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Abstract. We are interested in the long time behavior of a two-type density-dependent
biological population conditioned to non-extinction, in both cases of competition or weak
cooperation between the two species. This population is described by a stochastic Lotka-
Volterra system, obtained as limit of renormalized interacting birth and death processes.
The weak cooperation assumption allows the system not to blow up. We study the exis-
tence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium
conditioned to non extinction. To this aim we generalize in two-dimensions spectral tools
developed for one-dimensional generalized Feller diffusion processes. The existence proof of
a quasi-stationary distribution is reduced to the one for a d-dimensional Kolmogorov diffu-
sion process under a symmetry assumption. The symmetry we need is satisfied under a local
balance condition relying the ecological rates. A novelty is the outlined relation between
the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed
semi-group. By a comparison between the killing rates for the populations of each type
and the one of the global population, we show that the quasi-stationary distribution can be
either supported by individuals of one (the strongest one) type or supported by individuals
of the two types. We thus highlight two different long time behaviors depending on the
parameters of the model: either the model exhibits an intermediary time scale for which
only one type (the dominant trait) is surviving, or there is a positive probability to have
coexistence of the two species.

Key words : Stochastic Lotka-Volterra systems, multitype population dynamics, quasi-stationary
distribution, Yaglom limit, coexistence.
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1. Introduction.

Our aim in this paper is to study the long time behavior of a two dimensional stochastic Lotka-
Volterra process Z = (Z1

t , Z
2
t )t≥0, which describes the size of a two-type density dependent

population. It generalizes the one-dimensional logistic Feller diffusion process introduced in
[7], [14] and whose long time scales have been studied in details in [3].

More precisely, let us consider the coefficients

γ1, γ2 > 0 , r1, r2 > 0 ; c11, c22 > 0 ; c12, c21 ∈ R. (1.1)
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The process Z, called Stochastic Lotka-Volterra process (SLVP), takes its values in (R+)2

and is solution of the following stochastic differential system:

dZ1
t =

√
γ1Z1

t dB
1
t + (r1Z1

t − c11(Z1
t )2 − c12Z

1
t Z

2
t ) dt,

dZ2
t =

√
γ2Z2

t dB
2
t + (r2Z2

t − c21Z
1
t Z

2
t − c22(Z2

t )2) dt, (1.2)

where B1 and B2 are independent standard Brownian motions independent of the initial
data Z0. The extinction of the population is modelled by the absorbing state (0, 0), and the
mono-type populations by the absorbing sets R∗+ × {0} and {0} × R∗+.

This system (1.2) can be obtained as an approximation of a renormalized two-types birth
and death process in case of large population and small ecological timescale. (The birth and
death rates are at the same scale than the initial population size). This microscopic point
of view has been developed in [3] concerning the logistic Feller equation and can be easily
generalized to multi-type models. The coefficients r1 and r2 are the asymptotic growth rates
of 1-type’s and 2-type’s populations. The positive coefficients γ1 and γ2 can be interpreted
as demographic parameters describing the ecological timescale. The coefficients cij , i, j = 1, 2
represent the pressure felt by an individual holding type i from an individual with type j. In
our case, the intra-specific interaction rates c11 and c22 are assumed to be negative, modelling
a logistic intra-specific competition, while the inter-specific interaction rates given by c12 and
c21 can be positive or negative. In case where c12 > 0, individuals of type 2 have a negative
influence on individuals of type 1, while in case where c12 < 0, they cooperate. Our main
results proved in this paper require two main assumptions. The first one is a symmetry
assumption between the coefficients γi and cij ,

c12γ2 = c21γ1,

that we will call “balance condition” ((2.5)). It means that the global rates of influence of
each species on the other one are equal. In particular, the coefficients c12 and c12 have both
the same sign. The second main assumption ((2.8)) is required in the cooperative case (when
c12 > 0 and c21 > 0) and is given by

c11c22 − c12c21 > 0,

which compares the intra-specific to the inter-specific interacting rates. This condition will
be called the “weak cooperative case”.
Because of the quadratic drift terms and of the degeneracy of the diffusion terms near 0,
the SLVP can blow up and its existence has to be carefully studied. We prove the existence
of solutions to (1.2) in the competition case and in the weak cooperative case. In the first
case it results from a comparison argument with independent one-dimensional logistic Feller
processes. In the general case, the existence of the process (Zt)t and a non blow-up condition
are less easy to prove. If (2.5) holds, a change of variable leads us to study a Kolmogorov
process driven by a Brownian motion and the existence of the process is proved using a well
chosen Lyapounov funtion. That can be done if (2.8) is satisfied and we don’t know if this
condition is also necessary to avoid the blow-up. Under conditions (2.5) and (2.8) we will
also prove that (0, 0) is an absorbing point and that the process converges almost surely to
this point. That means that population goes to extinction with probability one. We will
show this property in two steps. We will firstly show that the process is attracted by one of
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the boundaries R+×{0} or {0}×R+. Once the process has attained one of them, it behaves
as the logistic Feller stochastic differential equation and tends almost surely to (0, 0) in finite
time. Therefore, our main interest in this paper is to study the long time behavior of the
process (Zt)t conditioned to non-extinction, either in the competition case, or in the weak
cooperative case, under the balance condition.
Let us outline that the long time behavior of the SLVP considerably differs from the one of
the deterministic Lotka-Volterra system which corresponds to the case where γ1 = γ2 = 0.
Indeed, a fine study shows that in this case, (cf. Istas [12]), the point (0, 0) is an unstable
equilibrium and there are three possible non trivial strongly stable equilibria: either the
remaining population is totally composed of individuals of type 1 (the trait 1 is dominant),
or a similar situation holds for trait 2 or co-existence of the two types occurs. In particular,
the population cannot goes to extinction.
In this paper, we want to describe the asymptotic behavior of the SLVP conditioned to
non-extinction, thus generalizing the one-dimensional case studied in [3]. This question
is of great importance in Ecology. Although the limited competition resources entail the
extinction of the population, the extinction time can be large compared to human timescale
and certain species may survive for long periods teetering on the brink of extinction before
dying out. A natural biological question is which type will eventually survive conditionally
to non-extinction. We will show that in the long-time limit, the two types do not always
disappear at the same time scale in the population and that a transient mono-type state
can appear. More precisely, we will give some conditions on parameters ensuring mono-type
transient states (preserving a dominant trait in a longer time scale ) or coexistence of the two
traits. The main tool of our study will be spectral theory and the conditions will be obtained
by comparing the smallest eigenvalues of different killed operators. Indeed, conditioning
to non-extinction, the process can either stay inside the positive quadrant (coexistence of
traits) or attain one of the boundary (extinction of the other trait). Let us remark that in a
work in progress [4], Champagnat and Diaconis are studying a similar problem for two-types
birth-and-death processes conditioned to non-extinction.
The approach we develop is based on the mathematical notion of quasi-stationarity (QSD)
which has been extensively studied. (See [16] for a regularly updated extensive bibliography,
[17, 20] for a description of the biological meaning, [8, 10, 19] for the Markov chain case and
[3] for the logistic Feller one-dimensional diffusion). In the latter, the proofs are based on
spectral theory, and the reference measure is the natural symmetric measure for the killed
process. We will follow these basic ideas.
In our two-dimensional SLVP case, the existence of a symmetric measure will be equivalent
to the balance condition and we are led to study the Kolmogorov equation obtained by
change of variable. Before studying the conditioning to non-extinction, we will in a first
step study the long time behavior of the population conditioned to the coexistence of the
two types (the process stays in the interior of the quadrangle (R∗+)2 as soon as coexistence
between the two types holds). Our theoretical results, generalizing what has be done in [3]
to any dimension are stated in the Appendix. The arguments implying the existence of a
quasi-stationary distribution are mainly similar. The novelty will concern the uniqueness
of the quasi-stationary distribution, which is shown to be related to the ultracontractivity
of the killed process semi-group. We prove that the Kolmogorov process associated with
the SLVP satisfies this setting and conclude to the existence and uniqueness of the QSD
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for the Kolmogorov process conditioned to coexistence. To deduce a similar result for the
process conditioned to non-extinction we need to carefully compare the boundaries hitting
times, and the extinction time. That will give us our main theorem (Theorem 4.1) on the
Kolmogorov system. Let us summarize here what does it means coming back to the stochastic
Lotka-Volterra process.

Theorem 1.1. 1) Under assumptions (2.5) and (2.8), the SLVP is well defined on R+ and
goes to extinction in finite time with probability one.
2) The long-time behavior of its law conditioned to non-extinction depends on the starting
point z and is given as follows.

• For all z1 > 0, if z = (z1, 0), then for all A ⊂ R∗+ × R+,

P(z1,0)(Zt ∈ A|T0 > 0) = (m1 ⊗ δ0)(A),

where m1 is the unique QSD of the logistic Feller process (Y 1
t )t defined in (2.1).

• For all z2 > 0, if z = (0, z2), then for all A ⊂ R+ × R∗+,

P(0,z2)(Zt ∈ A|T0 > 0) = (δ0 ⊗m2)(A),

where m2 is the unique QSD of (Y 2
t )t defined in (2.2).

