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Abstract We revisit in a 2d setting the notion of energy release rate, which plays

a pivotal role in brittle fracture. Through a blow-up method, we extend that notion

to crack patterns which are merely closed sets connected to the crack tip. As an

application, we demonstrate that, modulo a simple meta-stability principle, a moving

crack cannot generically kink while growing continuously in time. This last result

settles a longstanding debate in fracture mechanics on the correct criterion for kinking.

1 Introduction

Brittle fracture is by now �old� news in mechanics, and its foundation is con-

sidered by many as a closed subject. The basic mechanical principles governing

quasi-static evolution, i.e., an evolution for which the e�ect of inertia is ne-

glected, were postulated by A.A. Gri�th in [12] about 90 years ago. Yet, they

remain amazingly free of the usual stigmata of old age.

In essence, Gri�th's formulation consists � in a 2 dimensional setting �

in pre-assuming a crack path Γ and in computing for each crack length (the

crack is assumed connected) the release of elastic energy associated with the

in�nitesimal extension of that crack. More precisely, if, say Ω is an elastic body

and Γ ⊂ Ω, and if u0(t) is a boundary displacement applied on ∂Ω, let Wel.(t, l)
denote the elastic energy associated with the elastic equilibrium of the body,

with a crack of length l, submitted to the boundary displacement u0(t). Then
the energy release rate associated with the crack length l at time t is given by

G(t, l) := lim
h↘0

1
h
{Wel.(t, l + h))−Wel.(t, l)},
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provided that that limit exists. Of course, Gri�th is not so preoccupied in [12]

with establishing conditions on both the crack path and the evolution under

which one is at liberty to make such an assumption. Even today, haziness is the

rule, and one would be hard-pressed to �nd precise results in the literature on

this very topic.

In any case, Gri�th then proceeds to motivate the existence of a positive

constant k � often called fracture toughness, and to be viewed as the amount of

energy released with each bond break for the underlying atomic lattice � such

that

• G(t, l(t)) ≤ k;

• l(t)↗ t; and

• dl
dt (t) 6= 0⇒ G(t, l(t)) = k.

In other words the energy release rate G(t, l(t)) is capped and the crack cannot

move, unless the upper bound on that rate is met.

This three-pronged postulate provides the backbone of the theory of brittle

fracture. A few years later, G. Irwin established in a rather restrictive setting

(see e.g. [13]) that, for an isotropic material undergoing small deformations, the

stress singularity at a crack tip is always in 1/
√
r, where r is the distance to

the tip, which led him to observe that, for a crack which is straight near its tip

and points in the direction ~e, the planar displacement �eld is always of the form
√
r{K1φ1 +K2φ2}, where φ1, φ2 are universal functions of the polar angle, while

K1,K2, the stress intensity factors, contain information about the geometry and

the loads; in our setting we will sum up the dependency of the stress intensity

factors upon the loads by the superscript t. Note that, if the stress �eld σ near

the crack tip is pure traction, i.e., if σ~e⊥ ‖ ~e⊥ in a neighborhood of the tip, then

K2 = 0.
He then proceeded to compute the energy release rate along a extending

straight crack originating at the boundary of Ω, and found that, for a crack of

length l and, say displacement loads u0(t) on ∂Ω,

G(t, l) = C{(Kt
1)2 + (Kt

2)2},

where C is explicitly given in terms of the elasticity of the material. Of course,

here again, Irwin was not so interested in precise mathematical statements. On

the one hand, establishing � and not a priori postulating � the exact nature of the

singularity at the crack tip is not an easy task; we will refer to e.g. [9], Theorem

15.4, for the appropriate result in our setting. On the other hand relating that
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singularity to a possible energy release rate requires tools of di�erentiation with

respect to domain variation; we refer the reader to [10] for the only precise

setting we are aware of, that is the case of a straight crack.

The mechanician involved in fracture mechanics is left to ponder the the-

oretical gear exhibited above, lamenting a remarkable yet incomplete toolkit.

Indeed, a mere counting of the number of unknowns versus equations makes it

clear that the theory, as it stands, cannot predict crack path. So, for the last

50 years, mechanicians have attempted to import additional ingredients that

would allow for such predictions.

The simplest setting is that of a straight crack that wishes to kink at a given

time, that is to modify brutally its extensional direction. Assuming that the

crack was propagating along the x-axis, we denote by ζ the kinking angle. Two

competing criteria have been put forth. The �rst states that ζ will be such that

the energy release rate at the time of extension of the crack from the kinking

point is maximal among all possible straight add-cracks; this is referred to as the

Gmax-criterion. The second postulates that ζ will be such that, after kinking,

the limit, as the add-crack length tends to 0, of the stress intensity factor K2

is 0; this is called the symmetry principle. Confusion is bound to arise because

not only are those criteria essentially ad-hoc, but also because they were shown

in [2] not to coincide.

The present study should be viewed as a contribution to the debate Gmax.

versus K2 = 0. We contend that, upon adoption of a general postulate of

metastability of the total energy � the sum of the elastic and surface energies �

with respect to connected add-cracks of small length, the debate is essentially

pointless because there are no evolutions that kink along a �nice� geometric path

� say with a C1 add-crack � while extending the crack continuously in time. This

is the �nal result detailed in Proposition 4.6.

The suggested metastability postulate (see (4.11)) is simply stated in this

paper. It �nds its root in the newly developed theory of variational fracture.

We will not dwell upon that theory here and refer the interested reader to [3]

for a detailed exposition. However, please note that the �rst prong in Gri�th's

criterion may be viewed as a �rst order necessary condition of metastability,

because it states that the derivative of the total energy along �smooth� variations

in the crack length must be nonnegative.

Our result is based on a precise computation of the energy release rate asso-

ciated with add-cracks of density 1
2 (in other words, of add-cracks that look like

a line segment for small enough balls around the crack tip). This is the object

of, �rst Lemma 2.5, then of Theorem 3.1, which combine to prove the existence
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of an energy release rate for such add-cracks in Corollary 3.7. With that result

at hand, we show that line segment add-cracks cannot maximize the energy

release rate in Theorem 4.1. That result appeals to di�cult computations of

expansions around the direction ζ = 0 of the stress intensity factors associated

with the kinking in a given direction ζ of a semi-in�nite straight crack in R2.

Those were performed in [2]. Unfortunately, the proof of Theorem 4.1 seems

to require a knowledge of those coe�cients for all values of ζ, or at least of a

speci�c combination of those, see Conjecture 4.3. But this information cannot

be derived from the sole results of [2]. We state the needed relation as a con-

jecture, observing that it is met near ζ = 0 and that it is numerically evident.

Since the conjecture is true if a speci�c non zero universal entire function has

no zeroes, we �nally remark that, in the worst case scenario, there would be a

�nite number of universal kinking angles for which a time continuous evolution

could take place, hardly what one should expect from a well-mannered kinking

criterion.

We emphasize that, in all that follows, no attention is paid to the vexing

issue of (linearized) non-interpenetration.

Finally note that we systematically omit, for the sake of notational simplicity,

sets of 0-Lebesgue measure in writing integrals, i.e., if L2(Γ) = 0, then
∫

Ω\Γ fdx

is written as
∫

Ω
fdx. Also, whenever ε, ε′ ∈ S2×2, the space of symmetric 2× 2-

matrices, ε · ε′ stands for tr(εε′).
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2 Linear elasticity in a cracked domain - the math-

ematical setting

In all that follows,

A0. Ω is a Lipschitz bounded domain of R2 that contains the origin O := (0, 0)
and ~e1, ~e2 is a �xed orthonormal basis of R2.

