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Abstract

In an incomplete �nancial market, the axiomatic of Time Consistent
Pricing Procedure (TCPP), recently introduced, is used to assign to any
�nancial asset a dynamic limit order book, taking into account both the
dynamics of basic assets and the limit order books for options.
Kreps-Yan fundamental theorem is extended to that context. A charac-
terization of TCPP calibrated on options is given in terms of their dual
representation. In case of perfectly liquid options, these options can be
used as the basic assets to hedge dynamically. A generic family of TCPP
calibrated on option prices is constructed, from càdlàg BMO martingales.
Keywords: Time consistency, Dynamic limit order book, Fon-

damental theorem of asset pricing, No free lunch, BMO martin-

gales.
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1 Introduction

The problem of dynamic pricing is the problem of extending a function that
gives the prices of marketed �nancial instruments to a larger class of �nancial
instruments. The usual way of dynamic pricing in �nancial mathematics is to
start with a (No Free Lunch) dynamic model for the stock prices and to use the
theory of portfolios constructed from these basic assets to price the other �nan-
cial instruments. The �rst step along these lines was made by Black Scholes and
Merton. In a complete market the dynamic price of any �nancial instrument X
is then equal to the dynamic price of the replicating portfolio. As pointed out
by Avellaneda and Paras [1] and [2], the market prices of options give impor-
tant informations on the volatility. Therefore the prices constructed from the
theory associated with options have to be compatible with their observed bid
and ask prices. If the constructed prices do not lie within the interval de�ned
by the observed bid and ask prices, this means that the choosen dynamics for
the basic assets induce an arbitrage in the �nancial market. For example the
Black Scholes model with constant volatility is not compatible with the call and
put options prices. This is the volatility smile e�ect.
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In a Brownian setting, the notion of implied volatility has been introduced, in-
verting the Black Scholes formula for the options prices. Then a wide litterature
has been developped trying to modelize the implied volatility. Necessary condi-
tions for the resulting model to be arbitrage free have been given by Schönbucher
[20]. However there exists no dynamic model for implied volatility leading to
arbitrage free prices. Other approaches have been developped in order to pro-
duce, in a arbitrage free way, dynamic prices consistant with observed prices for
options. The local volatility model introduced by Dupire [12] is an arbitrage
free dynamic model of one stock, in a Brownian setting, assuming a particular
shape for the volatility. It assumes also that one observes in the market the
prices of call options on this asset for all strikes and all maturity dates and
furthermore that the corresponding function is very smooth (in particular of C2

class in the strike). This leads to a non robust model. In addition this model is
a complete model for one stock which is not compatible with some observations
in the market. Other approaches have been introduced recently in order to price
dynamically in a arbitrage free way, taking into account the observed prices for
options. Jacod and Protter [14] and Schweizer and Wissel [21] assume that only
options with one �xed payo� function but all maturities are traded. Schweizer
and Wissel [22] consider also the case where call options with one �xed matu-
rity but all strikes are traded. In both cases the dynamics of the stock and of
the options are modelized simultaneously in a arbitrage free way. However in
real �nancial markets options of various kind with various strikes and various
maturities are traded. Only a �nite number of options are traded and not a
continuum.
Furthermore the options are not all perfectly liquid. At some �xed instant only a
limit order book is observed for some options and not a price. For n large enough
the ask price of nX is larger than n times the ask price of X. This implies that
the market is incomplete. When the model for the stock prices is not complete,
there are several equivalent local martingale measures for the stock prices, or
equivalently �nancial assets are not perfectly replicated by portfolios in the ba-
sic assets. Thus a natural way of assigning a dynamic ask price to a �nancial
asset X de�ned at time T (for example an option of maturity date T ), using
the theory of portfolios, is to consider portfolios in the basic assets dominating
at time T this asset X. This leads to the super-replication price, originally
studied by El Karoui and Quenez [13], which is the minimal price of portfolios
in the basic assets dominating X. The super-replication price is sublinear. The
dynamic super-replication price is equal to esssupQ∈QEQ(X|Ft), where Q is the
set of all equivalent local martingale measures for the stock prices. However
for many models this super-replication price is too high. It doesn't lie within
the interval de�ned from the observed bid and ask prices associated with the
option. Notice also that in case of linear or sublinear ask prices, the ask price
associated with nX (n ≥ 0) for any �nancial asset X is equal to n times the
ask price associated with X. Linear or sublinear prices don't take into account
the liquidity risk. On the contrary the observation of limit order books leads to
the conclusion that for any traded asset Y the ask price of nY is a convex, not
sublinear, function of n.
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The context of the present paper is that of an incomplete and illiquid market.
We construct a dynamic pricing theory taking into account both the dynamics
of basic assets and the limit order books of options on these assets. This is
done making use of the theory of No Free Lunch TCPP introduced in [5]. We
consider a reference family composed of two kinds of assets: the basic assets
(Sk)0≤k≤d+1 for which the dynamic process is assumed to be known , and the
assets (Y l)1≤l≤d) (for examples options) which are only revealed at their matu-
rity date (the stopping time τl) and for which one observes a limit order book
at time 0. One of the basic asset S0 is assumed to be strictly positive and is
taken as numéraire.
The �rst question we address is the question of non existence of arbitrage for the
reference family ((Sk)0≤k≤d+1, (Y l)1≤l≤d) and the observed limit order books
associated with the assets Y l. We extend to that context the notion of No Free
Lunch, replacing the usual notion of dynamic strategy with respect to the basic
assets (Sk) by the sum of a dynamic strategy with respect to the basic assets
(Sk) and of a static strategy with respect to the options Y l. We prove the
following generalization of Kreps-Yan Theorem: there is No Free Lunch with
respect to the reference family if and only there is an equivalent local martin-
gale measure Q for the process (Sk)k such that, for every l, and any n ≥ 0,
Cbid(nY l) ≤ EQ(nY l) ≤ Cask(nY l). The conditional expectation with respect
to Q provides then a linear pricing procedure calibrated on the reference fam-
ily. However as mentioned above, in order to take into account the liquidity
risk, we do not want to restrict to linear nor sublinear pricing procedures. The
theory of No Free Lunch TCPP takes into account the liquidity risk and allows
for the construction of dynamic limit order books associated with any �nancial
instrument. This construction is done in a arbitrage free way and consistently
in time.
The second main result is the characterization of TCPP calibrated on the refer-
ence family ((Sk)0≤k≤d, (Y l)1≤l≤p) and the limit order books in terms of their
dual representation. We also study the supply curves for such TCPP.
The third result concerns the study of the hedge in the case where both the
basic assets Sk and the options Y l are assumed to be very liquid. In that case
we prove that the options can be used to hedge dynamically as well as the basic
assets.
The last important result of the paper is the generic construction of a family
of convex No Free Lunch TCPP calibrated on option prices. We prove the ex-
istence of a non sublinear TCPP calibrated on option prices belonging to the
class �rst introduced in [3], making use of the theory of right continuous BMO
martingales, as soon as the reference family satis�es the robust No Free Lunch
condition. This construction is made in a very general setting of locally bounded
stochastic processes, for which jumps are allowed.
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2 First Fundamental Theorem

2.1 The economic model

We work with a �ltered probability space (Ω,F∞, (Ft)t∈IR+ , P ) throughout this
paper. The �ltration (Ft)t∈IR+ satis�es the usual assumptions of right continuity
and completeness and F0 is assumed to be the σ-algebra generated by the P
null sets of F∞. We assume that the time horizon is in�nite, which is the most
general case. Indeed if the time horizon is �nite equal to T we de�ne Fs = FT

for every s ≥ T .
The usual way of dynamic pricing is to start with some reference assets for
which the dynamics is assumed to be known and to construct a dynamic pricing
procedure extending the dynamics of these reference assets. In order to use
more information from the market, we want to take also into account the limit
order books associated with some options.
Therefore the reference family will be composed of two kinds of assets: As
usual, we consider that there are some basic assets (Sk)0≤k≤d for which we
have a good idea of the evolution of their dynamics and we want to take into
account all these dynamics. From a newer point of view there are also assets
(Y l)1≤l≤p as options of various maturity dates on one or several of the basic
assets on which there are a lot of transactions, so that it is meaningful to take
into account the corresponding limit order books observed in the market. Notice
that even if one knows the dynamics of the underlying assets, one doesn't know,
in an incomplete market, the dynamics of options. The option is revealed at
time τl which is the maturity date of the option. The value at time τl of this
option is therefore modeled by a Fτl

measurable function Y l. We assume that
in the market at time 0, a limit order book is observed for each of the options
(Y l)1≤l≤p.
We assume that S0 is always positive, and we can take it as numéraire. So
from now on, (S0)t = 1 ∀ t ∈ IR+, St = (Sk

t )1≤k≤d models the discounted
price process of d risky assets, and Y l the discounted prices of options (at time
τl). S is assumed to be a locally bounded stochastic process with a.s. càdlàg
trajectories.
For any stopping time τ , denote Fτ the σ-algebra de�ned by
Fτ = {A ∈ F∞|∀ t ∈ IR+ A∩{τ ≤ t} ∈ Ft}. Denote L∞(Ω,Fτ , P ) the Banach
algebra of essentially bounded real valued Fτ measurable functions. We will
always identify an essentially bounded Fτ measurable function with its class in
L∞(Ω,Fτ , P ).
The aim of this section is to de�ne a notion of no arbitrage extending the usual
one and to prove in this new context a �rst fundamental theorem generalizing
the Kreps Yan theorem. Before that we want to point out some properties of
the limit order books.
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2.2 Limit order books

Let Y l be a traded �nancial asset. One assumes that at time t0 one observes a
limit order book associated with the asset Y l. The limit order book takes into
account only the non executed orders at time t0. One assumes that all the non
executed orders on the asset Y l are written in the following tabular.

