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Pri
ing and hedging gap risk∗Peter TankovCentre de Mathématiques AppliquéesE
ole Polyte
hniquee-mail: peter.tankov�polyte
hnique.orgSeptember 4, 2008Abstra
tWe analyze a new 
lass of exoti
 equity derivatives 
alled gap options orgap risk swaps. These produ
ts are designed by major banks to sell o� therisk of rapid downside moves, 
alled gaps, in the pri
e of the underlying.We show that to pri
e and manage gap options, jumps must ne
essarily bein
luded into the model, and present expli
it pri
ing and hedging formulasin the single asset and multi-asset 
ase. The e�e
t of sto
hasti
 volatilityis also analyzed.Key words: Gap risk, gap option, exponential Lévy model, quadrati
 hedg-ing, Lévy 
opula1 Introdu
tionThe gap options are a 
lass of exoti
 equity derivatives o�ering prote
tion againsrapid downside market moves (gaps). These options have zero delta, allowingto make bets on large downside moves of the underlying without introdu
ingadditional sensitivity to small �u
tuations, just as volatility derivatives allow tomake bets on volatility without going short or long delta. The market for gapoptions is relatively new, and they are known under many di�erent names: gapoptions, 
rash notes, gap notes, daily 
liquets, gap risk swaps et
. The gap riskoften arises in the 
ontext of 
onstant proportion portfolio insuran
e (CPPI)strategies [9, 17℄. The sellers of gap options (who 
an be seen as the buyers ofthe prote
tion against gap risk) are typi
ally major banks who want to get o�their books the risk asso
iated to CPPI produ
ts. The buyers of gap options andthe sellers of the prote
tion are usually hedge funds looking for extra returns.
∗This resear
h is part of the Chair Finan
ial Risks of the Risk Foundation sponsored bySo
iété Générale, the Chair Derivatives of the Future sponsored by the Fédération Ban
aireFrançaise, and the Chair Finan
e and Sustainable Development sponsored by EDF and Ca-lyon. 1



The pay-o� of a gap option is linked to the o

uren
e of a gap event, thatis, a 1-day downside move of su�
ient size in the underlying. The followingsingle-name gap option was 
ommer
ialized by a big international bank in 2007under the name of gap risk swap:Example 1 (Single-name gap option).
• The prote
tion seller pays the notional amount N to the prote
tion buyerat in
eption and re
eives Libor + spread monthly until maturity or the�rst o

uren
e of the gap event, whi
hever 
omes �rst, plus the notionalat maturity if no gap event o

urs.
• The gap event is de�ned as a downside move of over 10% in the DJ EuroStoxx 50 index within 1 day (
lose to 
lose).
• If a gap event o

urs between dates t − 1 and t, the prote
tion sellerimmediately re
eives the redu
ed notionalN(1−10∗(0.9−R))+, whereR =

St

St−1
is the index performan
e at gap, after whi
h the produ
t terminates.The gap options are therefore similar to equity default swaps, with a veryimportant di�eren
e, that in EDS, the pri
e 
hange from the in
eption date ofthe 
ontra
t to a given date is monitored, whereas in gap options, only 1-daymoves are taken into a

ount.The pay-o� of a multi-name gap option depends of the total number of gapevents o

uring in a basket of underlyings during a referen
e period. We aregrateful to Zareer Dada
hanji from Credit Suisse for the following example.Example 2 (Multiname gap option).

• As before, the prote
tion seller pays the notional amount N to the pro-te
tion buyer and re
eives Libor + spread monthly until maturity. If nogap event o

urs, the prote
tion seller re
eives the full notional amountat the maturity of the 
ontra
t.
• A gap event is de�ned as a downside move of over 20% during one businessday in any underlying from a basket of 10 names.
• If a gap event o

urs, the prote
tion seller re
eives at maturity a redu
ednotional amount kN , where the redu
tion fa
tor k is determined from thenumber M of gap events using the following table:

M 0 1 2 3 ≥ 4
k 1 1 1 0.5 0The gap options are designed to 
apture sto
k jumps, and 
learly 
annot bepri
ed within a di�usion model with 
ontinuous paths, sin
e any su
h modelwill largely underestimate the gap risk. For instan
e, for a sto
k with a 25%volatility, the probability of having an 10% gap on any one day during one yearis 3 × 10−8, and the probability of a 20% gap is entirely negligible. In thispaper we therefore suggest to pri
e and hedge gap options using models basedon pro
esses with dis
ontinuous traje
tories.2



There is ample eviden
e for 
rash fears and jump risk premia in quotedEuropean option pri
es [4, 6, 12, 16℄ and many authors have argued that jumpmodels allow a pre
ise 
alibration to short-term European 
alls and puts andprovide an adequate vision of short-term 
rash risk [1, 3, 8℄. Gap options 
aptureexa
tly the same kind of risk; we will see in se
tion 4 that an approximatehedge of a gap option 
an be 
onstru
ted using out of the money puts. It istherefore natural to pri
e and risk manage gap options within a model withjumps, 
alibrated to market quoted near-expiry Europeans.The rest of the paper is stru
tured as follows. Se
tion 2 deals with therisk-neutral pri
ing of single-name gap options, dis
usses the ne
essary approx-imations and provides expli
it formulas. The e�e
t of sto
hasti
 volatility isalso analyzed here. In se
tion 3, we show how gap notes 
an be approximatelyhedged with short-dated OTM European options quoted in the market, derivethe hedge ratios and illustrate the e�
ien
y of hedging with numeri
al experi-ments. Multiname gap options are dis
ussed in se
tion 4.2 Pri
ing single asset gap optionsSuppose that the time to maturity T of a gap option is subdivided onto Nperiods of length ∆ (e.g. days): T = N∆. The return of the k-th period willbe denoted by R∆
k = Sk∆