The domain Ω is �lled with a homogeneous elastic material with elasticity

C, a very strongly elliptic fourth order tensor with the usual symmetries of

linear elasticity, i.e., a tensor such that Cijkh = Ckhij = Cikjh and also such that
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Cijkhεijεkh > 0,∀εij = εji 6= 0. We assume the existence of a pre-crack γi and

will denote by Γ any additional crack, so that the compound crack will be γi∪Γ.
As far as γi is concerned, the following is assumed :

A1. γi is a closed smooth curve in Ω whose intersection with ∂Ω is at most a

�nite number of points;

A2. Ω \ γi is connected;

A3. the right endpoint of γi is the origin O;

A4. γi is a straight line segment in direction ~e1 in a neighborhood B(O, η) of
O.

In truth, it would be no essential restriction to assume, in lieu of A1-A4,

that γi is a straight line segment ending at O and originating either on the

boundary ∂Ω (a notch), or inside Ω (a slit).

For a given displacement �eld u0 ∈ H 1
2 (∂Ω; R2), we wish to investigate the

elastic equilibrium of Ω\γi under the Dirichlet boundary condition u0 . To this

end we view u0 as de�ned on all of R2: u0 is then in H1(R2; R2) and, with no

loss of generality, we may as well assume that it is compactly supported in R2.

The solution (still denoted by u0) of the elastic equilibrium of Ω \ γi under the
Dirichlet boundary condition u0 is the minimizer for

min
{

1
2

∫
Ω

Cε(u) · ε(u) dx : u ∈ H1
loc

(R2 \ γi; R2) ; u = u0 in R2 \ Ω
}
.

We still denote by u0 the unique solution; see e.g. [6], Lemma 3. Note that it

satis�es in particular  −div (Cε(u0)) = 0, in Ω \ γi

Cε(u0)ν = 0, on γi ∩ Ω,
(2.1)

with ν any normal to ∂(Ω \ γi) at any point of the relative interior of γi ∩ Ω.
Actually, in the speci�c case at hand, according to [9],

u0 =
√
|x| {K1φ1 +K2φ2}+ z := u0

O + z, (2.2)

with z ∈ H2(B(O, η/2)\γi; R2)∩H1
loc

(R2\γi; R2); φ1, φ2 are universal functions

that only depend on the polar angle at O and on C, and K1,K2 depend on

Ω, C, u0, γi. The constants K1,K2 are called the stress intensity factors, and it

is not our purpose here to describe them in any details, referring the interested

reader to e.g. [2].
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Remark 2.1. De�ne

Γi := R−~e1,

set

u0
ε(y) := (u0(εy)− u0(0))/

√
ε, zε(y) := (z(εy)− z(0))/

√
ε

and note that

u0
ε(y) = u0

O(y) + zε(y).

Then, for all r > 0,

u0
ε → u0

O, uniformly in B(O, r)\Γi and strongly in W 1,p(R2\Γi; R2), 1 ≤ p <∞.
(2.3)

Indeed, by classical Sobolev injections, ∇z ∈ Ls(B(O, η/2)\γi; R2),∀s <∞,

so that, recalling assumption A4 on γi, for ε so small that εr < η/2,∫
B(O,r)\Γi |∇zε|pdy = εp/2

∫
B(O,r)\Γi |∇z(εy)|pdy = εp/2−2

∫
B(O,εr)\γi |∇z(y)|pdy

≤ εp/2−2(πε2r2)
q−1

q

(∫
B(O,η/2)\γi |∇z(y)|pqdy

)1/q

= Crε
p/2−2/q,

with Cr depending only on r. So, for any p <∞, we can choose q large enough

so that

∇zε → 0, strongly in Lp(B(O, r) \ Γi; R2). (2.4)

Since zε is a fortiori in Lp(B(O, r) \ Γi; R2) for ε small enough, Morrey's in-

equality implies, upon choosing p large enough in (2.4), that, for all r's,

zε − zε(0)→ 0, uniformly on B(O, r) \ Γi.

But zε(0) = 0, hence (2.3). ¶

Remark 2.2. Note that u0
O satis�es −div (Cε(u0

O)) = 0, in R2 \ Γi

Cε(u0
O)ν = 0, on Γi. ¶

We now wish to add a crack Γ �at the crack tip�. We assume that

A5. Γ is a compact connected set in Ω with H1(Γ) <∞;

A6. O ∈ Γ.

We henceforth de�ne, for any point M ∈ R2, AM as the set of Γ's that satisfy

A5, A6 with M in lieu of O.
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Then as before we wish to investigate the elastic equilibrium of Ω \ (γi ∪ Γ)
under the Dirichlet boundary condition u0 . We denote by uΓ a solution of

min
{

1
2

∫
Ω

Cε(u) · ε(u) dx : u ∈ H1
loc

(Ω \ (γi ∪ Γ); R2) , u = u0 on ∂Ω
}
.

(2.5)

Under assumptions A5 and A6, proving existence of such a displacement is

not an issue � see [6] � while uniqueness is true if and only if Ω \ (γi ∪ Γ) is

connected. Otherwise, uΓ is any rigid motion inside each connected component

of Ω \ (γi ∪ Γ) which does not touch ∂Ω.
We de�ne, for all Γ ∈ AO,

Fγ
i

(Γ) :=
1
2

∫
Ω

(Cε(uΓ) · ε(uΓ)− Cε(u0) · ε(u0)) dx. (2.6)

The following estimate holds true

Lemma 2.3. There exists two positive constants G and G such that, for any

l > 0,

−G ≤ 1
l

inf
Γ

{
Fγ

i

(Γ) : Γ ∈ AO;H1(Γ) ≤ l
}
≤ −G. (2.7)

Proof. First consider Γ = [O, I]∪ ∂B(O, l/(2π+ 1)), with
−→
OI:= −l/(2π+ 1)~e1

(so that Γ∪ γi looks like γi , together with a circle of radius l/(2π+ 1) centered
at O). Then, in view of (2.2),

Fγ
i

(Γ) ≤ −1
2

∫
B(O,l/(2π+1))

Cε(u0) · ε(u0) dx ∼ −Gl + o(l),

with G := 1/(2(2π + 1))
∫
B(O,1)

Cε(u0
O) · ε(u0

O) dx.
Now, with an argument identical to that developed in [8], Section 4 (see in

particular equation (4.3) of that reference), we obtain the following inequality

Fγ
i

(Γ) ≥ −C
∫

Ω

|τ − Cε(u0)|2dx, (2.8)

for all τ ∈ L2(Ω \ γi; R2 × R2) symmetric and such that∫
Ω

τ · ε(w)dx = 0, ∀w ∈ H1
loc

(R2 \ (γi ∪ Γ); R2)

with w ≡ 0 on R2 \ Ω and ε(w) ∈ L2(R2 \ (γi ∪ Γ);S2×2).
(2.9)

The only di�erence with (4.3) in [8] is that Ω in that reference has to be replaced

with Ω \ γi here, which is no restriction in view of assumptions A1 and A2.

Note that Γ ⊂ B(O, l) since H1(Γ) ≤ l and O ∈ Γ. Consider ϕ ∈ C∞(R2)
with ϕ ≡ 1 outside B(O, 7l/4) and ϕ ≡ 0 inside B(O, 5l/4). Take τ ≡ Cε(u0)
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outside B(O, 2l), τ ≡ 0 in B(O, l) and τ ≡ ε(v) +ϕ Cε(u0) in B(O, 2l) \B(O, l)
with  div ε(v) = −div(ϕ Cε(u0)) in B(O, 2l) \ (B(O, l) ∪ γi)

ε(v) · ν = 0 on ∂B(O, l) ∪ ∂B(O, 2l) ∪ γi,

with ν the exterior normal to B(O, 2l) \ B(O, l), or the normal to γi. Then, τ

satis�es (2.9).