Bid Ask
quantity limit limit quantity

M1 C1
bid C1

ask N1

M2 C2
bid C2

ask N2

... ... ... ...
Mp Cp

bid Cq
ask Nq

with
Cp

bid < ... < C1
bid < C1

ask < ... < Cq
ask (1)

If there is also a transaction at time t0 on the asset Y l, we denote C0 the price
of the transaction and N0 = M0 the number of shares exchanged at time t0 (if
there is no transaction on Y l at time t0, N0 = M0 = 0). Necessarily,

C1
bid ≤ C0 ≤ C1

ask (2)

Taking into account the limit order book, one can canonically associate to any
positive integer n ≤

∑
0≤i≤q Ni = N l the ask price Cask(nY l) de�ned as follows:

Let j ≤ q be such that
∑

0≤i≤j−1 Ni ≤ n <
∑

0≤i≤j Ni. De�ne

Cask(nY ) =
∑

0≤i≤j−1

NiC
i
ask + (n−

∑
0≤i≤j−1

Ni)C
j
ask

if 0 ≤ n ≤ N0, Cask(nY ) = nC0. The bid price associated with nY for n ≤∑
0≤i≤p Mi = M l is de�ned in a similar way.

Notice that it is easy to verify from the de�nition of Cask(nY ) and the relations
(1) and (2) that the map n ∈ IN → Cask(nY ) is convex and the map n ∈
IN → Cbid(nY ) is concave. In particular n ∈ IN → Cask(nY )

n is increasing and

n ∈ IN → Cbid(nY )
n is decreasing. Also for any n, m Cbid(mY )

m ≤ Cask(nY )
n .

2.3 Fundamental Theorem

The �rst step is to de�ne the notion of admissible simple strategy in this new
setting. The investor can use two kinds of assets. The basic assets Sk for
which the dynamics are assumed to be known, therefore an investor can trade
dynamically using the Sk. He can also invest in the assets Y l but these assets
are only known at their maturity date τl and not at any intermediate date,
therefore we restrict to static investments on Y l between the dates 0 and τl.
From the observation of the limit order book associated with Y l at time 0 we
associate, as in the previous Section 2.2, to any n ≤ N l an ask price Cask(nY l)
and to any n ≤ M l a bid price Cbid(nY l).
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De�nition 2.1 An admissible simple strategy with respect to the reference as-
sets ((Sk)0≤k≤d, (Y l)1≤l≤p) is the sum of a dynamic simple strategy H with
respect to the process (Sk) and of a static strategy with respect to the random
variables (Y l).
H =

∑n
i=1 hiX]σi−1,σi], where 0 = σ0 ≤ σ1 ≤ ... ≤ σn are �nite stopping times

and hi are essentially bounded IRd valued Fσi−1 measurable functions and the
stopped process (Sk)σn is uniformly bounded.

De�ne now the convex set of contingent claims available at zero or negative
price, using admissible simple strategies, taking into account the fact that for
the random variables Y l, one observes a limit order book. In all the following
the limit order book observed for Y l will be denoted (Cbid(mY l), Cask(nY l)).
This means:
(Cbid(mY l)0≤m≤M l , Cask(nY l)0≤n≤N l).

De�nition 2.2 The convex set of portfolios available at zero cost is:

K = {
n∑

i=1

d∑
k=1

(hk
i )(Sk

σi
−Sk

σi−1
)+

p∑
l=1

(γl−βl)Y l +(γ0−β0) ; (hk)i ∈ L∞(Fσi−1),

βl, γl ∈ IN βl ≤ N l, γl ≤ M l |
p∑

l=1

(Cask(γlY l)− Cbid(βlY l) + (γ0 − β0) ≤ 0}.

Notice that adding the condition: for any l, either γl or βl is equal to 0 in the
de�nition of K would not change the set K. An element of K is the sum of a
static portfolio in the options Y l corresponding to γl long position in Y l and
βl short position in Y l and of a dynamic portfolio in the assets Sk available
at price 0. The convexity of K follows from the convexity (resp concavity) of
the map γ → Cask(γY l) (resp β → Cbid(βY l)). Denote K̃ the set of portfolios
dominated by an element of K, K̃ = K − L∞+ .
In this setting, we say that there is No Arbitrage if there is no non trivial non
negative attainable claim ot zero cost, i.e. K ∩L∞+ (Ω,F , P ) = {0}. Notice
that this condition is equivalent to C ∩L∞+ (Ω,F , P ) = {0}, where C is the cone

generated by K̃.
We prove now a theorem generalizing the Kreps Yan theorem to that context.
As in the usual setting, the notion of No Arbitrage is not su�cient, we have to
pass to the notion of No Free Lunch.

De�nition 2.3 The reference family ((Sk)0≤k≤d, (Y l)1≤l≤d) satis�es the No
Free Lunch condition with respect to the limit order books Cbid(mY l), Cask(nY l)
if the closure C of C with respect to the weak* topology of L∞(Ω,F , P ) satis�es
C ∩L∞+ (Ω,F , P ) = {0}.

First fundamental theorem generalizing Kreps-Yan theorem:

Theorem 2.4 The following conditions are equivalent:
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i) The reference family ((Sk)0≤k≤d, (Y l)1≤l≤d) satis�es the No Free Lunch
condition with respect to the limit order books Cbid(mY l), Cask(nY l).

ii) There is an equivalent local martingale measure R for (Sk)0≤k≤d such
that for any l ∈ 1, ..., p, for m ≤ M l Cbid(mY l) ≤ ER(mY l) and for
n ≤ N l ER(nY l) ≤ Cask(nY l).

We will give a more complete version of this Theorem in Section 3.4 after having
discussed the notion of TCPP calibrated on option prices. The proof is in
Appendix A.1.

3 TCPP calibrated on options

3.1 TCPP calibrated on a reference family

Recall brie�y the de�nition of TCPP (Time Consistent Dynamic Pricing Proce-
dure) , that we have introduced in [5] in order to assign to any �nancial product
a dynamic limit order book in a �nancial market with transaction costs and
liquidity risk. Other de�nitions close to the following one can be found in Peng
[17], with deterministic times instead of stopping times and in the restrictive
context of a Brownian �ltration, in Cheridito et al [6] in a discrete time setting,
and in Klöppel and Schweizer [15] with just one deterministic time.

De�nition 3.1 Let (Ω,F∞, (Ft)t∈IR+ , P ) be a �ltered probability space. A TCPP
(Πσ,τ )0≤σ≤τ (where σ ≤ τ are stopping times) is a family of maps

Πσ,τ : L∞(Fτ ) → L∞(Fσ)

satisfying the properties of monotonicity, translation invariance, convexity, nor-
malization, continuity from below and time consistency.
For any X ∈ L∞(Fτ ), the dynamic ask (resp. bid) price process of X is
(Πσ,τ (X))σ (resp. (−Πσ,τ (−X))σ).
A TCPP is called sublinear if furthermore ∀λ > 0 ∀X ∈ L∞(Fτ ), Πσ,τ (λX) =
λΠσ,τ (X).

Recall that for any X ∈ L∞(Fτ ), −Πσ,τ (−X) ≤ Πσ,τ (X) Notice that it follows
from time consistency and normalization that for any ν ≤ σ ≤ τ , Πν,σ is the
restriction of Πν,τ to L∞(Fσ). Remark that a TCPP assigns to any �nancial
instrument X ∈ L∞(F∞) not only a dynamic bid and ask prices, but also a
dynamic limit order book (−Πσ,∞(−nX),Πσ,∞(nX))σ, satisfying at any time,
the properties observed for limit order books in real �nancial markets (Section
2.2).
A TCPP is equal, up to a minus sign, to a normalized time consistent dynamic
risk measure.
In this paper we restrict our attention to No Free Lunch TCPP. For the de�ni-
tion and the general study of No Free Lunch TCPP we refer to [5]. Recall in
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particular that any No Free Lunch TCPP has a dual representation in terms of
equivalent probability measures of �nite penalty:

∀ X ∈ L∞(Fτ ), Πσ,τ (X) = esssupQ∈M1,e(P)(EQ(X|Fσ)− αm
σ,τ (Q)) (3)

where
M1,e(P ) = {Q ∼ P and αm

0,∞(Q) < ∞} (4)

Recall also that from [5], the No Free Lunch property implies that the setM0 of
probability measures equivalent with P with zero minimal penalty is non empty.

