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Abstract

Our aim is to analyze the various energy functionals appearing in
the physics literature and describing the behavior of a Bose-Einstein
condensate in an optical lattice. We want to justify the use of some
reduced models and control the error of approximation. For that pur-
pose, we will use the semi-classical analysis developed for linear prob-
lems related to the Schrödinger operator with periodic potential or
multiple wells potentials. We justify, in some asymptotic regimes, the
reduction to low dimensional problems and analyze the reduced prob-
lems.

1 Introduction

1.1 The physical motivation for Bose-Einstein conden-
sates in optical lattices

Superfluidity and superconductivity are two spectacular manifestations of
quantum mechanics at the macroscopic scale. Among their striking charac-
teristics is the existence of vortices with quantized circulation. The physics
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of such vortices is of tremendous importance in the field of quantum fluids
and extends beyond condensed matter physics. The advantage of ultracold
gaseous Bose-Einstein condensates is to allow tests in the laboratory to study
various aspects of macroscopic quantum physics. There is a large body of
research, both experimental, theoretical and mathematical on vortices in
Bose-Einstein condensates [PeSm, PiSt, Af1, LSSY]. Current physical in-
terest is in the investigation of very small atomic assemblies, for which one
would have one vortex per particle, which is a challenge in terms of detec-
tion and signal analysis. An appealing option consists in parallelizing the
study, by producing simultaneously a large number of micro-BECs rotating
at the various nodes of an optical lattice [Sn]. Experiments are under way.
A major topic is the transition from a Mott insulator phase to a superfluid
phase. We refer to the paper of Zwerger [Z] and the references therein for
more details. Our framework of study will be in the mean field regime where
the condensate can be described by a Gross-Pitaevskii type energy with a
term modeling the optical lattice potential. The mean field description of
a condensate by the Gross-Pitaevskii energy has been derived as the limit
of the hamiltonian for N bosons, when N tends to infinity [LSY, LS] in the
case of a condensate without optical lattice. The scattering length aN of the
interaction in the N -body problem is such that NaN → g. The rigorous
derivation in the case of an optical lattice where there are fewer atoms per
site is nevertheless open.

In a one-dimensional optical lattice, the condensate splits into a stack
of weakly-coupled disk-shaped condensates, which leads to some intriguing
analogues with high-Tc superconductors due to their similar layered struc-
ture [SnSt1, SnSt2, KMPS, ABB1, ABB2, ABS]. Our aim, in this paper, is
to address mathematical models that describe a BEC in an optical lattice.
Related models have been analyzed in [Af2] with Gamma convergence tech-
niques. The theory which we will develop is inspired by a series of physics
papers [Sn, SnSt1, SnSt2, KMPS, STKB]. We want to justify their reduc-
tion to simpler energy functionals in certain regimes of parameters and in
particular understand the ground state energy. This relies on cases where
the problem becomes almost linear in some direction.

The ground state energy of a rotating Bose-Einstein condensate is given
by the minimization of

QΩ(Ψ) :=∫

R3

(
1

2
|∇Ψ− iΩ× rΨ|2 − 1

2
Ω2r2 |Ψ|2 + (V (r) + Wε(z))|Ψ|2 + g|Ψ|4

)
dxdydz ,

(1.1)
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under the constraint
∫

R3

|Ψ(x, y, z)|2 dxdydz = 1 , (1.2)

where

• r2 = x2 + y2 , r = (x, y, z) ,

• Ω ≥ 0 is the rotational velocity along the z axis,

• Ω× r = Ω(−y, x, 0) ,

• g ≥ 0 is the scattering length.

The experimental device leading to the realization of optical lattices requires
a trapping potential V (r) given by

V (r) =
1

2

(
ω2
⊥r2 + ω2

zz
2
)
, (1.3)

corresponding to the magnetic trap. We assume that the radial trapping
frequency is much larger than the axial trapping frequency, that is

0 ≤ ωz << ω⊥ . (1.4)

We will always assume the condition :

0 ≤ Ω < ω⊥ (1.5)

for the existence of a minimizer: the trapping potential has to be stronger
than the centrifugal force. The presence of the one dimensional optical lattice
in the z direction is modeled by

Wε(z) =
1

ε2
w(z) , (1.6)

where 1
ε2

is the lattice depth1, and w is a positive T -periodic function. In
the whole paper, we will assume :

Assumption 1.1.
The potential w is a C∞ even, non negative function on R which is T -periodic
and admits as unique minima the points kT (k ∈ Z). Moreover these minima
are non degenerate. Thus,

w(z + T ) = w(z) , w(0) = 0 , w′′(0) > 0 , w(z) > 0 if z 6∈ TZ . (1.7)
1called Vz in Snoek [Sn]
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An example is

w(z) = sin2(
2πz

λ
) (1.8)

and λ is the wavelength of the laser light. The optical potential Wε creates
a one-dimensional lattice of wells separated by a distance T = λ/2 . We
will assume that ε tends to 0 (this means deep lattice) and that T is fixed.
Furthermore, we assume that the lattice is deep enough so that it dominates
over the magnetic trapping potential in the z direction and that the number
of sites is large. Thus we will, in this paper, ignore the magnetic trap in the
z direction, and this will correspond to the case

ωz = 0 . (1.9)

We will mainly discuss, instead of a problem in R3, a periodic problem in the
z direction, that is in R2

x,y×[−T
2
, T

2
[, where T corresponds to the period of the

optical lattice, or in R2
x,y × [−NT

2
, NT

2
[ for a fixed integer N ≥ 1. Therefore,

we focus on the minimization of the functional

Qper,N
Ω (Ψ) :=∫

R2
x,y×]−NT

2
, NT

2
[

(
1

2
|∇Ψ− iΩ× rΨ|2 − 1

2
Ω2r2|Ψ|2 + (V (r) + Wε(z))|Ψ|2 + g|Ψ|4

)
dxdydz ,

(1.10)

under the constraint
∫

R2
x,y×]−NT

2
, NT

2
[

|Ψ(x, y, z)|2 dxdydz = 1 , (1.11)

with
V (r) =

1

2
ω⊥2r2 , (1.12)

the potential Wε given by (1.6)-(1.7), and the wave function Ψ satisfying

Ψ(x, y, z + NT ) = Ψ(x, y, z) . (1.13)

This functional has a minimizer in the unit sphere of its natural form domain
Sper,N

Ω and we call
Eper,N

Ω = inf
Ψ∈Sper,N

Ω

Qper,N
Ω (Ψ) . (1.14)
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Notation
In the case N = 1, we will write more simply

Qper
Ω := Q

per,(N=1)
Ω , Eper

Ω := E
per,(N=1)
Ω . (1.15)

When Ω = 0, we will sometimes omit the reference to Ω.

Our aim is to justify that the ground state energy can be well approx-
imated by the study of simpler models introduced in physics papers [Sn,
SnSt1, KMPS] and to measure the error which is done in the approxiamtion.
For that purpose, we will describe how, in certain regimes, the semi-classical
analysis developed for linear problems related to the Schrödinger operator
with periodic potential or multiple wells potentials is relevant: Outassourt
[Ou], Helffer-Sjöstrand [He, DiSj] or for an alternative approach [Si].

1.2 The linear model

The linear model which appears naturally is a selfadjoint realization associ-
ated with the differential operator :

HΩ = HΩ
⊥ + Hz , (1.16)

with
HΩ
⊥ := −1

2
∆x,y +

1

2
ω2
⊥r2 − ΩLz , (1.17)

Lz = i(x∂y − y∂x) , (1.18)
and

Hz := −1

2

d2

dz2
+ Wε(z) . (1.19)

In the transverse direction, we will consider the unique natural selfadjoint
extension in L2(R2

x,y) of the positive operator HΩ
⊥ by keeping the same no-

tation. In the longitudinal direction, we will consider specific realizations of
Hz and in particular the T -periodic problem or more generally the (NT )-
periodic problem attached to Hz which will be denoted by Hper

z and Hper,N
z

and we keep the notation Hz for the problem on the whole line.
So our model will be the self-adjoint operator

Hper,N
Ω = HΩ

⊥ + Hper,N
z . (1.20)

In this situation with separate variables, we can split the spectral analysis,
the spectrum of Hper,N

Ω being the closed set

σ(Hper,N
Ω ) := σ(HΩ

⊥) + σ(Hper,N
z ) . (1.21)
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The first operator HΩ
⊥ is a harmonic oscillator with discrete spectrum.

Under Condition (1.5), the bottom of its spectrum is given by

λ⊥1 := inf(σ(HΩ
⊥)) = ω⊥ . (1.22)

A corresponding ground state is the Gaussian

ψ⊥ =
(ω⊥

π

) 1
2
exp−(

ω⊥
2

r2) . (1.23)

Note that the ground state energy and the ground state are independent of
Ω.
The gap between the ground state energy and the second eigenvalue (which
has multiplicity 1 or 2) is given by

δ⊥ := λ⊥2,Ω − λ⊥1 = ω⊥ − Ω . (1.24)

The properties of the periodic Hamiltonian Hper,N
z , which will be de-

scribed in Subsection 3.2 (Formulas (3.8) and (3.9) for the physical model),
depend on the value of N . In the case N = 1, we call the ground state of Hper

z

φ1(z) and the ground energy (or lowest eigenvalue) λ1,z. In the semi-classical
regime ε → 0, λ1,z satisfies

λ1,z ∼ c

ε
, (1.25)

for some c > 0. The splitting δz between the ground state energy and the
first excited eigenvalue satisfies

δz ∼ c̃

ε
, (1.26)

for some c̃ > 0.
For N > 1, the ground state energy of Hper,N

z is unchanged and the corre-
sponding ground state φN

1 is the periodic extension of φ1 considered as an
(NT )-periodic function. More precisely, in order to have the L2- normaliza-
tions, the relation is

φN
1 =

1√
N

φ1 , (1.27)

on the line. But we now have N exponentially close eigenvalues of the order
of λ1,z lying in the first band of the spectrum of Hz on the whole line. They
are separated from the (N + 1)-th by a splitting δN

z which satisfies :

δN
z = δz + Õ(exp−S/ε)) . (1.28)
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Here the notation Õ(exp−S/ε)) means

Õ(exp−S/ε)) = O(exp−S ′/ε) , ∀S ′ < S . (1.29)

The first N eigenfunctions satisfy

φN
` (z + T ) = exp(

2iπ(`− 1)

N
) φN

` (z) , for ` = 1, . . . , N , (1.30)

corresponding to the special values k = 2π(`−1)
NT

of what will be called later a
k-Floquet condition.

We will also use another real orthonormal basis (called (NT )-periodic
Wannier functions basis) (ψN

j ) (j = 0, . . . , N − 1) of the spectral space at-
tached to the first N eigenvalues. Each of these (NT )-periodic functions have
the advantage to be localized (as ε → 0) in a specific well of Wε considered
as defined on R/(NT )Z.

1.3 The reduced functionals

We want to prove the reduction to lower dimensional functionals by using
the spectral analysis of the linear problem. There are two natural ideas to
compute upper bounds, and thus find these functionals. We can

• either use test functions of the type

Ψ(x, y, z) = φ(z)ψ⊥(x, y) , (1.31)

where ψ⊥ is the first normalized eigenfunction of HΩ
⊥ and minimize

among all possible L2-normalized φ(z) to obtain a 1D-longitudinal re-
duced problem,

• or use

– in the case N = 1,

Ψ(x, y, z) = φ1(z)ψ(x, y) (1.32)

where φ1 is the first eigenfunction of Hper
z and minimize among all

possible L2-normalized ψ(x, y) to obtain a 2D transverse reduced
problem,
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– or in the case N ≥ 1

Ψ(x, y, z) =
N−1∑
j=0

ψN
j (z)ψj,⊥(x, y) (1.33)

where ψN
j (z) is the orthonormal basis of Wannier functions men-

tioned above, and minimize on the suitably normalized ψj,⊥’s
which provide N coupled problems. We denote by ΠN the projec-
tion on this space. For Ψ ∈ L2(R2×]− NT

2
, NT

2
[) , we have

ΠNΨ =
N−1∑
j=0

ψN
j (z)ψj,⊥(x, y) , (1.34)

with
ψj,⊥(x, y) =

∫

]−NT
2

, NT
2

[

Ψ(x, y, z)ψN
j (z) dz .