S(k−1)∆
. For the analyti
 treatment, we formalize thesingle-asset gap option as follows.De�nition 1 (Gap option). Let α denote the return level whi
h triggers thegap event and k∗ be the time of �rst gap expressed in the units of ∆: k∗ :=

inf{k : R∆
k ≤ α}. The gap option is an option whi
h pays to its holder theamount f(R∆

k∗) at time ∆k∗, if k∗ ≤ N and nothing otherwise.Supposing that the interest rate is deterministi
 and equal to r, it is easyto see that the pay-o� stru
ture of example 1 
an be expressed as a linear
ombination of pay-o�s of de�nition 1.We �rst treat the 
ase where the log-returns are independent and stationary.Proposition 1. Let the log-returns (R∆
k )N

k=1 be i.i.d. and denote the distribu-tion of log R∆
1 by p∆(dx). Then the pri
e of a gap option as of de�nition 1 isgiven by
G∆ = e−r∆

∫ β

−∞

f(ex)p∆(dx)
1 − e−rT

(

∫∞

β
p∆(dx)

)N

1 − e−r∆
∫∞

β p∆(dx)
, (1)with β := log α < 0.
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Proof.
G∆ = E

[

e−∆k∗rf(R∆
k∗)1k∗≤N

]

=

N
∑

n=1

P[k∗ = n]E[f(R∆
n )|k∗ = n]e−∆nr

=

N
∑

n=1

P[R∆
n ≤ α]E[f(R∆

n )|R∆
n ≤ α]e−∆nr

n−1
∏

l=1

P[R∆
l > α]

= e−r∆

∫ β

−∞

f(ex)p∆(dx)
1 − e−rT

(

∫∞

β
p∆(dx)

)N

1 − e−r∆
∫∞

β p∆(dx)
.Numeri
al evaluation of pri
es Formula (1) allows to 
ompute gap op-tion pri
es by Fourier inversion. For this, we need to be able to evaluate the
umulative distribution fun
tion F∆(x) :=

∫ x

−∞
p∆(dξ) and the integral

∫ β

−∞

f(ex)p∆(dx). (2)Let φ∆ be the 
hara
teristi
 fun
tion of p∆, and suppose that p∆ satis�es
∫

|x|p∆(dx) < ∞ and ∫
R

|φ∆(u)|
1+|u| du < ∞. Let F ′ be the CDF and φ′ the 
har-a
teristi
 fun
tion of a Gaussian random variable with zero mean and standarddeviation σ′ > 0. Then by Lemma 1 in [9℄,

F∆(x) = F ′(x) +
1

2π

∫

R

e−iux φ′(u) − φ∆(u)

iu
du. (3)The Gaussian random variable is only needed to obtain an integrable expressionin the right hand side and 
an be repla
ed by any other well-behaved randomvariable.The integral (2) is nothing but the pri
e of a European option with payo�fun
tion f and maturity ∆. For arbitrary f it 
an be evaluated using the Fouriertransform method proposed by Lewis [15℄. However, in pra
ti
e, the pay-o� of agap option is either a put option or a put spread. Therefore, for most pra
ti
alpurposes it is su�
ient to 
ompute this integral for f(x) = (K − x)+, in whi
h
ase a simpler method 
an be used. From [7, 
hapter 11℄, the pri
e of su
h aput option with log forward moneyness k = log(K/S) − r∆ is given by

P∆(k) = PBS
∆ (k) +

S0

2π

∫

R

e−ivk ζ̃∆(v)dv, (4)where
ζ̃∆(v) =

φ∆(v − i) − φσ
∆(v − i)

iv(1 + iv)
,4



φσ
∆(v) = exp

(

−σ2T
2 (v2 + iv)

) and PBS
∆ (k) is the pri
e of a put option with log-moneyness k and time to maturity ∆ in the Bla
k-S
holes model with volatility

σ > 0. On
e again, the auxiliary Bla
k-S
holes pri
e is needed to regularize ζ̃and the exa
t value of σ is not very important.Equations (3) and (4) 
an be used to 
ompute the exa
t pri
e of a gap option.In pra
ti
e, the 
orresponding integrals will be trun
ated to a �nite interval
[−L, L]. Sin
e ∆ is small, the 
hara
teristi
 fun
tion φ∆(u) de
ays slowly atin�nity, whi
h means that L must be su�
iently big (typi
ally L ∼ 102), andthe 
omputation of the integrals will be 
ostly. On the other hand, pre
iselythe fa
t that ∆ is small allows, in exponential Lévy models, to 
onstru
t ana

urate approximation of the gap option pri
e.Approximate pri
ing formula In this se
tion, we suppose that St = S0e

Xt ,where X is a Lévy pro
ess. This means that p∆ as de�ned above is the distri-bution of Xt.Sin
e r∆ ∼ 10−4 and the probability of having a gap on a given day
∫ β

−∞ p∆(dx) is also extremely small, with very high pre
ision,
G∆ ≈

∫ β

−∞

f(ex)p∆(dx)
1 − e−rT−N

R

β

−∞
p∆(dx)

r∆ +
∫ β

−∞ p∆(dx)
. (5)Our se
ond approximation is less trivial. From [18℄, we know that for all Lévypro
esses and under very mild hypotheses on the fun
tion f , we have