M0 = {R ∼ P, αm
0,∞(R) = 0} (5)

Recall also that any probability measure Q ∈ M1,e(P ) satis�es the cocycle
condition (cf [5]):

∀ν ≤ σ ≤ τ αm
ν,τ (Q) = αm

ν,σ(Q) + EQ(αm
σ,τ (Q)) (6)

We have proved in [5], that for any R ∈ M0, the ask price (resp bid price)
process associated with any X ∈ L∞(F∞) is then a R-supermartingale (resp
R-submartingale) admitting a càdlàg modi�cation.

Remark 3.2 For any R ∈M0, for any stopping times σ ≤ τ , αm
σ,τ (R) = 0.

This is an easy consequence of the non negativity and of the cocycle condition
satis�ed by the minimal penalty (equation 6).

Remark 3.3 Assume now that X belongs to L0(Ω,F∞, P ), is no more essen-

tially bounded but is such that X
− ∈ L∞(Ω,F∞, P ). X is the increasing limit of

a sequence (Xn)n∈IN of elements in L∞(Ω,F∞, P ). And therefore using the con-
tinuity from below of the TCPP, for any σ, Πσ,∞(X) is de�ned as the increasing
limit of Πσ,∞(Xn).

We give now the de�nition of calibration of a TCPP on a reference family,
de�nition extending the notion �rst introduced in [5].

De�nition 3.4 A TCPP (Πσ,τ )0≤σ≤τ is calibrated on the reference family ((Sk)0≤k,≤d,
(Y l)1≤l≤p) and the limit order books (Cbid(mY l), Cask(nY l))1≤l≤p if

• it extends the dynamics of the process (Sk)0≤k≤d, i.e. for any �nite stop-
ping time τ such that the stopped process (Sk)τ is uniformly bounded,

∀ n ∈ IZ ∀ 0 ≤ σ ≤ τ Πσ,τ (nSk
τ ) = nSk

σ (7)

• it is compatible with the limit order books of Y l: ∀1 ≤ l ≤ p,

∀m ≤ M l Cbid(mY l) ≤ −Π0,τl
(−mY l)

∀n ≤ N l Π0,τl
(nY l) ≤ Cask(nY l) (8)
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In the condition (7) we consider only integer multiples of the process (Sk)0≤k≤d

because there are the only one that can be traded (however considering the
de�nition with real numbers instead of integers would not a�ect the results).
The preceding notion of calibration assumes that the assets (Sk)0≤k≤d are per-
fectly liquid. This is of course not completely realistic. If we want to take into
account the existence of a limit order book associated with the Sk, we have to
weaken the preceding condition. This is the subject of the next subsection.

3.2 Weak calibration for a TCPP

In this section we introduce a weaker notion of calibration on the reference
family, taking into account the fact that the �nancial assets (Sk)0≤k≤d are not
perfectly liquid. We want to construct a dynamic for the limit order books,
taking into account both the limit order books observed for the process (Sk) at
time 0, (Cbid(nSk), Cask(nSk)), and the dynamics of Sk. Thus we introduce
the following de�nition of weak calibration:

De�nition 3.5 A TCPP (Πσ,τ )0≤σ≤τ is weakly calibrated on the reference fam-
ily ((Sk)0≤k≤d, (Y l)1≤l≤p) and the observed limit order books
(Cbid(mSk), Cask(nSk))1≤k≤d, (Cbid(mY l), Cask(nY l))1≤l≤p if it satis�es the
following conditions:
1.Weak extension of the process (Sk)0≤k≤d: For any �nite stopping time τ such
that the stopped process (Sk)τ is uniformly bounded, ∀ 0 ≤ k ≤ d ∀ 0 ≤ σ ≤ τ

i) ∀n ∈ IN −Πσ,τ (−nSk
τ ) ≤ nSk

σ ≤ Πσ,τ (nSk
τ )

ii) −Πσ,τ (−Sk
τ ) = Πσ,τ (Sk

τ ) = Sk
σ

iii) compatibility with the limit order books of (Sk)0≤k≤d,

∀n ≤ M(k) Cbid(nSk) ≤ −Π0,τ (−nSk
τ )

∀n ≤ N(k)Π0,τ (nSk
τ ) ≤ Cask(nSk)

2. Compatibility with the limit order books of (Y l)1≤l≤p: equation (8) of De�-
nition 3.4.

Remark 3.6 For a sublinear TCPP there is no di�erence between calibration
and weak calibration.

As proved in the next lemma, if there is a transaction on each Sk at time zero,
the condition 1.ii) is a consequence of the assumptions 1.i) and iii).

Lemma 3.7 Assume that there is at time zero a transaction on each Sk, i.e.
Cbid(Sk) = Cask(Sk). Assume that the pricing procedure satis�es the conditions
1.i) and iii) of De�nition 3.5, then it also satis�es condition 1.ii).

Lemma 3.7 is a consequence of the following general lemma which will be also
useful in the study of the hedge (Section 6).
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Lemma 3.8 Let (Πσ,τ )σ≤τ be a No Free Lunch TCPP. Let τ be a stopping
time. Assume that for some X ∈ L∞(Ω,Fτ , P ) there is ν ≤ τ and A ∈ Fν such
that:
−Πν,τ (−X)1A = Πν,τ (X)1A.
Then for all ν ≤ σ ≤ τ , −Πσ,τ (−X)1A = Πσ,τ (X)1A.

Proof: For any ν ≤ σ ≤ τ ,

−Πσ,τ (−X)1A ≤ Πσ,τ (X)1A (9)

As the TCPP has No Free Lunch, there is a probability measure R ∼ P with
zero minimal penalty. From equations (3) and (9) and time consistency it follows
that

−Πν,τ (−X)1A ≤ ER(−Πσ,τ (−X)1A|Fν)
≤ ER(Πσ,τ (X)1A|Fν) ≤ Πν,τ (X)1A (10)

By hypothesis −Πν,τ (−X)1A = Πν,τ (X)1A. Thus any inequality in expression
(10) is in fact an equality. As R ∼ P , it thus follows from (9) that

−Πσ,τ (−X)1A = Πσ,τ (X)1A

�

Proof of Lemma 3.7. The equality Cbid(Sk) = Cask(Sk) and the hypotheses
1.i and iii) of De�nition 3.5 implie that−Π0,τ (−Sk

τ ) = Π0,τ (Sk
τ ) = Sk

0 . We apply
Lemma 3.8 with X = Sk

τ A = Ω and ν = 0. It follows that −Πσ,τ (−Sk
τ ) =

Πσ,τ (Sk
τ ). From condition 1.i, it is also equal to Sk

σ . Thus ii) is proved. �

3.3 Characterization of the calibration

The following theorem characterizes the calibration and weak calibration con-
ditions for a No Free Lunch TCPP.

Theorem 3.9 1. A No Free Lunch TCPP (Πσ,τ )0≤σ≤τ is weakly calibrated on
the reference family ((Sk)0≤k≤d, (Y l)1≤l≤p) and the observed limit order books
(Cbid(mSk), Cask(nSk))1≤k≤d, (Cbid(mY l), Cask(nY l)1≤l≤p) if and only if:
- Local martingale property:
Any probability measure R equivalent with P with zero minimal penalty (i.e.
R ∈M0) is an equivalent local martingale measure for the process (Sk)0≤k≤d.
- Threshold condition: for any R ∼ P ,

αm
0,τ (R) ≥ sup

τl≤τ
( sup
m≤M l

(Cbid(mY l)− ER(mY l)), sup
n≤N l

((ER(nY l)− Cask(nY l)))(11)

αm
0,τ (R) ≥ sup

1≤k≤d
|Sk

0 − ER(Sk
τ )| (12)

αm
0,τ (R) ≥ sup

m≤M(k)

(Cbid(mSk)− ER(mSk
τ )), sup

n≤N(k)

(ER(nSk
τ )− Cask(nSk))(13)
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2. A No Free Lunch TCPP (Πσ,τ )0≤σ≤τ is calibrated on the reference family
((Sk)0≤k≤d, (Y l)1≤l≤p) and the limit order books (Cbid(mY l), Cask(nY l))1≤l≤p

if and only if any probability measure R ∈M1,e(P ) (i.e. R ∼ P of �nite penalty)
is a local martingale measure for the process (Sk)0≤k≤p, and the threshold con-
dition (11) is satis�ed.

Remark 3.10 : The fundamental di�erence between the calibration and the
weak calibration for a No Free Lunch TCPP in terms of their dual representa-
tion, is the following:
in case of calibration, any probability measure in the dual representation is a
local martingale measure for the process (Sk

t )1≤k≤d while in case of weak cal-
ibration, this is only the case for the probability measures with zero penalty.

