Gtthe prie of a gap option evaluated at time t. The terminal value of a gap option10



an then be expressed as an integral with respet to J :
GT =

∫ T

0

∫

R

f(ex)1t≤τJ(dt × dx).Taking the onditional expetation under the risk-neutral probability, we anompute the prie of a gap option at any time t:
Gt = EQ[GT |Ft] = 1τ≤tf(e∆Xτ ) + 1τ>t

∫ β

−∞

f(ex)ν(dx)
1 − e−λ∗(T−t)

λ∗
. (10)The interpretation of this formula is very simple: if, at time t, the gap eventhas already oured, then the prie of a gap option is onstant and equal to itspay-o�; otherwise, it is given by the formula (6) applied to the remainder of theinterval.Formula (10) an be alternatively rewritten as a stohasti integral withrespet to J̃ :

Gt = G0 +

∫ t

0

∫ β

−∞

1s≤τe−λ∗(T−s)f(ex)J̃(ds × dx).Let P (t, S) denote the prie of a European put option evaluated at time t:
P (t, S) = EQ[(K − ST )+|St = S].Via It�'s formula, we an express P (t, St) as a stohasti integral as well:

Pt ≡ P (t, St) = P (0, S0) +

∫ t

0

σSu
∂P (u, Su)

∂S
dWu

+

∫ t

0

∫

R

{P (u, Su−ez) − P (u, Su−)}J̃(du × dz).A self-�naning portfolio ontaining φt units of the put option and the risk-freeasset has value Vt given by
Vt = c +

∫ t

0

φsdPs,where c is the initial ost of the portfolio. The following result is then diretlydedued from proposition 4 in [10℄.Proposition 3. The hedging strategy (ĉ, φ̂) minimizing the risk-neutral L2 hedg-ing error
EQ





(

c +

∫ T

0

φtdPt − GT

)2


is given by
ĉ = EQ[GT ] = G0. (11)

φ̂t = 1t≤τ

∫ β

−∞
ν(dz)f(ez)e−λ∗(T−t){P (t, Ste

z) − P (t, St)}
σ2S2

t

(

∂P
∂S

)2
+
∫

R
ν(dz){P (t, Stez) − P (t, St)}2

. (12)11



Note that φ̂t is nothing but the loal regression oe�ient of Gt on Pt. Theost of the hedging strategy, ĉ oinides with the prie of the gap option.The strategy φ̂t is optimal but is does not allow perfet hedging (there isalways a residual risk) and it is not feasible, beause it requires ontinuousrebalaning of an option portfolio. In pratie, due to relatively low liquidity ofthe option market, the portfolio will be rebalaned rather seldom, say, one aweek or one every two weeks, as the hedging options arriving to maturity arereplaed with more long-dated ones.To test the e�ieny of out of the money puts for hedging gap options,we simulate the L2 hedging error (variane of the terminal P&L) over onerebalaning period (one week or two weeks) using two feasible hedging strategies:A The trader buys φ̂0 options in the beginning of the period and keeps thenumber of the options onstant until the end of the period.B The trader buys φ̂0 options in the beginning of the period and keeps thenumber of the options onstant until the end of the period unless a gapevent ours, in whih ase the options are sold immediately.To interpret the results, we also ompute the L2 error without hedging (strategyC) and for the ase of ontinuous rebalaning (strategy D).Table 1 reports the L2 errors for the gap option of example 1 (with thenotional value N = 1), omputed over 106 senarios simulated in Kou's modelwith the parameters alibrated to market option pries and given on page 6.For omparaison, the L2 error of 10−4 orrespond to the standard deviation ofthe hedging portfolio from the terminal gap option pay-o� equal to 1% of thenotional amount. We see that the strategy where the hedge ratio is onstant upto a gap event and zero afterwards ahieves a 4-fold redution in the L2 errorompared to no hedging at all, if 1-week options are used. With 2-week options,the redution fator is only 2.2. For every strategy, the L2 error of hedging overa period of 2 weeks is greater than twie the error of hedging over 1 week: it isalways better to use 1-week options than 2-week ones.As seen from �gure 3, hedging modi�es onsiderably the shape of the distri-bution of the terminal P&L, reduing, in partiular, the probability of extremenegative pay-o�s. Without hedging, the distribution of the terminal pay-o� ofthe gap option has an important peak at −1, orresponding to the maximumpossible pay-o� (the graphs are drawn from the point of view of the gap optionseller). In the presene of hedging, this peak is absent and the distribution isonentrated around zero. If 1-week options are used for hedging, the Valueat Risk of the portfolio for the horizon of 1 week and at the level of 0.1% isequal to 0.85 without hedging and only to 0.23 in the presene of hedging: thismeans that the hedging will allow to redue the regulatory apital by a fatorof four. If 2-week options are used, the 2-week VaR at the level of 0.1% is 0.38with hedging, and without hedging it is equal to 0.99 (the probability of havinga gap event within 2 weeks is slightly greater than 0.1%). We onlude thathedging gap options with OTM puts is feasible, but one should use the shortest12