∫ β

−∞

g(x)p∆(dx) ∼ ∆

∫ β

−∞

g(x)ν(dx),as ∆ → 0, where ν is the Lévy measure of X . Consequently, when ∆ is nonzerobut small, we 
an repla
e the integrals with respe
t to the density with the inte-grals with respe
t to the Lévy measure in formula (5), obtaining an approximatebut expli
it expression for the gap option pri
e:
G∆ ≈ G0 = lim

∆→0
G∆ =

∫ β

−∞

f(ex)ν(dx)
1 − e−rT−T

R

β

−∞
ν(dx)

r +
∫ β

−∞
ν(dx)

. (6)This approximation is obtained by making the time interval at whi
h returnsare monitored (a priori, one day), go to zero. It is similar to the now standardapproximation used to repli
ate varian
e swaps:
T/∆
∑

i=1

(Xi∆ − X(i−1)∆)2 ≈ lim
∆→0

T/∆
∑

i=1

(Xi∆ − X(i−1)∆)2 =

∫ T

0

σ2
t dt.We now illustrate how this approximation works on a parametri
 example.Example 3 (Gap option pri
ing in Kou's model). In this example we supposethat the sto
k pri
e follows the exponential Lévy model [14℄ where the driving5



Lévy pro
ess has a non-zero Gaussian 
omponent and a Lévy density of theform
ν(x) =

λ(1 − p)

η+
e−x/η+1x>0 +

λp

η−
e−|x|/η−1x<0. (7)Here, λ is the total intensity of positive and negative jumps, p is the probabilitythat a given jump is negative and η− and η+ are 
hara
teristi
 lengths of re-spe
tively negative and positive jumps. In this 
ase, for most 
ommon 
hoi
esof f , the integrals in (6) 
an be 
omputed expli
itly:

∫ β

−∞

ν(dx) = λpeβ/η−and if we set f(x) = (K − x)+ with log K ≤ β then
∫ β

−∞

f(ex)ν(dx) =
λpη−
1 + η−

K1+1/η− .The model parameter estimation is a tri
ky issue here: it is next to impossibleto estimate the probability of a 10% gap from histori
al data, sin
e the histori
aldata simply does not 
ontain negative daily returns of this size: for example,during the 6-year period from 2002 to 2008, the strongest negative return was
−7%. The fa
t that 10% gap options do have positive pri
es 
an be explainedby a peso e�e
t: even though 10% negative return has never o

ured yet, themarket parti
ipants believe that it has a positive probability of o

uren
e in thefuture. The same e�e
t explains pri
es of short maturity OTM puts [4℄. Thissuggests to extra
t the information about the probability of sharp downsidemoves from short maturity OTM put pri
es by 
alibrating an exponential Lévymodel to market option quotes, and use it to pri
e gap options.European options on the DJ Euro Stoxx 50 index are quoted on the Eurexex
hange. Figure 1 shows the implied volatilities 
orresponding to the marketoption pri
es (observed on July 7, 2008) and the implied volatilities in theKou model 
alibrated to these pri
es. The 
alibration was 
arried out by leastsquares with several starting points 
hosen at random to avoid falling into a lo
alminimum. The 
alibrated parameter values are σ = 0.23, λ = 7.04, p = 0.985,
η+ = 0.0765 and η− = 0.0414. Sin
e the upward-sloping part of the smileis very small, the parameters of the positive jumps 
annot be 
alibrated in areliable manner but they are irrelevant for gap option pri
ing anyway. Thegap option pri
e is most a�e
ted by the intensity pλ and the 
hara
teristi
size η− of negative jumps, and these are 
alibrated quite pre
isely from thenegative-sloping part of the smile. The 
alibrated parameter values 
orrespondto approximately one negative jump greater than 10% in absolute values everytwo years.The 
alibrated parameter values were used to pri
e the single-asset gap op-tion of example 1 (with duration 1 year). With the exa
t formula (1) we obtaineda pri
e of 15.1% (this is interpreted as the per
entage of the notional that the6
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Figure 1: Observed and 
alibrated implied volatilities of 10 day options on theDJ Euro Stoxx 50 index, as a fun
tion of moneyness K/S0.prote
tion buyer must pay to the prote
tion seller in ex
hange in the beginning),and the approximate formula (6) gives 14.3%. Sin
e the gap is a tail event andits probability 
annot be estimated with high pre
ision anyway, we 
on
ludethat the approximate formula provides su�
ient a

ura
y in this 
ontext, and
an be used to pri
e and risk manage this produ
t.A modi�ed gap option For a better understanding of the risks of a gapoption, it is 
onvenient to interpret the pri
ing formula (6) as an exa
t pri
e ofa modi�ed gap option rather than the true pri
e of the original option. Fromnow on, we de�ne the single-asset gap option as follows.De�nition 2 (Modi�ed gap option). Let τ = inf{t : ∆Xt ≤ β} be the time ofthe �rst jump of X smaller than β. The gap option as a produ
t whi
h pays toits holder the amount f
(

Sτ

Sτ−

)

= f(e∆Xτ ) if τ ≤ T and zero otherwise.The pri
e of this produ
t is given by
G = EQ[e−rτf(e∆Xτ )1τ≤T ]whi
h is easily seen to be equal to G0:Proposition 2. Suppose that the underlying follows an exponential Lévy model:

St = S0e
Xt , where X is a Lévy pro
ess with Lévy measure ν. Then the pri
e ofthe gap option as of de�nition 2, or, equivalently, the approximate pri
e of thegap option as of de�nition 1 is given by