In view of the assumed regularity of γi, an elementary integration by parts

establishes that∫
B(O,2l)\B(O,l)

|ε(v)|2 dx ≤ C
∫
B(O,2l)

|ε(u0)|2 dx,

so that, in the end, for that particular choice of τ ,∫
Ω

|τ − Cε(u0)|2dx ≤ C
∫
B(O,2l)

|ε(u0)|2 dx.

Recalling (2.8) and appealing once again to (2.2), we �nally obtain

Fγ
i

(Γ) ≥ −Gl + o(l),

with G := C
∫
B(O,2)

|ε(u0
O)|2 dx. ¶

Remark 2.4. Note that G,G vanish if u0
O = 0 (and are positive otherwise).

We assume from now on that u0
O 6= 0, or still that

K1 or K2 6= 0, (2.10)

that is, the load actually induces a singularity at the crack tip. ¶

Finally , the following lemma holds true:

Lemma 2.5. Assume that Γ(l) ∈ AO also satis�es

Γ(l) ⊂ Γ(l′), l ≤ l′; lim
l↘0

H1(Γ(l))
l

= 1, (2.11)

and that, for some l0, Γ(l0) satis�es

A7. Γ has density 1/2 at O, i.e., lims→0
H1(Γ∩B(O,s))

2s = 1/2.

Then, there exists a sequence {lj ↘ 0} and a line segment [O,M ] with

|
−→
OM | = 1 such that

Γj :=
1
lj

Γ(lj) converge in the sense of Hausdor� to [O,M ].

Further, all possible such �blow-up limits� are unit length line segments.
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Proof. In view of assumptions A5, A6, and of the second item in property

(2.11), Blaschke's selection theorem (i.e., the compactness of equi-bounded com-

pact connected sets for the Hausdor� distance) proves the existence of a sequence

{lj ↘ 0}, and of a compact connected set Γ0 such that

Γj converge in the sense of Hausdor� to Γ0, with O ∈ Γ0.

Further, by application of Golab's theorem (i.e., the lower semi-continuity of

the 1-dimensional Haudor� measure for compact connected sets converging for

the Hausdor� distance, see e.g. [11]) we also have

H1(Γ0) ≤ 1. (2.12)

In view of the above, Γ0 will be of the announced form [O,M ], provided that

we show that Γ0 ∩ ∂B(O, 1) 6= ∅.
To that e�ect we consider t < 1 and remark that, if, for a subsequence of

{lj} still indexed by j, Γ(lj) ⊂ B(O, tlj), then, in view of A7 and of the ordering

property in (2.11), for any l0 > l > 0,

1 = lim
j

H1(Γ(l) ∩B(O, tlj))
tlj

≥ lim sup
j

H1(Γ(lj) ∩B(O, tlj))
tlj

=
1
t

lim sup
j
H1(Γj)) =

1
t
, (2.13)

clearly a contradiction. Thus, for all t < 1 , Γ(lj) \ B(O, tlj) 6= ∅ for j large

enough. Consider xj ∈ Γ(lj)\B(O, tlj); xj/lj /∈ B(O, t). But, since O ∈ Γj and
Γj is connected with length less than 1+o(1/j), xj/lj ∈ B(O, 1+o(1/j)). Thus,
a subsequence of {xj/lj} converges to some point x ∈ B(O, 1) \ B(O, t) which

also belongs to Γ0 because of the Hausdor� convergence of Γj to Γ0. Thus,

Γ0 ∩ (B(O, 1) \ B(O, t)) is not empty and the result is achieved upon letting t

tend to 1.
Since all possible blow-up limits satisfy (2.12), the last statement of the

theorem also follows. ¶

Remark 2.6. Consider a connected add-crack Γ with Γ of density 1
2 at O.

Then upon setting Γ(l) := Γ ∩ B(O, l), Lemma 2.5 demonstrates that blow up

limits of density 1/2 connected add-cracks at the crack tip are line segments of

length 1, a fact which is obvious if investigating add-cracks that are smooth, in

which case Γ(l) can be taken to be the connected sub-arc of Γ of arclength l

with O ∈ Γ(l) .
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Remark that, in the non-smooth case, various blow-up subsequences may

in general converge to di�erent unit length line segments. Just take Γ =
exp (−t2)(cos t~e1 + sin t~e2), t ∈ [0,∞], which has no well-de�ned tangent as

t↗∞ and for which M will be any element of ∂B(O, 1). ¶

3 Blow-up limits of a converging sequence of �-

nite length sets

In this section, we prove a general blow-up result (Theorem 3.1) on a converging

sequence of compact connected sets containing the origin O, this in the context

of assumptions A0�A6 of Section 2 . We then apply this result in Corollary 3.7

to the speci�c sequence Γj constructed in Lemma 2.5.

Theorem 3.1. Assume that Γε is a Hausdor�-converging sequence of elements

of AO, with supεH1(Γε) <∞. Then, recalling de�nition (2.6) of Fγi

,

lim
ε

1
ε
Fγ

i

(εΓε) = FΓi

(Γ) , (3.1)

where Γ is the Hausdor� limit of Γε and

FΓi

(Γ) := min
{1

2

∫
R2
Cε(w) · ε(w) dx

+
∫
B(O,r)

Cε(u0
O) · ε(w) dx−

∫
∂B(O,r)

Cε(u0
O) : (w ⊗ ν) dH1 :

w ∈ H1
loc

(R2 \ (Γi ∪ Γ)) , ε(w) ∈ L2(R2)
}
. (3.2)

In (3.2), r > 0 is any radius such that Γ ⊂ B(O, r).
In other words, 1

εF
γi

(ε ·) converges continuously to FΓi

.

Remark 3.2. Note that it is easily seen that the de�nition of FΓi

above is

independent of r. Actually, if ŵ is a solution to the associated Euler equation

�see (3.17) below �, then

FΓi

(Γ) = −1
2

∫
R2
Cε(ŵ) · ε(ŵ) dx. (3.3)

Note also that the thesis of Theorem 3.1 still holds if the load u0 is applied

to only part of the boundary ∂DΩ of ∂Ω, or in the case of a �soft device�, that

is, if the boundary conditions on some part of ∂Ω are of the form Cε(u)ν = g,

g being a surface force density. ¶
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Remark 3.3. The above convergence is trivially stronger than Γ-convergence.
Thus, if Γε are minimizers � or almost minimizers, up to an error that goes to

0 with ε � of 1
εF

γi

(ε ·), under the constraint H1(Γε) ≤ 1, then the limits Γ
(in the Hausdor� sense) of converging subsequences Γεj

are minimizers of FΓi

under the same constraint. In particular, since (2.7) also reads as

−G ≤ 1
ε

inf
Γ

{
Fγ

i

(εΓ) : Γ ∈ AO;H1(Γ) ≤ 1
}
≤ −G, (3.4)

and since the set

AO
1 := {Γ ∈ AO : H1(Γ) ≤ 1}, (3.5)

is sequentially compact for the topology associated to Hausdor� convergence in

view of Blaschke's selection criterion, together with Golab's theorem, we deduce

that the limit of the in�mum in (2.7) as l↘ 0 exists and is equal to

−G1 := min
Γ∈AO

1

FΓi

.