• There is a unique quasi-stationary distribution m on (R+)2\{(0, 0)}, such that for all
z = (z1, z2) with z1 > 0, z2 > 0, for all A ⊂ (R+)2\{(0, 0)},

Pz(Zt ∈ A|T0 > 0) = m(A),

where T0 is the extinction time.
• If λ1, (resp. λ1,1, λ1,2) denotes the positive killing rates of the global population,

(resp. the population of type 1, of type 2), we get
– Competition case: λ1 > λ1,1 + λ1,2 and m is given by

m = δ0 ⊗m2 +m1 ⊗ δ0.

Furthermore when λ1,2 > λ1,1 (resp. <), m1 (resp. m2) is equal to 0.
In other words, the model exhibits an intermediary time scale when
only one type (the dominant trait) is surviving.

– Weak cooperation case: we have two different situations.
∗ If λ1 > λ1,i for i = 1 or i = 2, the conclusion is the same as in the

competition case.
∗ If λ1 < λ1,i for i = 1 and i = 2, then

m = δ0 ⊗m2 +m1 ⊗ δ0 +mD,

where mD is proportional to ν1.
We thus have a positive probability to have coexistence of the two
species.

Let us remark that our analysis is not reduced to the 2-dimensional case, as it is made clear
in the Appendix. All the machinery is still available in any dimension. However the explicit
conditions on the coefficients are then more difficult to write down. That is why we restrict
ourselves to the 2-dimensional setting.
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2. Existence of the SLVP and boundary hitting times

Let us denote D = (R∗+)2. Let us remark that ∂D, R+ × {0} and {0} × R+ are absorbing
sets for the process (Zt)t, as also {(0, 0)}. We introduce

• T0: the first hitting time of {(0, 0)},
• T1: the first hitting time of R+ × {0},
• T2: the first hitting time of {0} × R+,
• T∂D: the first hitting time of ∂D (or the exit time of D).

Of course, some of these stopping times are comparable. For example

T∂D ≤ T1 ≤ T0 ; T∂D ≤ T2 ≤ T0.

On the other hand, T1 and T2 are not directly comparable.

Let us prove the existence of the SLVP in some cases.

Proposition 2.1. If c12 > 0 and c21 > 0, then there is no blow-up and the process (Zt)t is
well defined on R+. In addition, for all x ∈ (R+)2,

Px(T0 < +∞) = 1

and there exists λ > 0 such that

sup
x∈(R+)2

Ex(eλT0) < +∞.

Proof. In this competition case, the existence of the SLVP is easy to show, by using a com-
parison argument (cf. Ikeda-Watanabe [11] Chapter 6 Thm 1.1), and the population process
(Zt)t does not blow up. Indeed, the coordinate (Z1

t )t, resp. (Z2
t )t) can be upper-bounded by

the solution of the logistic Feller equation

dY 1
t =

√
γ1Y 1

t dB
1
t + (r1Y 1

t − c11(Y 1
t )2) dt, (2.1)

respectively

dY 2
t =

√
γ2Y 2

t dB
2
t + (r2Y 2

t − c22(Y 2
t )2) dt. (2.2)

These one-dimensional processes have been introduced in [7, 14] and studied in details in [3].
It’s easy to deduce (by stochastic domination) that the processes Z1 and Z2 become extinct
in finite time.
The a.s. finiteness of each Ti, hence of T∂D, thus follows. It has also been shown in [3] that
the absorption times from infinity have exponential moments.

�

Let us now consider the general case. We reduce the problem by a change of variables.

Let us define (X1
t , X

2
t ) = (2

√
Z1

t /γ1, 2
√
Z2

t /γ2). We obtain via Itô’s formula

dX1
t = dB1

t +
(
r1X

1
t

2
− c11γ1(X1

t )3

8
− c12γ2X

1
t (X2

t )2

8
− 1

2X1
t

)
dt (2.3)

dX2
t = dB2

t +
(
r2X

2
t

2
− c22γ2(X2

t )3

8
− c21γ1X

2
t (X1

t )2

8
− 1

2X2
t

)
dt .
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In all the following, we will focus on the symmetric case where X is a Kolmogorov diffusion,
that is a Brownian motion with a drift in gradient form as

dXt = dBt − ∇V (Xt)dt. (2.4)

Indeed, all the results of spectral theory obtained in the Appendix have been stated for such
processes. Obvious computation shows that it requires the following balance condition on
the coefficients:

c12 γ2 = c21 γ1. (2.5)
This relation is a symmetry assumption between the global interaction rate of type 2 on type
1 and of type 1 on type 2. (Recall that the coefficients γi describe the ecological timescales). If
(2.5) holds, the coefficients c12 and c21 have the same sign, allowing inter-species competition
(c12 and c21 > 0) or inter-species cooperation (c12 and c21 < 0).

Under this condition, the process X is called the stochastic Lotka-Volterra Kolmogorov pro-
cess (SLVKP). The potential V is then equal to

V (x1, x2) =
1
2

∑
i=1,2

(
log(xi) +

ciiγi(xi)4

16
− ri(xi)2

2

)
+ α(x1)2(x2)2, (2.6)

where

α =
c12 γ2

16
=
c21 γ1

16
. (2.7)

Let us prove the existence of the SLVKP using the L2-norm as a Lyapunov function, under
a weak cooperative assumption, that is if

α < 0 and c11c22 − c12c21 > 0. (2.8)

Theorem 2.2. Assume balance condition (2.5), weak cooperative assumption (2.8), then
there is no blow-up and the processes (Xt), and then (Zt), are well defined on R+.
In addition, for all x ∈ D,

Px(T∂D < +∞) = 1,

for both X and Z.

Hence, under the assumptions of Theorem 2.2, Hypothesis (H1) of Definition A.3 in Appendix
is satisfied, what we shall use later.

Proof. Let us compute

d‖X‖2
t = d(X1

t )2 + d(X2
t )2

= 2(X1
t dB

1
t +X2

t dB
2
t ) +

2∑
i=1

(Xi
t)

2

(
ri −

ciiγi(Xi
t)

2

4
− cijγj(X

j
t )2

4

)
dt.

The quartic function appearing in the drift term is thus −q((x1)2, (x2)2), with

q(u, v) = c11γ1(u)2 + c22γ2(v)2 + 32αuv.

Decomposing

q(u, v) = c11γ1

(
u+

16α
c11γ1

v

)2

+
v2

c11γ1
(c11c22 − c12c21)γ1γ2 ,
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and since α < 0, a necessary and sufficient condition for q(u, v) to be positive on the first
quadrant (u > 0, v > 0), and to go to infinity at infinity, is thus c11c22 − c12c21 > 0 . Hence
the drift term in the previous S.D.E. is negative at infinity. It easily follows that

sup
t∈R+

E(‖Xt‖2) < +∞,

ensuring that the processes (Xt), and then (Zt) are well defined on R+.

Let us now study the hitting time of the boundary ∂D. We will compare (X1
t , X

2
t ) with the

solution of

dU1
t = dB1

t +
(
r1U

1
t

2
− c11γ1(U1

t )3

8
− c12γ2 U

1
t (U2

t )2

8

)
dt (2.9)

dU2
t = dB2

t +
(
r2U

2
t

2
− c22γ2(U2

t )3

8
− c21γ1 U

2
t (U1

t )2

8

)
dt .

Assuming (2.5) and (2.8), the diffusion process (U1
t , U

2
t ) exists and is unique in the strong

sense, starting from any point. We consider now the solution built with the same Brownian
motions as for X.
We shall see that, starting from the same (x1, x2) in the first quadrant, and for all t < T∂D,
X1

t ≤ U1
t and X2

t ≤ U2
t .

To this end we can make the following elementary reasoning. Fix ω and some t < T∂D(ω).
Let us define s → W i

s = Xi
s − U i

s for i = 1, 2 and for s ≤ t. Of course W i
0 = 0. Due to the

continuity of the paths, s 7→W i
s is of C1 class and W i solves an ordinary differential equation

such that d
ds(W

i
s)|s=0

= − 1
2xi < 0.

Moreover we remark that if at some time u ≤ t, W i
u = 0, then d

ds(W
i
s)|s=u

= − 1
2Xi

u
< 0. It

follows that W i
s ≤ 0 for 0 < s < t, yielding the desired comparison result.