G =

∫ β

−∞

f(ex)ν(dx)
1 − e−rT−T

R

β

−∞
ν(dx)

r +
∫ β

−∞ ν(dx)with β := log α. 7



The gap option then arises as a pure jump risk produ
t, whi
h is only sen-sitive to negative jumps larger than β in absolute value, but not to small �u
-tuations of the underlying. In parti
ular, it has zero delta. This new de�nitionof gap option pay-o� allows us to develop a number of extensions.Sto
hasti
 interest rates Formula (6) is easily generalized to the 
ase wherethe short interest rate rt is a sto
hasti
 pro
ess. In this 
ase the pri
e of a gapoption is given by
G = EQ[e−

R

τ

0
rsdsf(e∆Xτ )1τ≤T ].Suppose that the pro
ess (rt)t≥0 is independent from the jump part of X . Then,
onditioning the expe
tation on (rt)t≥0, we obtain

G =

∫ β

−∞

f(ex)ν(dx)

∫ T

0

e−λ∗tB(t)dt,where λ∗ := ν((−∞, β]) is the intensity of gap events and B(t) is the pri
e of azero-
oupon with maturity t (observed from the yield 
urve).Sto
hasti
 volatility Empiri
al eviden
e suggests that independen
e of in-
rements is not a property observed in histori
al return time series: stylizedfa
ts su
h as volatility 
lustering show that the amplitude of returns is pos-itively 
orrelated over time. This and other deviations from the 
ase of IIDreturns 
an be a

ounted for introdu
ing a �sto
hasti
 volatility" model for theunderlying asset. It is well known that the sto
hasti
 volatility pro
ess with
ontinuous paths
dSt

St
= σtdWthas the same law as a time-
hanged Geometri
 Brownian motion

St = e−
vt
2 +Wvt = E(W )vt

, where vt =

∫ t

0

σ2
sds,where the time 
hange is given by the integrated volatility pro
ess vt, providedthat volatility is independent from the Brownian motion W governing the sto
kpri
e.In the same spirit, Carr et al. [5℄ have proposed to 
onstru
t �sto
hasti
volatility" models with jumps by time-
hanging an exponential Lévy model forthe dis
ounted sto
k pri
e:

S∗
t = E(L)vt

, vt =

∫ t

0

σ2
sdswhere L is a Lévy pro
ess and σt is a positive pro
ess. The sto
hasti
 volatilitythus appears as a random time 
hange governing the intensity of jumps, and
an be seen as re�e
ting an intrinsi
 market time s
ale (�business time"). The8



volatility pro
ess most 
ommonly used in the literature (and by pra
titioners)is the pro
ess
dσ2

t = k(θ − σ2
t )dt + δσtdW. (8)introdu
ed in [11℄ whi
h has the merit of being positive, stationary and ana-lyti
ally tra
table. Other spe
i�
ations su
h as positive Lévy-driven Ornstein-Uhlenbe
k pro
esses [2℄ 
an also be used. The Brownian motion W drivingthe volatility is assumed to be independent from the Lévy pro
ess L. For thespe
i�
ation (8), the Lapla
e transform of the integrated varian
e v is known inexpli
it form [11℄:

L(σ, t, u) := E[e−uvt |σ0 = σ] =
exp

(

k2θt
δ2

)

(

cosh γt
2 + k

γ sinh γt
2

)
2kθ

δ2

exp

(

− 2σ2
0u

k + γ coth γt
2

)with γ :=
√

k2 + 2δ2u. In this approa
h, the sto
hasti
 volatility modi�es theintensity of jumps, but not the distribution of jump sizes. The pri
e of a gapoption (de�nition 2) 
an be 
omputed by �rst 
onditioning the expe
tation onthe traje
tory of the sto
hasti
 volatility. Sin
e the formula (6) is exponentialin T , we still get an expli
it expression:
Gσ0 =

1 − L(σ0, T, r +
∫ β

−∞
ν(dx))

r +
∫ β

−∞ ν(dx)

∫ β

−∞

f(ex)ν(dx). (9)A few properties of gap option pri
es 
an be dedu
ed from this formula dire
tly.
• The pri
e of gap risk prote
tion is in
reasing in volatility σ0: greatervolatility makes time run faster and in
reases the frequen
y of gap events.
• Sin
e the formula (6) is 
on
ave in T , taking into a

ount the sto
hasti
nature of volatility will redu
e the pri
e of a gap option 
ompared to the
onstant volatility 
ase.Figure 2 shows the gap option pri
e as fun
tion of the initial volatility level

σ0 with other parameters θ = 1, k = 2 and δ = 2. Sin
e the volatility hereis representing the intensity of the time 
hange, the 
ase σ0 = 1 
orrespondsto the situation where the sto
hasti
 time runs, on average, at the same speedas the original time. As expe
ted, the gap option pri
e in this 
ase is slightlysmaller than in the 
onstant volatility 
ase.3 Hedging gap options with short-dated Euro-pean optionsAs remarked above, the (modi�ed) gap option is a zero-delta produ
t, whi
hmeans that the asso
iated risk 
annot be delta-hedged and more generally, it9
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Figure 2: Solid line: the gap option pri
e as fun
tion of the initial volatilitylevel σ0. Dashed line: gap option pri
e with 
onstant volatility 
orrespondingto σ0 = 1.is hopeless to try to hedge it with the underlying. Moreover, the gap optionsare designed to o�set jump risk, and the markets with jumps are typi
allyin
omplete [7℄. Therefore, one 
an only try to approximately hedge a gap option,for example, in the sense of L2 approximation, and even then one would need to�nd a suitable hedging produ
t, whi
h is sensitive to extreme downside movesof the underlying and has little sensitivity to the small everyday movements. Anatural example of su
h produ
t is an out of the money put option. As shown in�gure 1, the strikes of market-traded 10 day puts 
an be as far as 15% out of themoney. Sin
e a 15% donwside move in 10 days is highly unlikely in a di�usionmodel, we 
on
lude that these put options o�er prote
tion against jumps, thatis, against the same kind of risk as the gap option. The gap option itself isnothing but a strip of 1-day puts, and if su
h options were traded, this wouldenable us to 
onstru
t a perfe
t hedge. However, options with maturity below 1week are not liquidly traded, so we will instead 
onstru
t an approximate hedgeusing options maturing in 1-2 weeks.Our aim is now to 
ompute the optimal quadrati
 hedge ratio for hedging agap option with an OTM put, that is, the hedge ratio minimizing the expe
tedsquared hedging error. Following [10℄, we suppose that this expe
ted squarederror is 
omputed under the martingale probability. We start by expressing themartingale dynami
s of a gap option pri
e.In this se
tion, we suppose that the underlying pri
e follows an exponentialLévy model St = S0e
Xt , and we denote by J the jump measure of X : J([s, t]×