Computing the energy of a test function of type (1.31), we get

Qper,N
Ω (Ψ) = ω⊥ + EN

A (φ) (1.35)

where EN
A is the functional on the NT -periodic functions in the z direction,

defined on H1(R/NTZ) by

φ 7→ EN
A (φ) =

∫ NT
2

−NT
2

(
1

2
|φ′(z)|2 + Wε(z)|φ(z)|2 + ĝ |φ(z)|4

)
dz (1.36)

with
ĝ := g

(∫

R2

|ψ⊥(x, y)|4 dxdy

)
=

1

2π
gω⊥. (1.37)

The functional EN
A is introduced by [KMPS] who analyze a particular case.

Its study in the small ε limit is one of the aims of this paper.

For test functions of type (1.32), we get in the case N = 1

Qper
Ω (Ψ) = λ1,z + EB,Ω(ψ) (1.38)

with

EB,Ω(ψ)

:=

∫

R2
x,y

(
1

2
|∇x,yψ − iΩ× rψ|2 − 1

2
Ω2r2|ψ|2 +

1

2
ω2
⊥(x2 + y2)|ψ|2 + g̃|ψ|4

)
dx dy ,

(1.39)8



and

g̃ := g

(∫ T
2

−T
2

|φ1(z)|4 dz

)
. (1.40)

In the case N > 1, we define EN
B,Ω((ψj,⊥)j=0,...,N−1) by

Qper,N
Ω (Ψ) := λ1,z

∑
j

||ψj,⊥||2 + EN
B,Ω((ψj,⊥)) (1.41)

with

Ψ =
N−1∑
j=0

ψN
j (z)ψj,⊥(x, y) . (1.42)

Of course when minimizing over normalized Ψ’s, one gets more simply the
problem of minimizing

Qper,N
Ω (Ψ) = λ1,z + EN

B,Ω((ψj,⊥)) . (1.43)

As such, the energy EN
B,Ω does not provide N coupled problems but one

single energy depending on N test functions. Nevertheless, in the small ε
limit, the Wannier functions are localized in each well. Thus each function
ψj,⊥ only interacts with its nearest neighbors and this simplification pro-
vides N coupled problems, as suggested by Snoek [Sn] on the basis of formal
computations. We will analyze their validity. This reduced functional is
somehow related to the Lawrence-Doniach model for superconductors (see
[ABB1, ABB2]).

1.4 Main results

1.4.1 The reference quantities : mN
A and mN

B,Ω

We are able to justify the reductions to the lower dimensional functionals
EN

A and EN
B,Ω when their infimum is much smaller than the gap between the

first two excited states of the linear problem in the other direction, namely
in case A, when mN

A is much smaller than δ⊥, where

mN
A = inf

||φ||=1
EN

A (φ) , (1.44)

and in case B, when mN
B,Ω is much smaller than the gap between the two first

bands of the periodic problem on the line, where

mN
B,Ω = infP

j ||ψj,⊥||2=1
EN

B,Ω((ψj,⊥)) . (1.45)
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We will also give more accurate estimates of mN
A and mN

B,Ω according to
the regime of parameters. Here we consider two cases :

• the Weak Interaction case, where the interaction term (L4 term) is at
most of the same order as the ground state of the linear problem in the
same direction;

• the Thomas Fermi case, where the kinetic energy term is much smaller
than the potential and interaction terms.

In what follows, when N is not mentioned in mN
A , mN

B,Ω, EN
A , EN

B,Ω, then
the notations are for N = 1. Similarly, if Ω is not mentioned, this means
that either the considered quantity is independent of Ω or that we are treat-
ing the case Ω = 0. To mention the dependence on other parameters, we
will sometimes explicitly write this dependence like for example mN

A (ε, ĝ) or
mN

B,Ω(g̃, ω⊥) .

1.4.2 Universal estimates and applications

Using the test function

Ψper,N(x, y, z) = ψ⊥(x, y)φN
1 (z) ,

where φN
1 is the N -th normalized ground state introduced in (1.27) and

ψ⊥(x, y) is the ground state of HΩ
⊥, actually independent of Ω, leads to the

following trivial and universal inequalities (which are valid for any N and
any Ω such that 0 ≤ Ω < ω⊥)

λ1,z + ω⊥ ≤ Eper,N
Ω ≤ λ1,z + ω⊥ + IN , (1.46)

where

IN :=
gω⊥
2Nπ

(∫ T
2

−T
2

|φ1(z)|4dz

)
=

I

N
. (1.47)

From (1.27), we have :
∫ NT

2

−NT
2

(φN
1 (z))4 dz =

1

N2

∫ NT
2

−NT
2

φ1(z)4 dz =
1

N

∫ T
2

−T
2

φ1(z)4 dz , (1.48)

where, as ε → 0, and, under Assumption (1.7), it can be proved (see (3.10)),
that

IN ∼ c4

2π

gω⊥
N

ε−
1
2 . (1.49)
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An immediate analysis shows that λ1,z + ω⊥ is a good asymptotic of
Eper,N

Ω in the limit ε → 0 when g is sufficiently small (what we can call the
quasi-linear situation). More precisely, we have

Theorem 1.2.
Under the condition that either

(QLa) g << ε
1
2 , (1.50)

or
(QLb) gω⊥ε

1
2 << 1 , (1.51)

then we have
Eper,N

Ω = (λ1,z + ω⊥) (1 + o(1)) , (1.52)

as ε tends to 0.

Each of these conditions implies indeed that IN is small relatively to λz

or to ω⊥.

Our main goal is to have more accurate estimates than (1.52), to analyze
more general cases when none of these two conditions is satisfied and to give
natural sufficient conditions allowing the analysis of reduced models.

1.4.3 Case (A) : the longitudinal model

We consider states which are of type (1.31) with ϕ ∈ L2(Rz/(NT )Z). The
energy of such test functions provides the upper bound

Eper,N
Ω ≤ ω⊥ + mN

A (ε, ĝ) (1.53)

where mN
A is given by (1.44) and ĝ was introduced in (1.37).

In order to show that the upper bound is an approximate lower bound,
we first address the “Weak Interaction” case,

(AWIa) 1 << ε(ω⊥ − Ω) , (1.54)

and, for a given c > 0,
(AWIb) gω⊥ε

1
2 ≤ c . (1.55)

The first assumption implies that the lowest eigenvalue λ1,z of the linear
problem in the z direction (having in mind (1.25)) is much smaller than the
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gap in the transverse direction δ⊥ = ω⊥ − Ω. This will allow the projection
onto the subspace ψ⊥⊗L2(Rz/(NT )Z). The second assumption implies that
the nonlinear term (of order gω⊥/

√
ε) is of the same order as λ1,z. It implies

using (1.25), (1.49) and the universal estimate

λ1,z ≤ mN
A ≤ λ1,z + IN , (1.56)

that
mN

A ≈ 1

ε
. (1.57)

Here ≈ means “of the same order” in the considered regime of parameters.
More precisely we mean by writing (1.57) that, for any ε0 > 0, there exists
C > 0 such that, for all ε ∈]0, ε0], any g, ω⊥ satisfying (1.55),

1

Cε
≤ mN

A ≤ C

ε
.

Note that most of the time, we will not control the constant with respect to
N .
All these rough estimates are obtained by rather elementary semi-classical
methods which are recalled in Section 3. More precise asymptotics of mN

A

will be given under the additional Assumption (1.50) in Section 5.2. Thus,
by (1.54), mN

A is much smaller than δ⊥. We will prove

Theorem 1.3.
When ε tends to 0, and under Conditions (1.54) and (1.55), we have

Eper,N
Ω = ω⊥ + mN

A (ε, ĝ) (1 + o(1)) . (1.58)

We now describe the “Thomas-Fermi” regime, where we can also justify the
reduction to the longitudinal model. We assume that, for some given c > 0 ,

(ATFa) gω⊥
√

ε >> 1 , (1.59)

(ATFb) gω⊥ε2 ≤ c , (1.60)

(ATFc) g
5
12 ε−

1
6 ω⊥

5
12 << (ω⊥ − Ω)

3
8 . (1.61)

Note that (1.59) is the converse of (1.55) while (1.59) and (1.61) imply that
1 << ε(ω⊥ − Ω). This implies λ1,z << δ⊥, which is the main condition to
reduce to case A. Assumptions (1.59) and (1.60) allow to show that :

mN
A ≈

(gω⊥
ε

) 2
3

, (1.62)
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and this also implies that the nonlinear term is much bigger than δz.
The estimate (1.62) will be shown in Section 5.3, together with more precise
ones with stronger hypotheses (see Assumption (5.12) and (5.13)).

Theorem 1.4.
When ε tends to 0, and under Conditions (1.59), (1.60) and (1.61), we have,
as ε → 0,

Eper,N
Ω = ω⊥ + mN

A (ε, ĝ) (1 + o(1)) . (1.63)

The proofs give actually much stronger results.

1.4.4 Case (B) : the transverse model

This corresponds to the idea of a reduction on the ground eigenspace in the
z variable, where the interaction term is kept in the transverse problem:
therefore, this is a regime where ω⊥ε << 1. We recall that we denote by λ1,z

the (N -independent) ground state energy of Hper,N
z and by φN

1 the normalized
ground state. We consider states which are of type (1.32) or (1.33). We have
defined EN

B,Ω by (1.41)-(1.42) and mN
B,Ω, the infimum of the energy of such

test functions by (1.45). We have the upper bound

Eper,N
Ω ≤ λ1,z + mN

B,Ω . (1.64)

When N = 1, mB,Ω is a function of g̃ and ω⊥ as it is clear from (1.39) and
(1.45). Note that, as for the estimate of IN , we get

g̃ = g(

∫ T
2

−T
2

φ1(z)4dz) ≈ g√
ε
. (1.65)

Again we can discuss two different cases according to the size of the interac-
tion. In the Weak Interaction case, we prove the following :

Theorem 1.5.
When ε tends to 0, and under the conditions

(BWIa) gε−
1
2 ≤ C , (1.66)

(BWIb) ω⊥ε << 1 , (1.67)

then
Eper,N

Ω = λ1,z + mN
B,Ω(1 + o(1)) . (1.68)
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Condition (BWIb) implies that the bottom of the spectrum of the linear
problem in the x − y direction is much smaller than δz, the gap in the z
direction, which is of order 1/ε. Condition (1.66), together with (1.46) and
(1.49), implies that mN

B,Ω satisfies

mN
B,Ω ≈ ω⊥ . (1.69)

Indeed, (BWIa) and (BWIb) imply gε
1
2 ω⊥ << 1, that is (QLb).

In the Thomas-Fermi case, we prove the following :

Theorem 1.6.
When ε tends to 0, and under the conditions

(BTFa)
√

ε << g , (1.70)

(BTFb) ω⊥
√

gε
3
4 << 1 , (1.71)

and
(BTFc) g

3
2 ε

1
4 ω⊥ << 1 , (1.72)

then
Eper,N

Ω = λ1,z + mN
B,Ω(1 + o(1)) . (1.73)

Note that (BTFa) is the converse of (BWIa). We will see in Proposition
6.6 (together with (6.31), (6.43) and (6.44)) that, under these assumptions
and Assumption (6.42), the term mN

B,Ω satisfies

mN
B,Ω ≈ ω⊥

√
g/ε1/4 , (1.74)

and thus is much smaller than δN
z which is of order 1

ε
.

Our proofs are made up of two parts : rough or accurate estimates of
mN

A,Ω and mN
B,Ω on the one hand and a lower bound for Eper,N

Ω on the other
hand. The lower bound consists in showing that the upperbound obtained by
projecting on the special states introduced above in (1.31), (1.32) or (1.33)
is actually also asymptotically a good lower bound.

1.4.5 Tunneling effect and discrete models

Since the Wannier functions are localized in the z variable, the energy of
a function Ψ =

∑N−1
j=0 ψN

j (z)ψj,⊥(x, y) provides at leading order the sum of
N decoupled energies for ψj,⊥ on each slice j. At the next order, in the
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computation of the L2 norm of the gradient, only the nearest neighbors in z
interact through an exponentially small term, describing what is called the
tunneling effect. These simplifications are discussed in section 7.

In case A, the behavior on each slice j is the same, given by ψ⊥ and it is
the behavior on the z direction which has a tunneling contribution. There
are no vortices whatever the velocity Ω.

In case B, for N = 1, there are vortices for large velocity and they are
located on each slice at the same place. For N large, it is an open and
interesting question to analyze whether it is possible for a vortex line to vary
location according to the slice, whether vortices interact between the slices
and how. This could be performed using our reduced models.