¶

Remark 3.4. FΓi

(Γ) de�nes a generalized energy release rate, associated to a

particular crack pattern Γ. Note however that, if the minimizing Γ in Remark

3.3 is not homogeneous, i.e., if λΓ 6∈ Γ for all λ < 1, it may not be so that

a continuously growing path can follow that pattern, and the interpretation of

the associated release rate is more delicate; see Section 4 for a more in depth

investigation of maximal energy release rates. ¶

Proof of Theorem 3.1. First, �x r > 0 such that Γ ⊂ B(O, r), and observe

that, for ε large enough, Γε ⊂ B(O, r). By de�nition,

1
ε
Fγ

i

(εΓε) =
1
ε

min
{1

2

∫
Ω

(
Cε(u) · ε(u)− Cε(u0) · ε(u0)

)
dx :

u ∈ H1
loc

(Ω \ (γi ∪ εΓε); R2) , u = u0 on ∂Ω
}
, (3.6)

and, by de�nition of uεΓε (see (2.5)),

1
ε
Fγ

i

(εΓε) =
1
2ε

∫
Ω

(
Cε(uεΓε) · ε(uεΓε)− Cε(u0) · ε(u0)

)
dx.

The change of variable wε := uεΓε − u0 transforms the above expression into

− 1
2ε

∫
Ω

Cε(wε) · ε(wε) dx +
1
ε

∫
Ω

Cε(uεΓε) · ε(wε) dx .

11



Now, it is straightforward from (2.5) that uεΓε satis�es the equation∫
Ω

Cε(uεΓε) · ε(v) dx = 0 (3.7)

for any v ∈ H1
loc

(Ω \ (γi ∪ εΓε); R2) with ε(v) ∈ L2(Ω;S2×2) and v = 0 on ∂Ω.
Further, wε is an admissible test for (3.7), so that∫

Ω

Cε(uεΓε) · ε(wε) dx = 0,

and thus
1
ε
Fγ

i

(εΓε) = − 1
2ε

∫
Ω

Cε(wε) · ε(wε) dx. (3.8)

Recalling the lower bound in (3.4), we conclude, in view of (3.8), that

1
2

∫
Ω

Cε(wε) · ε(wε) dx ≤ Gε. (3.9)

Now, the change of variable w := u− u0 permits one to rewrite the integral

in (3.6) as
1
2

∫
Ω

Cε(w) · ε(w) +
∫

Ω

Cε(u0) · ε(w) dx.

But w = 0 on ∂Ω and, for ε small enough, εΓε ⊂ B(O, rε), so that, since u0

satis�es (2.1),∫
Ω

Cε(u0) · ε(w) dx =
∫
B(O,rε)

Cε(u0) · ε(w) dx −
∫
∂B(O,rε)

Cε(u0) · (w⊗ ν) dH1,

where ν is the exterior normal to the disc B(O, rε). Consequently, we get that

1
ε
Fγ

i

(εΓε) =
1
ε

min
{1

2

∫
Ω

Cε(w) · ε(w) dx

+
∫
B(O,rε)

Cε(u0) · ε(w) dx −
∫
∂B(O,rε)

Cε(u0) · (w ⊗ ν) dH1 :

w ∈ H1
loc

(Ω \ (γi ∪ εΓε); R2) , w = 0 on ∂Ω
}
, (3.10)

with, by construction, wε as one of the minimizers.

Set, for y ∈ Ω/ε, ŵε(y) = wε(εy)/
√
ε. By an appropriate rescaling of the

integrals (replacing w by w(εy)/
√
ε), we �nd that, in the notation of Remark

2.1,

1
ε
Fγ

i

(εΓε) = min
{1

2

∫
Ω/ε

Cε(w) · ε(w) dx

+
∫
B(O,r)

Cε(u0
ε) · ε(w) dx −

∫
∂B(O,r)

Cε(u0
ε) · (w ⊗ ν) dH1 :

w ∈ H1
loc

((
Ω \ γi

ε

)
\ Γε; R2

)
, w = 0 on ∂Ω/ε

}
, (3.11)

12



and that ŵε is a minimizer. We also deduce from (3.9) that∫
Ω/ε

Cε(ŵε) · ε(ŵε) dx ≤ C . (3.12)

Hence, up to possible subsequence extraction, we may assume thay ε(ŵε) �

extended by 0 outside Ω/ε � converges weakly in L2(R2;S2×2) to some �eld of

symmetric matrices. Because of the Hausdor� convergence of Γε to Γ and since

γi/ε is a line segment on any ball centered at O for ε small enough, Poincaré-

Korn's inequality applied to any compactly contained open smooth subset of

R2 \ (Γi ∪ Γ) demonstrates that there exists ŵ ∈ H1
loc

(R2 \ (Γi ∪ Γ); R2) such

that

ε(ŵε) ⇀ ε(ŵ), weakly in L2(R2;S2×2),

while

ŵε + rε → ŵ, strongly in L2
loc

(R2 \ (Γi ∪ Γ); R2),

where rε is an ε-dependent rigid body displacement in each connected compo-

nent of ((Ω \ γi)/ε) \ Γ.
Note for future reference that, by L2-weak lower semi-continuity of ε 7→∫

R2 Cε · ε dx, we deduce from (3.12) that∫
R2
Cε(ŵ) · ε(ŵ) dx ≤ C. (3.13)

But it is immediately checked that the energy in (3.11) is invariant if any

rigid displacement is added to w in each connected component. Indeed, the �rst

two terms are trivially unchanged, while the third term is also unchanged upon

integration by parts on ((Ω \ γi)/ε) \B(O, r) and in view of (2.1) appropriately

rescaled.

Thus, we may assume, without loss of generality, that
ŵε → ŵ, strongly in L2

loc
(R2 \ (Γi ∪ Γ); R2)

ε(ŵε) ⇀ ε(ŵ), weakly in L2(R2;S2×2)

ŵε is a rigid body displacement outside Ω/ε.

(3.14)

Since ŵε is a minimizer in (3.11), it satis�es the following Euler equation∫
Ω/ε

Cε(ŵε) · ε(v) dx = −
∫
B(O,r)

Cε(u0
ε) · ε(v) dx +

∫
∂B(O,r)

Cε(u0
ε) : (v⊗ ν) dH1

(3.15)

13



for every v ∈ H1
loc

((
Ω\γi

ε

)
\ Γε; R2

)
with ε(v) ∈ L2(R2;S2×2) and v a rigid

displacement on ∂Ω/ε. Consequently,

1
ε
Fγ

i

(εΓε) =
1
2

{∫
B(O,r)

Cε(u0
ε) · ε(ŵε) dx −

∫
∂B(O,r)

Cε(u0
ε) · (ŵε ⊗ ν) dH1

}
.

In view of convergences (2.3), (3.14), we obtain that Cε(u0
ε)ν converges strongly

in H−1/2(∂B(O, r); R2) and ŵε weakly in H1/2(∂B(O, r); R2) and so we can

pass to the limit in the expression above. We obtain

lim
ε

1
ε
Fγ

i

(εΓε) =
1
2

{∫
B(O,r)

Cε(u0
O) · ε(ŵ) dx −

∫
∂B(O,r)

Cε(u0
O) · (ŵ ⊗ ν) dH1

}
,

(3.16)

which is shown in the same way to be equal to FΓi

(Γ), provided we show �rst

that ŵ is a minimizer for the problem in (3.2). This is true if and only if we

show that ŵ satis�es the Euler equation for the minimization of the integral in

the de�nition of FΓi

(Γ), i.e., i�∫
R2
Cε(ŵ) · ε(v) dx = −

∫
B(O,r)

Cε(u0
O) · ε(v) dx +

∫
∂B(O,r)

Cε(u0
O) : (v⊗ν) dH1

(3.17)

for any v ∈ H1
loc

(R2 \ (Γi ∪ Γ); R2) with ε(v) ∈ L2(R2;S2×2).
We may as well assume that the support of the test function v in (3.17)

is bounded. Indeed, if ϕ(x) is a smooth function with support in B(O, 2) and

equal to 1 on B(O, 1), we set, for R > 0 large enough,

vR(x) = ϕ(x/R)(v(x)−ARx− bR)

where ARx + bR is a rigid displacement such that the following Poincaré-Korn

inequality holds true:

‖v −ARx− bR‖L2(B(O,2R)\B(O,R);R2) ≤ CR‖ε(v)‖L2(B(O,2R)\B(O,R);S2×2) .