A) := #{r ∈ [s, t] : ∆Xr ∈ A}. For details on jump measures of Lévy pro
essessee [7, 
hapter 3℄. The 
ompensated version of J will be denoted by J̃ : J̃([s, t]×
A) := J([s, t]×A)− (t− s)ν(A). Moreover, to simplify the notation, we assumezero interest rate (in this se
tion only). We use de�nition 2, and denote by Gtthe pri
e of a gap option evaluated at time t. The terminal value of a gap option10




an then be expressed as an integral with respe
t to J :
GT =

∫ T

0

∫

R

f(ex)1t≤τJ(dt × dx).Taking the 
onditional expe
tation under the risk-neutral probability, we 
an
ompute the pri
e of a gap option at any time t:
Gt = EQ[GT |Ft] = 1τ≤tf(e∆Xτ ) + 1τ>t

∫ β

−∞

f(ex)ν(dx)
1 − e−λ∗(T−t)

λ∗
. (10)The interpretation of this formula is very simple: if, at time t, the gap eventhas already o

ured, then the pri
e of a gap option is 
onstant and equal to itspay-o�; otherwise, it is given by the formula (6) applied to the remainder of theinterval.Formula (10) 
an be alternatively rewritten as a sto
hasti
 integral withrespe
t to J̃ :

Gt = G0 +

∫ t

0

∫ β

−∞

1s≤τe−λ∗(T−s)f(ex)J̃(ds × dx).Let P (t, S) denote the pri
e of a European put option evaluated at time t:
P (t, S) = EQ[(K − ST )+|St = S].Via It�'s formula, we 
an express P (t, St) as a sto
hasti
 integral as well:

Pt ≡ P (t, St) = P (0, S0) +

∫ t

0

σSu
∂P (u, Su)

∂S
dWu

+

∫ t

0

∫

R

{P (u, Su−ez) − P (u, Su−)}J̃(du × dz).A self-�nan
ing portfolio 
ontaining φt units of the put option and the risk-freeasset has value Vt given by
Vt = c +

∫ t

0

φsdPs,where c is the initial 
ost of the portfolio. The following result is then dire
tlydedu
ed from proposition 4 in [10℄.Proposition 3. The hedging strategy (ĉ, φ̂) minimizing the risk-neutral L2 hedg-ing error
EQ





(

c +

∫ T

0

φtdPt − GT

)2


is given by
ĉ = EQ[GT ] = G0. (11)

φ̂t = 1t≤τ

∫ β

−∞
ν(dz)f(ez)e−λ∗(T−t){P (t, Ste

z) − P (t, St)}
σ2S2

t

(

∂P
∂S

)2
+
∫

R
ν(dz){P (t, Stez) − P (t, St)}2

. (12)11



Note that φ̂t is nothing but the lo
al regression 
oe�
ient of Gt on Pt. The
ost of the hedging strategy, ĉ 
oin
ides with the pri
e of the gap option.The strategy φ̂t is optimal but is does not allow perfe
t hedging (there isalways a residual risk) and it is not feasible, be
ause it requires 
ontinuousrebalan
ing of an option portfolio. In pra
ti
e, due to relatively low liquidity ofthe option market, the portfolio will be rebalan
ed rather seldom, say, on
e aweek or on
e every two weeks, as the hedging options arriving to maturity arerepla
ed with more long-dated ones.To test the e�
ien
y of out of the money puts for hedging gap options,we simulate the L2 hedging error (varian
e of the terminal P&L) over onerebalan
ing period (one week or two weeks) using two feasible hedging strategies:A The trader buys φ̂0 options in the beginning of the period and keeps thenumber of the options 
onstant until the end of the period.B The trader buys φ̂0 options in the beginning of the period and keeps thenumber of the options 
onstant until the end of the period unless a gapevent o