Proof of Theorem 3.9

Proof of 1.
- Assume �rst that the No Free Lunch TCPP is weakly calibrated on the refer-
ence family. Let τ be a stopping time such that the stopped process (Sk)τ

0≤k≤d

is uniformly bounded. Let 0 ≤ σ ≤ τ . Πσ,τ (Sk
τ ) = −Πσ,τ (−Sk

τ ) = Sk
σ . Let

R ∈ M0, αm
σ,τ (R) = 0. From the dual representation, equation (3), it follows

that
Sk

σ = −Πσ,τ (−Sk
τ ) ≤ ER(Sk

τ |Fσ) ≤ Πσ,τ (Sk
τ ) = Sk

σ

Thus any R equivalent with P with zero minimal penalty is a local martingale
measure for (Sk)0≤k≤d. The threshold condition follows from the expression of
the minimal penalty αm

0,τ (Q) = supZ∈L∞(Fτ )(EQ(Z)−Π0,τ (Z))
- Conversely, assume that the No Free Lunch TCPP satis�es the local martin-
gale property and the threshold condition. We have to prove that the pricing
procedure satis�es the conditions of de�nition 3.5.
Let τ be a stopping time such that the stopped process (Sk)τ

0≤k≤d is uniformly

bounded. Let R ∈ M0. From the dual representation of Πσ,τ , equation (3), as
R is a local martingale measure for (Sk)0≤k≤d, it follows then that

∀σ ≤ τ ∀n ∈ IN −Πσ,τ (−nSk
τ ) ≤ nSk

σ ≤ Πσ,τ (nSk
τ ) (14)

Thus condition 1. i) of De�nition 3.5 is satis�ed. From the threshold condition,
for n ≤ N(k), for any Q ∈ M1,e(P ), EQ(nSk

τ ) − αm
0,τ (Q) ≤ Cask(nSk). So

applying the equation of representation (3) to Π0,τ , we get

Π0,τ (nSk
τ ) ≤ Cask(nSk) ∀n ≤ N(k)

The inequality Cbid(mSk) ≤ −Π0,τ (−mSk
τ ) ∀m ≤ M(k) is proved in the same

way. Thus conditions 1.iii) of De�nition 3.5 is satis�ed.
The proof of condition 2. of De�nition 3.5 is analogous.
We prove now that the condition 1. ii) is satis�ed. From equation (14),
−Π0,τ (−Sk

τ ) ≤ Sk
0 ≤ Π0,τ (Sk

τ ). The converse inequality is a consequence of
the threshold condition (inequation (12)) and of the equation of representation
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(3) applied to Π0,τ . Thus Sk
0 = Π0,τ (Sk

τ ) = −Π0,τ (−Sk
τ ). Applying now Lemma

3.8 , we get the equality

Πσ,τ (Sk
τ ) = −Πσ,τ (−Sk

τ )

Using (14) it is also equal to Sk
σ thus condition 1. ii) of De�nition 3.5 is sati�ed.

This proves 1 .
For the proof of 2 we refer to [5]. �

3.4 Extended Version of Kreps Yan First Fundamental

Theorem

We state now an extended version of Theorem 2.4 of Section 2.3.

Theorem 3.11 The following conditions are equivalent:

i) The reference family ((Sk)0≤k≤d, (Y l)1≤l≤p) satis�es the No Free Lunch
condition with respect to the limit order books (Cbid(mY l), Cask(nY l)).

ii) There is an equivalent local martingale measure R for (Sk)0≤k≤d such
that for any l ∈ {1, ..., p}, for m ≤ M l Cbid(mY l) ≤ ER(mY l) and for
n ≤ N l ER(nY l) ≤ Cask(nY l).

iii) There is a No Free Lunch TCPP calibrated on the reference family (Sk
0≤k≤d,

Y l
1≤l≤p) and the limit order books (Cbid(mY l), Cask(nY l)).

iv) There is a No Free Lunch TCPP weakly calibrated on the reference
family (Sk

0≤k≤d, Y
l
1≤l≤p) and the limit order books (Cbid(mSk), Cask(nSk)),

(Cbid(mY l), Cask(nY l)).

The proof of this extended version of the First Fundamental Theorem is given
in Appendix A.1. A key tool in this proof is the existence of an equivalent
probability measure with zero minimal penalty. The aim of the proof is the
same as that of the proof of Kreps Yan Theorem given in [10].
Theorem 3.11 shows also that the notion of No Free Lunch TCPP is well adapted
to the questions related to No Arbitrage.

4 Properties of the Supply Curve

Let (Πσ,τ )σ≤τ be a No Free Lunch TCPP. Let X be an essentially bounded non
negative �nancial asset. For x ∈ IR+∗,(resp x ∈ IR−∗) denote X(t, x, ω) the ask
price (resp bid price) at time t per share for an order of size x, which means that

X(t, x, ω) = Πt,∞(xX)(ω)
x . In the following proposition we list the properties of

the supply curve.

Proposition 4.1 1. For any x, (t, ω) → X(t, x, ω) is a càdlàg stochastic
process.

12



2. There is an equivalent probability measure R such that for any x ≥ 0, the
process X(t, x, .) is a R-supermartingale and for any x ≤ 0 the process
X(t, x, .) is a R-submartingale.

3. For any τ , x ∈ IR∗ → X(τ, x, .) ∈ L∞(Ω,Fτ , P ) is non decreasing. ∀τ ,
P a.s., x → X(τ, x, ω) is continuous, admits a right and a left derivative
at any point. It is twice derivable almost surely.

4. limit in zero: For any τ , x → X(τ, x, .) has a right (resp. a left) limit in
0 in L∞(Ω,Fτ , P ) denoted X+(τ, 0, .) (resp.X−(τ, 0, .)

X+(τ, 0, .) = esssupQ∈M0(EQ(X|Fτ )

X−(τ, 0, .) = essinfQ∈M0(EQ(X|Fτ ) (15)

where M0 is the set of probability measures with zero minimal penalty in
the dual representation of the TCPP (equations (3) and (5)).

5. Asymptotic limit: For any τ ∈ IR+, X(τ, x, .) has a limit as x → +∞ (resp
x → −∞) denoted X∞(τ, .) (resp X−∞(τ, .)). X∞(τ, .) and X−∞(τ, .) are
càdlàg processes.

X∞(τ, .) = esssupQ∈M1,e(P)(EQ(X|Fτ ) (16)

X−∞(τ, .) = essinfQ∈M1,e(P)(EQ(X|Fτ ) (17)

with the notations of (3) and (4).

Proof. As the TCPP has No Free Lunch, it follows from [5] that M0 is non
empty. let R ∈M0, 1 and 2 follow then from [4] Corollary 1 of Theorem 3.
3. follows from the convexity of Πτ,∞ and normalization (i.e. Πτ,∞(0) = 0)
4. Let X ∈ L∞(Ω,F∞, P ), ∀x ∈ IR+∗, Πτ,∞(xX)

x ≥ esssupQ∈M0(EQ(X|Fτ ), so

X+(τ, 0, .) ≥ esssupQ∈M0(EQ(X|Fτ ) (18)

EP (X+(τ, 0, .) ≤ inf
x∈IR+∗

( sup
Q∈M1,e(P )

(EP (EQ(X|Fτ )−
EP (αm

τ,∞(Q)
x

)) (19)

If EP (αm
τ,∞(Q)) 6= 0, EP (αm

τ,∞(Q))

x → ∞ as x → 0. Therefore we can restrict
in (19) to probability measures Q ∼ P such that αm

τ,∞(Q) = 0 P a.s.. Choose

R ∈M0. denote Q̃ the probability measure of Radon Nykodim derivative

dQ̃

dP
= E(

dR

dP
|Fσ)

dQ
dP

E(dQ
dP |Fσ)

for all X, EQ(X|Fτ ) = EQ̃(X|Fτ ) and Q̃ ∈M0. Thus

EP (X+(τ, 0, .)) ≤ infx∈IR+∗(supQ̃∈M0 EQ̃(X)). 4. follows then from (18).
5. The increasing limit of X(t, x) as x → ∞, de�nes a sublinear No Free
Lunch TCPP. Denote it Π∞σ,τ . From the dual representation of Π, and the
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non negativity of the minimal penalty, it follows that for any X ≥ 0, for

any x ∈ IR+,
Πσ,τ (xX)

x ≤ esssupQ∈M1,e(P)(EQ(X|Fσ). Thus (Π∞)σ,τ (X) ≤
esssupQ∈M1,e(P)(EQ(X|Fσ). For any Q ∈ M1,e(P ), α0,∞(Q) < ∞ α∞0,∞(Q) =
supY ∈L∞(Ω,F∞,P )(EQ(Y )−Π∞0,∞(Y )) From the inequality Π0,∞(Y )) ≤ Π∞0,∞(Y )),
it follows that α∞0,∞(Q) < ∞. Π∞ is sublinear so α∞0,∞(Q) = 0. Thus (Π∞)σ,τ (X) ≥
esssupQ∈M1,e(P)(EQ(X|Fσ) and 5. is proved. �

In the particular case where the TCPP is calibrated on the reference family
we get the following corollary.