(3.18)

Then, a.e. in R2,

ε(vR)(x) = ϕ(x/R)ε(v) +
1
R
∇ϕ(x/R)� (v(x)−ARx− bR),

so, thanks to (3.18), ε(vR) converges strongly in L2(R2;S2×2) to ε(v) as R→∞.

Then, we may also assume that v ∈ H1(R2 \ (Γi ∪ Γ); R2), with bounded

support. Indeed, Theorem 1 in [6] states in particular that, given any test

function v ∈ H1
loc

(R2\(Γi∪Γ); R2), with ε(v) ∈ L2(R2;S2×2) and support inside

B(O,R) for some (large) R, there exists a sequence {vn} of displacements in

14



H1(B(O,R + 1) \ (Γi ∪ Γ); R2) with ε(vn) → ε(v) in L2(B(O,R + 1);S2×2).
Observe that, possibly subtracting rigid displacements, vn converges strongly

to 0 in L2(B(O,R+ 1)\B(O,R); R2). If ϕ is a smooth cut-o� function equal to

1 on B(O,R) and with support in B(O,R+ 1), v′n = vnϕ has bounded support

and is such that ε(v′n)→ ε(v) strongly in L2(B(O,R+ 1);S2×2).
We have therefore shown that it is enough to consider in (3.17) test displace-

ments v which are in H1(R2 \ (Γi ∪ Γ); R2) � in lieu of H1
loc

(R2 \ (Γi ∪ Γ); R2) �
and vanish outside some large ball B(O,R), R > r > 0.

Since Γε converges in the sense of Hausdor� to Γ,
[
(Ω\γi)/ε\Γε∩B(O,R+1)

]
converges in the sense of the complementary Hausdor� topology to R2\(Γi∪Γ)∩
B(O,R + 1), so that, according to e.g. Lemma 3.4 in [5], there exist functions

vε ∈ H1((Ω \ γi)/ε \ Γε; R2) such that vε → v, strongly in L2(B(O,R+ 1); R2)

∇vε → ∇v strongly in L2(B(O,R+ 1); R2×2),

where the gradients are extended by 0 outside their natural domain of de�nition.

Since vε → 0 strongly in L2(B(O,R+ 1)\B(O,R); R2), the same truncation by

ϕ as in the previous paragraph implies that v′ε = ϕvε are functions in H
1((Ω \

γi)/εj \ Γj ; R2) which vanish on R2 \ B(O,R + 1), and are such that vε → v,

∇vε → ∇v, strongly in L2(R2; R2). Moreover, for ε small enough, B(O,R+1) ⊂
Ω/ε so that each vε is an admissible test functions for (3.15).

We pass to the limit with v = vε in (3.15) and deduce that (3.17) holds.

Hence the right-hand side of (3.16) is FΓi

(Γ) and Theorem 3.1 is proved. In

particular, although we had to consider a subsequence to assert the convergence

of ŵε to some limit, the corresponding limit of 1
εF

γi

(εΓε) is independent of

the choice of this subsequence, and therefore the convergence (3.1) of the whole

sequence is established. ¶
Theorem 3.1 also applies to the case where Ω = R2, with γi replaced by

Γi ∪ [O,M ] where
−→
OM= ~e (~e, a unit vector in R2), provided that we adopt

(3.10) as de�nition for 1
εF

γi

(εΓ), with the appropriate change in the test �elds.

Speci�cally, we obtain the following

Theorem 3.5. Assume that Γε is a Hausdor�-converging sequence of elements

of AM, with supεH1(Γε) <∞. Then, de�ning

FΓi∪[O,M ]
∞ (εΓε) :=

(
FΓi

([O,M ] ∪ εΓε)−FΓi

([O,M ])
)
,

we have

lim
ε

1
ε
FΓi∪[O,M ]
∞ (εΓε) = FΓ[O,M](Γ).
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The de�nition of FΓ[O,M](Γ) is identical to that of FΓi

(Γ), provided that O is re-

placed byM as the origin, Γi is replaced by Γ[O,M ] := R−~e, and the displacement

�eld u0
O by u0

M de�ned as follows. Consider

û0 := ŵ + u0
O, (3.19)

where ŵ is the solution to (3.17) with Γ = [O,M ]. Then, as in (2.2), û0 =
u0

M + z, where

u0
M =

√
|x| (KM

1 φM1 +KM
2 φM2 );

here |x| is the distance from the point M , φM1 and φM2 depend only on the polar

angle with respect to the direction ~e, and z is an H2-function in a neighborhood

of the point M .

Proof. For Γε ∈ AM converging in the sense of Hausdor� to Γ , we consider,

for R large enough so that [O,M ] ∪ εΓε ⊂ B(O,R),

FΓi∪[O,M ]
∞ (εΓε) =

FΓi

([O,M ] ∪ εΓε)−FΓi

([O,M ]) = min
{

1
2

∫
R2
Cε(w) · ε(w) dx+∫

B(O,R)

Cε(u0
O) · ε(w) dx −

∫
∂B(O,R)

Cε(u0
O) · (w ⊗ ν) dH1−

1
2

∫
R2
Cε(ŵ) · ε(ŵ) dx−

∫
B(O,R)

Cε(u0
O) · ε(ŵ) dx+

∫
∂B(O,R)

Cε(u0
O) · (ŵ ⊗ ν) dH1 : w ∈ H1

loc
(R2 \

(
Γi ∪ [O,M ] ∪ εΓε

)
; R2)

}
.

(3.20)

Then, setting in turn w := w − ŵ, simple algebra transforms (3.20) into

FΓi∪[O,M ]
∞ (εΓε) = min

{
1
2

∫
R2
Cε(w) · ε(w) dx+∫

B(O,R)

Cε(û0) · ε(w) dx −
∫
∂B(O,R)

Cε(û0) · (w ⊗ ν) dH1+

1
2

∫
R2\B(O,R)

Cε(ŵ) · ε(w) dx+
∫
∂B(O,R)

Cε(ŵ) · (w ⊗ ν) dH1 :

w ∈ H1
loc

(R2 \
(
Γi ∪ [O,M ] ∪ εΓε

)
; R2)

}
. (3.21)

Now, for any w as in (3.21),

1
2

∫
R2\B(O,R)

Cε(ŵ) · ε(w) dx+
∫
∂B(O,R)

Cε(ŵ) · (w ⊗ ν) dH1 = 0.
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Indeed, according to an argument identical to that used at the end the proof of

Theorem 3.1, it su�ces to check this equality for w ∈ H1(R2 \ (Γi ∪ [O,M ] ∪
εΓε); R2), with compact support. But the equality holds true for such w's

because, according to (3.17),

−div (Cε(ŵ)) = 0, in R2 \B(O,R), R large enough.

Thus,

FΓi∪[O,M ]
∞ (εΓε) = min

{
1
2

∫
R2
Cε(w) · ε(w) dx+∫

B(O,R)

Cε(û0) · ε(w) dx −
∫
∂B(O,R)

Cε(û0) · (w ⊗ ν) dH1 :

w ∈ H1
loc

(R2 \
(
Γi ∪ [O,M ] ∪ εΓε

)
; R2)

}
. (3.22)

Now, if r is such that Γε ⊂ B(M, r) for ε small enough, which is possible

since Γε converges to Γ in the sense of Hausdor�, then, if ε is also small enough

so that B(M, rε) ⊂ B(O,R),∫
B(O,R)\B(M,rε)

Cε(û0) · ε(w)dx =∫
∂B(O,R)

Cε(û0) · (w ⊗ ν)dH1 −
∫
∂B(M,rε)

Cε(û0) · (w ⊗ ν)dH1.