Period Strategy A(onstanthedge) Strategy B(onstant untilgap then zero) Strategy C (nohedging) Strategy D(ontinuousrebalaning)1 week 8.6 × 10−4 5.6 × 10−4 2.2 × 10−3 2.5 × 10−42 weeks 2.9 × 10−3 2.0 × 10−3 4.3 × 10−3 7.6 × 10−4Table 1: L2 errors for hedging a gap option with 1 week and 2-week Europeanput options.
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Figure 3: The histograms of the P&L distribution with and without hedging(from the point of view of the gap option seller). The peaks at −1 (maximumpay-o� of a gap option) and at 0 (no gap event) were trunated at 0.1. Left:1-week horizon; right: 2-weeks horizon.available maturity: while 1-week puts give satisfatory results, hedging with2-week optons appears problemati.4 Multi-asset gap optionsAs explained in the introdution, a multiname (basket) gap option is a produtwhere one monitors the total number of gap events in a basket of underlyingsover the lifetime of the option [0, T ]. A gap event is de�ned as a negative returnof size less than α between onsequtive losing pries (lose-to-lose) in any ofthe underlyings of the basket. The pay-o� of the produt at date T is determinedby the total number of gap events in the basket over the referene period. Toompute the prie of a multiname gap option, we suppose that M underlyingassets S1, . . . , SM follow an M -dimensional exponential Lévy model, that is,
Si

t = Si
0e

Xi
t for i = 1, . . . , M , where (X1, . . . , XM ) is an M -dimensional Lévyproess with Lévy measure ν. In this setion we will make the same simplifyinghypothesis as in setion 2 (de�nition 2), that is, we de�ne a gap event as anegative jump smaller than a given value β in any of the assets, rather thana negative daily return. From now on, we de�ne a multiname gap option as13



follows.De�nition 3. For a given β < 0, let
Nt =

M
∑

i=1

#{(s, i) : s ≤ t, 1 ≤ i ≤ M and ∆X i
s ≤ β} (13)be the proess ounting the total number of gap events in the basket before time

t. The multiname gap option is a produt whih pays to its holder the amount
f(NT ) at time T .The pay-o� funtion f for a typial multiname gap option is given in example2. Notie that the single-name gap option stops at the �rst gap event, whereasin the multiname ase the gap events are ounted up to the maturity of theprodut.The biggest di�ulty in the multidimensional ase, is that now we have tomodel simultaneous jumps in the pries of di�erent underlyings. The multidi-mensional Lévy measures an be onveniently desribed using their tail integrals.The tail integral U desribes the intensity of simultaneous jumps in all ompo-nents smaller than the omponents of a given vetor. Given an M -dimensionalLévy measure ν, we de�ne the tail integral of ν by
U(z1, . . . , zM ) = ν({x ∈ R

M : x1 ≤ z1, . . . , xM ≤ zM}), z1, . . . , zM < 0. (14)The tail integral an also be de�ned for positive z (see [13℄), but we do notintrodue this here sine we are only interested in jumps smaller than a givennegative value.To desribe the intensity of simultaneous jumps of a subset of the omponentsof X , we de�ne the marginal tail integral: for m ≤ M and 1 ≤ i1 < · · · < im ≤
M , the (i1, . . . , im)-marginal tail integral of ν is de�ned by
Ui1,...,im

(z1, . . . , zm) = ν({x ∈ R
M : xi1 ≤ z1, . . . , xim

≤ zm}), z1, . . . , zm < 0.(15)The proess N ounting the total number of gap events in the basket islearly a pieewise onstant inreasing integer-valued proess whih moves onlyby jumps of integer size. The jump sizes an vary from 1 (in ase of a gap eventa�eting a single omponent) to M (simultaneous gap event in all omponents).The following lemma desribes the struture of this proess via the tail integralsof ν.Lemma 1. The proess N ounting the total number of gap events is a Lévyproess with integer jump sizes 1, . . . , M ouring with intensities λ1, . . . , λMgiven by
λm =

M
∑

k=m

(−1)k−m
∑

1≤i1<···<ik≤M

Ck
mUi1,...,ik

(β, . . . , β), 1 ≤ m ≤ M, (16)where Ck
m denotes the binomial oe�ient and the seond sum is taken over allpossible sets of k integer indies satisfying 1 ≤ i1 < · · · < ik ≤ M .14