1.4.6 Comparison with the global problem on R3

To conclude with the presentation of the main results, let us observe that,
if we denote by EΩ(g), the infimum of QΩ,g introduced in (1.1) over L2(R3)
normalized Ψ’s, then, for all g ≥ 0, all 0 ≤ Ω < ω⊥,

EΩ=0(g) = EΩ(g) = Eper
Ω (g = 0) = EΩ(g = 0) . (1.75)

Hence, if we look at the Bose-Einstein functional on R3 the infimum of the
functional restricted to L2-normalized states is independent of g ≥ 0 and Ω
and is immediately obtained by the ground state energy of the Hamiltonian
attached to the case g = 0 and Ω = 0. This explains why, following the
physicists, we have considered the (NT )-periodic problem, which exhibits
more interesting properties.

1.5 Organization of the paper

The paper is organized as follows. In Section 2, we start the spectral analysis
of the linear problems in the longitudinal and transverse directions. We recall
in particular the main techniques which can be used for the analysis of the
spectral problem with periodic potential on the line. Section 3 is devoted to
the semi-classical results for the periodic problem. Although we are mainly
interested in 1D-problems we recall here techniques which are true in any
dimension and can be useful for the analysis of 2D or 3D optical lattices, at
least when Ω = 0.

In Section 4, we prove the main theorems for case A. In Section 5, we
analyze the ground state of the 1D nonlinear energy EN

A for N = 1 and
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N > 1 and also distinguish between the two cases : Weak Interaction and
Thomas-Fermi. Section 6 corresponds to a similar analysis for the transverse
models EN

B . Section 7 is devoted to the tunneling effects and discuss, on the
basis of the semi-classical estimates of Section 3, some results obtained by
physicists on the discrete nonlinear Schrödinger model.

2 Analysis of the linear model

The linear model which appears naturally is associated to

HΩ = HΩ
⊥ + Hz ,

which was presented in the introduction (see (1.17)-(1.21)). A natural condi-
tion (for the strict positivity of the operator HΩ

⊥) is Condition (1.5). In this
situation with separate variables, we can split the spectral analysis in the
separate spectral analysis of HΩ

⊥, whose main properties were recalled in the
introduction, and the spectral analysis of a suitable realization of Hz which
will be presented in the next subsection.

There are two related approaches that we will describe for the analysis of
the spectrum of Hz, which is known to be a band spectrum, i.e. an absolutely
continuous spectrum which is a union of closed intervals, which are called the
bands. We will then give a specific treatment of the (NT )-periodic problem.

2.1 Floquet’s theory

We can first use the Floquet theory (or the Bloch theory, which is an alterna-
tive name for the same theory, see for example [DiSj] for a short presentation).
One can show that the spectrum of Hz is obtained by taking the closure of
∪k∈[0,2π/T ]σ(Hz,k) where

Hz,k = −1

2

(
d

dz
+ ik

)2

+ Wε(z)

is considered as an operator on L2(R/TZ). So

σ(Hz) = ∪k∈[0, 2π
T

]σ(Hz,k) . (2.1)

We now write
Γ = TZ and Γ∗ =

2π

T
Z . (2.2)
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Hence we have to analyze for each k the operator Hz,k on L2(R/Γ). Later
we will use the notation

Hper
z = Hz,0 . (2.3)

A unitary equivalent presentation of this approach consists in analyzing
Hz restricted to the subspace hk of the u ∈ L2

loc(R) such that

u(z + T ) = eikT u(z) . (2.4)

Here we did not see a k-dependence in the differential operator but this is
the choice of the space hk (which is NOT in L2(R)), which gives the k-
dependence. Condition (2.4) is called a Floquet condition.
This means that we have written, using the language of the Hilbertian-
integrals, the decomposition

L2(R) =

∫ ⊕

[0,2π/T ]

hk dk (2.5)

and that we have for the operator the corresponding decomposition

Hz =

∫ ⊕

[0,2π/T ]

H̃z,k dk , (2.6)

with H̃z,k unitary equivalent to Hz,k.

For each k ∈ [0, 2π/T [, Hz,k has a discrete spectrum which can be de-
scribed by an increasing sequence of eigenvalues (λj(k))j∈N. The spectrum of
Hz is then a union of bands Bj, each band being described by the range of λj.
At least when we have the additional symmetry Wε even, one can determine
for which value of k the ends of the band Bj are obtained. For j = 1, we
know in addition from the diamagnetic inequality that the minimum of λ1 is
obtained for k = 0 :

inf
k

λ1(k) = λ1(0) . (2.7)

2.2 Wannier’s approach

When the band is simple (and this will be the case for the lowest band in
the regime ε small), one can associate to λj(k) a normalized2 eigenfunction

2in L2(]− T
2 , T

2 [),
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ϕj(z, k) with in addition an analyticity with respect to k together with the
(2π/T )-periodicity in k.

In this case (we now take j = 1), one can associate to ϕ1, which satisfies,

ϕ1(z + T ; k) = ϕ1(z, k) , (2.8)

and
ϕ1(z; k +

2π

T
) = ϕ1(z, k) , (2.9)

a family of Wannier’s functions (ψ`)`∈Γ defined by

ψ0(z) =
T

2π

∫ 2π
T

0

exp(ikz) ϕ1(z, k) dk , ψ`(z) = ψ0(z − `) , (2.10)

for ` ∈ Γ .
In addition, we can take ψ0 real. One can indeed construct ϕ1 satisfying in
addition the condition

ϕ1(z, k) = ϕ1(z,−k) . (2.11)

One obtains (after some normalization of ψ0) that

Proposition 2.1.

(i) The family (ψ`)`∈Γ gives an orthonormal basis of the spectral space at-
tached to the first band.

(ii) ψ0 is an exponentially decreasing function.

The second point can be proved using the analyticity3 with respect to k.
This orthonormal basis corresponding to the first band plays the role of the
basis Pj(z) exp− |z2|

2
in the Lowest Landau Level approximation.

Note that we recover ϕ1(z, k) by the formula

ϕ1(z, k) = exp(−ikz)
∑

`∈Γ

exp(ik`) ψ`(z) . (2.12)

Moreover, the operator A on `2(Γ) whose matrix is given by

A``′ = 〈Hzψ`, ψ`′〉 (2.13)

is unitary equivalent to the restriction of Hz to the spectral space attached
to the first band.

3One can make a contour deformation in the integral defining ψ0 in (2.10).
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One can of course observe that A commutes with the translation on `2(Γ),
so it is a convolution operator by a sequence a ∈ `1(Γ) (actually in the space
of the rapidly decreasing sequences S(Γ)),

A``′ = a(`− `′) , (2.14)

which is actually the Fourier series of k 7→ λ1(k)

λ̂1 = a , (2.15)

where

λ̂1(`) :=
T

2π

∫ 2π/T

0

exp(−i`k) λ1(k) dk . (2.16)

So we have
(Au)(`) =

∑

`′∈Γ

a(`− `′)u(`′) , for u ∈ `2(Γ) .

2.3 (NT )-periodic problem

There is another way to proceed which is the one we will choose in this pa-
per. We keep w T -periodic but look at the (NT )-periodic problem and we
analyze this problem. The spectrum is discrete but the idea is that we will
recover the band spectrum in the limit N → +∞. If we compare with what
we do in the Floquet theory, the analysis of the (NT )-periodic problem con-
sists in considering the direct sum of the problems with a Floquet condition
corresponding to k = 0, 2π

NT
, · · · , 2π(N−1)

NT
.

Note that this decomposition into a direct sum works only for linear
problems, so it will be interesting to explore this approach for the non linear
problem.

In this spirit, it can be useful to have an adapted orthonormal basis of
the spectral space attached to the first N eigenvalues of the NT -periodic
problem (which can be identified with the vector space generated by the
eigenfunctions corresponding to the N Floquet eigenvalues associated with
k = 0, 2π

NT
, · · · , 2π(N−1)

NT
).

Our claim is that there exists an orthonormal basis, for the L2-norm on
]− NT

2
, NT

2
[, consisting of (NT )-periodic functions and replacing the Wannier

functions.
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We write

ψN
0 (z) =

1√
N

N∑
j=1

φN
j (z) , (2.17)

where φN
j is an eigenfunction4 of the (NT )-periodic problem, chosen in such

a way that
φN

j (z + T ) = ωj−1
N φN

j (z) , (2.18)

with ωN = exp(2iπ/N).
We can then introduce

ΓN = Γ/(NTZ) , (2.19)

and define, for ` ∈ ΓN , the (NT )-Wannier functions

ψN
` (z) = ψN

0 (z − `) (2.20)

This gives an orthonormal basis of the eigenspace attached to the first N
eigenvalues of the (NT )-periodic problem. These first N eigenvalues belong
to the previously defined first band.

Note that conversely, we can recover the eigenfunctions φN
j from the ψN

j

by a discrete Fourier transfrom. In particular we have

φN
1 =

1√
N

N−1∑
j=0

ψN
j . (2.21)

Except the fact that these “Wannier” functions are NOT exponentially
decreasing at ∞ (they are by construction (NT )-periodic), one can then
play with them in the same way (this corresponds to the replacement of the
Fourier series by the finite dimensional one). We then meet the “discrete
convolution” on `2(ΓN) :

(ANu)(`) =
∑

`′∈ΓN

aN(`− `′)u(`′) , for u ∈ `2(ΓN) .

Of course `2(ΓN) is nothing else than CN with its natural Hermitian struc-
ture.

We have presented different techniques to determine the bottom of the
spectrum of Hz, which all provide the same ground energy. We will now recall
more quantitative results based on the so-called semi-classical analysis.

4Note that except in the case j = 1, we do not claim that φN
j is the j-th eigenfunction

but this is the first one corresponding to the condition (2.18).
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3 Semi-classical analysis for the periodic case

3.1 Preliminary discussion

Till now, we have not strongly used that we are in a semi-classical regime :
our semi-classical parameter here will not be the Planck constant ~ (which
was already assumed to be equal to 1) but ε. We will now use this additional
assumption for presenting quantitative results. The literature in optical lat-
tices is mainly analyzing a very particular model, the Mathieu equation. We
will sketch how one can do this in full generality. For the one dimensional case
which is considered here, one can refer to Harrell [Ha] (who uses techniques
of ordinary differential equations) or to the book of Eastham [Eas], but we
will describe a proof which is not limited to the one dimensional situation
(see Simon [Si], Helffer-Sjöstrand [HeSj1], Outassourt [Ou]) and is described
in the books of Helffer [He] or Dimassi-Sjöstrand [DiSj].
As we have shown in the previous section, the description of the first band,
can be either obtained by a good approximation of λ1(k) and ϕ1(z, k) as
ε → 0 or by first finding a good approximation of the Wannier function ψ0

introduced in (2.10), which is expected to be exponentially localized in one
well, or of the (NT )-periodic Wannier function introduced in (2.17).

The analysis is done usually in two steps. First we localize roughly λ1(k),
then we analyze very accurately the variation of λ1(k)− λ1(0).
The first one will be obtained by a harmonic approximation and the second
one by the analysis of the tunneling effect.