Denote S∂D the hitting time of ∂D for the process U . We thus have S∂D ≥ T∂D. It is thus
enough to show that S∂D is almost surely finite. But, remark that dν = e−Q(x)dx, with

Q(x1, x2) =
∑
i=1,2

(
ciiγi(xi)4

16
− ri(xi)2

2

)
+ 2α(x1)2(x2)2, (2.10)

is an invariant (actually symmetric) bounded measure for U . The process U is thus positive
recurrent and it follows that, starting from any point in the first quadrant D, S∂D is a.s.
finite. �

These comparison arguments allow us to obtain other interesting properties of the process
X, that we collect in the next proposition

Proposition 2.3. Under the assumptions of Theorem 2.2, the following holds

• there exists λ > 0 such that supx∈D Ex(eλ T∂D) < +∞,
• for all x ∈ D, Px(T∂D = Ti) > 0 for i = 1, 2 (recall that Ti defined at the beginning

of section 2 is the hitting time of each half axis), and Px(T∂D = T0) = 0 (recall that
T0 is the hitting time of the origin).
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Proof. The first point is an immediate consequence of the same moment controls for both
Y and U , thanks to the comparison property. We already mentioned this property for Y in
Proposition 2.1.
The same holds for U since U is known to be ultra-contractive (see definition B.4 in Appendix
B2) under the hypotheses of theorem 2.2. The ultracontractivity property follows from the
fact that the invariant measure e−Q(x) dx of the process U , (Q defined in (2.10)), satisfies the
conditions of Corollary 5.7.12 of [21].
One sometimes says that X satisfies the escape condition from D.
In order to show the second point we shall introduce another process. Namely define for
i = 1, 2, H i as the solution of the following stochastic differential equation

dH i
t = dBi

t +
(
riH

i
t

2
− ciiγi(H i

t)
3

8
− 1

2H i
t

)
dt . (2.11)

Of course H1 and H2 are independent processes, defined respectively up to the hitting time
of the origin. We decide to stick H i in 0 after it hits 0, as for Xi.
On the canonical space Ωt = C([0, t], D̄) we denote by PX and PH the laws of the processes
(Xs∧T∂D

)s≤t) and (Hs∧T∂D
)s≤t) starting from the same initial point x in D. We claim that

PX and PH are equivalent. This is a consequence of an extended version of Girsanov theory
as shown in [3] Proposition 2.2. One then have that for any bounded Borel function F defined
on Ωt,

EX
[
F (ω) 1It<T∂D(ω)

]
= EH

[
F (ω) 1It<T∂D(ω) e

A(t)
]

where

A(t) = α (ω1
t )

2(ω2
t )

2 − α(x1)2(x2)2 − α

∫ t

0

(
2α (ω1

s)
2(ω2

s)
2 ((ω1

s)
2 + (ω2

s)
2)− ((ω1

s)
2 + (ω2

s)
2)

−(r1 + r2) (ω1
s)

2(ω2
s)

2 +
1
4
(c11γ1 + c22γ2) (ω1

s)
2(ω2

s)
2 ((ω1

s)
2 + (ω2

s)
2) + ((ω1

s)
2 + (ω2

s)
2)
)
ds ,

and EH (resp. EX) denotes the expectation w.r.t. to PH (resp. PX). Remark that A(t∧T∂D)
is well defined, so that the previous relation remains true without the 1It<T∂D(ω) replacing
A(t) by A(t ∧ T∂D), i.e.

EX [F (ω)] = EH
[
F (ω) eA(t∧T∂D)

]
.

This shows the claimed equivalence.
It thus remains to prove the second part of the proposition for the independent pair (H1,H2).
But as shown in [3] Proposition 2.2 again, for each i = 1, 2,

EHi [
F (ω) 1It<T0(ω)

]
= EW

[
F (ω) 1It<T0(ω) e

B(t)
]

for some almost surely finite B(t), EW being the expectation with respect to the Wiener
measure starting at xi. It follows that the PHi

law of T0 is equivalent to the Lebesgue
measure on ]0,+∞[, since the same holds for the PW law of T0. The PH law of (T1, T2) is
thus equivalent to the Lebesgue measure on ]0,+∞[⊗]0,+∞[ yielding the desired result for
H hence for X. �
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3. Existence and Uniqueness of the Quasi-Stationary Distribution for the
Absorbing Set ∂D

We can define a quasi-stationarity notion associated with each absorbing set O, ∂D, R+ ×
{0}, {0} × R+. The results developed in Section 3 will refer to the absorbing set ∂D. Its
complementary in (R+)2 is D, which is an open connected subset of R2, conversely to the
complementary of other absorbing sets.

Let us recall what a quasi-stationary distribution is. If F denotes an absorbing set for the
(R+)2-valued process Z and TF the hitting time of this set, a quasi-stationary distribution
(in short QSD) for Z and for this absorption event is a probability measure ν satisfying

Pν(Zt ∈ A | TF > t) = ν(A), (3.1)

for any Borel set A ⊆ R+
2\{F} and t ≥ 0. A specific quasi-stationary distribution is defined,

if it exists, as the limiting law, as t→∞, of Zt conditioned on TF > t, when starting from a
fixed population. That is, if for a all x ∈ R+

2 \ {F}, the limit

lim
t→∞

Px(Zt ∈ A | TF > t)

exists and is independant of x, and defines a probability distribution on R+
2 \ {F}, then it

is a QSD called quasi-limiting distribution, or (as we will do here) Yaglom limit.
It is thus well known, (see [8]), that there exists λF > 0 such that

Pν(TF > t) = e−λF t.

This killing rate λF gives the velocity at which the process issued from the ν-distribution get
to be absorbed.

Our aim is now to study the asymptotic behavior of the law of Xt conditioned on not reaching
the boundary. All the material we need will be developed in Appendix. The later essentially
extends to higher dimension the corpus of tools introduced in [3]. The spectral theory is
developed for any Kolmogorov diffusion in Rd, and for any dimension d. Then the existence
of a quasi-stationary distribution is obtained. The novelty is the uniqueness result, since it
is deduced from the ultracontractivity of the semigroup.

We will extensively refer to this Appendix, to study the problem of existence of a quasi-
stationary distribution for the SLVKP, with the potential V defined in (2.6).
We introduce the reference measure, given by

µ(dx1, dx2) = e−2V (x)dx =
1

x1 x2
e−Q(x1,x2) dx1 dx2

where Q is the symmetric polynomial of degree 4 given in (2.10).
It is the natural measure to deal with, since it makes the transition semi-group symmetric
in L2(µ). One problem we have to face is that the measure µ has an infinite mass due to
the behavior of its density near the axes. Remark that the density is integrable far from the
axes, which is equivalent to ∫

D
e−Q(x)dx < +∞. (3.2)
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This property is immediate in the competition case (cii, γi and α are positive) and has already
been shown in the proof of Theorem 2.2, when (2.8) holds.

Proposition 3.1. Assume (2.5) and (2.8). Then, there exists some C > 0 such that for all
x ∈ D,

|∇V |2(x)−4V (x) ≥ −C. (3.3)

We deduce that the semigroup Pt of the SLVKP killed at time T∂D, has a density with respect
to µ, belonging to L2(dµ).

Proof. Under (2.5) and (2.8), we have seen that the explosion time ξ is infinite and thus (A.3)
is satisfied. Then the conclusion of Theorem A.1 holds: one proves by Girsanov’s theorem
that the semigroup Pt of the SLVKP has a density with respect to µ.
Moreover, computation gives

|∇V |2(x)−4V (x) =(
− 1

2x1
+ r1

x1

2
+ c11

γ1(x1)3

8
+ 2αx1(x2)2

)2

+
(
− 1

2x2
+ r2

x2

2
+ c22

γ2(x2)3

8
+ 2α(x1)2x2

)2

+
1

2(x1)2
+
r1
2
− c11

3γ1(x1)2

8
− 2α(x2)2 +

1
2(x2)2

+
r2
2
− c22

3γ2(x2)2

8
− 2α(x1)2.

Hence, we observe that the terms in |∇V |2 − 4V playing a role near infinity are equal to
3
4( 1

x2
1

+ 1
x2
2
) (when one of the coordinates is close to zero) and to(c11γ1

8
(x1)3 + 2αx1(x2)2

)2
+
(c22γ2

8
x3

2 + 2αx2(x1)2
)2

= (x1)2
(
−c11γ1

8
(x1)2 + 2α(x2)2

)2
+ (x2)2

(
−c22γ2

8
(x2)2 + 2α(x1)2

)2
.

The two terms in factor of (x1)2 and (x2)2 in the first quantity will not be together equal to
0 as soon as α > 0 or as the determinant of the system{ c11γ1

8 Y1 + 2αY2 = 0
2αY1 + c22γ2

8 Y2 = 0.

is non zero, what is satisfied under the condition (2.8). It follows that |∇V |2(x) − 4V (x)
tends to +∞ as |x| tends to infinity. Since |∇V |2 − 4V is a smooth function in D, (3.3)
follows. Then, we deduce from Theorem A.1 that for each t > 0, the density of Pt belongs
to L2(dµ). �

Let us now state our first main result.

Theorem 3.2. Under Assumptions (2.5) and (2.8), that is if

• c12 γ2 = c21 γ1,
• if α < 0, c11c22 − c12c21 > 0,

there exists a unique quasi-stationary distribution ν1 for the stochastic Lotka-Volterra Kol-
mogorov process X, which is the quasi-limiting distribution starting from any initial distri-
bution.

10



In particular, there exists λ1 > 0 such that for all x ∈ D, for all A ⊂ D,

lim
t→∞

eλ1tPx(Xt ∈ A|T∂D > t) = ν1(A). (3.4)

Proof. The proof is deduced from Appendices A and B. Standard results on Dirichlet forms
(cf. Fukushima [9]) allow us to build a self-adjoint semigroup on L2(µ), which coincides with
Pt for bounded functions belonging to L2(µ). Its generator L is non-positive and self-adjoint
on L2(dµ), with D(L) ⊇ C∞0 (D). Its restriction to C∞0 (D) is equal to

Lg =
1
2
∆g − V.∇g , g ∈ C∞0 (D).