(3.23)

Indeed, thanks to Remark 2.2 and to (3.17), and because, in the case of a line

segment, û0 ∈ H1(B(O,R) \ (Γi ∪ [O,M ]),

−div (Cε(û0)) = 0, in B(O,R) \B(M, rε).

Collecting (3.22), (3.23), we obtain

1
ε

(
FΓi

([O,M ] ∪ εΓε)−FΓi

([O,M ])
)

=
1
ε
FΓi∪[O,M ]
∞ (εΓε),

where, for Γ ∈ AM, FΓi∪[O,M ]
∞ (Γ) can be de�ned, for any r such that Γ ⊂

B(M, r), as

FΓi∪[O,M ]
∞ (Γ) := min

{1
2

∫
R2
Cε(w) · ε(w) dx+

∫
B(M,r)

Cε(û0) · ε(w) dx−∫
∂B(M,r)

Cε(û0) · (w ⊗ ν) dH1 : w ∈ H1
loc

(R2 \
(
Γi ∪ [O,M ] ∪ Γ

)
; R2)

}
.

(3.24)

In particular, when Γ = εΓε, we can replace r by εr.
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Remark that 1
εF

Γi∪[O,M ]
∞ (εΓε) also reads as

1
ε
FΓi∪[O,M ]
∞ (εΓε) = − 1

2ε

∫
R2
Cε(wΓi∪[O,M ]∪εΓε) · ε(wΓi∪[O,M ]∪εΓε) dx,

where wΓi∪[O,M ]∪εΓε is a solution to the associated Euler equation, hence, upon

the usual rescaling w̌ε(y) := wΓi∪[O,M ]∪εΓε(M + εy)/
√
ε

û0
ε(y) := û0(M + εy)/

√
ε,

as
1
ε
FΓi∪[O,M ]
∞ (εΓε) = −1

2

∫
R2
Cε(w̌ε) · ε(w̌ε) dx,

where w̌ε is a solution to∫
R2
Cε(w̌ε) ·ε(v) dx = −

∫
B(M,r)

Cε(û0
ε) ·ε(v) dx +

∫
∂B(M,r)

Cε(û0
ε) : (v⊗ν) dH1,

with test functions v ∈ H1
loc

(R2 \ (Γi ∪ 1
ε ([O,M ] ∪ εΓε)); R2) with ε(v) ∈

L2(R2;S2×2).
The proof of Theorem 3.1 for FΓi∪[O,M ]

∞ is identical, provided that the lower

bound estimate in (3.4) still holds true in this new setting. To this e�ect, we

have to establish the analogue of (2.8) in the present context, i.e.,

FΓi∪[O,M ]
∞ (Γ) ≥ −C

∫
R2
|τ |2dx, (3.25)

for all τ with τ ∈ L2(R2 \ (Γi ∪ [O,M ]); R2 × R2) symmetric such that∫
R2
τ ·ε(w) dx+

∫
B(M,r)

Cε(û0)·ε(w) dx−
∫
∂B(M,r)

Cε(û0)·(w⊗ν)dH1 = 0, (3.26)

for all w ∈ H1
loc

(R2 \ (Γi ∪ [O,M ] ∪ Γ); R2)with ε(w) ∈ L2(R2 \ (Γi ∪ [O,M ] ∪
Γ);S2×2).

To establish (3.25), we simply note that, in view of (3.24), convex duality

permits to rewrite the expression FΓi∪[O,M ]
∞ (Γ) as

FΓi∪[O,M ]
∞ (Γ) = max

τ

[
− 1

2

∫
R2
C−1τ · τ dx+ min

w

{∫
R2
τ · ε(w) dx +∫

B(M,r)

Cε(û0) · ε(w) dx −
∫
∂B(M,r)

Cε(û0) · (w ⊗ ν) dH1
}]
.

Clearly, the minimum is −∞ unless τ is such that∫
R2
τ · ε(w) dx +

∫
B(M,r)

Cε(û0) · ε(w) dx −
∫
∂B(M,r)

Cε(û0) · (w ⊗ ν) dH1 = 0,
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hence the sought result (3.25).

Now consider ϕ ∈ C∞0 (R2) with ϕ ≡ 1 inside B(M, r) and ≡ 0 outside

B(M, 2r). Take τ ≡ Cε(w̌) in B(M, r), with w̌ a minimizer in the de�nition

(3.24) of FΓi∪[O,M ]
∞ (Γ), and τ ≡ ε(v) + ϕ Cε(w̌) in B(O, 2r) \B(O, r) with div ε(v) = −div(ϕ Cε(w̌)) in B(M, 2r) \ (B(M, r) ∪ Γi ∪ [O,M ])

ε(v) · ν = 0 on ∂B(M, 2r) ∪ ∂B(M, r) ∪ Γi ∪ [O,M ]

with ν the exterior normal to B(M, 2r) \B(M, r), or the normal to Γi ∪ [O,M ].
Then, τ satis�es (3.26) and is thus an admissible test in inequality(3.25).

From this point on, the proof of the lower bound is similar to that in Lemma

2.3. The remainder of the proof is identical to that of Theorem 3.1. ¶

In the setting of Lemma 2.5, consider a sequence {lj ↘ 0} such that 1
l j

Γ(lj)
converges in the sense of Hausdor� with j ↗∞. Then we adopt the following

De�nition 3.6. The energy release rate associated to Γ(lj) is the limit, if it

exists of − 1
lj
Fγ

i

(Γ(lj)).

According to Theorem 3.1, that limit does exist, and, if all Hausdor� limits

of Hausdor� converging subsequences are identical (in the smooth add-crack

case of Remark 2.6 for example), then there is only one energy release rate,

namely,

lim
l↘0
−1
l
Fγ

i

(Γ(l)).

Combining Lemma 2.5 with Theorem 3.1, we immediately obtain the following

Corollary 3.7. Assume that Γ(l) ∈ AO also satis�es A7 for some l0, as well

as (2.11). Then the energy release rate associated with (a Hausdor� converging

sequence of) Γ(l)/l is given by −FΓi

([O,M ]) where [O,M ], with |
−→
OM | = 1, is

the corresponding Hausdor� limit (of that sequence).

Remark 3.8. All segments [O,M ] with M ∈ ∂B(O, 1) can be attained as

Hausdor� limits of a sequence of Γ(l) with Γ(l) ∈ AO, satisfying (2.11) and A7

for each l, as is obviously demonstrated by taking Γ(l) := l[O,M ] . ¶

In the light of the previous corollary and of Remark 3.3, it is natural to

investigate

1. The nature of the minimizers for

min
Γ∈AO

1

{FΓi

(Γ)},
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that we now know do exist. In particular are unit length line segments

among those?

2. The value of the maximal energy release rate among all possible Γ(l) ∈ AO

that also satis�sfy (2.11), but not A7.

We address these in the next section, at least in the isotropic case, i.e., when

C = λi⊗ i+ 2µI, with i the identity matrix on R2, I that on S2×2, and λ, µ the

classical Lamé coe�cients of isotropic elasticity.