3.2 The harmonic approximation

We recall that we work under Assumption 1.1. The statements below are
sometimes written vaguely and we refer to [DiSj] or [He] for more precise
mathematical statements.
For the approximation of λ1,z(0) (actually for any λ1,z(k)) the rule is that
we replace w(z) (having in mind (1.7)) by its quadratic approximation at 0.
The harmonic approximation consists in first looking at the operator

−1

2

d2

dz2
+

w′′(0)

2ε2
z2 , (3.1)
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on R.
For the model in [Sn], w(z) = sin2(πz

T
), and we find

−1

2

d2

dz2
+

1

ε2
(
πz

T
)2 . (3.2)

This operator is a harmonic oscillator whose spectrum is explicitly known.
The j-th eigenvalue is given by

λhar
j,z =

j − 1
2

ε

√
w′′(0) . (3.3)

The two main pieces of information we have to keep in mind are that the
ground state energy is

λhar
1,z =

1

2ε

√
w′′(0) , (3.4)

and that the gap between the first eigenvalue and the second value is given
by

δhar
z := λhar

2,z − λhar
1,z =

1

ε

√
w′′(0) . (3.5)

The corresponding positive L2 normalized ground state is then given by

ψhar(z) = π−
1
4w′′(0)

1
8 ε−

1
4 exp−w′′(0)

1
2
z2

2ε
. (3.6)

It will also be important later to have the computation of the L4 norm. So
we get by immediate computation :

∫

R
ψhar(z)4 dz = π−

1
2w′′(0)

1
4 ε−

1
2 . (3.7)

The mathematical result is that this value provides a good approximation of
λ1,z(0) (and hence of the bottom of the spectrum of Hz) with an error which
is O(1) as ε → 0 :

λ1,z(0) = λhar
1,z +O(1) . (3.8)

By working a little more, one can actually obtain a complete expansion of
ελ1,z(0) in powers of ε and hence, of ελ1,z(k), since they have the same expan-
sion. For each j ∈ N∗, one has a similar expansion for ελj,z(0). This implies
in particular an estimate of λ2,z(0)− λ1,z(0), called the longitudinal gap :

δz := λ2,z(0)− λ1,z(0) =

√
w′′(0)

ε
+O(1) . (3.9)

From now on, we simply write λ1,z or λ1 instead of λ1,z(0) for the ground
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state energy of the periodic problem.
Let us note that the ground state of the harmonic oscillator also provides a
good approximation of the ground state of Hper

z . So we obtain, using (3.7)
that for φ1, the L2-normalized ground state of Hper

z , we have
∫ +T

2

−T
2

φ1(z)4dz = π−
1
2w′′(0)

1
4 ε−

1
2 +O(1) . (3.10)

3.3 The tunneling effect

We now briefly explain the results about the length of the first band, which
is exponentially small as ε → 0. The results can take the following form
(see the work of Outassourt [Ou] or the book by Dimassi-Sjöstrand, Formula
(6.26))

λ1(k)− λ1(0) = 2(1− cos(kT ))τ +O(exp−S + α

ε
) (3.11)

with α > 0 (arbitrarily close from below to 1) and, for some cτ 6= 0,

τ ∼ cτ ε−
3
2 exp−S

ε
. (3.12)

Moreover one can express the constants cτ and S once w is given (see5 also
[He] in addition to the previous references). This τ seems to be called in
some physical literature the hopping amplitude.
Here, we simply explain how one computes S which determines the exponen-
tial decay of τ as ε → 0. In any dimension, S is interpreted as the minimal
Agmon distance between two different minima of the potential w. In one
dimension, with w satisfying Assumption (1.1), this distance is simply the
Agmon distance between two consecutive minima and is given by

S :=
√

2

∫ T
2

−T
2

√
w(z) dz . (3.13)

In particular, when w(z) = sin2(πz
T

), we get

S :=
√

2

∫ T
2

−T
2

| sin(
πz

T
)| dz =

2
√

2T

π
. (3.14)

This is to compare to (14) in [SnSt1], which is not an exact formula (as
wrongly claimed) but only an asymptotically correct formula. It can be

5The computation is a little simpler in the case when w is even.
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found, for this Mathieu operator, in [AS].
Let us give the formula for the constant cτ . It can be found in [Ha], see also
[Ou], Formula (4.14) and [He] p. 58-59. We have :

cτ = 2
3
4 π−

1
2 exp Aτ , (3.15)

with (assuming w even)

Aτ = lim
η→0

(∫ T
2

η

1√
w(z)

dz +

√
2√

w′′(0)
ln η

)
. (3.16)

We just sketch the mathematical proof. Filling out all the wells suitably
except one (say 0), we get a new potential wmod ≥ w which coincides with w
in an interval containing 0 and excluding small neighborhoods of all the other
minima. We consider, for ε small enough, the ground state of this modified
problem and (multiplying by a cut-off function) we get a function ψapp

0 (and
an eigenvalue λapp

1 ) which is a very good approximation of ψ0.
Now the hopping amplitude in the abstract theory is given6 exactly by

−τ = a(T ) = 〈Hzψ0 , ψ1〉 = 〈(Hz − µ)ψ0 , ψ1〉 , (3.17)

the last equality being satisfied, due to the orthogonality of ψ0 and ψ1, for any
µ. When replacing ψ0 by its approximation, one has to be careful, because
ψapp

0 and ψapp
1 := ψapp

0 (· − T ) are no more orthogonal. So this leads to take
µ = λapp

1 , and one can prove that

τ ∼ −〈(Hz − λapp
1 )ψapp

0 , ψapp
1 〉 . (3.18)

An easy way to see that τ is exponentially small is to observe that

〈(Hz − λapp
1 )ψapp

0 , ψapp
1 〉 = ε−2 〈(w(z)−wmod)ψapp

0 , ψapp
1 〉 , (3.19)

and to use the information on the asymptotic decay of ψapp
0 . The WKB-

approximation of ψapp
0 is, in a neighborhood of 0,

ψwkb
0 = ε−

1
4 b(z, ε) exp−1

ε

∫ z

0

√
w(s)ds , for z ≥ 0 , (3.20)

with
b(z, ε) ∼

∑
j≥0

bj(z)εj , (3.21)

6For the Mathieu potential, this is consistent with Formula (13) in [SnSt1].

24



and

b0(z) = π−
1
4 exp


−

∫ z

0

(w
1
2 )′(t)−

√
w′′(0)

2

2
√

w(t)
dt


 . (3.22)

It should then be completed by symmetry to get an even WKB solution on
]− T, +T [.
Note that we have

(w
1
2 )′(T−) = −

√
w′′(0)

2
,

which implies that b0 tends to +∞ as z → T−.

An integration by parts together with a WKB approximation leads to the
asymptotic estimate of τ announced in (3.12). More precisely, we get that
the prefactor cτ is immediately related to the constant b0(

T
2
)2

√
w(T

2
) and

this leads to (3.15). Note that more generally we have

b0(z)b0(T − z)
√

w(z) = Cst , (3.23)

which again shows the blowing up of b0 at T .

Finally, we emphasize that ψwkb
0 is a good approximation of ψ0 only in

intervals ]− T + η, T − η[ for some η > 0.

One can also see that a(kT ) is of the order of |a(T )||k| (for k ≥ 2)

a(kT ) = Õ(τ 2) , (3.24)

so it is legitimate in order to compute the width of the first band to forget
all the a(`) for ` ∈ Γ, ` 6= 0,±T .
Thus, in the k variable, the spectrum (corresponding to the first band) is up
to a very small error, of the order of the square of a(T ), given by the operator
of multiplication in L2(R/Γ) by the function a(0) + 2a(T ) cos(kT ).

3.4 Semi-classics for the (NT )-periodic Wannier func-
tions

What is written above corresponds to the use of Wannier functions on R. One
can write a close theory using the (NT )-periodic Wannier functions without
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modifying the main terms of the asymptotics. In particular, ψwkb
0 is also a

good approximation of ψN
0 for N > 1.

Proposition 3.1.
There exists c(ε) with c(0) = 1, such that, for all η > 0, for all q > 0, there
exists a constant Cη,q, such that we have

| exp(
1

ε

∫ |z|

0

√
w(s)ds)

(
ψN

0 (z)− ψwkb
0 (z)

) | ≤ Cη,qε
q , ∀z ∈]− T + η, T − η[ .

(3.25)
For any α > 0, there exists η > 0 and Cα such that

exp(
S0

ε
) ψN

0 (z) ≤ Cα exp
α

ε
,∀z 6∈]− T + η, T − η[ (3.26)

Although we will mainly use the (NT )-Wannier functions in this paper,
the interest of the Wannier functions on R is that they allow to recover the
information for all Floquet eigenvalues and this could be important if we
want to control the constants with respect to N .

4 Justification of the reduction to the longitu-
dinal energy EN

A

4.1 Main result

In this section, we address the reduction to the energy EN
A defined in (1.36)

and prove the following theorem (recall that mN
A is defined in (1.44)):

Theorem 4.1. If

(AΩa) mN
A (ε, ĝ)(ω⊥ − Ω)−1 << 1 (4.1)

and
(AΩb) g(2ω⊥ − Ω)mN

A (ε, ĝ)(ω⊥ − Ω)−
3
2 << 1, (4.2)

we have
inf

||Ψ||=1
Eper,N

Ω (Ψ) = ω⊥ + mN
A (ε, ĝ)(1 + o(1)). (4.3)

Both Theorem 1.3 and Theorem 1.4 are a consequence of Theorem 4.1 as
soon as we have the appropriate rough estimates on mN

A already presented
in the introduction. This is what we explain first in Subsection 4.2 before
proving the theorem in Subsection 4.3.
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4.2 Proof of Theorem 1.3 and Theorem 1.4

4.2.1 Weak Interaction case

In the Weak Interaction case, we recall from (1.57), that, when (1.55) is
satisfied, then

mN
A ≈ 1/ε . (4.4)

Therefore, when (1.54) and (1.55) are satisfied, then (4.1) and (4.2) auto-
matically hold with the observation that

g(2ω⊥ − Ω)(ω⊥ − Ω)−
3
2 mN

A (ε, ĝ) ≤ Cg(2ω⊥ − Ω)ε
1
2 ((ω⊥ − Ω)ε)−

3
2 << 1 ,

and Theorem 1.3 follows from Theorem 4.1.

4.2.2 Thomas-Fermi case

In the Thomas-Fermi case, we will prove in (5.11) that, when (1.59) and
(1.60) are satisfied, then

mN
A ≈ (gω⊥/ε)2/3 . (4.5)

Let us verify that, if (1.59), (1.60) and (1.61) are satisfied, then (4.1) and
(4.2) hold. This will prove Theorem 1.4.

We get (4.1) in the following way. First we have :

(ω⊥ − Ω)−1mN
A (ε, ĝ) ≤ C(ω⊥ − Ω)−1ω⊥

2
3 g

2
3 ε−

2
3 .

Hence (4.1) is a consequence of

gω⊥ << ε(ω⊥ − Ω)
3
2 , (4.6)

which follows from (1.61) since (1.59) and (1.61) imply that (ω⊥−Ω)ε >> 1.
The check of (4.2) is then immediate from (1.61) and (4.5).

4.3 Proof of Theorem 4.1

Because of the upper bound (1.53), Theorem 4.1 is a consequence of the
following proposition, recalling that δ⊥ = ω⊥ − Ω .
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Proposition 4.2.
There exists a constant C > 0 such that, for all ε ∈]0, 1], for all ω⊥, Ω s.t.
δ⊥ ≥ 1 and for all g ≥ 0 ,

inf
||Ψ||=1

Qper,N
Ω (Ψ) = ω⊥ + mN

A (ε, ĝ) (1− CrA(ε, ĝ)) , (4.7)

with

0 ≤ rA(ε, ĝ) ≤ g1/4δ
− 1

8
⊥

(
δ⊥ + ω⊥

δ⊥

) 1
4

mN
A (ε, ĝ)

1
4 + mA(ε, ĝ)δ⊥

−1 . (4.8)

Proof of the proposition
For simplicity, we make the proof for Ω = 0. The proof does not depend on
N and for Ω not zero, we will make a remark at the end on how to adapt it,
using the diamagnetic inequality. Note also that

1− CrA(ε, ĝ) ≥ 0

by the lower bound. So we have only to prove (4.8) under the additional
condition that the right hand side of (4.8) is less than some fixed α0 . In any
case, the estimate is only interesting in this case.

The proof is inspired by [AB] where a reduction is made from a 3D to a 2D
setting for a fast rotation. We project a minimizer Ψ onto ψ⊥⊗L2(R/NTZ),
and call ψ⊥(x, y) ξ(z) its projection:

Ψ(x, y, z) = ψ⊥(x, y)ξ(z) + w(x, y, z) with
∫

R2

ψ⊥(x, y)w(x, y, z) dxdy = 0 .

(4.9)
The orthogonality condition implies in particular

1 =

∫ NT
2

−NT
2

|ξ(z)|2 dz +

∫

R2×]−NT
2

, NT
2

[

|w(x, y, z)|2 dxdydz (4.10)

and we have the lower bound
∫ NT

2

−NT
2

E ′B(w(·, ·, z)) dz ≥ (δ⊥+ω⊥)

∫

R2×]−NT
2

, NT
2

[

|w(x, y, z)|2 dxdydz , (4.11)

with

E ′B(ψ) =

∫

R2

(
1

2
|∇x,yψ(x, y)|2 +

ω⊥2

2
(x2 + y2) |ψ(x, y)|2

)
dxdy .
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We compute the energy of Ψ and use the orthogonality condition and the
equation satisfied by ψ⊥ to find that all the cross terms disappear so that

QN,per(Ψ) = ω⊥

∫ NT
2

−NT
2

|ξ(z)|2 dz + EN ′
A (ξ)

+

∫

R2

EN ′
A (w(x, y, ·)) dxdy +

∫ NT
2

−NT
2

E ′B(w(·, ·, z)) dz

+ g

∫

R2×]−NT
2

, NT
2

[

|Ψ(x, y, z)|4 dxdydz , (4.12)

where

EN ′
A (φ) =

∫ NT
2

−NT
2

(
1

2
|φ′(z)|2 + Wε(z)|φ|2

)
dz .