Corollary 4.2 Assume that the TCPP is calibrated on the reference family
((Sk)0≤k≤d, (Y l)1≤l≤p) and the limit order book (Cbid(mY l), Cask(nY l))1≤l≤p.

1. For any k, Sk(t, x, ω) = Sk(t, ω)

2. Assume that there is a transaction at time 0 on the option Y l, then
the process Y l(t, x, ω) has a limit as x tends to 0, ∀t, (Y l)+(t, 0, .) =
(Y l)−(t, 0, .) = Πt,τl

(Y l)

3. For any �nancial instrument X, the asymptotic limit X∞(t, .)is less or
equal to the surreplication price (with respect to the basic assets ((Sk)0≤k≤d),
i.e.

X∞(t, .) ≤ esssupQ∈M(S)EQ(X|Ft)(ω)

where M(S) denotes the set of all equivalent local martingale measures
for the process S = (Sk). There is equality in the above equation if and
only if the set of probability measures M1,e(P ) in the dual representation
of the TCPP is equal to M(S) (with the notations of (3) and (4).

Proof. 1 follows from de�nition of calibration.
2 As there is a transaction at time 0 on Y l, Cbid(Y l) = cask(Y l) = Π0,∞(Y l) =
−Π0,∞(−Y l). Thus,from Lemma 3.8, for any t ≥ 0, Πt,∞(Y l) = −Πt,∞(−Y l)

∀x ∈]0, 1[, −Πt,∞(−Y l) ≤ Πt,∞(−xY l)
−x ≤ Πt,∞(xY l)

x ≤ Πt,∞(Y l) Therefore

(Y l)+(t, 0, ω) = Πt,∞(Y l) = Πt,τl
(Y l)

3 follows from Theorem 3.9 and Proposition 4.1.

Remark 4.3 In this paper we work in a very general framework of illiquid
market represented by a general �ltered probability space. From a very simple
axiomatic for TCPP we have proved properties (Proposition (4.1)) satis�ed by
the supply curve associated with any �nancial product. We can compare these
properties with the properties which were assumed in [7] for one asset. Notice
�rst that our model is an in�nite dimensional model. The supply curve is de�ned
for any asset i.e; any essentially bounded random variable. We list the main
di�erences for the supply curve:
-We have proved that the sample paths are càdlàg (and therefore allow for jumps)
whereas in [7] the sample paths were assumed to be continuous.
We do not have in general a limit as x tends to 0 for S(t, x, .) but only a right
limit and a left limit.
A strong hypothesis of smoothness is made in [7]: S(t, x, ω) is assumed to be of
C2 class in x. We get here that it is twice derivable almost surely in x.
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5 Robustness for TCPP calibrated on option prices

In this section we study the robustness of TCPP calibrated on the reference
family ((Sk)1≤k≤d, (Y l)1≤l≤d) and the limit order books ((Cbid(mY l))m≤M l ,
(Cask(nY l))n≤N l .

Proposition 5.1 The maximal bid-ask interval associated to No Free Lunch
TCPP calibrated on the reference family ((Sk)1≤k≤d, (Y l)1≤l≤d) and the limit
order books ((Cbid(mY l))m≤M l , (Cask(nY l))n≤N l is given, for any �nancial as-
set X, by

[mX ,MX ] = [ inf
Q∈Me

(EQ(X) + β(Q), sup
Q∈Me

(EQ(X)− β(Q)]

with

β(Q) = sup
l

[ sup
m≤M l

((Cbid(mY l)− EQ(mY l), sup
n≤N l

EQ(nY l))− Cask(nY l)] (20)

where Me is the set of equivalent local martingale measures for (Sk)1≤k≤d

Proof. This results from Theorem 3.9.
It follows from this Proposition that a little move for Cbid(nY l) and Cask(nY l)
induces for any X a small change in the maximal bid-ask spread associated with
X. Indeed, denote β′(Q) the minimal penalty associated to No Free lunch TCPP
calibrated on the limit order books ((C ′

bid(mY l))m≤M l , (C ′
ask(nY l))n≤N l . let ε

such that ε ≥ |(Cbid(mY l) − (Cbid(mY l)| for m ≤ M l and ε ≥ |(Cask(nY l) −
(C ′

ask(nY l)| for n ≤ N l. From equation (20), it follows that |β(Q)− β′(Q)| ≤ ε
and thus |mX −m′

X | ≤ ε, |MX −M ′
X | ≤ ε for any X.

6 A hedging result for TCPP calibrated on liquid

options

The aim of this Section is to study No Free Lunch TCPP calibrated on perfectly
liquid options Y l, and to prove a hedging result.
We assume that for any of the reference options (Y l)1≤l≤d, Cbid(nY l) = Cask(nY l).
Denote Cl = Cbid(Y l) = Cask(Y l). From the convexity of n → Cask(nY l), (and
concavity of n → Cbid(nY l) it follows that nCl = Cask(nY l) = Cbid(nY l). In
that case we simply say that the TCPP is calibrated on the reference family
((Sk)0≤k≤d, (Y l)1≤l≤p) and the observed prices (Cl)1≤l≤p. Let (Πσ,τ )σ≤τ be
such a No Free Lunch TCPP. From equation (3) and Theorem 3.9 , it follows
that there is a set Q of equivalent local martingale measures for (Sk)0≤k≤d, with
α0,∞(Q) < ∞, such that

∀σ ≤ τ Πσ,τ (X) = esssupQ∈Q(EQ(X|Fσ)− αm
σ,τ (Q)) (21)

We say that the No Free Lunch TCPP is represented by the set Q.
The following lemma is a key result for the study of the hedge: the process
Zl

t = Πt,∞(Y l) is a martingale for any Q in Q.
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Lemma 6.1 Let (Πσ,τ )σ≤τ be a No Free Lunch TCPP calibrated on the refer-
ence family ((Sk)0≤k≤d, (Y l)1≤l≤p) and the prices (Cl)1≤l≤p. Then

∀1 ≤ l ≤ p, ∀σ, ∀n ∈ IN, Πσ,∞(nY l) = −Πσ,∞(−nY l)

The process Zl
t = Πt,∞(Y l) is a martingale with respect to any probability mea-

sure in Q.

Proof. For all n ∈ IN , −Π0,∞(−nY l) = Π0,∞(nY l) = nCl. From Lemma 3.8
applied with ν = 0, it follows that for any σ,

−Πσ,∞(−nY l) = Πσ,∞(nY l) (22)

The convexity of Πσ,∞ implies that

−Πσ,∞(−nY l) ≤ −nΠσ,∞(−Y l) ≤ nΠσ,∞(Y l) ≤ Πσ,∞(nY l)

From (22), it follows that any inequality in the above relation is in fact an
equality. Thus nΠσ,∞(Y l) = Πσ,∞(nY l) ∀n ∈ IZ. From equation (21), it
follows that ∀Q ∈ Q, ∀n ∈ IN , αm

σ,∞(Q) ≥ n|Πσ,∞(Y l)−EQ(Y l|Fσ)| a.s. From
the cocycle equation (6), ∀Q ∈ Q EQ(αm

σ,∞(Q)) < ∞.

Then Zl
σ = Πσ,∞(Y l) = EQ(Y l|Fσ) = EQ(Zl

τ |Fσ)a.s., ∀τ ≥ σ. �

Theorem 6.2 Let (Πσ,τ )σ≤τ be a No Free Lunch TCPP calibrated on the ref-
erence family ((Sk)0≤k≤d, (Y l)1≤l≤p) and the observed prices (Cl)1≤l≤p. Then
∀X ∈ L∞(Ω,F , P ),

Π0,∞(X) ≤ inf{x| there is h ∈ C with x + h = X} (23)

where C = (K0 − L0
+)∩L∞ and

K0 = {(H.S)∞ + (K.Z)∞ | H,K admissible and

(H.S)∞ = lim
t→∞

(H.S)t exists a.s. idem for K.Z}

This gives a better superhedge result than the usual one.

Proof. Denote Me(Sk, Zl) the set of equivalent local martingale measures
for the process (Sk, Y l). From Lemma 6.1, and part 2. of Theorem 3.9,
any probability measure in Q is an equivalent local martingale measure for
(Sk, Zl), i.e. Q ⊂Me(Sk, Zl). Therefore from equality (21), we get Π0,∞(X) ≤
supQ∈Me(Sk,Zl) EQ(X). One can now apply the superhedge result of Delbaen
and Schachermayer [9] ( Theorem 9.5.8 in [10]). This proves (23). �
Economic interpretation of this result: When the options Y l are perfectly liq-
uid, a TCPP (Π)σ,τ calibrated on the reference family ((Sk)0≤k≤d, (Y l)1≤l≤p)
and the prices (Cl)1≤l≤p is a TCPP extending the dynamics of the processes
((Sk

t )0≤k≤p, Z
l
t = EQ(Y l|Ft)1≤l≤d) where Q is any equivalent probability mea-

sure involved in the representation of (Π)σ,τ (equation (21)). The options Y l

can be used to hedge dynamically as well as the assets Sk.
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De�nition 6.3 The TCPP Π0 is said maximal among the TCPP calibrated on
the reference family (Sk, Y l) and the prices (Cl) if for any TCPP Π calibrated
on (Sk, Y l) and the prices (Cl), for any Y ≥ 0, Π(Y ) ≤ Π0(Y ).