We now develop a spectral theory for this semigroup (also called Pt), in L2(dµ).
We check that the hypotheses (H) introduced in Definition A.3 required to apply Theorem
A.4 are satisfied under the assumptions (2.5) and (2.8). Indeed (H4) is obviously satisfied
and (H1) and (H2) are deduced from Proposition 3.1. Furthermore, using for example polar
coordinates, one easily shows that Condition (2.8) implies that

Ḡ(R) = inf{|∇V |2(x)−4V (x); |x| ≥ R and x ∈ D} ≥ cR6

for positive constant c. Thus (H3) holds.
Since Hypotheses (H) and (H1) are satisfied, Theorem A.4 implies that −L has a purely
discrete spectrum of non-negative eigenvalues and the smallest one λ1 is positive. Let us
prove that the associated eigenfunction η1 belongs to L1(dµ). We have shown in Section B.2
that η1e

−V is bounded. Thus∫
D
η1(x)dµ(x) =

∫
D
η1(x)e−2V (x)dx ≤ ‖η1e

−V ‖∞
∫

D
e−V (x)dx < +∞,

since e−V (x) = 1√
x1x2

e−
1
2
Q(x1,x2).

Thus the eigenfunction η1 belongs to L1(dµ) and therefore, as proved in Theorem B.2, the
probability measure ν1 = η1dµR

D η1dµ
is the Yaglom limit distribution.

In order to show the uniqueness of the quasi-stationary distribution, we apply Proposition
B.12 relating this uniqueness property to the ultracontractivity of the semi-group Pt. Let us
show that the sufficient conditions ensuring ultracontractivity stated in Proposition B.14 are
satisfied by the SLVKP.
The function V is bounded from below inDε = {y ∈ D; d(y, ∂D) > ε}. In addition, Condition
(2.8) implies that V̄ (R) = sup{V (x), x ∈ FD, |x| ≤ R} ≤ c′R4 and Ḡ(R) ≥ cR6, for positive
constants c′ and c. Hence Condition (B.10) in Proposition B.14 is satisfied with γk = k−3/2.
Thus the killed semi-group Pt of the SLV KP is ultracontractive and then the uniqueness of
the quasi-stationary distribution holds (cf. Proposition B.12).
Hence existence and uniqueness of the quasi-stationary distribution holds for X. �

Remark 3.3. Since the laws of Xt and Zt are related via an elementary change of variables
formula, a similar result will be true for the stochastic Lotka-Volterra process Z.

4. Explicit Quasi-stationary Equilibria - Mono-type transient states.

In the above Section we were concerned by conditioning to coexistence’s event. Let us now
come back to our initial question, that is the long time behavior of the process conditioned

11



to non-extinction. The SLVKP dynamics is particular in the sense that once hitting the
boundary ∂D, the process will no more leave it. Hence, for t ≥ T∂D the process will stay
on one half axis, and the dynamics on this axis is given by the process (H i

t)t defined in
(2.11), that has been extensively studied in [3]. Thus we know from [3] that for i = 1, 2,
there is a positive killing rate λ1,i > 0 and a unique quasi-stationary measure ν1,i on the
axis xj = 0 characterized by the ground state η1,i (eigenfunction related to λ1,i), which is a
positive function, bounded and square integrable with respect to the corresponding symmetric
measure µi on each axis. More precisely, we have

ν1,i(dxi) = η1,i(xi)µi(dxi) ,

with
µi(dxi) = e−2

R xi

1 qi(u)dudxi and qi(u) =
1
2u

− riu

2
+
ciiγi

8
.

In addition, ∀A ⊂ R∗+,

eλ1,it lim
t→∞

Pxi(Xi
t ∈ A|Ti > t) = ν1,i(A), (4.1)

We deduce from this study that for all x1 > 0, for all A ⊂ R∗+ × R+, (resp. x2 > 0 and
A ⊂ R+ × R∗+),

P(x1,0)(Xt ∈ A|T0 > t) = ν1,1 ⊗ δ0(A),
(resp. P(0,x2)(Xt ∈ A|T0 > t) = δ0 ⊗ ν1,2(A)).

We are now led to study, for x ∈ (R∗+)2 and for A ⊂ (R2\{(0, 0)}, the asymptotic behavior of

Px(Xt ∈ A |T0 > t) =
Px(Xt ∈ A)
Px(T∂D > t)

Px(T∂D > t)
Px(T0 > t)

(4.2)

where T0 is the hitting time of the origin. We have seen in the previous section that under
(2.5) and (2.8), the hitting time T∂D is almost surely finite and that for any y ∈ ∂D, T0 is
Py almost surely finite too. Let us now study the asymptotic behavior of

Px(T∂D > t)
Px(T0 > t)

.

We will compare the three different killing rates λ1, λ1,1, λ1,2 corresponding to the stopping
times T∂D, T1, T2, (recall that Ti denotes the hitting time of the axis xj = 0).

Notice that if c1,2 = 0, (X1, X2) = (H1,H2), λ1 = λ1,2 + λ1,1, ν1 = ν1,1 ⊗ ν1,2. Indeed a
standard (and elementary) result in QSD theory says that if ν is a QSD with absorbing set
C, the Pν-law of the hitting time TC of C is an exponential law with parameter λ, where λ
is exactly the killing rate. In addition, Px(TC > t) behaves like e−λt for large t. Since the
minimum of two independent exponential random variables with parameters λ1,2 and λ1,1 is
an exponential variable of parameter λ1,2 + λ1,1, we get λ1 = λ1,2 + λ1,1.

The following decomposition is the key point to prove our main theorem. For x ∈ (R+)2\{(0, 0)}

Px(T0 > t) = Px(T∂D > t) +
∑
i=1,2

Px

(
T∂D ≤ t , Xj

T∂D
= 0 , P(Xi

T∂D
,0)(T0 > t− T∂D)

)
(4.3)

where j = 1 if i = 2 and conversely. We are interested in the asymptotic behavior of this
quantity, i.e we have to compare the three killing rates λ1, λ1,1 and λ1,2.
We obtain our main result.

12



Theorem 4.1. Under (2.5) and (2.8), there exists a unique probability measure m such that
for all x ∈ D, for all A ⊂ (R+)2\{(0, 0)},

lim
t→∞

Px(Xt ∈ A |T0 > t) = ν(A).

In addition, we have the following description of ν.

• Competition case (c12 and c21 positive). We have λ1 > λ1,1 + λ1,2, and the support
of the QSD in included in the boundaries.

Furthermore when λ1,2 > λ1,1 (resp. <), ν is given by ν1,1 ⊗ δ0 (resp. δ0 ⊗ ν1,2).
In other words, the model exhibits an intermediary time scale for which only one

type (the dominant trait) is surviving.

• Cooperation case (c12 and c21 negative). We have two different situations.
– If λ1 > λ1,i for i = 1 or i = 2, the conclusion is the same as in the competition

case.
– If λ1 < λ1,i for i = 1 and i = 2, then

ν =
1

1 +
∑2

i,j=1
cj

λ1,i−λ1

(
c2

λ1,1 − λ1
ν1,1 ⊗ δ0 + δ0 ⊗

c1
λ1,2 − λ1

ν1,2 + ν1

)
, (4.4)

where
cj = Pν1(X

j
T∂D

= 0).
We thus have a positive probability to have coexistence of the two species.

Remark 4.2. The only remaining case is the one where λ1 = λ1,1 = λ1,2. However the
proof of the theorem indicates that this situation is similar to the competition case, though
we have no rigorous proof of it. In the discrete setting (as claimed in [4]), a fine analysis of
Perron-Frobenius type is in accordance with our guess.

Proof. Our domination arguments allow us to compare the killing rates :

• The competition case. This is the case c12 > 0. In this case we can show with a
similar argument as in the proof of Theorem 2.2 that starting from the same initial
point, Xi

t ≤ H i
t for i = 1, 2. Hence λ1 ≥ λ1,1 + λ1,2. Since the killing rates are

positive, it follows that λ1 > λ1,i for i = 1, 2. In particular Ex

[
eλ1,iT∂D

]
< +∞.

Hence

lim inf
t→+∞

eλ1,it Px

(
T∂D ≤ t , Xj

T∂D
= 0 , P(Xi

T∂D
,0)(T0 > t− T∂D)

)
=

= lim inf
t→+∞

Ex

(
1IT∂D≤t 1IXi

T∂D
=0 e

λ1,iT∂D eλ1,i(t−T∂D)P
(0,Xj

T∂D
)
(T0 > t− T∂D)

)
≥ Ex

(
1IXi

T∂D
=0 e

λ1,iT∂D η1,i(Xi
T∂D

)
)
> 0 ( at least for one i),

according to Fatou’s lemma, the positivity of the ground state and by Proposition
2.3. It follows that the rate of decay of Px(T0 > t) is at most e−λ1,it, while the one of
Px(T∂D > t) is e−λ1t, hence as t→ +∞,

Px(Xt ∈ A |T0 > t) → 0 ,

if A ⊂ D. Hence, the support of the quasi-stationary distribution will be included
in the boundaries. Thanks to Proposition 2.3, we know that both terms in the sum
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∑
i=1,2 in (4.3) are positive, so that the leading term in the sum will be equivalent to

Px(T0 > t). If λ1,1 > λ1,2 this leading term is of order e−λ1,2t, the proof being exactly
the same as before. The value of the quasi-stationary distribution follows.