From (4.10), (4.11) and (4.12), we find

QN,per(Ψ) ≥ ω⊥ +
δ⊥

δ⊥ + ω⊥

∫ NT
2

−NT
2

E ′B(w(·, ·, z)) dz +

∫

R2

EN ′
A (w(x, y, ·)) dxdy .

(4.13)
We use (4.13) together with the upper bound (1.53) and (4.11) to derive that

∫

R2×]−NT
2

, NT
2

[

|w(x, y, z)|2 dxdydz ≤ mN
A (ε, ĝ)

δ⊥
. (4.14)

Note that the righthand side in (4.14) is very small according to Conditions
(4.1) and (4.2).
Note that (4.14) implies

∫ NT
2

−NT
2

|ξ(z)|2dz ≥ 1− mN
A (ε, ĝ)

δ⊥
. (4.15)

Then, we get also,

∫
R2×]−NT

2
, NT

2
[
|∇x,yw(x, y, z)|2 dxdydz ≤ 2 δ⊥+ω⊥

δ⊥
mN

A (ε,bg)

ω⊥
,∫

R2×]−NT
2

, NT
2

[
|∂zw(x, y, z)|2 dxdydz ≤ 2 mN

A (ε, ĝ) .
(4.16)

The proof of the Sobolev embedding of H1(R3) in L6(R3) gives (see for ex-
ample [Bre], p. 164, line -1) for a general function v in H1(R3)

‖v‖6 ≤ 4‖∂xv‖1/3
2 ‖∂yv‖1/3

2 ‖∂zv‖1/3
2 . (4.17)
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Here ‖ · ‖p denotes the norm in Lp(R3).
In our case, we are working in H1(R2

x,y × (Rz/NTZ)). A partition of unity
in the z variable allows us to extend this estimate also this case, and we get,
for another universal constant C,

‖w‖6 ≤ CN‖∂xw‖1/3
2 ‖∂yw‖1/3

2

(‖∂zw‖2
2 + ||w||22

)1/6
, (4.18)

where this time || · ||p denotes the norm in Lp(R2
x,y×]− NT

2
, NT

2
[).

So we obtain :

‖w‖6 ≤ C̃mN
A (ε, ĝ)

1
2

(
δ⊥ + ω⊥

δ⊥

) 1
3

. (4.19)

(C, C̃ are N -dependent constants possibly changing from line to line.)
Since by Hölder’s Inequality,

‖w‖4 ≤ ‖w‖1/4
2 ‖w‖3/4

6 ,

we deduce that

‖w‖4 ≤ C mA(ε, ĝ)
1
2 δ⊥

− 1
8

(
δ⊥ + ω⊥

δ⊥

) 1
4

. (4.20)

We expand

|Ψ|4 = |ψ⊥|4|ξ|4+2|ψ⊥|2|ξ|2|w|2+4(<(ψ⊥ξw)+
1

2
|w|2)2+4|ψ⊥|2|ξ|2<(ψ⊥ξw) .

Since (4.12) implies that

EN(Ψ) ≥ ω⊥ + EN
A (ξ)− 4g

∫

R2×]−NT
2

, NT
2

[

|ψ⊥(x, y)|3|ξ(z)|3|w(x, y, z)| dxdydz ,

in order to get the lower bound, we just need to prove that the last term is
a perturbation to EN

A (ξ).
We can do the following estimates

g
∫ |ψ⊥(x, y)|3|ξ(z)|3|w(x, y, z)| dxdydz

≤ c0gω⊥
3
4 (

∫ |ψ⊥(x, y)|4 dxdy)
3
4 (

∫ |ξ(z)|4dz)
3
4 ‖w‖4

≤ c1g
1/4(EN

A (ξ))3/4‖w‖4

≤ c2g
1/4δ⊥

− 1
8

(
δ⊥+ω⊥

δ⊥

) 1
4

mN
A (ε, ĝ)

1
2 (EN

A (ξ))3/4

≤ c3g
1/4δ⊥

− 1
8

(
δ⊥+ω⊥

δ⊥

) 1
4

mN
A (ε, ĝ)

1
4

(
1 + C mN

A (ε, ĝ)δ⊥
−1

) EN
A (ξ) .

Here to get the last line, we have used the lower bound

EN
A (ξ) ≥ mN

A (ε, ĝ) ||ξ||42 ,
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and (4.15).
This leads to

EN(Ψ) ≥ ω⊥+EN
A (ξ)

(
1− C g1/4δ⊥

− 1
8

(
δ⊥ + ω⊥

δ⊥

) 1
4

mN
A (ε, ĝ)

1
4 − C mN

A (ε, ĝ)δ⊥
−1

)
,

and then to (4.7).

Remark 4.3.
In the case with rotation Ω, the proof is the same if we replace E ′B by E ′B,Ω

defined by

E ′B,Ω(ψ) =

∫

R2

(
1

2
|∇x,yψ − iΩr⊥ψ|2 +

1

2
(ω⊥2 − Ω2)r2|ψ|2

)
dxdy . (4.21)

We also use the diamagnetic inequality
∫
|∇|w|(x, y)|2 dxdy ≤

∫
| (∇w − iΩr⊥w

)
(x, y)|2 dxdy (4.22)

which provides the Sobolev injections.

Remark 4.4.
Here, we have not proved that the minimizer of E behaves almost like the
ground state in x, y times a function of ξ which minimizes EA. We are just
able (see (4.14)) to prove that the minimizer is close to its projection (in
some L2 or L4 norm). When N = 1, this can be improved under the stronger
condition (1.51). We first observe (note that (4.13) is still true with the
addition of E ′A(ξ) on the right hand side) that

E ′A(ξ) ≤ mA(ε, ĝ) . (4.23)

Using (4.15), assuming mA

δ⊥
< 1, this leads to

E ′A(ξ) ≤ mA(ε, ĝ)(1− mA(ε, ĝ)

δ⊥
)−1||ξ||2 (4.24)

We will show in Subsection 5.2 (see (5.7)) how to proceed in order to show
that ξ is close to the ground state φ1(z) of Hper

z .
This can allow to improve the information given in Theorem 1.2.
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5 The 1D periodic model : estimates for mN
A

The aim of this section is to analyze mN
A . We note that rough estimates

were already given for the weak interaction case which were enough for the
justification of the model but the corresponding rough estimates needed for
the Thomas-Fermi justification will be obtained in this section. We will then
look at accurate estimates for mN

A , which will be established under stronger
hypotheses. We will end the section by the discussion of the case N > 1,
which finally leads to the introduction of the DNLS model for the Weak
Interaction case.

5.1 Universal estimates

We consider the one dimensional situation and a T - periodic potential W ,
which could be for example W (z) = (sin πz)2/ε2. We consider the problem
of minimizing on L2(R/TR) the functional

ψ 7→ G(ψ) =
1

2

∫ T
2

−T
2

|ψ′(z)|2 dz +

∫ T
2

−T
2

W (z)|ψ(z)|2 dz + ĝ

∫ T
2

−T
2

|ψ(z)|4 dz ,

(5.1)
over ||ψ||L2 = 1.
We are interested in the control of the minimum of the functional. It is clear
that

λ1 ≤ m(ĝ) ≤ λ1 + ĝ

∫ T
2

−T
2

|φ1(z)|4dz , (5.2)

so the question is now to improve the lower bound. We will use the following
perturbation lemma.

Lemma 5.1.
If ĝ ≥ 0, then

m(ĝ) ≥ λ1 + ĝ||φ1||44 − 2
5
2 ĝ

3
2 ||φ1||36||φ1||24(λ2 − λ1)

− 1
2 , (5.3)

where (λ1, φ1) is the spectral pair of −1
2

d2

dz2 + W (z) corresponding to the
ground state energy (with ||φ1||2 = 1) and λ2 is the second eigenvalue.
Moreover, if φmin be a minimizer of G, then there exists a complex number c
of modulus 1 such that

||φmin − cφ1||2L2 ≤ 2ĝ
||φ1||44

λ2 − λ1

. (5.4)
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We will not give the proof of this lemma which is close to the proof of
Proposition 4.2.

Remark 5.2.
Everything being universal, one can of course replace T by NT in the de-
scription.

5.2 Semi-classical results in the Weak Interaction case :
N = 1

We first recall that using (3.10) we have, under Condition (1.55), the rough
control

1

Cε
≤ λ1,z ≤ mA(ε, ĝ) ≤ λ1,z + ĝ

∫ T
2

−T
2

|φ1(z)|4 dz ≤ C

ε
, (5.5)

which leads to (1.57) for N = 1 and was sufficient for the justification of the
longitudinal model A.

Let us now show that under stronger assumptions one can have a more
accurate asymptotics including the main contribution of the non-linear in-
teraction.

Proposition 5.3.
Under Assumption (1.51), mA admits the following asymptotics :

mA(ε, ĝ) = λhar
1 (ε) + π−

1
2w′′(0)

1
4 ĝε−

1
2 + c0 +O(ε) +O(ĝ

3
2 ε−

1
4 ) . (5.6)

Proof :
Indeed, λ1 and λ1 − λ2 are of order 1

ε
, and by (3.10) and (5.4), we get

||φmin − cφ1||2L2 ≤ Cĝε
1
2 . (5.7)

Using the harmonic approximation, the term ||φ1||6 is of order ε−
1
6 and the

remainder appearing in (5.3) is of order ĝ
3
2 ε−

1
4 . Altogether we get for the

energy

mA(ε, ĝ) = λ1,z + ĝ

∫ T
2

−T
2

|φ1(z)|4 dz +O(ĝ
3
2 ε−

1
4 ) . (5.8)

Using (3.10), we obtain (5.6). This asymptotics becomes interesting in the
semi-classical regime if (1.51) holds.

Remark 5.4.
Exponentially small effects will be discussed in Section 7.
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5.3 Semi-classical analysis in a Thomas-Fermi regime :
case N = 1.

5.3.1 Main results

In this subsection, we first give the rough estimate leading to (1.62) for N = 1.
Recall that ĝ = 1

π
gω⊥, but ĝ and ε are taken as independent parameters.

Proposition 5.5.
If for some c > 0,

ĝε2 ≤ c , (5.9)

and if
ĝε

1
2 >> 1 , (5.10)

then there exist C and ε0 such that

1

C
ĝ

2
3 ε−

2
3 ≤ mA(ε, ĝ) ≤ Cĝ

2
3 ε−

2
3 , ∀ε ∈]0, ε0] . (5.11)

This will be proved in the rest of the section, as well as,

Proposition 5.6.
If

ĝε2 << 1 , (5.12)

and (5.10) are satisfied , then

mA(ε, ĝ) = 2−
4
3 3

5
3 5−1w′′(0)

2
3 ĝ

2
3 ε−

2
3

(
1 +O(ĝ−

2
3 ε−

1
3 )

)
. (5.13)

The new assumption is (5.12), which is stronger than (5.9).

5.3.2 The harmonic functional on R

Let us start with the case of a harmonic potential Wε(z) = γ z2

2ε2
on R, with

γ > 0, and consider the problem of minimizing

qHr,T (u) =
1

2

∫ T
2

−T
2

u′(t)2 dt +
γ

2ε2

∫ T
2

−T
2

t2u(t)2 dt + ĝ

∫ T
2

−T
2

u(t)4 dt (5.14)

over the u’s in the form domain of qHr,T such that ||u||2 = 1.
We denote by mHr,T

A the infimum of the functional. Actually there are two
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approximating “ harmonic ” functionals of interest corresponding to T finite
and to T = +∞. An interesting point is that, for T large enough, the
minimizers of these two functionals are the same as we will see below. But
let us start with the case T = +∞.