From Theorem 6.2, we deduce the following result:

Corollary 6.4 Let Π0 be a maximal TCPP calibrated on (Sk, Y l) and the prices
(Cl) then Π0 is sublinear and represented by the set of all equivalent local martin-
gal measures for the process ((Sk, Zl)) Me(Sk, Zl). The inequality (23) becomes
an equality, leading to a perfect hedge result.

7 TCPP in a stochastic volatility model

In this Section we assume that the price process S of a primitive asset expressed
in terms of the numéraire S0 satis�es a stochastic volatility model. We assume
that for any of the Y l one observes a limit order book. The notations for the
limit order book are those of Subsection 2.2.
Assuming that the reference family satis�es the No Free Lunch condition, there
is (Theorem 2.4) an equivalent local martingale measure R for the process S
such that for any l, Cl

bid ≤ ER(Y l) ≤ Cl
ask. We take this probability measure

R as the new reference probability. Therefore we assume that the price process
S of the primitive asset expressed in terms of the numéraire S0 is given by

dSt

St
= σt(

√
1− ρ2dW 1

t + ρdW 2
t )

dσt = α(t, St, σt)dt + γ(t, St, σt)dW 2
t

(23)

where W 1 and W 2 are two independent Brownian motions and ρ ∈]− 1, 1[.

Proposition 7.1 Any TCPP calibrated on the reference family (S, (Y l)1≤l≤p)
can be written

Πσ,τ (X) = esssup{ν| R∞
0 ν2

s ds<∞}(EQν (X|Fσ)− ασ,τ (Qν))

with

dQν

dR
= exp(−

∫ ∞

0

ρνs√
1− ρ2

dW 1
s +

∫ ∞

0

νsdW 2
s −

1
2

∫ ∞

0

ν2
s

1− ρ2
ds) (24)

Furthermore for any such TCPP for any X ∈ L∞(Ω,Ft, P ),

Π0,t(X) ≤ sup
ν

(EQν (X)− αm
0,t(Qν))

with

αm
0,τ (Qν) = sup(0, sup

τl≤τ
( sup
n≤M l

Cbid(nY l)−EQν (nY l), sup
n≤N l

EQν
(nY l)−Cask(nY l))

(25)
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Proof. From Theorem 3.9, any TCPP extending the dynamics of S has a
representation in terms of equivalent local martingale measures for S. Any
probability measure equivalent with R is characterized by its Radon Nikodym
derivative

dQ

dR
= exp(

∫ ∞

0

λsdW 1
s −

1
2

∫ ∞

0

λ2
sds +

∫ ∞

0

νsdW 2
s −

1
2

∫ ∞

0

ν2
sds) (26)

Let W 1
t (Q) = W 1

t −
∫∞
0

λsds and W 2
t (Q) = W 2

t −
∫∞
0

νsds. From Girsanov's
Theorem, (W 1

t (Q),W 2
t (Q)) is a two dimensional Brownian motion under the

probability measure Q and the dynamics of S can be written
dSt

St
= σt[(λt

√
1− ρ2 + ρνt)dt + (

√
1− ρ2dW 1

t (Q) + ρdW 2
t (Q))]

dσt = (α(t, St, σt) + νtγ(t, St, σt))dt + γ(t, St, σt))dW 2
t (Q)

(26)

Therefore Q is a local martingale measure for S if and only if λt

√
1− ρ2 +

ρνt = 0 a.s.. Let Qν be the equivalent local martingale measure of Radon
Nikodym derivative given by the formula (26) with λt = − ρνt√

1−ρ2
. Then Qν

satis�es equation (24). From Theorem 3.9, the minimal penalty has to satisfy
the threshold condition (11), leading then to the result.

8 TCPP calibrated on options from BMO mar-

tingales

8.1 General construction of TCPP calibrated on a refer-

ence family

In Section 3, we have characterized No Free Lunch TCPP calibrated on a ref-
erence family in terms of their dual representation. The next step is to con-
struct such No Free Lunch TCPP in a very general setting where the processes
(Sk)0≤k≤d can allow for jumps. Assume that the reference family satis�es the
No Free Lunch condition. Denote M the set of equivalent local martingale
measure for (Sk)0≤k≤d and

M1 = {R ∈M |∀l ∈ {1, ..., p} Cbid(nY l) ≤ ER(nY l) ≤ Cask(nY l)}

Let R ∈ M1. The conditional expectation with respect to R provides thus
a linear TCPP calibrated on the reference family. However as soon as one
calibrates on options which are not perfectly liquid, one has to construct non
linear, and even more, non sublinear TCPP in order to take care of the non
liquidity. One has introduced in [3] a general method to construct convex
TCPP starting with a stable set of equivalent probability measures and de�ning
on it a penalty. In general the penalty constructed is not the minimal one. The
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following result gives su�cient conditions on the set of probability measures and
on the penalty for the construction of TCPP calibrated on the reference family.
For the de�nition of stability of a set of probability measures we refer to [8] and
[4]. For the de�nition of locality for the penalty α we refer to [4] de�nition 5.
The cocycle condition is given by the equation (6) with α instead of αm.

Proposition 8.1 Let M be a stable set of probability measures all equivalent
to P . Let α be a non negative penalty function on M. Assume that there is
Q ∈M such that α0,∞(Q) = 0. Assume that the penalty function α is local and
satis�es the cocycle condition.
Consider the No Free Lunch TCPP (Πσ,τ )σ≤τ de�ned by

∀ X ∈ L∞(Fτ ) Πσ,τ (X) = esssupQ∈M(EQ(X|Fσ)− ασ,τ (Q)) (27)

1. The TCPP is calibrated on the reference family ((Sk)0≤k≤d, (Y l)1≤l≤p)
and the limit order books (Cbid(mY l))m≤M l , (Cask(nY l)n≤N l)1≤l≤p) if it
satis�es the two following conditions:
i) Local martingale property: Any element of M is an equivalent local
martingale measure for (Sk)0≤k≤d

ii) threshold condition for the penalty: for any R ∈M,

α0,τ (R) ≥ sup
τl≤τ

( sup
m≤M l

Cbid(mY l)−ER(mY l), sup
n≤N l

ER(nY l)−Cask(nY l))

(28)

2. It is weakly calibrated on the reference family if
i') any R ∈M with zero penalty is an equivalent local martingale measure
for Sk.
ii') threshold condition: for any R ∈M, inequality (28) is satis�ed as well
as (12) and (13) with α0,τ instead of αm

0,τ .

Proof. From Theorem 4.4 of [3] and its extended version Proposition 3 of [4],
formula (27) de�nes a time consistent dynamic pricing procedure. α0,∞(Q) = 0,
thus the minimal penalty αm

0,∞(Q) is also equal to 0. Therefore the TCPP has
No Free Lunch.
Notice that the part of the proof of Theorem 3.9 starting with �conversely� does
not use the speci�c expression of the minimal penalty. It applies to any penalty.
This proves 1 and 2. �
In order to construct a No Free Lunch TCPP calibrated on the reference family�
we start with the construction of a stable set of equivalent local martingale
measures for Sk. This is the easy part. Then we have to prove the existence of
penalties satisfying the threshold condition inequality (28), this is the di�cult
part. One has to prove that the bound is satis�ed uniformly for any R ∈M. The
examples of TCPP that we construct here belong all to the new class that we
�rst introduced in [3], using right continuous BMO martingales. For the theory
of right continuous BMO martingales we refer to Doléans-Dade and Meyer [11].
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8.2 A generic family of convex TCPP calibrated on option

prices

Assume that the locally bounded process (Sk)0≤k≤d satis�es the usual No Free
Lunch condition. Let Q0 be a local martingale measure for (Sk). For simplicity
one assumes that (Sk)0≤k≤d is a square integrable martingale with respect to
Q0.

Proposition 8.2 Let M1, ...,M j be strongly orthogonal square integrable right
continuous martingales in (Ω,F , (Ft)0≤t, P ). Assume that each M i is further-
more strongly orthogonal to the martingale (Sk)1≤k≤d. Let (Φi)1≤i≤j be a non
negative predictable processes such that the stochastic integral Φ.M i is a BMO
martingale of BMO norm mi. Any martingale in

M = {
∑

1≤i≤j

Hi.M
i, Hi predictable |Hi| ≤ Φi a.s.}

is BMO with BMO norm bounded by (
∑

1≤i≤j(m
i)2)

1
2 = m.