• The weak cooperative case. This is the case if c1,2 < 0. Here a comparison
argument gives λ1 ≤ λ1,1 + λ1,2. But there is no a priori reason for λ1 to be smaller
than λ1,i. In particular if λ1 > λ1,i for i = 1 or 2, we are in the same situation as in
the competition case, and the quasi-limiting distribution is supported by ∂D because
one exits from D by hitting xj = 0 with a positive probability as we mentioned in
proposition 2.3.

It remains to look at the case λ1 ≤ λ1,i for i = 1, 2.
Denote by ψj the law of T∂D when the process exits D by hitting xj = 0. Denote

by ζi
s the conditional law of Xi

T∂D
knowing T∂D = s and Xj

T∂D
= 0. Then

eλ1t Px

(
T∂D ≤ t , Xj

T∂D
= 0 , P(Xi

T∂D
,0)(T0 > t− T∂D)

)
=

∫ +∞

0
eλ1t 1Is<t Eζi

s
(1IT0>t−s)ψj(ds).

It has been proved in Corollary 7.9 of [3] that for any λ < λ1,i,

sup
θi

Eθi [eλT i
0 ] < +∞

where θi describes the set of all probability measures on xj = 0, xi > 0 and T i
0 is the

first hitting time of 0 for the one dimensional logistic Feller diffusion H i.
Hence Eζi

s
(1IT0>t−s) ≤ C e−λ(t−s) for some universal constant C and all s. It follows

that, provided λ1 < λ1,i (in which case we choose λ1 < λ < λ1,i), for all T > 0,

lim
t→+∞

∫ T

0
eλ1t 1Is<t Eζi

s
(1IT0>t−s)ψj(ds) = 0 .

It remains to study

lim
t→+∞

eλ1t Px

(
t ≥ T∂D > T , Xj

T∂D
= 0 , P(Xi

T∂D
,0))(T0 > t− T∂D)

)
.

To this end we first remark that for T large enough we may replace Px by Pν1 . Indeed,
denote

h(T, t, y) = Py

(
t− T ≥ T∂D > 0 , Xj

T∂D
= 0 , P(Xi

T∂D
,0)(T0 > t− T − T∂D)

)
.

Since ν1 is the Yaglom limit related to D and 0 ≤ h(T, t, y) ≤ 1 for all y ∈ D and all
T < t, for ε > 0 one can find T large enough such that for all t > T ,

Px

(
t ≥ T∂D > T , Xj

T∂D
= 0 , P(Xi

T∂D
,0)(T0 > t− T∂D)

)
=

= Ex(1IT∂D>T h(T, t,XT ))
≈ε Eν1(1IT∂D>T h(T, t,XT ))

= Pν1

(
t ≥ T∂D > T , Xj

T∂D
= 0 , P(Xi

T∂D
,0)(T0 > t− T∂D)

)
where a ≈ε b means that the ratio a/b satisfies 1− ε ≤ a/b ≤ 1 + ε.
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Now, since ν1 is a quasi-stationary distribution, starting from ν1, the law of T∂D

is the exponential law with parameter λ1, so that ψj(ds) = cj λ1 e
−λ1sds where cj =

Pν1(X
j
T∂D

= 0) is the exit probability first hitting the half-axis j. In addition the
conditional law ζi

s does not depend on s, we shall denote it by πi from now on. This
yields

eλ1t Pν1

(
t ≥ T∂D > T , Xj

T∂D
= 0 , P(Xi

T∂D
,0)(T0 > t− T∂D)

)
= eλ1t

∫ t

T
cj λ1 e

−λ1s Pπi(T0 > t− s) ds

= cj λ1

∫ t

T
e−(λ1,i−λ1)(t−s)

(
eλ1,i(t−s) Pπi(T0 > t− s)

)
ds .

Recall that ν1,i is the unique Yaglom limit on axis i. As shown in [3], for any initial
law π, in particular for πi, limt→+∞ eλ1,it Pπ(T0 > t) = 1. Using Lebesgue bounded
convergence theorem we thus obtain that for all T > 0,

lim
t→+∞

eλ1t Pν1

(
t ≥ T∂D > T , Xj

T∂D
= 0 , P(Xi

T∂D
,0)(T0 > t− T∂D)

)
=

cj λ1

λ1,i − λ1
.

Since the result does not depend upon T , we may use our approximation result of
Px by Pν1 for all ε hence finally obtain for all x,

lim
t→+∞

eλ1t Px

(
t ≥ T∂D > T , Xj

T∂D
= 0 , P(Xi

T∂D
,0)(T0 > t− T∂D)

)
=

cj λ1

λ1,i − λ1
.

Let us now consider A ⊂ R2\{(0, 0)}. To compute Px(Xt ∈ A, T0 > t), we have to
write A = (A∩D)+(A∩R∗+×{0})+(A∩{0}×R∗+) and we will compute separately
the three terms. Let us first remark that Since ν1 is the unique QSD related to the
absorbing set ∂D, it is equal to the Yaglom limit and thus

Px(Xt ∈ A ∩D)
Px(T∂D > t)

→t→+∞ ν1(A ∩D).

Let us now write A1 = A ∩ R∗+ × {0}. Thus

Px(Xt ∈ A1)
Px(T∂D > t)

=
Px(Xt ∈ A1)

Px(T 1 > t, T 2 = T∂D)
Px(T 1 > t, T 2 = T∂D)

Px(T∂D > t)
.

By a similar reasoning as previously, one can prove that Px(Xt∈A1)
Px(T 1>t,T 2=T∂D)

→t→+∞

ν1,1(A1) and that Px(T 1>t,T 2=T∂D)
Px(T∂D>t) →t→+∞

c2λ1
λ1,1−λ1

. A similar result inverting indices
1 and 2 holds for the third term. That concludes the proof of (4.4), in the case where
λ1 < λ1,i, for i = 1, 2.

This result together with the competition case indicates (but we do not have any
rigorous proof of this) that if λ1 = λ1,i for some i, then the QSD (conditioned to
hitting the origin) is again supported by the axes.

�
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The conclusion of this study is partly intuitive. In the competition case, one of the species
will kill the other one before dying. In the cooperation case, apparently, all can happen,
including coexistence of the two types up to a common time of extinction. The problem is
to know whether all situations for the killing rates are possible or not.
Here is an heuristic simple argument (to turn it in a rigorous one involves some technicalities):
Fix all coefficients equal say to 1 except c12 = c21 = −c with c > 0. Condition (2.8) reads
0 < c < 1. In this situation λ12 = λ11 = λ and both λ and λ1 depend continuously on c.
When c→ 0 (near the independent case) we know that ν concentrates on both axes. When
c → 1 the rate λ1 of return from infinity decreases to 0 (this is the point to be carefully
checked) so that there is some intermediate value cc where the phase transition λ = λ1

occurs.

Appendix A. Killed Kolmogorov diffusion processes and their spectral theory.

Let D be an open connected subset of Rd, V a C2 function defined on D. We introduce the
stochastic differential equation

dXt = dBt − ∇V (Xt)dt , X0 = x ∈ D , (A.1)

for which a pathwise unique solution exists up to an explosion time ξ. The law of the process
starting from x will be denoted by Px, and for a non-negative measure ν on D we denote by
Pν =

∫
Px ν(dx).

For a subset A of the closure D̄ of D and for ε > 0 we introduce

T ε
A = inf {s ≥ 0 ; d(Xs, A) < ε} , TA = lim

ε→0
T ε

A , (A.2)

where d(., .) denotes the usual euclidean distance. T ε
A and TA are thus stopping times for

the natural filtration. We shall be mainly interested to the cases when A is a subset of the
boundary ∂D.
Our first hypothesis is that the process cannot explode unless it reaches the boundary i.e

for all x ∈ D, ξ ≥ T∂D , Px almost surely. (A.3)

If D is bounded, (A.3) is automatically satisfied. If D is not bounded, it is enough to find
some Lyapunov function. We shall make some assumptions later on implying that a specific
function is a Lyapunov function, so the discussion on (A.3) will be delayed.

The peculiar aspect of gradient drift diffusion process as (A.1) is that the generator L defined
for any function g ∈ C∞ by

L =
1
2

∆ − ∇V.∇ , (A.4)

is symmetric w.r.t. the measure µ defined by

µ(dx) = e−2V (x) dx . (A.5)

The following properties of the process can be proved exactly as Proposition 2.1, Theorem
2.2 and the discussion at the beginning of Section 3 in [3].
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Theorem A.1. Assume that (A.3) holds. Then there exists a self-adjoint semi-group (Pt)
on L2(µ) such that for all bounded Borel function f ,

Ptf(x) := Ex[f(Xt) 1It<T∂D
].