4 Maximal energy-release rates

Our �rst result provides a complete answer, albeit generically in the negative, to

the �rst question formulated at the close of the previous section. To this e�ect,

we further specialize (2.10) in Remark 2.4 to the case where K2 6= 0. This is

the most interesting case because it is �universally� believed that

G1 = Gclas. = −FΓi

([O,M0]), with [O,M0] = ~e1, when K2 = 0. (4.1)

The result is the object of the following theorem, whose proof is conditional

upon a conjecture on the transfer matrix between stress intensity coe�cicients

(see Conjecture 4.3 below). In Remark 4.4, we explain why we believe that the

conjecture is correct and what could occur, should this conjecture fail.

Also, we have been unable however to locate a precise reference that proves

(4.1). For our part, we prove this in Remark 4.5, conditionally upon yet another

conjecture on the transfer matrix.

Theorem 4.1. The notation is that of Theorem 3.1 and of Remark 3.3. Then,

provided that

K2 6= 0 in (2.2), (4.2)

and also that Conjecture 4.3 holds true, then

−G1 = min
Γ∈AO

1

{FΓi

(Γ)} < min
M∈∂B(O,1)

{FΓi

([O,M ])} := −Gclas.,

where AO
1 was de�ned in (3.5).

Proof. Consider a point M ∈ ∂B(O, 1) such that FΓi

([O,M ]) := −Gclas..
Note that such a point exists because, if Mn ∈ ∂B(O, 1) is a in�mizing se-

quence, then a subsequence, still indexed by n converges to M ∈ ∂B(O, 1).
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According to Remark 3.8, [O,Mn] is attained as a Hausdor� limit, so that, in

view of (3.12), ŵn, the solution of the Euler equation (3.17) associated with

FΓi

([O,Mn]) satis�es (3.13). But then, ε(ŵn) converges to some ε(ŵ) weakly

in L2(R2;S2×2) with ŵ ∈ L2
loc

(R2 \ (Γi ∪ [O,M ]); R2). For every test function

v ∈ H1
loc

(R2 \ (Γi ∪ [O,M ]); R2) with ε(v) ∈ L2(R2;S2×2), it is a simple matter

to construct a sequence vn of test functions in H1
loc

(R2 \ (Γi∪ [O,Mn]); R2) with
ε(v) ∈ L2(R2;S2×2) � simply write v, then vn in the form v(r, θ − θM ), resp.
v(r, θ−θMn) with obvious notation � so that both vn and ∇vn converge strongly

in L2
loc

(R2; R2). Passing to the limit in (3.17) with Γ = [O,Mn] and v = vn, we

conclude that ŵ satis�es (3.17) with Γ = [O,M ].
Now consider 1

εF
Γi∪[O,M ]
∞ (ε[M,N ]) with N ∈ ∂B(M, 1). Then, according to

Theorem 3.5,
1
ε
FΓi∪[O,M ]
∞ (ε[M,N ])→ FΓ[O,M]([M,N ]).

We will have proved the assertion of the theorem if we can �nd a point N

such that

FΓ[O,M]([M,N ]) < FΓi

([O,M ]), (4.3)

because then, for η small enough,

1
η
FΓi∪[O,M ]
∞ (η[M,N ]) < FΓi

([O,M ]),

where η[M,N ] is the η-homothetic of [M,N ] about M , hence, in view of the

de�nition of FΓi∪[O,M ]
∞ in Theorem 3.5,

1
(1 + η)

FΓi

([O,M ] ∪ η[M,N ]) < FΓi

([O,M ]).

But
1

1 + η
FΓi

([O,M ] ∪ η[M,N ]) = FΓi

(Σ),

with

Σ :=
1

1 + η
{([O,M ] ∪ η[M,N ]} ∈ AO, and H1(Σ) = 1, (4.4)

so that �nally we obtain

−G1 ≤ FΓi

(Σ) < FΓi

([O,M ]) = −Gclas..

The proof of (4.3) relies on �classical results� in the mathematical theory of

stress intensity factors in fracture mechanics. It corresponds to the computation

of the energy release rate associated to a straight line segment starting from the

crack tip of a semi-in�nite straight crack (Γi, or Γ[O,M ]). Set, as in Theorem

3.5,

û0 := ŵ + u0
O,
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as well as
ˆ̂u0 = ˆ̂w + û0,

where ŵ, ˆ̂w are respectively the functions that satis�es (3.17) for any v ∈
H1

loc
(R2 \ (Γi ∪ [O,M ]); R2), resp. v ∈ H1

loc
(R2 \ (Γ[O,M ] ∪ [M,N ]); R2), with

ε(v) ∈ L2(R2;S2×2).
According to [9], the singular parts of û0, ˆ̂u0 are respectively

u0
M =

√
|x| (KM

1 φ
M
1 +KM

2 φ
M
2 ), u0

N =
√
|x| (KN

1 φ
N
1 +KN

2 φ
N
2 ),

|x| being this time the distance to the point M , resp. N , and φMi , φ
N
i being

functions of the polar angle with respect to the directions ~OM, ~MN , respec-

tively. The stress intensity factors KM
1 ,K

M
2 , resp. KN

1 ,K
N
2 , are di�erent from

those in (2.2), but they satisfy

(KM
1 ,K

M
2 )T = F (θ)(K1,K2)T , (KN

1 ,K
N
2 )T = F (θ′)(KM

1 ,K
M
2 )T , (4.5)

where θ, θ′ are the polar angles

θ :=
̂(
~e1,

−→
OM

)
, θ′ :=

̂(
−→
OM,

−→
MN

)
and the 2 × 2-matrix F is a universal analytic function of the polar angle (cf.

[14]).

Remark 4.2. We wish to brie�y elaborate on the universal character of the

matrix F established in [14]. Clearly, the �eld u0
O depends upon the elasticity

of the material, as well as upon the boundary conditions imposed on ∂Ω from

the outset. This is re�ected in the values of the stress intensity factors K1

and K2. Then the solution to the problem for γi ∪ [O,M ] is always given

by (3.19) with ŵ the solution to (3.17), and this independently of whether we

started with Dirichlet boundary conditions, or any other kind of reasonable

boundary condition on ∂Ω. The solution ŵ can be in turn decomposed as

ŵ = K1ŵ1 +K2ŵ2 with obvious notation.

The stress �elds associated with ŵ1, or ŵ2, are in turn independent of the

elasticity of the material, or of the boundary condition imposed on ∂Ω. Indeed,
the stress �elds σ1, σ2 associated to φ1, φ2 are so, thus the Airy functions ψ1,

ψ2 associated with Cε(ŵ1), Cε(ŵ2) are bi-harmonic functions in H2
loc

(R2 \ (Γi ∪
[O,M ])) with boundary conditions on Γi∪ [O,M ] that only depend on the angle

θ. The precise boundary conditions are obtained upon replacing τxx, τxy, τyy by

∂2ψ/∂y2,−∂2ψ/∂x∂y, ∂2ψ/∂x2, respectively, in (3.26), with Cε(u0
M) replaced

by, respectively, σ1, σ2, and by suitable integration by parts.
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The determining fact that the Airy potential is bi-harmonic of course speci�c

to 2d isotropic elasticity and the result would fail in any other context. ¶

The computation of FΓ[O,M]([M,N ]) is intimately connected to that ofKN
1 ,K

N
2 .

Indeed, according to Theorem 3.2 in [10], and because we now know, thanks to

[9], that the assumption (H1) of that theorem is correct,

FΓ[O,M]([M,N ]) = −C(λ, µ)
(
(KN

1 )2 + (KN
2 )2
)
, (4.6)

where C(λ, µ) is an explicit positive function of the Lamé coe�cients that

depends on the adopted setting, i.e., plane strain, plane stress, or pure two-

dimensional elasticity. (In [10], the adopted setting is plane stress.)