If m < 1
16 , Q(M) = {QM ; dQM

dP = E(M) | M ∈M} is a stable set of probability
measures which are all equivalent martingale measures for (Sk)1≤k≤d.
When the M i are continuous the preceding result is true without any restriction
on m.

Proof. From Lemma 4.11 of [3] Q(M) is a stable set of probability mea-
sures equivalent to P . From the results on strongly orthogonal martingales [18],
Chapter IV Section 3, it follows that for any M ∈M, E(M) is strongly orthogo-
nal to Sk for any k and QM is an equivalent martingale measure for (Sk)1≤k≤d.�

To construct TCPP extending the dynamics of reference assets Sk, one can
take any stable subset of the set of equivalent local martingale measures for
Sk,for example the set Q(M) of Proposition 8.2, this de�nes a TCPP cali-
brated on the reference family. As soon as one adds options in the reference
family, the threshold condition (28) has to be satis�ed. Notice that the set M1

introduced at the begining of Section 8.1 is not stable in general. Our next goal
is to construct a universal example of penalties which provides a convex TCPP
calibrated on options. The technics used are those of right continuous BMO
martingales and the proof applies to any model Sk, processes with jumps as
well as processes in a Brownian �ltration.
In [19] Schachermeyer introduced a notion of Robust No Arbitrage meaning that
there is No Arbitrage with respect to a smaller bid ask spread. In the same way
we de�ne here the notion of Robust No Free Lunch.

De�nition 8.3 The reference family ((Sk)1≤k≤d, (Y l)1≤l≤d) satis�es the Ro-
bust No Free Lunch Condition if there is ε > 0 such that is satis�es the No
Free Lunch Condition when one replaces every Cbid(Y l) (resp. Cask(Y l)) by
Cbid(Y l) + ε (resp. Cask(Y l)− ε) for any l such that Cbid(Y l) 6= Cask(Y l).
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One assumes in what follows, for simplicity, that for any l, Cl
bid 6= Cl

ask.
Denote P the predictable σ-algebra on IR+×Ω, and B(IRj) the Borel σ-algebra
on IRj .

Theorem 8.4 Assume that the reference family ((Sk)0≤k≤d, (Y l)1≤l≤d) satis-
�es the robust No Free Lunch condition with respect to the limit order books
Cbid(mY l)m≤M l , Cask(nY l)n≤N l . Denote Q0 an equivalent local martingale
measure for Sk and ε > 0 such that for any l, Cl

bid + ε < EQ0(Y
l) < Cl

ask −
ε. Let M be as in Proposition 8.2. Assume that m < 1

16 . Let Q(M) be
the corresponding set of equivalent probability measures (QM )M∈M of Radon
Nikodym derivative dQM

dQ0
= E(M). let (bi)1≤i≤j, bi : IR+ × Ω × IRj → IR+ be

non negative measurable maps with respect to the σ-algebra P × B(IRj) such
that bi(s, ω, 0, ..., 0) = 0. Assume that there is a constant B > 0 such that
bi(s, ω, x1, ..., xj) ≥ Bx2

i for all i. Denote bi(s,H1, ...,Hj) the predictable pro-
cess de�ned as bi(s,H1, ...,Hj)(ω) = bi(s, ω,H1,s(ω), ...,Hj,s(ω)). For M ∈ M
and stopping times 0 ≤ σ ≤ τ let

ασ,τ (QM ) = EQM
(

∑
1≤i≤j

τ∫
σ

bi(s,H1, ...,Hj)d[M i,M i]s|Fσ) (29)

Then
Πσ,τ (X) = esssupQM∈Q(M)(EQM(X|Fσ)− ασ,τ (QM)) (30)

de�nes a TCPP. Furthermore for B large enough, The TCPP is calibrated on
the reference family. Notice that the minimal acceptable B depends only on m,
ε, max(M l, N l) and max ||Y l||∞ and not on the dynamics of Sk nor on the set
M.

The proof is given in the Appendix.

Remark 8.5 We get a similar result for weak calibration.

9 Conclusion

The motivation of this paper was to study and construct dynamic pricing pro-
cedures assigning to any �nancial instrument a dynamic limit order book in a
arbitrage free way, extending the dynamics of given basic assets and compati-
ble with the observed limit order books for reference options. This is done by
making use of the theory of No Free Lunch TCPP introduced in [5]. We have
de�ned two notions of calibration for a Dynamic Pricing Procedure with respect
to a reference family ((Sk)0≤k≤d+1, (Y l)1≤l≤d) composed of two kinds of assets:
the basic assets (Sk)0≤k≤d+1 for which the dynamic process is assumed to be
known , and the assets (Y l)1≤l≤d) (for example options) which are only revealed
at their maturity date (the stopping time τl) and for which one observes a limit
order book at time 0. One of the basic asset S0 is assumed to be strictly pos-
itive and is taken as numéraire. The �rst notion of calibration, simply called
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calibration, assumes that the basic assets (Sk)0≤k≤d are perfectly liquid. A
TCPP is said to be calibrated on the reference family ((Sk)0≤k≤d, (Y l)1≤l≤p)
and the limit order books Cbid(mY l)m≤M l , Cask(nY l)n≤N l if it extends the
dynamics of the basic assets (Sk)0≤k≤d and it is compatible with the observed
limit order books for the options (Y l)1≤l≤p. The second notion called weak
calibration takes into account the limit order books associated with the basic
assets. We have characterized TCPP calibrated or weakly calibrated on the ref-
erence family ((Sk)0≤k≤d, (Y l)1≤l≤p) and the limit order books in terms of their
dual representation. In case of calibration, any probability measure in the dual
representation of the TCPP has to be an equivalent local martingale measure
for the process (Sk)0≤k≤d while in case of weak calibration this is only the case
for probability measures with zero penalty. In both cases there is a threshold
condition on the penalty.
We have extended to that context the notion of No Free Lunch, replacing the
usual notion of dynamic strategy with respect to the basic assets (Sk)k by
the sum of a dynamic strategy with respect to the basic assets Sk and of a
static strategy with respect to the options Y l. We have proved the follow-
ing generalization of Kreps-Yan Theorem: there is No Free Lunch with re-
spect to the reference family ((Sk)0≤k≤d, (Y l)1≤l≤p) and the limit order books
Cbid(mY l)m≤M l , Cask(nY l)n≤N l if and only if there is an equivalent local mar-
tingale measure Q for the process (Sk)0≤k≤d such that, for every l, and any
n ≥ 0, Cbid(nY l) ≤ EQ(nY l) ≤ Cask(nY l). Furthermore, the No Free Lunch
condition is also equivalent to the existence of a No Free Lunch TCPP calibrated
on the reference family.
We have illustrated our results with two examples: The �rst one is the case of
TCPP calibrated on very liquid options Cbid(nY ) = Cask(nY l) = nCl ∀n ∈ IN .
We have proved in that case that the process (Zl)t = EQ(Y l|Ft) is independent
on the probability measure Q involved in the dual representation of the TCPP.
Therefore the options can be used to hedge (dynamically) as well as the basic
assets. The second example is that of a stochastic volatility model.
We have also used the powerful technique of right continuous BMO martin-
gales in order to prove the existence of convex (not sublinear) No Free Lunch
TCPP calibrated on the reference family. We have produced a generic con-
struction of a convex No Free Lunch TCPP calibrated on the reference family
((Sk)0≤k≤d, (Y l)1≤l≤p) and the limit order books Cbid(mY l)m≤M l , Cask(nY l)n≤N l

as soon as this reference family satis�es the Robust No Free Lunch condition.
Such a No Free Lunch TCPP is constructed inside the new family �rst intro-
duced in [3]. This construction is made in a very general setting of locally
bounded stochastic processes for which jumps are allowed.
The advantage of dynamic pricing making use of TCPP is that it not only takes
into account the liquidity risk and the properties of the limit order books, but
also it induces more robustness in the prices. A small variation in the values of
the limit order books of the options on which the TCPP is calibrated induces
only a small modi�cation of the constructed TCPP.
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A Appendix

A.1 Proof of the extended First Fundamental Theorem

We prove directly the extended version formulated in Theorem 3.11, Section
3.4. It gives also a proof of Theorem 2.4 of Section 2.3.
Proof. We begin with the easiest implications.
- ii) implies iii): We de�ne the TCPP Π as follows: for any stopping times
σ ≤ τ , Πσ,τ (X) = ER(X|Fσ). As Cbid(mY l) ≤ ER(mY l) for m ≤ M l, and
ER(nY l) ≤ Cask(nY l) for any n ≤ N l, it follows that Π is calibrated on the
reference family. It has No Free Lunch as R is equivalent to P and the penalty
associated with R is equal to 0.
- iii) implies iv) is trivial.
- iv) implies i):
-Let Π be a No Free Lunch TCPP weakly calibrated on the reference family.
Consider its dual representation, equation (3). As the TCPP Π has No Free
Lunch, the setM0 of equivalent probability measures with zero minimal penalty
(equation(5)) is non empty. De�ne

(Π0)0,∞(X) = sup
Q∈M0

EQ(X)

The sets C and K̃ are those de�ned in Section 2.3. Prove that ∀X ∈ C,
(Π0)0,∞(X) ≤ 0. Let Z ∈ K̃

Z =
∑n

i=1

∑d
k=1(h

k)i(Sk
σi
− Sk

σi−1
) +

∑p
l=1(γ

l − βl)Y l + (γ0 − β0)− g

for some g ∈ L∞+ (Ω,F , P ). From Theorem 3.9, any Q in M0 is an equiva-
lent local martingale measure for the process Sk. Thus EQ(Z) =

∑p
l=1(γ

l −
βl)EQ(Y l) + (γ0 − β0)− EQ(g). As Πσ,τ is weakly calibrated on the reference
family, the minimal penalty satis�es equation (11) of Theorem 3.9. For Q ∈M0,
αm

0,∞(Q) = 0 so

EQ(Z) ≤
p∑

l=1

(Cask(γlY l)− Cbid(βlY l)) + (γ0 − β0) ≤ 0.