urs, in whi
h 
ase the options are sold immediately.To interpret the results, we also 
ompute the L2 error without hedging (strategyC) and for the 
ase of 
ontinuous rebalan
ing (strategy D).Table 1 reports the L2 errors for the gap option of example 1 (with thenotional value N = 1), 
omputed over 106 s
enarios simulated in Kou's modelwith the parameters 
alibrated to market option pri
es and given on page 6.For 
omparaison, the L2 error of 10−4 
orrespond to the standard deviation ofthe hedging portfolio from the terminal gap option pay-o� equal to 1% of thenotional amount. We see that the strategy where the hedge ratio is 
onstant upto a gap event and zero afterwards a
hieves a 4-fold redu
tion in the L2 error
ompared to no hedging at all, if 1-week options are used. With 2-week options,the redu
tion fa
tor is only 2.2. For every strategy, the L2 error of hedging overa period of 2 weeks is greater than twi
e the error of hedging over 1 week: it isalways better to use 1-week options than 2-week ones.As seen from �gure 3, hedging modi�es 
onsiderably the shape of the distri-bution of the terminal P&L, redu
ing, in parti
ular, the probability of extremenegative pay-o�s. Without hedging, the distribution of the terminal pay-o� ofthe gap option has an important peak at −1, 
orresponding to the maximumpossible pay-o� (the graphs are drawn from the point of view of the gap optionseller). In the presen
e of hedging, this peak is absent and the distribution is
on
entrated around zero. If 1-week options are used for hedging, the Valueat Risk of the portfolio for the horizon of 1 week and at the level of 0.1% isequal to 0.85 without hedging and only to 0.23 in the presen
e of hedging: thismeans that the hedging will allow to redu
e the regulatory 
apital by a fa
torof four. If 2-week options are used, the 2-week VaR at the level of 0.1% is 0.38with hedging, and without hedging it is equal to 0.99 (the probability of havinga gap event within 2 weeks is slightly greater than 0.1%). We 
on
lude thathedging gap options with OTM puts is feasible, but one should use the shortest12



Period Strategy A(
onstanthedge) Strategy B(
onstant untilgap then zero) Strategy C (nohedging) Strategy D(
ontinuousrebalan
ing)1 week 8.6 × 10−4 5.6 × 10−4 2.2 × 10−3 2.5 × 10−42 weeks 2.9 × 10−3 2.0 × 10−3 4.3 × 10−3 7.6 × 10−4Table 1: L2 errors for hedging a gap option with 1 week and 2-week Europeanput options.
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Figure 3: The histograms of the P&L distribution with and without hedging(from the point of view of the gap option seller). The peaks at −1 (maximumpay-o� of a gap option) and at 0 (no gap event) were trun
ated at 0.1. Left:1-week horizon; right: 2-weeks horizon.available maturity: while 1-week puts give satisfa
tory results, hedging with2-week optons appears problemati
.4 Multi-asset gap optionsAs explained in the introdu
tion, a multiname (basket) gap option is a produ
twhere one monitors the total number of gap events in a basket of underlyingsover the lifetime of the option [0, T ]. A gap event is de�ned as a negative returnof size less than α between 
onsequtive 
losing pri
es (
lose-to-
lose) in any ofthe underlyings of the basket. The pay-o� of the produ
t at date T is determinedby the total number of gap events in the basket over the referen
e period. To
ompute the pri
e of a multiname gap option, we suppose that M underlyingassets S1, . . . , SM follow an M -dimensional exponential Lévy model, that is,
Si

t = Si
0e

Xi
t for i = 1, . . . , M , where (X1, . . . , XM ) is an M -dimensional Lévypro
ess with Lévy measure ν. In this se
tion we will make the same simplifyinghypothesis as in se
tion 2 (de�nition 2), that is, we de�ne a gap event as anegative jump smaller than a given value β in any of the assets, rather thana negative daily return. From now on, we de�ne a multiname gap option as13



follows.De�nition 3. For a given β < 0, let
Nt =

M
∑

i=1

#{(s, i) : s ≤ t, 1 ≤ i ≤ M and ∆X i
s ≤ β} (13)be the pro
ess 
ounting the total number of gap events in the basket before time

t. The multiname gap option is a produ
t whi
h pays to its holder the amount
f(NT ) at time T .The pay-o� fun
tion f for a typi
al multiname gap option is given in example2. Noti
e that the single-name gap option stops at the �rst gap event, whereasin the multiname 
ase the gap events are 
ounted up to the maturity of theprodu
t.The biggest di�
ulty in the multidimensional 
ase, is that now we have tomodel simultaneous jumps in the pri
es of di�erent underlyings. The multidi-mensional Lévy measures 
an be 
onveniently des
ribed using their tail integrals.The tail integral U des
ribes the intensity of simultaneous jumps in all 
ompo-nents smaller than the 
omponents of a given ve
tor. Given an M -dimensionalLévy measure ν, we de�ne the tail integral of ν by
U(z1, . . . , zM ) = ν({x ∈ R

M : x1 ≤ z1, . . . , xM ≤ zM}), z1, . . . , zM < 0. (14)The tail integral 
an also be de�ned for positive z (see [13℄), but we do notintrodu
e this here sin
e we are only interested in jumps smaller than a givennegative value.To des
ribe the intensity of simultaneous jumps of a subset of the 
omponentsof X , we de�ne the marginal tail integral: for m ≤ M and 1 ≤ i1 < · · · < im ≤
M , the (i1, . . . , im)-marginal tail integral of ν is de�ned by
Ui1,...,im

(z1, . . . , zm) = ν({x ∈ R
M : xi1 ≤ z1, . . . , xim

≤ zm}), z1, . . . , zm < 0.(15)The pro
ess N 
ounting the total number of gap events in the basket is
learly a pie
ewise 
onstant in
reasing integer-valued pro
ess whi
h moves onlyby jumps of integer size. The jump sizes 
an vary from 1 (in 
ase of a gap eventa�e
ting a single 
omponent) to M (simultaneous gap event in all 
omponents).The following lemma des
ribes the stru
ture of this pro
ess via the tail integralsof ν.Lemma 1. The pro
ess N 
ounting the total number of gap events is a Lévypro
ess with integer jump sizes 1, . . . , M o

uring with intensities λ1, . . . , λMgiven by
λm =

M
∑

k=m

(−1)k−m
∑

1≤i1<···<ik≤M

Ck
mUi1,...,ik

(β, . . . , β), 1 ≤ m ≤ M, (16)where Ck
m denotes the binomial 
oe�
ient and the se
ond sum is taken over allpossible sets of k integer indi
es satisfying 1 ≤ i1 < · · · < ik ≤ M .14