Lemma 5.7.
If (5.10) holds, then

mHr,+∞
A (ε, ĝ) = 2−

4
3 3

5
3 5−1γ

2
3 ĝ

2
3 ε−

2
3

(
1 +O(ĝ−

2
3 ε−

1
3 )

)
. (5.15)

The proof is rather standard.The analysis is done through a dilation. We
look for an L2-normalized test function φ in the form

φ(z) = ρ
1
2 v(ρz) , (5.16)

with ρ and v to be determined.
The 1−D energy of φ becomes

1

2
ρ2

∫

R
v′(t)2dt + ρ−2ε−2

γ

∫

R
t2v(t)2dt + ĝρ

∫

R
v(t)4dt , (5.17)

with

εγ = ε/

√
1

2
γ .

This leads to choose ρ = ργ such that

ργ = ε
− 2

3
γ ĝ−

1
3 , (5.18)

and the energy of this model becomes

ĝ
2
3 ε−

2
3

(
qTF (v) +

1

2
(ε

1
2
γ ĝ)−

4
3

∫

R
v′(t)2 dt

)
(5.19)

with
qTF (v) :=

∫

R
t2v(t)2 dt +

∫

R
v(t)4 dt . (5.20)

This is asymptotically of the order of ĝ
2
3 ε−

2
3 and Condition (5.10) is just

the condition that the kinetic term is negligeable in the computation of the
energy.
The value of the infimum of qTF (v) and the control of the remainder is rather
standard (see [Af1] Proposition 3.3 or [CorR-DY] which treat the (2D)-case).
One has to regularize the inverted parabola

vmin(t) = 2−
1
2 (λ− t2)

1
2
+ , (5.21)
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with

λ =

(
3

2

) 2
3

, (5.22)

and for x ∈ R,
(x)+ = max(x, 0) ,

which realizes the infimum but is not in H1.

5.3.3 The harmonic functional on ]− T
2
, T

2
[

We consider now the case of the interval and have the following Lemma :

Lemma 5.8.
Under Assumption (5.10), there exists C > 0 such that

mhar,T
A (ε, ĝ) ≥ 1

C
ĝ

2
3 ε−

2
3 . (5.23)

The proof is a variant of the previous lemma. It is easy to see that the
minimizers coincide if

ργT

2
> λ

1
2 , (5.24)

that is

T > ĝ
1
3 ε

2
3
γ

(
3

2

) 1
3

. (5.25)

If (5.25) is not satisfied, we can still have a lower bound for the infimum
of the functional. The renormalized functional reads

qren,T (v) := ρ2

∫ ρT
2

ρT
2

v′(t)2dt+ρ−2ε−2
γ

∫ ρT
2

ρT
2

t2v(t)2dt+ ĝρ

∫ ρT
2

ρT
2

v(t)4dt , (5.26)

which satisfies

qren,T (v) ≥ ĝρ

(∫ ρT
2

ρT
2

v(t)4dt

)
.

Using the Hölder inequality, we obtain, if ||v||2 = 1,

qren,T (v) ≥ (ĝρ)(ρT )−1 ,

and using our assumption, we obtain

qren,T (v) ≥ 1

2
λ−

1
2 (ĝρ) ≥ 1

C
ĝ

2
3 ε−

2
3 , (5.27)

if ||v||2 = 1.

We then immediatly obtain Lemma 5.8.
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5.3.4 Relevance of the “harmonic functional” for rough bounds

First we prove Proposition 5.5. We can proceed by direct comparison. Ob-
serving that we can find α > 0 such that

w(z) ≤ αz2 , ∀z ∈ [−T

2
, +

T

2
] ,

and
ραT > 2λ

1
2 .

Here, we use (5.9) and

ρα = c0α
1
3 (ε−

2
3 ĝ−

1
3 ) ≥ c0α

1
3 c−

1
3 .

We can then use the asymptotic estimate (5.15) with γ = α to get the upper
bound in (5.11).

Using now Assumption (1.1), we can also find α̂ such that

w(z) ≥ α̂z2 , ∀z ∈ [−T

2
, +

T

2
] ,

This leads, using our analysis of qTF in the harmonic case to the lower bound
in (5.11).

5.3.5 Relevance of the “harmonic functional’ for the asymptotic
behavior

In order to have a better localized minimizer, we should assume that ρ →
+∞ and this corresponds to replacing Assumption (5.9) by the stronger
Assumption (5.12).

Moreover, we have to verify that under this assumption the “harmonic
approximation” is valid for this energy computation. For this, we should
analyze the localization of the minimizer. Assuming that such a localized
minimizer exists (minimize the functional v 7→ ∫

(z2v(z)2 + v(z)4) dz), we
can also get an upperbound of mA by using a harmonic approximation and
a lower bound of the same order.

For the lower bound, we have just to analyze (forgetting the positive
kinetic term) the infimum of the functional

φ 7→
∫ T

2

−T
2

(
w(z)

ε2
φ2 + ĝφ4

)
dz .
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As in the other case, a minimizer (over the L2-normalized φ’s), should satisfy,
for some µ > 0, the Euler-Lagrange equation

w(z)

ε2
φ(z) + 2ĝφ(z)3 = µφ(z) ,

where µ will be determined by the L2 normalization over ]− T
2
, T

2
[.

We find

φ(z) =
1√
2ĝ

(
µ− w(z)

ε2

) 1
2

+

. (5.28)

with
1

2ĝ

∫
(µ− w(z)

ε2
)+dz = 1 . (5.29)

But we know from the upperbound that µ is less than two times the energy
which is asymptotically lower than mhar

A (εĝ). In particular, if µε2 is small, it
is easy to estimate µ using the harmonic approximation of w at its minimum.
It remains to verify the behavior of µε2. We find

µε2 ≤ Cĝ
2
3 ε

4
3 .

Not surprisingly, this shows that µε2 is small as ρ → +∞. So finally, we have
obtained Proposition 5.6.

5.4 The case N > 1

We would like to extend our rough or accurate estimates for mA to the case
N > 1, keeping the same kind of assumptions.

5.4.1 Universal control

We now consider the functional over ] − NT
2

, NT
2

[. Using the minimizer ob-
tained for N = 1 and extending it by periodicity, we get after renormalization,
the general upper-bound

mN
A (ε, ĝ) ≤ mA(ε,

ĝ

N
) . (5.30)

From this comparison, we obtain immediately the rough upper bounds in
the WI case and in the TF case.
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5.4.2 Rough lower bounds

In the WI case, we always have, observing that λ1,z is the ground state energy
for any N ∈ N∗,

λz
1 ≤ mN

A (ε, ĝ) . (5.31)

Hence we obtain in full generality

Proposition 5.9.
Under Condition (1.54), then, for any N ≥ 1, we have

mN
A (ε, ĝ) ≈ 1

ε
(5.32)

In the TF case, it remains to prove the lower bound which will be a
consequence of the following inequality :

mN
A (ε, ĝ) ≥ 1

CN2
ĝ

2
3 ε

4
3 . (5.33)

We indeed observe that if uN is a normalized minimizer, then there exists
one interval Ij :=]j T

2
, (j + 2)T

2
[ (j ∈ {−N, . . . , N − 2}), such that

∫

Ij

|uN |2 dz ≥ 1

N

We can then write, forgetting the kinetic term and translating Ij to ]− T
2
, +T

2
[,

mN
A (ε, ĝ) ≥ ε−2

∫
Ij

w(z) |uN |2 dz + ĝ
∫

Ij
|uN |4 dz

≥ inf(||uN ||2, ||uN ||4) inf ||u||=1

∫ +T
2

−T
2

(Wε|u|2 + ĝ|u|4) dz .

Then we can combine the lower bound obtained for N = 1 and the inequality
w(z) ≥ α̂z2 to get (5.33). So we get finally that mN

A has the right order in
the TF case.

Proposition 5.10.
Under Assumptions (5.9) and (5.10), we have, for any N ≥ 1,

mN
A (ε, ĝ) ≈ ĝ

2
3 ε

4
3 . (5.34)

This extends to general N our former Proposition 5.5.
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5.4.3 Asymptotics

We would like to give conditions under which the universal upperbound (5.30)
becomes actually asymptotically or exactly a lower bound.

Proposition 5.11.
Under either Assumption (1.51) or Assumptions (5.10) and (5.12),

mN
A (ε, ĝ) ∼ mA(ε,

ĝ

N
) . (5.35)

Proof :
The upperbound was already obtained in (5.30). The proof of the lower
bound is different in the two considered cases.

WI case. We will see later (in (7.6)) by a rough analysis of the tunneling
effect and the property that the infimum of the function

CN 3 (c0, c2, . . . , cN−1) 7→
N−1∑
j=0

|cj|4

over
∑

j |cj|2 = 1 is attained when all the |cj|’s are equal :

|cj| = 1√
N

, for j = 0, . . . , N − 1 , (5.36)

that, under Assumption (1.51), there exist C > 0, ε0 > 0 and α > 0 such
that

mN
A (g, ε) ≥ mA(

ĝ

N
, ε)− C(ĝ + 1) exp−α

ε
, ∀ε ∈ (0, ε0] . (5.37)

TF case. In this case we can for the lower bound forget the kinetic term
and come back to the analysis of Subsubsection 5.3.5, with T replaced by
NT . Under Assumption (5.12), we have seen in (5.28) that the minimizer
uN is localized in the neighborhood of each minimum and T -periodic.
We can then write

∫ NT
2

−NT
2

(
w
ε2
|uN |2 + ĝ|uN |4

)
dz = N

∫ T
2

−T
2

(
w
ε2
|uN |2 + ĝ|uN |4

)
dz

=
∫ T

2

−T
2

(
w
ε2
|√NuN |2 + bg

N
|√NuN |4

)
dz

≥ inf ||v||=1

∫ T
2

−T
2

(
w
ε2
|v|2 + bg

N
|v|4

)
dz .40



But under Assumptions (5.10) and (5.12), the last term in the inequality has
same asymptotics as mA(ε, bg

N
) and we are done.

6 Study of Case (B) : Justification of the trans-
verse reduced model

6.1 Main result

We have defined EN
B,Ω by (1.41)-(1.42) and mN

B,Ω, the infimum of the energy
by (1.45). In case B, the proof of the reduction does not depend on whether
N = 1 or N > 1. The only difference is when looking at the rough or accurate
estimates of the reduced model. Note that only rough estimates are used in
the part concerning the justification of the model.

The reduction is very similar to case A, and we will prove

Theorem 6.1.
If

(RBa) εmN
B,Ω << 1 , (6.1)

and
(RBb) g mN

B,Ω ε
1
2 << 1 , (6.2)

then, as ε tends to 0,

inf
||Ψ||=1

Qper,N
Ω (Ψ) = λ1,z + mN

B,Ω(1 + o(1)) . (6.3)

Then Theorems 1.5 and 1.6 follow from this result and appropriate esti-
mates on mN

B,Ω, as we will prove in section 6.4, while the proof of Theorem 6.1
is made in Section 6.2.

6.2 Proof of Theorem 6.1

We recall that we have the universal upperbound (1.64). The lower bound
follows from the following proposition and the fact that there exists c > 0
such that

δN
z ∼ c/ε ,

as ε tends to 0.
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Proposition 6.2.
There exists a universal constant C > 0 such that

inf
||Ψ||=1

Qper,N
Ω (Ψ) = λ1,z + mN

B,Ω (1− CrN
B ) . (6.4)

with
0 ≤ rN

B ≤ mN
B,Ω(δN

z )−1 + g
1
4 (δN

z )−
1
8 (mN

B,Ω)
1
4 (1 +

λ1,z

δN
z

)
1
8 . (6.5)

Proof :
Essentially this corresponds to exchange the role of (A) and (B). We start
from a minimizer Ψ and first write

Ψ = ΠNΨ + w (6.6)

where ΠN is the orthogonal projection relative to the first N eigenfunctions
of Hz introduced in (1.34). We have the lower bound

∫

R2
x,y

E ′A(w) dxdy ≥ λN+1,z

∫

R2×]−NT
2

,+NT
2

[

|w(x, y, z)|2dxdydz , (6.7)

with

E ′A(φ) :=

∫ NT
2

−NT
2

(
1

2
φ′(z)2 +

1

ε2
w(z)φ(z)2

)
dz . (6.8)

We now rewrite the energy in the form

Qper,N
Ω (Ψ) =

∫ NT
2

−NT
2

E ′B,Ω(Ψ) dz+

∫

R2
x,y

E ′A(ΠNΨ) dxdy+

∫

R2
x,y

E ′A(w) dxdy+IN(Ψ) ,

(6.9)
with

IN(Ψ) = g

∫
|Ψ|4dxdydz , (6.10)

and

E ′B,Ω(ψ) =

∫

R2
x,y

(
1

2
|∇x,yψ − iΩr⊥ψ|2 +

1

2
(ω⊥2 − Ω2)r2|ψ|2

)
dxdy , (6.11)

with r⊥ = (−y, x).