In view of (4.6), showing (4.3) amounts to showing that the maximum value

of (KN
1 )2 + (KN

2 )2 is never obtained for θ′ = 0. Indeed, when θ′ = 0, Σ de�ned

in (4.4) is precisely [O,M ], so that, if the maximal value is never attained at

θ′ = 0, then that value is strictly greater than −FΓi

([O,M ]) = Gclas., so that

(4.3) must be satis�ed.

The following expansion of F (ζ) as a function of ζ in a neighborhood of

ζ = 0 is derived in [2]:



F11(ζ) = 1− 3
8ζ

2 + ( 1
π2 − 1

128 )ζ4 +O(ζ6)

F12(ζ) = − 3
2ζ + ( 10

3π2 + 1
16 )ζ3 +O(ζ5)

F21(ζ) = 1
2ζ − ( 3

3π2 + 1
48 )ζ3 +O(ζ5)

F22(ζ) = 1− ( 4
π2 + 3

8 )ζ2 + ( 8
3π4 + 29

18π2 − 5
128 )ζ4 +O(ζ6).

(4.7)

For θ′ = 0 to be a maximum of
(
(KN

1 )2 + (KN
2 )2
)

(θ′), we must have in

particular that its derivative at 0 is 0. This implies that

(F ′12(0) + F ′21(0))KM
1 K

M
2 = 0,

or still, since F ′12(0) + F ′21(0) = −1,

KM
1 K

M
2 = 0.

If KM
1 = 0, we must have F 2

12(ζ) + F 2
22(ζ) ≤ 1,∀ζ, which is clearly not the

case near 0 in view of (4.7), except if KM
2 is also 0. So we may as well assume

that KM
2 = 0.

But then, since M is also such that FΓi

([O,M ]) := −Gclas., we conclude

that θ must satisfy  F21(θ)K1 + F22(θ)K2 = 0

F ′11(θ)K1 + F ′12(θ)K2 = 0,
(4.8)
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the second relation holding true because the derivative of ((KM
1 )2 + (KM

2 )2)(ζ)
must be 0 at ζ = θ. But, this is impossible, since K2 6= 0, because, by assump-

tion, we assume the validity of the following conjecture:

Conjecture 4.3. For all ζ ∈ (−π, π), F21(ζ)F ′12(ζ) 6= F22(ζ)F ′11(ζ).

We have thus reached a contradiction upon assuming that the maximum

value of (KN
1 )2 + (KN

2 )2 is obtained for θ′ = 0. ¶

Remark 4.4. According to formulae (4.7), the following expansion holds true:

F21(ζ)F ′12(ζ)
F22(θ)F ′11(ζ)

= 1− 8ζ4

125π2
+O(ζ6),

and thus Conjecture 4.3 is certainly veri�ed when ζ ≈ 0. For large ζ's, the

corroborating evidence is numerical: In [1], the author provides numerical values

for the Fij 's every 5◦ till 90◦, then every 10◦ for larger angles, while [2] give an
expansion of those coe�cients, up to order 21. The �t is rather impressive. For

example, at ζ = π/2, the values given in [1] are

F11(π/2) = 0.371, F12(π/2) = −1.193, F21(π/2) = 0.346, F22(π/2) = −0.195,

while those given by the expansion in [2] are

F11(π/2) = 0.3719, F12(π/2) = −1.1935, F21(π/2) = 0.3481, F22(π/2) = −0.1966.

Using the expansion of [2] in the interval [−π/2, π/2], then curve-�tting with

[1] for larger angles yields the numerical curves for the Fij 's in Figure 4.1.

¶

Remark 4.5. Arguments very similar to those used in the previous proof would

demonstrate that, when K2 = 0, then, in the notation of that proof, θ = θ′ = 0,
provided that

(F11(ζ))2 + (F21(ζ))2 < 1, ζ 6= 0.

Once again, this is certainly true, according to (4.7), when ζ ≈ 0. For large ζ's,
the corroborating evidence is, once again, numerical. ¶

The answer to the second question formulated at the end of Section 3 is a

bit more involved. Indeed, although we have just exhibited in Theorem 4.1 a

set Γε = εΣ, with Σ ∈ AO
1 which strictly decreases FΓi

, so that, according to

Theorem 3.1, for ε small enough, the energy increment rate

− 1
ε

{
1
2

∫
Ω

(Cε(uΓε) · ε(uΓε)− Cε(u0) · ε(u0)) dx
}
> Gclas., (4.9)
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Figure 4.1: The Fij 's computed

we have not produced a sequence li ↘ 0 with the ordering property (2.11) such

that there exists an energy release rate for that sequence, and such that that

energy release rate strictly exceeds Gclas..
In order to reach a meaningful result, we must introduce a notion of metasta-

bility during a crack evolution. Speci�cally, in the setting of Section 2, assume

that there exists a �smooth enough� evolution starting at γi. In other words,

assume that the crack will extend from γi along a path Γ and that

S1. Γ ∈ AOand satis�es A7;

S2. u0 is a function of the time t, such that, if Γ(t) denotes the add-crack at

time t, and l(t) its length, the following properties hold:

S3. Γ(t) ∈ AO and satis�es the ordering property in (2.11);

S4. Γ(t) ⊂ Γ;

S5. l(0) = 0 and l(t) is continuous and strictly increasing in a neighborhood

[0, t0), t0 > 0, of 0.

Gri�th's criterion for crack evolution states that, under such conditions,

the energy release rate at time t, denoted by G(t), must be such that

G(t) = k, (4.10)
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where k is a material characteristic sometimes called the fracture toughness.

According to Lemma 2.5 and to Theorem 3.1, G(0) does exist and its value is

less than or equal to Gclas..
Now, we adopt a �natural� metastability condition and refer the reader to

[4] for a discussion of the merits of such an assumption and of its relevance to

classical fracture mechanics. There exists ε << 1 such that

Metastability. For all t ≥ 0,

γi ∪ Γ(t) minimizes
1
2

∫
Ω

Cε(uΓ) · ε(uΓ) dx+ kH1(uΓ) (4.11)

among all Γ's in AO, with Γ ⊃ Γ(t) and H1(Γ \ Γ(t)) ≤ ε0. In the last integral,

uΓ is a solution to the elastic equilibrium on Ω\(γi∪Γ) with boundary condition

u ≡ u0(t) outside Ω.

We use the above metastability at time t = 0. Since Γ(0) = ∅, then neces-

sarily,

− 1
H1(Γ)

Fγ
i

(Γ) ≤ k, ∀ Γ ∈ AO with H1(Γ) ≤ ε. (4.12)

However, choose Γ = Γε satisfying (4.9). Then, with such an admissible Γ, we
�nd that

Gclas. < k,

so that, in particular

G(0) < k,

a contradiction with Gri�th's criterion. We have thus reached the following

conclusion, which we state as as a proposition

Proposition 4.6. If a crack evolution starting from the tip of γi satis�es

metastability in the sense of (4.11), as well as Gri�th's criterion (4.10), then

it cannot satisfy assumptions S1 to S5.

In other words, assuming metastability, a connected add-crack cannot grow

continuously in time along a path which has density 1/2 at the crack tip. If it

grows continuously in time it must grow along a crack with higher density (like

a branching crack), or, if it grows along a crack of density 1/2, it must do so

brutally, i.e., with a jump in length at time t = 0.
It is not our purpose here to expound the consequences of this result and

we refer the interested reader to [7] for a detailed investigation of the impact of

such a result. However, note that our result prohibits, modulo metastability, the
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co-existence of crack that would follow a �smooth� path and grow smoothly in

time, which is precisley the starting point of most studies on crack kinking in

fracture mechanics.
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