Moreover for any bounded Borel function F defined on Ω = C([0, t], D) it holds

Ex

[
F (ω) 1It<T∂D(ω)

]
= EWx

[
F (ω) 1It<T∂D(ω) exp

(
V (x) − V (ωt)−

1
2

∫ t

0
(|∇V |2 −∆V )(ωs)ds

)]
where EWx denotes the expectation w.r.t. the Wiener measure starting from x ∈ D.

It follows that for all x ∈ D and all t > 0 there exists some density r(t, x, .) that verifies

Ptf(x) =
∫

D
f(y) r(t, x, y)µ(dy)

for all bounded Borel function f .

If in addition there exists some C > 0 such that |∇V |2(y)−∆V (y) ≥ −C for all y ∈ D, then
for all t > 0 and all x ∈ D, r(t, x, ·) ∈ L2(µ) with∫

D
r2(t, x, y)µ(dy) ≤ (1/2πt)

d
2 eCt e2V (x) . (A.6)

Remark A.2. If V (x) → +∞ as x → ∞ in D, the condition |∇V |2(y) −∆V (y) ≥ −C for
all y ∈ D is sufficient for (A.3) to hold. Just use Ito’s formula with V as in [18] Theorem
2.2.19. ♦

We thus have that for any measurable and compact subset A ⊂ D and any x ∈ D,

Px(Xt ∈ A , T∂D > t) =
∫

Py(Xt−1 ∈ A , T∂D > t− 1) r(1, x, y)µ(dy) (A.7)

=
∫
Pt−1(1IA)(y) r(1, x, y)µ(dy)

=
∫

1IA(y) (Pt−1r(1, x, .))(y)µ(dy) .

Hence, the long time behavior of the law of the killed process is completely described by
Ptr(1, ., .).
Since both 1IA and r(1, x, .) are in L2(µ), the L2 spectral theory of Pt is particularly relevant.

This spectral theory can be deduced from the much well known spectral theory for Schrödinger
operators, thanks to the following standard transform: define for f ∈ L2(D, dx) (resp.
f ∈ C∞0 (D))

P̃t(f) = e−V Pt(f eV ) , L̃f =
1
2

∆f − 1
2

(|∇V |2 −∆V ) f . (A.8)

P̃t is then a self-adjoint strongly continuous semi-group on L2(D, dx) whose generator coin-
cides with L̃ on C∞0 (D). Notice that P̃t has a stochastic representation as a Feynman-Kac
semi-group, i.e.

P̃tf(x) = EWx

[
f(ω(t)) 1It<T∂D

exp
(
− 1

2

∫ t

0
(|∇V |2 −∆V )(ωs)ds

)]
. (A.9)
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The spectral relationship is clear: if λ is some eigenvalue for P̃t associated to ψ (i.e. P̃t(ψ) =
e−λtψ), it is an eigenvalue of Pt associated with η = eV ψ and conversely.

For simplicity we shall impose conditions ensuring that the spectrum is discrete, in particular
reduced to the pure point spectrum. Necessary and sufficient conditions for this property to
hold have been obtained by Maz’ya and Shubin (see [15]) extending results by Molchanov in
1953. The criterion is written in terms of Wiener capacity, hence not very easy to directly
read on the potential V . We shall here assume a less general but more tractable condition
taken from the Euclidean case explained in chapter 3 of Berezin and Shubin [1]. To this end
we now introduce our main hypotheses:

Definition A.3. (1) We say that hypothesis (H1) is satisfied if (A.3) holds and if for all
x ∈ D,

Px(T∂D < +∞) = 1 .
(2) Hypothesis (H2) holds if

G(y) = |∇V |2(y)−∆V (y) ≥ −C > −∞
for all y ∈ D .

(3) Hypothesis (H3) holds if

Ḡ(R) = inf {G(y); |y| ≥ R and y ∈ D} → +∞ as R→∞ .

(4) We say that hypothesis (H4) holds if for all R > 0 one can find an increasing se-
quence of compact sets Kn(R) such that the boundary of Kn(R) ∩ D̄ is smooth and⋃

n(Kn(R) ∩ D̄) = B̄(0, R) ∩ D̄, where B̄(0, R) is the closed Euclidean ball of radius
R.

For simplicity we say that (H) holds when (A.3) and (H2)-(H4) are satisfied.

We may now state

Theorem A.4. Assume that (H) is satisfied, then −L has a purely discrete spectrum 0 ≤
λ1 < λ2 < .... Each associated eigenspace Ei is finite dimensional. If (H1) holds, λ1 > 0.
Furthermore E1 is one dimensional and we may find a (normalized) eigenfunction η1 which
is everywhere positive. In particular for all f, g in L2(µ),

lim
t→+∞

eλ1t 〈g, Ptf〉µ = 〈g, η1〉 〈f, η1〉 .

Proof. The proof of the first statement is similar to the one of Theorem 3.1 in [1], replacing
B(0, R) therein by D ∩B(0, R). Hypothesis (H4) here is useful to show that the embedding
H1(B(0, R)∩D) ↪→ L2(B(0, R)∩D) is compact. Indeed the result is known replacing B(0, R)
by Kn(R) (due to the smoothness of the boundary). To get the compactness result, it is then
enough to use a diagonal procedure.
λ1 ≥ 0 is obvious since −L is a non-negative operator.
It directly follows from the representation formula in Theorem A.1 (or (A.9)) that the semi-
group is positivity improving (i.e. if f ≥ 0 and f 6= 0, Ptf(x) > 0 for all x ∈ D and all
t > 0). The proof of the second statement (non degeneracy of the ground state η1) is thus
similar to the one of Theorem 3.4 in [1].
Finally, as in [3] section 3, hypothesis (H1) implies that for f ∈ L2(µ), Ptf goes to 0 in L2(µ)
as t→ +∞. This shows that λ1 > 0. �
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Remark A.5. Contrary to the one dimensional case, for i ≥ 2 the eigenspaces are not
necessarily one dimensional.

Appendix B. Quasi-stationary distributions and Yaglom limit in D.

The aim of this section is to study the asymptotic behavior of the law of Xt conditioned on
not reaching the boundary.

B.1. The general result. The first result is an immediate consequence of the spectral
theory.

Proposition B.1. Assume that hypothesis (H) is satisfied. If A ⊂ D is such that 1IA ∈ L2(µ),
then for all x ∈ D,

lim
t→+∞

eλ1t Px(Xt ∈ A , T∂D > t) = 〈1IA, η1〉 η1(x) .

In particular if η1 /∈ L1(µ), limt→+∞ Px(Xt ∈ A |T∂D > t) = 0 .

Proof. Recall (A.7), i.e. Px(Xt ∈ A , T∂D > t) =
∫

1IA(y) (Pt−1r(1, x, .))(y)µ(dy). Since both
1IA and r(1, x, .) are in L2(µ) we may apply Theorem A.4 and get

lim
t→+∞

eλ1(t−1) Px(Xt ∈ A , T∂D > t) = 〈1IA, η1〉 〈r(1, x, .), η1〉 .

Since η1 is an eigenfunction it holds

eλ1 〈r(1, x, .), η1〉 = eλ1P1η1(x) = η1(x),

where equalities hold in L2(µ). Since η1 satisfies L̃η1 = −λ1 η1 in D, standard results in
p.d.e.’s theory show that η1 is regular (C2) in D, hence these equalities extend to all x ∈ D.
This yields the first statement.
For the second statement, choose some increasing sequence Dn of compact subsets of D, such
that

⋃
nDn = D. It holds

Px(Xt ∈ A |T∂D > t) =
Px(Xt ∈ A , T∂D > t)
Px(Xt ∈ D , T∂D > t)

≤ Px(Xt ∈ A , T∂D > t)
Px(Xt ∈ Dn , T∂D > t)

so that according to what precedes for all n,

lim sup
t→+∞

Px(Xt ∈ A |T∂D > t) ≤ 〈1IA, η1〉
〈1IDn , η1〉

.

The infimum over n on the right hand side is equal to 0 as soon as
∫
D η1dµ = +∞, hence

the result. �

In view of what precedes, a non trivial behavior of the conditional law implies that η1 ∈ L1(µ).
Conversely this property is enough to get the following theorem whose statement and proof
are the same as Theorem 5.2 in [3]. Observe that the only thing we have to do is to control
Pt1IA for sets A of possible infinite µ mass.
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Theorem B.2. Assume that hypothesis (H) holds and that η1 ∈ L1(µ).
Then dν1 = η1dµ/

∫
D η1(y)µ(dy) is a quasi-stationary distribution, namely for every t ≥ 0

and any Borel subset A of D,

Pν1(Xt ∈ A |T∂D > t) = ν1(A) .

Also for any x > 0 and any Borel subset A of D,

lim
t→+∞

eλ1t Px(T∂D > t) =
(∫

D
η1(y)µ(dy)

)
η1(x) , (B.1)

lim
t→+∞

eλ1t Px(Xt ∈ A , T∂D > t) =
(∫

A
η1(y)µ(dy)

)
η1(x) .