We note that IN ≥ 0 and that

E ′B,Ω(ψ) ≥ ω⊥||ψ||2 . (6.12)
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We first get the control of ||w||2. Having in mind (1.64), we obtain

λ1,z + mN
B,Ω ≥ Qper,N

Ω (Ψ)
≥ ω⊥ + λN+1,z||w||2 + λ1,z||ΠNΨ||2 (6.13)

and this implies

||w||2 ≤ mN
B,Ω

δN
z

. (6.14)

The right hand side in (6.14) is small according to (6.1). Note also that we
have immediately from (6.6),

||ΠNΨ||2 ≥ 1− mN
B,Ω

δN
z

. (6.15)

We now have to control the derivatives of w. For the transverse control, we
start from

λ1,z + mN
B,Ω ≥ λ1,z +

1

2

∫

R2
x,y×]−NT

2
, N
2

|∇x,yw − iΩr⊥w|2dxdy , (6.16)

which leads to
|||∇x,yw − iΩr⊥w| ||2 ≤ 2mN

B,Ω . (6.17)

For the longitudinal control, we write, for any α ∈ [0, 1]

λ1,z + mN
B,Ω ≥ λ1,z||ΠNΨ||2 +

α

2
||∂zw||2 + λN+1,z(1− α)||w||2 . (6.18)

We determine α by writing

λN+1,z(1− α) = λ1,z ,

hence
α = 1− λ1,z

λN+1,z

. (6.19)

So we have
||∂zw||2 ≤ 2

α
mN

B,Ω ≤ 2
λN+1,z

δN,z

mN
B,Ω . (6.20)

In the semi-classical regime where we are, this leads to the existence of a
constant C such that

||∂zw||2 ≤ CmN
B,Ω . (6.21)

Using in addition the diamagnetic inequality, we obtain

||∇|w|||22 ≤ CmN
B,Ω . (6.22)
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As in the other case, we obtain from Sobolev’s Inequality the control of
w in L6 norm

||w||6 ≤ C(mN
B,Ω)

1
2 (1 +

1

δN
z

)
1
3 ≤ C̃(mN

B,Ω)
1
2 , (6.23)

where we have used that δN
z >> 1 in the semi-classical regime.

Using Hölder’s inequality, we obtain

||w||4 ≤ C(mN
B,Ω)

1
2 (δN

z )−
1
8 . (6.24)

We now have all the estimates needed to mimic the proof of case A.

We start from

E(Ψ) ≥ λ1,z + EB(ΠNΨ)− 4g

∫
|ΠNΨ|3|w| dxdydz . (6.25)

We have now to control the third term in (6.25) by the second term. This is
done like in case A in the following way :

4g
∫ |ΠNΨ|3|w| dxdydz ≤ 4g||ΠNΨ||34 ||w||4

≤ C1g
1
4 (δN

z )−
1
8 (EB(ΠNΨ))

3
4 (mN

B,Ω)
1
2 .

(6.26)

We now use
EB(ΠNΨ) ≥ mN

B,Ω||ΠNΨ||42 , (6.27)

which together with (6.14) leads to

mN
B,Ω ≤ C(1 +

mN
B,Ω

δN
z

)EB(ΠNΨ) . (6.28)

This leads to

4g

∫
|ΠNΨ|3|w| dxdydz ≤ C2g

1
4 (mN

B,Ω)
1
4 (δN

z )−
1
8 (1+

mN
B,Ω

δN
z

)EB(ΠNΨ) . (6.29)

Using this control, (6.14), (6.25) and (6.27), we have obtained the detailed
proof of (6.4) in the general case.

6.3 On the minimizers of EB.

In order to get bounds for mB,Ω, we can analyze the case Ω = 0. It is standard
(see [Af1] or [IM]) to prove
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Proposition 6.3.
The minimizer of EB over the normalized ψ’s is unique (up to a multiplicative
constant of modulus 1) and radial.

If ψ is radial, we have that EB,Ω(ψ) = EB(ψ). Therefore,

Corollary 6.4.
We always have

inf EB,Ω := mB,Ω ≤ mB . (6.30)

6.4 Proof of Theorems 1.5 and 1.6

The issue is to determine the magnitude of the infimum of the energy of the
transverse problem mN

B,Ω.

6.4.1 Reduction to the case N = 1

As in Case A it is immediate to see that

mN
B,Ω ≤ mB,Ω(

g̃

N
, ω⊥) . (6.31)

If indeed ψmin,N was the T -periodic minimizer for (1.39) with g̃N = eg
N
, we

get (6.31) by using (1.27), (2.21) and taking ψj,⊥ = 1√
N

ψmin,N .

So it remains to analyze the case N = 1. This depends on the magnitude
of g̃ and leads us to consider two cases.

6.4.2 The Weak Interaction regime : case N = 1

Proposition 6.5.
If (1.66) holds, then

mB,Ω(g̃, ω⊥) ≤ Cω⊥ . (6.32)

Indeed, (1.66) implies that g̃ is bounded and the test function ψ⊥ (which
is independent of Ω) implies the proposition.

Therefore, if (1.66) and (1.67) are satisfied, then Theorem 6.1 holds and
implies Theorem 1.5.
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6.4.3 The Thomas Fermi regime : case N = 1

We start with the case when Ω = 0. When g̃ is not bounded, we can meet a
Thomas-Fermi situation.

Proposition 6.6.
If g̃ → +∞, the function mB(g̃, ω⊥) satisfies

mB(g̃, ω⊥) ∼ cTF ω⊥
√

g̃ , (6.33)

with
cTF =

π

24
λ3 = 3−12

3
2 π−

1
2 . (6.34)

Therefore, if (1.70), (1.71), (1.72) are satisfied, then Theorem 6.1 implies
Theorem 1.6.

Proof.
A rescaling in

√√
g̃/ω⊥ yields a new energy

u 7→ ω⊥
2

∫

R2

(
1√
g̃
|∇u|2 +

√
g̃r2|u|2 + 2

√
g̃|u|4

)
dxdy ,

which is of the type Thomas Fermi (that is kinetic energy can be neglected)
if

1√
g̃

<<
√

g̃ . (6.35)

This leads then simply to the TF reduced functional

u 7→ (ω⊥
√

g̃)

∫

R2

(
1

2
r2|u|2 + |u|4

)
dxdy ,

whose infimum over the unit ball in L2(R2) is of order cTF (ω⊥
√

g̃), with
cTF > 0 defined by :

cTF = inf
||u||2=1

∫

R2

(
1

2
r2|u(x, y)|2 + |u(x, y)|4

)
dxdy . (6.36)

The minimizer exists and is explicitly known as

umin(x, y) =
1

2
(λ− r2)

1
2
+ with λ = 2

3
2 π−

1
2 .

This leads to (6.34).

In addition, by a careful computation ([Af1]) we obtain more precisely
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Lemma 6.7.
There exists c such that, as g̃ tends to +∞,

mB

ω⊥
= cTF

√
g̃ +

c√
g̃

ln g̃ +O(
1√
g̃
) , (6.37)

with cTF defined in (6.36).

Remark 6.8.
Note that we have the universal lower bound

mB(g̃, ω⊥) ≥ cTF ω⊥
√

g̃ . (6.38)

This lower bound becomes better than the universal lower bound by ω⊥ as
soon as

cTF

√
g̃ > 1 . (6.39)

Remark 6.9.
In the semi-classical regime, conditions (BTFa) and (BTFc) in Theorem 1.6
(take their product) imply that this two-dimensional energy is much smaller
than 1/ε, that is

ω⊥g
1
2 ε−1/4 << ε−1 . (6.40)

We now look at the case when Ω > 0. The previous proof, using that the
minimizer of the TF reduced functional in (6.36) is radial, yields

Proposition 6.10.
There exists C such that, as g̃ → +∞,

mB,Ω(g̃, ω⊥) ≤ mB(g̃, ω⊥) + C ln g̃ g̃−
1
2 . (6.41)

This will be improved in (6.30) by a direct study of the minimizer of EB,Ω.

Remark 6.11.
For a lower bound, we can use the TF reduced functional

IΩ(u) = ω⊥
√

g̃

∫

R2

(
1

2
(1− Ω2/ω⊥2)r2|u|2 + |u|4

)
dxdy

whose minimum is explicit :

inf
||u||=1

IΩ(u) = ω⊥
√

g̃eTF

√
1

2
(1− Ω2/ω⊥2) .
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Thus we get that, if there exists β ∈ [0, 1[ such that

0 ≤ Ω/ω⊥ ≤ β , (6.42)

then, as g̃ → +∞,
mB,Ω(g̃, ω⊥) ≈ ω⊥

√
g̃ . (6.43)

The uniformity of the approximation depends on β.

In fact, if one wants a more precise expansion of the energy, one can
use the ground state ρ of IΩ to split the energy EB,Ω(u). Indeed the Euler
Lagrange equation for ρ multiplied by (1− |u|2) for any function u yields the
identity (see [Af1])

EB,Ω(u) = IΩ(ρ) +

∫
ρ2|∇v − iΩ× rv|2 + g̃ρ4(1− |v|2)2

where v = u/ρ. Thus, IΩ always provides a lower bound with an inverted
parabola profile as soon as we are in a TF situation. The second part of the
energy has the vortex contribution which is of lower order when Ω/ω⊥ <<
1. More precisely, the first vortex is observed for a velocity Ω of order
ω⊥ ln g̃/

√
g̃. When Ω increases and becomes at most like βω⊥ with β < 1,

the two parts of the energy I(ρ) and the rest become of similar magnitude.
In the limit, Ω → ω⊥, there are a lot of vortices and the description can be
made with the lowest Landau levels sets of states. The leading order term of
the energy is the first eigenvalue of −(∇− iΩ× r)2 which is equal to Ω.

6.5 Lower bounds in the TF case (N ≥ 1)

In the proof of Theorem 1.6, we need a lower bound of mN
B,Ω, which will be

established in this subsection. We start from a minimizer (ψ`,⊥)`. Due to the
normalization, there exists at least one j such that

||ψj,⊥|| ≥ 1√
N

Then we write (neglecting the kinetic part)

mN
B,Ω ≥

1

2
(ω2−Ω2)

∫
r2|ψj,⊥|2+g

∫ NT
2

−NT
2

∫

R2
x,y

(
N−1∑
j=0

ψN
j (z)ψj,⊥(x, y)

)4

dzdxdy .

When expanding
(∑N−1

j=0 ψN
j (z)ψj,⊥(x, y)

)4

, the mixed terms are exponen-
tially small (see Subsection 7.1) in comparison to

∑
j ||ψj,⊥||4L4 , hence we get,
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for some α > 0,

mN
B,Ω ≥

1

2
(ω2−Ω2)

∫
r2|ψj,⊥|2+g

∫ NT
2

−NT
2

ψN
0 (z)4dz(

∫
(ψj,⊥)4dxdy) (1−exp−α

ε
) .

We now use (7.4), to obtain

mN
B,Ω ≥ 1

2
(ω2 − Ω2)

∫
r2|ψj,⊥|2 + g

∫ T
2

−T
2

φ1(z)4dz(
∫

ψ4
j,⊥dxdy)(1− exp−α

ε
)

= 1
2
(ω2 − Ω2)

∫
r2|ψj,⊥|2 + g̃(

∫
ψ4

j,⊥dxdy)(1− exp−α
ε
)

≥ (
1
2
(ω2 − Ω2)

∫
r2|ψj,⊥|2 + g̃(

∫
ψ4

j,⊥dxdy)
)
(1− exp−α

ε
)

≥ 1
N2 (1− exp−α

ε
) infψ,||ψ||=1

(
1
2
(ω2 − Ω2)

∫
r2|ψ|2 + g̃(

∫
ψ4dxdy)

)
.