Proof. Sine X is a proess with stationary and independent inrements, itfollows from formula (13) that N has stationary and independent inrements aswell. A jump of size m in N ours if and only if exatly m omponents of Xjump by an amount smaller or equal to β. Therefore,
λm =

∑

1≤i1<···<im≤M

ν ({xi ≤ β ∀i ∈ {i1, . . . , im}; xi > β ∀i /∈ {i1, . . . , im}})(17)The expression under the sum sign an be written as
ν ({xi ≤ β ∀i ∈ {i1, . . . , im}; xi > β ∀i /∈ {i1, . . . , im}})
= ν ({xi ≤ β ∀i ∈ {i1, . . . , im}})

+

M−m
∑

p=1

∑

1≤j1<···<jp≤M

{j1,...,jp}∩{i1,...,im}=∅

(−1)pν ({xi ≤ β ∀i ∈ {i1, . . . , im} ∪ {j1, . . . , jp}})

= Ui1,...,im
(β, . . . , β) +

M−m
∑

p=1

∑

1≤j1<···<jp≤M

{j1,...,jp}∩{i1,...,im}=∅

(−1)pUi1,...,im,j1,...,jp
(β, . . . , β)Combining this equation with (17) and gathering the terms with idential tailintegrals, one obtains (16).The proess N an equivalently be represented as

Nt =
M
∑

m=1

mN
(m)
t ,whereN (1), . . . , N (M) are independent Poisson proesses with intensities λ1, . . . , λM .Sine these proesses are independent, the expetation of any funtional of NT(the prie of a gap option) an be omputed as

E[f(NT )] = e−λT
∞
∑

n1,...,nM=0

f

(

M
∑

k=1

knk

)

M
∏

i=1

(λiT )ni

ni!
, (18)where λ :=

∑M
i=1 λi. In pratie, after a ertain number of gap events, the gapoption has zero pay-o� and the sum in (18) redues to a �nite number of terms.In example 2, f(n) ≡ 0 for n ≥ 4 and

E[f(NT )] = e−λT
{

1 + λ1T +
(λ1T )2

2
+ λ2T (19)

+
(λ1T )3

12
+

λ1λ2T
2

2
+

λ3T

2

}

. (20)The prie of the protetion (premium over the risk-free rate reeived by theprotetion seller) is given by the disounted expetation of 1 − f(NT ), that is,
e−rT E[1 − f(NT )]. (21)15



To make omputations with the formula (18), one needs to evaluate the tailintegral of ν and all its marginal tail integrals. These objets are determinedboth by the individual gap intensities of eah omponent and by the dependeneamong the omponents of the multidimensional proess. For modeling purposes,the dependene struture an be separated from the behavior of individual om-ponents via the notion of Lévy opula [7, 13℄, whih is parallel to the notionof opula but de�ned at the level of jumps of a Lévy proess. More preiselywe will use the positive Lévy opulas whih desribe the one-sided (in this ase,only downward) jumps of a Lévy proess, as opposed to general Lévy opulaswhih are useful when both upward and downward jumps are of interest.Positive Lévy opulas Let R := (−∞,∞] denote the extended real line,and for a, b ∈ R
d let us write a ≤ b if ak ≤ bk, k = 1, . . . , d. In this ase, (a, b]denotes the interval

(a, b] := (a1, b1] × · · · × (ad, bd].For a funtion F mapping a subset D ⊂ R
d into R, the F -volume of (a, b] isde�ned by

VF ((a, b]) :=
∑

u∈{a1,b1}×···×{ad,bd}

(−1)N(u)F (u),where N(u) := #{k : uk = ak}. In partiular, VF ((a, b]) = F (b) − F (a) for
d = 1 and VF ((a, b]) = F (b1, b2) + F (a1, a2)−F (a1, b2)−F (b1, a2) for d = 2. If
F (u) =

∏d
i=1 ui, the F -volume of any interval is equal to its Lebesgue measure.A funtion F : D → R is alled d-inreasing if VF ((a, b]) ≥ 0 for all a, b ∈ Dsuh that a ≤ b. The distribution funtion of a random vetor is one exampleof a d-inreasing funtion.A funtion F : [0,∞]d → [0,∞] is alled a positive Lévy opula if it satis�esthe following onditions:1. F (u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d},2. F is d-inreasing,3. Fi(u) = u for any i ∈ {1, . . . , d}, u ∈ R, where Fi is the one-dimensionalmargin of F , obtained from F by replaing all arguments of F exept the

i-th one with ∞:
Fi(u) = F (u1, . . . , ud)ui=u,uj=∞∀j 6=i.The positive Lévy opula has the same properties as ordinary opula but isde�ned on a di�erent domain ([0,∞]d instead of [0, 1]d). Higher-dimensionalmargins of a positive Lévy opula are de�ned similarly:

Fi1,...,im
(u1, . . . , um) = F (v1, . . . , vd)vik

=uk,k=1,...,m;vj=∞,j /∈{i1,...,im}.The Lévy opula links the tail integral to one-dimensional margins; the fol-lowing result is a diret orollary of Theorem 3.6 in [13℄.16



Proposition 4.
• Let X = (X1, . . . , Xd) be a R

d-valued Lévy proess, and let the (one-sided)tail integrals and marginal tail integrals of X be de�ned by (14) and (15).Then there exists a positive Lévy opula F suh that the tail integrals of
X satisfy

Ui1,...,im
(x1, . . . , xm) = Fi1,...,im

(Ui1(x1), . . . , Uim
(xm)) (22)for any nonempty index set {i1, . . . , im} ⊆ {1, . . . , d} and any (x1, . . . , xm) ∈

(−∞, 0)m.
• Let F be an M-dimensional positive Lévy opula and Ui, i = 1, . . . , d tailintegrals of real-valued Lévy proesses. Then there exists a R

d-valued Lévyproess X whose omponents have tail integrals Ui, i = 1, . . . , d and whosemarginal tail integrals satisfy equation (22) for any nonempty index set
{i1, . . . , im} ⊆ {1, . . . , d} and any (x1, . . . , xm) ∈ (−∞, 0)m.In terms of the Lévy opula F of X and its marginal tail integrals, formula(16) an be rewritten as

λm =

M
∑

k=m

(−1)k−m
∑

1≤i1<···<ik≤M

Ck
mFi1,...,ik

(Ui1(β), . . . , Uik
(β))To ompute the intensitites λi and prie the gap option, it is therefore su�ientto know the individual gap intensities Ui(β) (M real numbers), whih an beestimated from 1-dimensional gap option pries or from the pries of short-termput options as in setion (2), and the Lévy opula F . This Lévy opula willtypially be hosen in some suitable parametri family. One onvenient hoieis the Clayton family of (positive) Lévy opulas de�ned by

F θ(u1, . . . , uM ) =
(

u−θ
1 + · · · + u−θ

M

)−1/θ
.The dependene struture in the Clayton family is determined by a single pa-rameter θ > 0. The limit θ → +∞ orresponds to omplete dependene (allomponents jump together) and θ → 0 produes independent omponents. TheClayton family has the nie property of being margin-stable: if X has ClaytonLévy opula then all lower-dimensional margins also have Clayton Lévy opula:

F θ
i1,...,im

(u1, . . . , um) =
(

u−θ
1 + · · · + u−θ

m

)−1/θ
.For the Clayton Lévy opula, equation (16) simpli�es to

λm =

M
∑

k=m

(−1)k−m
∑

1≤i1<···<ik≤M

Ck
m(Ui1(β)−θ + · · · + Uik

(β)−θ)−1/θ.This formula an be used diretly for baskets of reasonable size (say, less than20 names). For very large baskets, one an make the simplifying assumptionthat all individual stoks have the same gap intensity: Uk(β) = U1(β) for all k.In this ase, formula (16) redues to the following simple result:17
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Figure 4: The intensities λi of di�erent jump sizes of the gap ounting proessas a funtion of θ for M = 10 names and a single-name loss probability of 1%.Proposition 5. Suppose that the pries of M underlyings follow an M -dimensionalexponential Lévy model with Lévy measure ν. If the individual omponents ofthe basket are identially distributed and the dependene struture is desribedby the Clayton Lévy opula with parameter θ, the prie of a basket gap optionas of de�nition 13 is given by
E[f(NT )] = e−λT

∞
∑

n1,...,nM=0

f

(

M
∑

k=1

knk

)

M
∏

i=1

(λiT )ni

ni!
,where

λm = U1(β)CM
m

M−m
∑

j=0

(−1)jCM−m
j

(m + j)1/θ
(23)Figure 4 shows the behavior of the intensities λ1, λ2 and λ10 as a funttionof the dependene parameter θ in a basket of 10 names, with a single-name gapprobability of 1%. Note that formula (23) implies

lim
θ→∞

λm =

{

0, m < M

U1(β), m = M.

lim
θ→0

λm =

{

0, m > 1

MU1(β), m = 1.
,in agreement with the behavior observed in Figure 4.Figure 5 shows the prie of the multiname gap option of example 2 omputedusing the formula (21). The prie ahieves a maximum for a �nite nonzero valueof θ. This happens beause for this partiular payo� struture, the protetionseller does not loose money if only 1 or 2 gap events our during the lifetime of18
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