Proof. Sin
e X is a pro
ess with stationary and independent in
rements, itfollows from formula (13) that N has stationary and independent in
rements aswell. A jump of size m in N o

urs if and only if exa
tly m 
omponents of Xjump by an amount smaller or equal to β. Therefore,
λm =

∑

1≤i1<···<im≤M

ν ({xi ≤ β ∀i ∈ {i1, . . . , im}; xi > β ∀i /∈ {i1, . . . , im}})(17)The expression under the sum sign 
an be written as
ν ({xi ≤ β ∀i ∈ {i1, . . . , im}; xi > β ∀i /∈ {i1, . . . , im}})
= ν ({xi ≤ β ∀i ∈ {i1, . . . , im}})

+

M−m
∑

p=1

∑

1≤j1<···<jp≤M

{j1,...,jp}∩{i1,...,im}=∅

(−1)pν ({xi ≤ β ∀i ∈ {i1, . . . , im} ∪ {j1, . . . , jp}})

= Ui1,...,im
(β, . . . , β) +

M−m
∑

p=1

∑

1≤j1<···<jp≤M

{j1,...,jp}∩{i1,...,im}=∅

(−1)pUi1,...,im,j1,...,jp
(β, . . . , β)Combining this equation with (17) and gathering the terms with identi
al tailintegrals, one obtains (16).The pro
ess N 
an equivalently be represented as

Nt =
M
∑

m=1

mN
(m)
t ,whereN (1), . . . , N (M) are independent Poisson pro
esses with intensities λ1, . . . , λM .Sin
e these pro
esses are independent, the expe
tation of any fun
tional of NT(the pri
e of a gap option) 
an be 
omputed as

E[f(NT )] = e−λT
∞
∑

n1,...,nM=0

f

(

M
∑

k=1

knk

)

M
∏

i=1

(λiT )ni

ni!
, (18)where λ :=

∑M
i=1 λi. In pra
ti
e, after a 
ertain number of gap events, the gapoption has zero pay-o� and the sum in (18) redu
es to a �nite number of terms.In example 2, f(n) ≡ 0 for n ≥ 4 and

E[f(NT )] = e−λT
{

1 + λ1T +
(λ1T )2

2
+ λ2T (19)

+
(λ1T )3

12
+

λ1λ2T
2

2
+

λ3T

2

}

. (20)The pri
e of the prote
tion (premium over the risk-free rate re
eived by theprote
tion seller) is given by the dis
ounted expe
tation of 1 − f(NT ), that is,
e−rT E[1 − f(NT )]. (21)15



To make 
omputations with the formula (18), one needs to evaluate the tailintegral of ν and all its marginal tail integrals. These obje
ts are determinedboth by the individual gap intensities of ea
h 
omponent and by the dependen
eamong the 
omponents of the multidimensional pro
ess. For modeling purposes,the dependen
e stru
ture 
an be separated from the behavior of individual 
om-ponents via the notion of Lévy 
opula [7, 13℄, whi
h is parallel to the notionof 
opula but de�ned at the level of jumps of a Lévy pro
ess. More pre
iselywe will use the positive Lévy 
opulas whi
h des
ribe the one-sided (in this 
ase,only downward) jumps of a Lévy pro
ess, as opposed to general Lévy 
opulaswhi
h are useful when both upward and downward jumps are of interest.Positive Lévy 
opulas Let R := (−∞,∞] denote the extended real line,and for a, b ∈ R
d let us write a ≤ b if ak ≤ bk, k = 1, . . . , d. In this 
ase, (a, b]denotes the interval

(a, b] := (a1, b1] × · · · × (ad, bd].For a fun
tion F mapping a subset D ⊂ R
d into R, the F -volume of (a, b] isde�ned by

VF ((a, b]) :=
∑

u∈{a1,b1}×···×{ad,bd}

(−1)N(u)F (u),where N(u) := #{k : uk = ak}. In parti
ular, VF ((a, b]) = F (b) − F (a) for
d = 1 and VF ((a, b]) = F (b1, b2) + F (a1, a2)−F (a1, b2)−F (b1, a2) for d = 2. If
F (u) =

∏d
i=1 ui, the F -volume of any interval is equal to its Lebesgue measure.A fun
tion F : D → R is 
alled d-in
reasing if VF ((a, b]) ≥ 0 for all a, b ∈ Dsu
h that a ≤ b. The distribution fun
tion of a random ve
tor is one exampleof a d-in
reasing fun
tion.A fun
tion F : [0,∞]d → [0,∞] is 
alled a positive Lévy 
opula if it satis�esthe following 
onditions:1. F (u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d},2. F is d-in
reasing,3. Fi(u) = u for any i ∈ {1, . . . , d}, u ∈ R, where Fi is the one-dimensionalmargin of F , obtained from F by repla
ing all arguments of F ex
ept the

i-th one with ∞:
Fi(u) = F (u1, . . . , ud)ui=u,uj=∞∀j 6=i.The positive Lévy 
opula has the same properties as ordinary 
opula but isde�ned on a di�erent domain ([0,∞]d instead of [0, 1]d). Higher-dimensionalmargins of a positive Lévy 
opula are de�ned similarly:

Fi1,...,im
(u1, . . . , um) = F (v1, . . . , vd)vik

=uk,k=1,...,m;vj=∞,j /∈{i1,...,im}.The Lévy 
opula links the tail integral to one-dimensional margins; the fol-lowing result is a dire
t 
orollary of Theorem 3.6 in [13℄.16



Proposition 4.
• Let X = (X1, . . . , Xd) be a R

d-valued Lévy pro
ess, and let the (one-sided)tail integrals and marginal tail integrals of X be de�ned by (14) and (15).Then there exists a positive Lévy 
opula F su
h that the tail integrals of
X satisfy

Ui1,...,im
(x1, . . . , xm) = Fi1,...,im

(Ui1(x1), . . . , Uim
(xm)) (22)for any nonempty index set {i1, . . . , im} ⊆ {1, . . . , d} and any (x1, . . . , xm) ∈

(−∞, 0)m.
• Let F be an M-dimensional positive Lévy 
opula and Ui, i = 1, . . . , d tailintegrals of real-valued Lévy pro
esses. Then there exists a R

d-valued Lévypro
ess X whose 
omponents have tail integrals Ui, i = 1, . . . , d and whosemarginal tail integrals satisfy equation (22) for any nonempty index set
{i1, . . . , im} ⊆ {1, . . . , d} and any (x1, . . . , xm) ∈ (−∞, 0)m.In terms of the Lévy 
opula F of X and its marginal tail integrals, formula(16) 
an be rewritten as

λm =

M
∑

k=m

(−1)k−m
∑

1≤i1<···<ik≤M

Ck
mFi1,...,ik

(Ui1(β), . . . , Uik
(β))To 
ompute the intensitites λi and pri
e the gap option, it is therefore su�
ientto know the individual gap intensities Ui(β) (M real numbers), whi
h 
an beestimated from 1-dimensional gap option pri
es or from the pri
es of short-termput options as in se
tion (2), and the Lévy 
opula F . This Lévy 
opula willtypi
ally be 
hosen in some suitable parametri
 family. One 
onvenient 
hoi
eis the Clayton family of (positive) Lévy 
opulas de�ned by

F θ(u1, . . . , uM ) =
(

u−θ
1 + · · · + u−θ

M

)−1/θ
.The dependen
e stru
ture in the Clayton family is determined by a single pa-rameter θ > 0. The limit θ → +∞ 
orresponds to 
omplete dependen
e (all
omponents jump together) and θ → 0 produ
es independent 
omponents. TheClayton family has the ni
e property of being margin-stable: if X has ClaytonLévy 
opula then all lower-dimensional margins also have Clayton Lévy 
opula:

F θ
i1,...,im

(u1, . . . , um) =
(

u−θ
1 + · · · + u−θ

m

)−1/θ
.For the Clayton Lévy 
opula, equation (16) simpli�es to

λm =

M
∑

k=m

(−1)k−m
∑

1≤i1<···<ik≤M

Ck
m(Ui1(β)−θ + · · · + Uik

(β)−θ)−1/θ.This formula 
an be used dire
tly for baskets of reasonable size (say, less than20 names). For very large baskets, one 
an make the simplifying assumptionthat all individual sto
ks have the same gap intensity: Uk(β) = U1(β) for all k.In this 
ase, formula (16) redu
es to the following simple result:17
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Figure 4: The intensities λi of di�erent jump sizes of the gap 
ounting pro
essas a fun
tion of θ for M = 10 names and a single-name loss probability of 1%.Proposition 5. Suppose that the pri
es of M underlyings follow an M -dimensionalexponential Lévy model with Lévy measure ν. If the individual 
omponents ofthe basket are identi
ally distributed and the dependen
e stru
ture is des
ribedby the Clayton Lévy 
opula with parameter θ, the pri
e of a basket gap optionas of de�nition 13 is given by
E[f(NT )] = e−λT

∞
∑

n1,...,nM=0

f

(

M
∑

k=1

knk

)

M
∏

i=1

(λiT )ni

ni!
,where

λm = U1(β)CM
m

M−m
∑

j=0

(−1)jCM−m
j

(m + j)1/θ
(23)Figure 4 shows the behavior of the intensities λ1, λ2 and λ10 as a funt
tionof the dependen
e parameter θ in a basket of 10 names, with a single-name gapprobability of 1%. Note that formula (23) implies

lim
θ→∞

λm =

{

0, m < M

U1(β), m = M.

lim
θ→0

λm =

{

0, m > 1

MU1(β), m = 1.
,in agreement with the behavior observed in Figure 4.Figure 5 shows the pri
e of the multiname gap option of example 2 
omputedusing the formula (21). The pri
e a
hieves a maximum for a �nite nonzero valueof θ. This happens be
ause for this parti
ular payo� stru
ture, the prote
tionseller does not loose money if only 1 or 2 gap events o

ur during the lifetime of18
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Figure 5: Expe
ted loss of a multi-name gap option in the Credit Suisse exampleas a fun
tion of θ. The single-name loss probability is 1%.the produ
t, and only start to pay after 3 or more gap events. The probabilityof having 3 or more gap events is very low with independent 
omponents.While the single-name gap intensity 
an be approximated from the pri
es ofout of the money puts, the dependen
e parameter θ is di�
ult to extra
t frommarket data. Moreover, the 
hoi
e of Lévy 
opula is far from being trivial anddi�erent 
hoi
es may give di�erent pri
es for the gap option. Formulas (23)and (18) 
an therefore only be seen as an 
rude approximation, whi
h allowsto 
onvert, using graphs like �gure 5, the trader's views of the probability ofsimultaneous gap events into a dependen
e parameter and then into an estimateof the gap option pri
e.A
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