This implies that
lim

t→+∞
Px(Xt ∈ A |T∂D > t) = ν1(A) ,

and the probability measure ν1 is the Yaglom limit distribution.

Remark B.3. The proof of Theorem 5.2 in [3] lies on the following estimate

r(t, x, y) ≤ C(x) e−λ1t η1(y)

for all x, y in D ((0,+∞) in [3]), t > 1 and some function C(x). This result is still true here
and the proof based on the Harnack’s inequality is similar. ♦

B.2. Ground state estimates. We wish now to give tractable conditions for η1 to be in
L1(µ). Of course if µ is bounded there is nothing to do since η1 ∈ L2(µ), so that this
subsection is only interesting for unbounded µ. For simplicity of notation we assume that
the origin 0 ∈ D̄c so that if x ∈ D, |x| ≥ α > 0. The results of this subsection are adapted
from Section 4 in [3].

Recall that η1 = eV ψ1 where ψ1 is the ground state of L̃ (cf. (A.8)), i.e. the (positive and
normalized) eigenfunction of L̃ associated to −λ1. So in order to get some estimates on η1

it is enough to get some estimates on ψ1. Since ψ1 = eλ1 P̃1(ψ1) it is interesting to prove
contractivity properties for P̃1.
Let us first recall the definition of ultracontractivity.

Definition B.4. A semi-group of contractions (Qt)t≥0 is said to be ultracontractive if Qt

maps continuously L2(µ) in L∞(µ) for any t > 0.
Remark that by duality, and thanks to the symmetry of µ, Qt also maps continuously L1(µ)
to L2(µ).

Proposition B.5. Assume that Hypothesis (H2) and (A.9) are satisfied. Then P̃t is ultra-
contractive. It follows that ψ1 = η1e

−V is bounded.

Proof. We may compare the fundamental solution (kernel) of P̃t with the one of the Schrödinger
equation with constant potential as in [1] by directly using the representation (A.9).
Introduce the Dirichlet heat semi-group in D i.e.

PD
t f(x) = EWx [f(ω(t)) 1It<T∂D

] =
∫

D
f(y) pD

t (x, y) dy . (B.2)

20



Hypothesis (H2) and (A.9) immediately imply that

p̃t(x, y) ≤ eCt/2 pD
t (x, y) ≤ eCt/2 (2πt)−d/2 e|x−y|2/2t (B.3)

where p̃t denotes the (symmetric) kernel of P̃t w.r.t. the Lebesgue measure.
(B.3) shows that P̃t has a bounded kernel for all t > 0, and hence that P̃t is ultracontractive.
In particular ψ1 is bounded ψ1 = eλ1 sinceP̃1(ψ1), hence η1 e

−V is bounded. More generally
any eigenfunction ψk is bounded. �

From the previous proposition, we deduce that η1 ∈ L1(µ) as soon as
∫
e−V (x)dx < +∞. One

can improve this result. Recall that pD
1 denotes the Dirichlet heat kernel defined in (B.2).

Notice that
∫
D pD

1 (x, y) dy = Wx(T∂D > t) goes to zero as x tends to the boundary.

Proposition B.6. Assume that hypothesis (H) is fulfilled. Assume in addition that there
exists some R > 0 such that the following is satisfied∫

D∩{d(x,∂D)>R}
e−2V (x) dx < +∞ and

∫
D∩{d(x,∂D)≤R}

(∫
D
pD
1 (x, y) dy

)
e−V (x) dx < +∞ .

(B.4)

Then η1 ∈ L1(µ). More generally any eigenfunction ηk ∈ L1(µ).

Proof. Since ηk is normalized,∫
D∩{d(x,∂D)}

ηk(x) dµ ≤

(∫
D∩{d(x,∂D)}

e−2V (x) dx

)1/2

< +∞ .

Now∫
D∩{d(x,∂D)≤R}

ηk(x) dµ =
∫

D∩{d(x,∂D)≤R}
ψk(x) e−V (x) dx

=
∫

D∩{d(x,∂D)≤R}

(∫
D
eλk ψk(y) p̃1(x, y) dy

)
e−V (x) dx

≤ eC/2 eλk ‖ ψk ‖∞
∫

D∩{d(x,∂D)≤R}

(∫
D
pD
1 (x, y) dy

)
e−V (x) dx

and the result follows. �

Remark B.7. Remark that we can replace pD
1 by any pD

s with s > 0 in the previous proof.

B.3. Rate of convergence. According to the spectral representation we may decompose
each function in L2. We introduce some notation.

Definition B.8. We denote by E2 the eigenspace associated with λ2. We know that dim(E2) =
n2 < +∞ and we may choose an orthonormal basis of E2, (η2,1, ..., η2,n2). We denote by pr⊥

the orthogonal projection onto the orthogonal of Rη1 ⊕ E2.

We thus have that

Pt−1r(1, x, .) = e−λ1tη1(x) η1 + e−λ2t
n2∑
i=1

η2,i(x) η2,i + e−λ3(t−1) h(t, x, .) (B.5)
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where h(t, x, .) is orthogonal to Rη1⊕E2 and such that ‖ h(t, x, .) ‖L2(µ)≤‖ pr⊥r(1, x, .) ‖L2(µ).
Hence (recall (A.7)) if 1IA ∈ L2(µ),

Px(Xt ∈ A , T∂D > t) = e−λ1t〈1IA, η1〉 η1(x) + e−λ2t
n2∑
i=1

η2,i(x) 〈1IA, η2,i〉 (B.6)

+ e−λ3(t−1) 〈h(t, x, .), 1IA〉 .

If we could replace A by D we would obtain an expansion of the conditional probability
Px(Xt ∈ A |T∂D > t). But actually we have

Lemma B.9. If (H) and (B.4) are satisfied, P1 is a bounded operator from L∞(µ) to L2(µ).

Assume firstly the Lemma B.9. Then we may write

Px(T∂D > t) = Pt(1ID)(x) = Pt−1(P1(1ID))(x)

with P1(1ID) ∈ L2(µ). Note that

〈P1(1ID), ηk〉 =
∫

D
e−λk ηk dµ

since (B.4) implies that each eigenfunction ηk is in L1(µ). We thus deduce the

Proposition B.10. If (H) and (B.4) are satisfied then for all x ∈ D and all measurable
subset A ⊂ D it holds

lim
t→+∞

e(λ2−λ1)t (Px(Xt ∈ A |T∂D > t)− ν1(A)) =∑n2
i=1 η2,i(x) (〈1IA, η2,i〉〈1ID, η1〉 − 〈1ID, η2,i〉〈1IA, η1〉)

η1(x) (〈1ID, η1〉)2
.

It remains to prove Lemma B.9. To this end let us first state an upperbound for p̃t.

Lemma B.11. If hypothesis (H) is fulfilled, there exist a constant M and a non-negative
function B satisfying limu→+∞B(u) = +∞ such that for any x, y in D,

0 < p̃1(x, y) ≤M e−|x−y|2/4 e−B(|x|∨|y|) .

Proof. We can obtain an upper bound for p̃t, when hypothesis (H) is fulfilled. To this end,
for a non-negative f but this time ε = |x|/2 we write∫

D
f(y) p̃t(x, y) dy = EWx

[
f(ω(t)) 1It<τx(ε) 1It<T∂D

exp
(
− 1

2

∫ t

0
(|∇V |2 −∆V )(ωs)ds

)]
+ EWx

[
f(ω(t)) 1IT∂D>t≥τx(ε) exp

(
− 1

2

∫ t

0
(|∇V |2 −∆V )(ωs)ds

)]
≤ e−t Ḡ(|x|/2)/2 EWx

[
f(ω(t)) 1It<T∂D)

]
+ eCt/2 EWx

[
f(ω(t)) 1IT∂D>t≥τx(ε)

]
The first term in the sum above is less than

e−t Ḡ(|x|/2)/2

∫
f(y) pD

t (x, y) dy .
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For the second term we shall assume that the support of f is included in the ball B(x, ε/2).
Recall that for a brownian motion starting at x, the exit distribution from B(x, ε) is uniform
on the sphere S(x, ε). Hence

EWx
[
f(ω(t)) 1IT∂D>t≥τx(ε)

]
≤ EWx

[
f(ω(t)) 1It≥τx(ε)

]
≤

∫
f(y) EWx

[
1It≥τx(ε)

(∫
S(x,ε)

γt−τx(ε)(z, y)dSz

)]
dy

where γ is the ordinary heat kernel. Since |z − y| > ε/2 in the above formula,

γu(z, y) = (2πu)−d/2 e|z−y|2/2u

≤ (2πu)−d/2 e−ε2/8u ≤ e−d/2

(
π ε2

2d

)−d/2

,

the latter inequality being obtained by an easy optimization in u. Since |x| ≥ α this quantity
is bounded on D by some constant B. But

EWx
[
1It≥τx(ε)

]
≤ Ke−ε2/8td

for some constant K depending on d only. So

EWx
[
f(ω(t)) 1IT∂D>t≥τx(ε)

]
≤ BK e−|x|

2/32td

∫
f(y) dy

and gathering all the previous results we obtain

if |x− y| ≤ |x|/4 ; p̃t(x, y) ≤ M
(
(2πt)−d/2 e−t Ḡ(|x|/2)/2 + e−|x|

2/32td
)
, (B.7)

for some constant M . If |x− y| ≥ |x|/4, (B.3) furnishes

p̃t(x, y) ≤ eCt/2 (2πt)−d/2 e−|x|
2/32t .