As C is the weak* closure of the cone generated by K̃, it follows that for every
X ∈ C, and Q in M0, EQ(X) ≤ 0. And then (Π0)0,∞(X) ≤ 0.
- Assume now that X ∈ C ∩L∞+ (Ω,F , P ). X ≥ 0. If X 6= 0 in L∞, there
is α ∈ IR∗+ and A with P (A) > 0 such that X ≥ α1A. Let Q ∈ M0. Q is
equivalent with P , so (Π0)0,∞(X) ≥ αQ(A) > 0. Thus we get a contradiction.
So C ∩L∞+ (Ω,F , P ) = {0}.
- i) implies ii): The proof follows that of Theorem 5.2.2. of [10]. Let f ∈
L∞+ (Ω,F , P ). As C is closed for the weak * topology, and {f} is compact, from
Hahn Banach Theorem, there is g ∈ L1, g 6= 0, such that

supZ∈CE(gZ) < E(fg)

As C is a cone, supZ∈CE(gZ) = 0 and 0 < E(fg). We have −L∞+ ⊂ C so g ≥ 0.
The exhaustion argument of the proof of Theorem 5.2.2. of [10] applies without
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any change. So we get g0 strictly positive P a. s. such that supZ∈CE(g0Z) = 0.
Denote Q the probability measure whose Radon Nikodym derivative is g0

E(g0)
.

{(H.S)∞} where H is an admissible simple strategy is a vector space contained
in C. The linear form EQ is non positive on this vector space. So it has to be
identically equal to 0 on it.
It follows then from Lemma 5.1.3. of [10] that S is a local martingale un-
der Q. Let l ∈ {1...p} and m ≤ M l. As −mY l + Cbid(mY l) ∈ K (βl =
m γ0 = Cbid(mY l)) it follows that Cbid(mY l)−EQ(mY l) ≤ 0. In the same way
EQ(nY l) ≤ Cask(nY l) for n ≤ N l (as nY l − Cask(nY l) ∈ K). �

A.2 Proof of Theorem 8.4

Before starting the proof of the theorem we prove two lemmas.

Lemma A.1 Assume that M is a Q0-martingale of BMO norm less than m,
m < 1

16 . For any stopping time T ,

|1− E(M)T | ≤ |MT |+ [M,M ]T )exp(|M |T + [M,M ]T ) (A-1)

Proof. Recall ([18]) that

E(M)T = exp(MT −
1
2
([M,M ]c)T )Πs≤T (1 + ∆Ms)e−∆Ms

As m < 1, each term of the product is positive and less than 1, therefore

E(M)T − 1 ≤ exp(MT −
1
2
([M,M ]c)T )− 1

≤ exp(|MT |)− 1 ≤ |MT |exp(|MT |) (A-2)

Apply the inequality 1+x
ex ≥ e−x2

, for |x| < 1
16 , (cf [11])with x = ∆Ms

E(M)T ≥ exp(−|MT | − [M,M ]T ) (A-3)

Therefore
1− E(M)T ≤ (|MT |+ [M,M ]T ) (A-4)

Lemma A.1 follows from the equations (A-2) and (A-4).

Lemma A.2 Let m < 1
16 . There is a constant K and an integer r > 0 depend-

ing only on m such that for any Q0-martingale M of BMO norm less than m,
for any stopping time T ,

EQ0(|1− E(M)T |) ≤ K((EQ0([M,M ]T ))
1
r (A-5)
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Proof. Choose q a positive integer q > 1
1−16m . let p ∈ IR+ such that

1
p + 1

q = 1, then 16pm < 1. In all the following E means EQ0 . From Lemma
A.1 and Hölder inequality, it follows that

E(|E(MT )− 1|) ≤ {E(|M |qT )
1
q + E([M,M ]qT )

1
q }{E(exp(p|M |T + p[M,M ]T ))}

1
p

(A-6)
Applying the Cauchy Schwartz inequality,

E(exp(p|M |T + p[M,M ]T )) ≤ {E(exp(2p|M |T ))} 1
2 {E(exp(2p[M,M ]T ))} 1

2

(A-7)
Applying John Nirenberg inequality and Lemma 1 of [11], it follows from (A-7)
that

E(exp(p|M |T + p[M,M ]T )) ≤ (
1

(1− 16pm)
)

1
2 (

1
(1− 2pm2)

)
1
2 (A-8)

On the other hand, again from Cauchy Schwartz inequality,

E((|M |T )q)
1
q ≤ {E([M,M ]T )}

1
2q {E(|M |2q−2

T )}
1
2q (A-9)

E(([M,M ]T )q)
1
q ≤ {E([M,M ]T }

1
2q ){E([M,M ]2q−1

T )}
1
2q (A-10)

From Burkholder Davis Gundy inequality, (Theorem 30 of [16], there is a
constant c such that

E(|M |2q−2
T ) ≤ cE([M,M ]q−1

T )

and for every integer n, it follows from the proof of Lemma 1 of [11] that

E([M,M ]nT ) ≤ m2nn! (A-11)

This proves the lemma with r = 2q.

Lemma A.3 There is a constant K1 depending only on m such that for any
Q0-martingale M of BMO norm less than m, for any stopping time T ,

E([M,M ]T ) ≤ K1(E(E(M)T [M,M ]T ))
1
2 (A-12)

Proof. From Cauchy Schwartz inequality, and then Hölder inequality with p
such that 16pm < 1 q ∈ IN∗, and 1

p + 1
q = 1, as in the preceding proof,

E([M,M ]T ) ≤ {E(E(M)T [M,M ]T )} 1
2 {E([M,M ]qT }

1
2q {E(E(M)−p

T )}
1
2p

(A-13)
From equation (A-11) E(([M,M ]T )q) ≤ m2qq! From inequalities (A-3) and (A-
8),

E((E(M)T )−p) ≤ (
1

(1− 16pm)
1

(1− 2pm2)
)

1
2

This proves equation (A-12).
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Proof of Theorem 8.4. From proposition 5 of [4], we already know that
equation (30) with (29) de�nes a TCPP. ασ,τ (Q0) = 0 for every σ ≤ τ , thus
the TCPP has No Free Lunch. Furthermore, from Proposition 8.2, for any M ,
QM is an equivalent martingale measure for every Sk. So from proposition
8.1, we just have to �nd a condition on B such that the threshold condition
(28) is satis�ed for any stopping time T , and any probability measure QM in
Q(M). By hypothesis on bi, for any M , for any stopping time T α0,T (QM ) ≥
BEQM

([M,M ]T ). Thus it is enough to verify that

BEQ0(E(M)T [M,M ]T ) ≥ sup
{l | τl≤T}

( sup
m≤M l

((Cbid(mY l)− EQM
(mY l)),

sup
n≤N l

(EQM
(nY l)− Cask(nY l)) (A-14)

Choose 0 < ε ≤ inf{1≤l≤p}(Cask(Y l) − EQ0(Y
l), EQ0(Y

l) − Cbid(Y l)) , so for

any m ≤ M l, EQ0(mY l) − Cbid(mY l) ≤ mε. (idem for Cask(nY l). Thus to
satisfy (A-14), it is su�cient that for any n ≤ sup(M l, N l)

BE(E(M)T [M,M ]T ) + nε ≥ sup
{l | τl≤T}

n|(EQ0(Y
l)− EQM

(Y l)| (A-15)

Notice that (EQ0(Y
l)− EQM

(Y l) = EQ0((1− E(M)T )Y l).
From Lemma A.2, and Lemma A.3, there is K̃ depending only on m and ε

such that for any l,

|E(E(MT )− 1)Y l)| ≤ K̃||Y l||∞(E(E(M)T [M,M ]T ))
1
2r (A-16)

There is a constant B0 > 0 such that for any x > 0,

K̃x
1
2r (max(||Y l||∞) ≤ B0x + ε

Then B ≥ max(M l, N l)B0 satis�es the required conditions. �
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