One can then use the asymptotics obtained in the proof of (6.43) to get,
under Assumption (6.42), the existence of CN,β > 0 such that, as ε tends to
0 and g̃ to ∞,

mN
B,Ω ≥

1

CN,β

ω⊥
√

g̃ . (6.44)

7 Tunneling effects for the non-linear models

This is only in this section that we will exhibit the role of these localized
(NT )-periodic Wannier functions.

7.1 Towards the DNLS model.

7.1.1 Preliminaries

Our aim in this section is to discuss possible asymptotics for mN
A in the case

when N > 1, which will involve the tunneling effect. Although we have
no final result on this part, we would like to prove how we reach a famil-
iar model considered by physicists (see [KMPS, MNPS, STKB]): a discrete
model called the DNLS model. In particular we will describe in Proposition
7.6 under which assumptions one can get a simplified model. The starting
point in this subsection is that we replace the issue of minimizing EN,ε,bg

A on
the (NT )-periodic L2-normalized functions by restricting the approximation
to the eigenspace Im πN associated with the first N eigenvalues of the linear
problem.
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7.1.2 Projecting on the eigenspace Im πN

Our aim is to analyze the reduced functional

CN 3 c = (c)j=0,...,N−1 7→ EN,ε,bg,red
A (c) = EN,ε,bg

A (
N−1∑
j=0

cjψ
N
j ) , (7.1)

where EN,ε,bg
A is the former EN

A given in (1.36) with the explicit notation of the
dependence of the parameters and the ψN

j are the (NT )-periodic Wannier
functions. When N = 1, the error which is done has been estimated in
(5.8) under the assumption that ĝε

1
2 is small, i.e. (1.51). Replacing in the

argument the projection on the first eigenspace by πN , the same result holds
for N > 1. So we have :

Proposition 7.1.
Under condition (1.51)

mN
A (ε, ĝ) = m

N,(0)
A (ε, ĝ) +O(ĝ

3
2 ε−

1
4 ) , (7.2)

with
m

N,(0)
A (ε, ĝ) := inf

{c | PN−1
j=0 |cj |2=1}

EN,ε,bg,red
A (c) . (7.3)

We now concentrate our discussion on the model obtained after this first
approximation. More specifically we are interested in the asymptotics of
m

N,(0)
A (ε, ĝ).

7.1.3 Neglecting the tunneling

Let λN
1,z = λ1,z be the bottom of the (NT )-periodic spectrum of Hz on

] − NT
2

, NT
2

[. So strictly speaking, we can start the analysis of this first
approximate model only under Condition (1.51).

Neglecting the tunneling effect, we are lead to the minimum of the func-
tional EN,ε,bg,(1)

A

CN 3 c 7→ EN,ε,bg,(1)
A (c) := λ1,z

(
N−1∑
j=0

|cj|2
)

+ ĝ (
N−1∑
j=0

|cj|4) (

∫ NT
2

−NT
2

|ψN
0 (z)|4 dz) ,

over the c’s such that
N−1∑
j=0

|cj|2 = 1 .
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Observing (see [DiSj]), that

∫ NT
2

−NT
2

|ψN
0 (z)|4 dz =

∫ T
2

−T
2

φ1(z)4 dz + Õ(exp− S

2ε
) , (7.4)

where φ1 is the ground state of the T -periodic problem, the minimum of this
approximate functional, which is attained for cj = N− 1

2 , is

m
N,(1)
A = λ1,z +

ĝ

N

∫ NT
2

−NT
2

|ψN
0 (z)|4 dz . (7.5)

So as a first approximation, we have obtained

Proposition 7.2.

m
N,(0)
A (ε, ĝ) = λ1,z +

ĝ

N
(

∫ NT
2

−NT
2

|ψN
0 (z)|4 dz) + (ĝ + 1) Õ(exp−S

ε
) ,

or

m
N,(0)
A (ε, ĝ) = λ1,z +

ĝ

N
(

∫ T
2

−T
2

φ1(z)4 dz)+ ĝ Õ(exp− S

2ε
)+ Õ(exp−S

ε
) . (7.6)

The definition of Õ is given in (1.29). If we apply this result to our context
with ĝ = ω⊥g, this yields information on the behavior of mN,(0)

A independently
of Assumption (1.51).

7.1.4 Taking into account the tunneling

If we keep the main tunneling term, we get the following more accurate
approximating functional

CN 3 c 7→ EN,ε,bg,(2)
A (c)

:= λ̂1

(∑N−1
j=0 |cj|2

)
− τ<

(∑N−1
j=0 cj cj+1

)
+ ĝ (

∑N−1
j=0 |cj|4) (

∫ NT
2

−NT
2

|ψN
0 (z)|4 dz) .

(7.7)
Here τ is the hopping amplitude introduced around (3.12), λ̂1 is the low-
est eigenvalue corresponding to the Floquet condition k = N

2
for the linear

problem on ] − T
2
, T

2
[, which is exponentially closed to λ1 and we take the
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convention that cN = c0.
The quadratic form corresponds to the approximation in the first band :

CN 3 c 7→ λ̂1

(
N−1∑
j=0

|cj|2
)
− τ<

(
N−1∑
j=0

cj cj+1

)
(7.8)

which can be shown to be correct modulo Õ(exp−2S
ε

).

Remark 7.3.
This time the minimizer could depend on ĝ !! This is the kind of problem
which is analyzed in [KMPS].

Discussion about the justification of EN,ε,bg,(2)
A

One can wonder why we forget some terms in the computation. Let us
do this more carefully. To be consistent with what we forget in the lin-
ear case (terms of order O(τ 2)), we show first that one can approximate7(∫ NT

2

−NT
2

|∑N−1
j=0 cjψ

N
j (z)|4 dz

)
by

(∫ NT
2

−NT
2

|∑N−1
j=0 cjψ

N
j (z)|4 dz

)
=

(
∑N−1

j=0 |cj|4)(
∫ NT

2

−NT
2

|ψN
0 |4dz)

+
∑N−1

j=0

(
(|cj|2 + |cj+1|2)(cj c(j+1) + cj+1 c(j)) (

∫ NT
2

−NT
2

ψN
0 (z)|ψN

0 (z)|2 · ψN
1 (z)dz)

)

+Õ(τ 2) .
(7.9)

This first approximation is based on the following lemma.

Lemma 7.4.

∫ NT
2

−NT
2

ψN
0 (z)2ψN

1 (z)2dz = Õ(exp−2S

ε
) .

This is based on the property that, for all η > 0, there exists Cη such
that

|ψN
0 (z)| ≤ Cη exp

η

h
exp−1

ε
dmod

Ag (z) , (7.10)

where dmod
Ag (z) is an even function such that

dmod
Ag (z, 0) = 2

∫ z

0

√
w(t) dt , for z ∈ [0, T [ ,

7We use here the assumption that the potential and hence ψN
0 is even. We recall also

that the ψj are real.
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and such that dmod
Ag (z, 0) is increasing for z ≥ 0.

On the contrary, this is a priori unclear8 why one could forget terms like

τ̂ = ĝ

∫ NT
2

−NT
2

ψN
0 (z)3ψN

1 (z)dz . (7.11)

(where we recall that w is even by Assumption (1.1) and that this implies
ψN

0 even and real). This term is a priori of the same order as τ . We have
indeed

Lemma 7.5.

∫ +NT
2

−NT
2

ψN
0 (z)3ψN

1 (z) dz = Õ(exp−S

ε
) . (7.12)

Due to the decay estimates (7.10) for these (NT )- Wannier functions, the
term to integrate in (7.12) decays like

Õ
(

exp−1

ε

(
3dmod

Ag (z) + dmod
Ag (z − T )

))
,

so the main contribution comes from the origin and has the same size as
exp−S

ε
.

So it is necessary to be careful9, if one wants to neglect τ̂ .

Let us now try to estimate
∫ +NT

2

−NT
2

ψN
0 (z)3ψN

1 (z) dz as ε → 0 more precisely.
Heuristically, one can try to use a WKB approximation, this is available for
ψN

0 in the neighborhood of 0 but unfortunately, we do not have a good WKB
approximation of ψN

1 (z) close to the origin, as observed in Subsection 3.3
(see (3.23)). So we have no obvious main term for the asymptotic behavior
of

∫ +NT
2

−NT
2

ψN
0 (z)3ψN

1 (z) dz. A reasonable guess (which is implicitly used by
the physicists) should be that :

τ̂ = ĝ τ o(1) , as ε → 0 . (7.13)

The weaker mathematical result, which is obtained from Lemma 7.5, is the
following

τ̂ = ĝ τ Õ(1) , as ε → 0 . (7.14)
8In [KMPS], p. 5, between formulas (18) and (19), the term τ̂ is discussed; see also p. 6

around formula (20).
9We thank M. Snoek for kindly answering our questions on this problem.
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This leads to the proposition.

Proposition 7.6.
Under the assumption that there exists η > 0 such that,

0 ≤ ĝ exp
η

ε
≤ 1 , (7.15)

then
m

N,(0)
A = m

N,(2)
A + o(τ) . (7.16)

holds.

This gives a motivation for the analysis of the DNLS model of [STKB]
(with an extra term in λ

∑N−1
j=0 |cj|2).

If we consider the (NT )-periodic Floquet problem, we arrive naturally to
questions analyzed in [KMPS] (16-17-18), and the remark after (21) in this
paper.

7.2 On approximate models in case B : towards Snoek’s
model

Using the basis of the (NT )-Wannier functions, we can consider EN
B intro-

duced in (1.43) and consider the decomposition

EN
B (ψ0,⊥, · · · , ψN−1,⊥) := EN ′

B (ψ0,⊥, · · · , ψN−1,⊥)+g||
N−1∑
j=0

ψN
j (z)ψj,⊥(x, y)||4L4 .

We now use various approximations related to the analysis of the z-
problem ((NT )-Wannier functions). We get

EN ′
B (ψ0,⊥, · · · , ψN−1,⊥)

∼ s
∑N−1

j=0 ||ψj,⊥||2 + t
∑N−1

j=0 (〈ψj,⊥, ψj+1,⊥〉+ 〈ψj,⊥, ψj−1,⊥〉) ,

and
g||∑N−1

j=0 ψj(z)ψj,⊥(x, y)||4L4 ∼ g||ψ0||4L4

∑N−1
j=0 ||ψj,⊥||4L4 .

So the approximate functional becomes
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EN,approx
B ((ψj,⊥)j) =

∑N−1
j=0

∫
R2

(
1
2
|∇ψ⊥,j|2 + V (x, y)|ψj,⊥(x, y)|2) dxdy

+s
∑N−1

j=0 ||ψj,⊥||2
+t

∑N−1
j=0 (〈ψj,⊥, ψj+1,⊥〉+ 〈ψj,⊥, ψj−1,⊥〉)

+g̃
∑N−1

j=0 ||ψj,⊥||4L4 ,

(7.17)
which should be minimized over the (ψj,⊥)j such that

N−1∑
j=0

||ψj,⊥||2 = 1 .

This is the model described by Snoek [Sn].

Starting from this model, one can, depending on the size of the various
parameters, come back in some case to the situation when (ψj,⊥)j is of the
form cjψ⊥, with

∑N−1
j=0 |cj|2 = 1. In this case, we come back to the results of

the previous subsection. In other cases, the problem seems completely open.
This regime should lead to situations where vortices in the slice j are coupled
with the neighboring slices. This is still to be analyzed.

8 Conclusion

In this paper, we have analyzed the (NT )-periodic problem. Case B which
leads to N coupled nonlinear problems provides many interesting directions
of work. Other related models are still to be analyzed in relationship with
our paper. For instance, it is natural to study the full 3D problem with a
constraint on the L2 norm and the harmonic trapping potential also on the
z direction.

Another natural physical problem would be to analyze the quantity

lim
Nc→+∞

1

Nc


 inf
R+ NT

2

−NT
2

|Ψ|2 dx=Nc

Qper,N
Ω (Ψ)




where we compute the energy by integrating over N periods and where

Nc/N = ν

(ν fixed). Upper bounds for this model are the periodic models with g re-
placed by gν. This point of view appears for example in [KMPS] for discrete
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models. A related question is to analyze under which condition a minimizer
of the (NT )-periodic problem is actually T -periodic.The general answer is
unknown. One suspects by bifurcation arguments that it is true for g and Ω
small enough, but physicists seem to wait for other situations.

The discrete nonlinear model seems to appear in other contexts. It is
addressed in [MNPS]. A number of their results would require some rigorous
justifications, for instance the stability analysis.
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