Define

B(u) =
1
2

min (Ḡ(u/2)/2 , (u2/32d)) . (B.8)

We have shown that there exists some constant M such that p̃1(x, y) ≤ M e−2B(|x|), but
since p̃1 is symmetric the same holds replacing |x| by |y| and finally |x| by max(|x|, |y|).
Taking the geometric average of this estimate and (B.3) ends the proof. �

Proof. of Lemma B.9: let us consider a bounded function ‖g‖∞ ≤ 1. Then P1g(x) =
eV (x) P̃1(e−V g)(x). According to (B.4) and lemma B.11,∫

D∩{d(x,∂D)≤R}
|P̃1(e−V g)(x)|dx ≤
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≤
∫

D∩{d(x,∂D)≤R}

(∫
D∩{d(y,∂D)>R}

e−V (y)p̃1(x, y)dy

)
dx

+M

∫
D∩{d(x,∂D)≤R}

(∫
D∩{d(y,∂D)≤R}

e−V (y)pD
1 (x, y)dy

)
dx

≤ M

(∫
D∩{d(y,∂D)>R}

e−2V (y)dy

)1/2

×

∫
D∩{d(y,∂D)>R}

(∫
D∩{d(x,∂D)≤R}

e−|x−y|2/4 e−B(|x|∨|y|) dx

)2

dy

1/2

+M

∫
D∩{d(y,∂D)≤R}

e−V (y)

(∫
D
pD
1 (x, y) dx

)
dy

is finite (recall that pD
1 (x, y) = pD

1 (y, x)). Hence 1Id(x,∂D)≤R P̃1(e−V g) ∈ L1(dx). Since P̃t is ul-
tracontractive, P̃1 is a bounded map from L1(dx) to L2(dx). It follows that P̃1(1Id(x,∂D)≤R P̃1(e−V g)) ∈
L2(dx).
In addition ∫

D∩{d(x,∂D)>R}
|P̃1(e−V g)(x)|2dx ≤

∫
D∩{d(x,∂D)>R}

e−2V (x)dx < +∞ ,

i.e. 1Id(x,∂D)>R P̃1(e−V g) ∈ L2(dx) so that P̃1(1Id(x,∂D)>R P̃1(e−V g)) ∈ L2(dx).

Summing up yields that P̃2(e−V g) ∈ L2(dx).
Actually we may replace 1 by s > 0 as remarked in remark B.7, thus replace 2 by 1 in the
previous result. �

B.4. Uniqueness of the quasi-stationary distribution. In [3] Theorem 7.2 we derived
a necessary and sufficient condition for ν1 to be the only quasi-limiting distribution, i.e. to
satisfy limt→+∞ Pν(Xt ∈ A |T∂D > t) = ν1(A) for all initial distribution ν. In that case ν1 is
the only quasi-stationary distribution. (Recall that in [3], D = R+). This condition is very
close to the ultracontractivity of the semi-group Pt.
We shall not try here to obtain such a criterion, but only a sufficient condition based on the
previous remark.

Proposition B.12. Assume that (H) and (B.4) are satisfied. If Pt is an ultracontractive
semi-group, for all initial distribution ν and all Borel subset A ⊂ D

lim
t→+∞

Pν(Xt ∈ A |T∂D > t) = ν1(A) .

In particular ν1 is the unique quasi-stationary distribution.

Proof. Since Pt is ultracontractive, it turns out, as proved in [6] Theorem 1.4.1, that L1(µ)∩
L∞(µ) which is included into L2(µ), is invariant under Pt. So Pt extends as a contraction
semi-group on all Lp(µ).
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Now, according to Theorem A.1 we know that Pν(Xt ∈ A , T∂D > t) =
∫
A rν(t, y)µ(dy) with

rν(t, .) =
∫
r(t, x, .)ν(dx) ∈ L1(µ) and rν(t+ s, y) = Ps(rν(t, .))(y). Hence for t > 2,

Pν(Xt ∈ A , T∂D > t) =
∫

D
1IA Pt−1(rν(1, .)) dµ

=
∫

D
P1(1IA)Pt−2(rν(1, .)) dµ .

But thanks to Lemma B.9 and to ultracontractivity, both P1(1IA) and Pt−2(rν(1, .)) are in
L2(µ). Furthermore eλ1(t−3) Pt−2(rν(1, .)) converges strongly in L2 to 〈P1(rν(1, .)), η1〉 η1 as
t→ +∞. Hence

lim
t→+∞

Pν(Xt ∈ A |T∂D > t) =
〈P1(1IA), η1〉
〈P1(1ID), η1〉

= ν1(A)

since η1 ∈ L1(µ). �

It remains to give tractable conditions for Pt to be ultracontractive. To this end we shall use
the ideas introduced in [13] and later developed in [2] in particular. The next lemma is the
key

Lemma B.13. (see [13]) Assume that (H) and (B.4) are satisfied. If for all t > 0 there
exists c(t) such that for all x ∈ D,

eV (x) EWx

[
1IT∂D>t e

− 1
2

R t
0 G(ωs)ds

]
≤ c(t) , (B.9)

then Pt is ultracontractive. (Recall that G(y) = |∇V |2(y)−4V (y)).
Conversely this condition is necessary if we assume in addition that

∫
D e

V (x)µ(dx) < +∞.

Proof. The proof is the same as in [13]. It is given for the sake of completeness.
Recall that the heat semi-group on D is ultracontractive, i.e. for all non-negative f ∈ L2(dx),

sup
x∈D

EWx [1IT∂D>t f(ωt)] ≤ (πt)−
1
4 ‖ f ‖L2(dx) .

For a non-negative g ∈ L2(dµ), f = eV g ∈ L2(dx) so that using Theorem A.1

Ptg(x) = eV (x) EWx

[
1IT∂D>t f(ωt) e−

1
2

R t
0 G(ωs)ds

]
≤ eV (x) EWx

[
1IT∂D>t/2 e

− 1
2

R t/2
0 G(ωs)ds EWωt/2

[
1IT∂D>t/2 f(ω′t/2) e

− 1
2

R t/2
0 G(ω′s)ds

]]
≤ e

Ct
4 (πt)−

1
4 ‖ g ‖L2(dµ) e

V (x) EWx

[
1IT∂D>t/2 e

− 1
2

R t/2
0 G(ωs)ds

]
.

Hence if (B.9) is satisfied,

Ptg(x) ≤ c(t/2)e
Ct
4 (πt)−

1
4 ‖ g ‖L2(dµ)

for all x ∈ D, i.e. Ptg is bounded and Pt is ultracontractive. (B.9) is thus a sufficient
condition. It is also necessary once eV ∈ L1(µ), since

Pt(eV )(x) = eV (x) EWx

[
1IT∂D>t e

− 1
2

R t
0 G(ωs)ds

]
,

as it can be observed in the Girsanov formula stated in Theorem A.1. �
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Papers [13] and [2] contain several methods to prove (B.9). The most adapted one to our
situation is the “ well method” based on the Girsanov transform (Theorem A.1).
To this end we shall introduce some notation :

• for R > 0, AR = D ∩ {|x| ≤ R},
• V̄ (R) = supx∈AR

V (x) (be careful that there is no absolute value),
• for ε > 0, Dε = {y ∈ D , d(y, ∂D) > ε} and Sε = inf{t > 0 , ω(t) ∈ Dc

ε},
• for k ∈ N∗ , ek = inf{t > 0 , ω(t) ∈ Ak}.

We then have the following analogue of Theorem 3.3 in [13]

Proposition B.14. Assume that (A.3), (H2) and (H3) are satisfied. We shall also assume
that for all ε > 0, V is bounded from below on Dε. Let ak = Ḡ(k), bk = V̄ (k) and γk be such
that

∑∞
k=1 γk < +∞. Pt is ultracontractive as soon as the following holds:

for all β > 0 ,
∞∑

k=1

exp
(

1
2

(bk+1 − β γk ak)
)
< +∞ . (B.10)

Proof. The first step is to be convinced that Lemma 3.1 in [13] is still true i.e if τR = inf{t >
0 , ωt ∈ AR} and x /∈ AR ,

eV (x) EWx

[
1IT∂D>τR

e−
1
2

R τR
0 G(ωs)ds

]
≤ eV̄ (R) .

Define Mt = e−V (ωt)− 1
2

R t
0 G(ωs)ds. Thanks to our hypothesis on V and (H2), Mt∧τR∧Sε is

actually a bounded martingale. The result follows by making successively t go to infinity and
ε go to 0.
Once this is proved the rest of the proof is exactly the same as in [13] except that we have
to replace the stopping times τj therein by ej ∧ Sε and then make ε go to 0 again. �
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Statistique et Probabilités, UMR C 5583, 118 route de Narbonne, F-31062 Toulouse cedex 09.

E-mail address: cattiaux@math.univ-toulouse.fr
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