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Abstract

This article is devoted to the presentation of a new contact algorithm for
bodies undergoing finite deformations. We only address the kinematic
aspect of the contact problem, that is the numerical treatment of the
non-intersection constraint. In consequence, mechancial aspects like
friction, adhesion or wear are not investigated and we restrict our anal-
ysis to the simplest frictionless case. On the other hand, our method
allows us to treat contacts and self-contacts, thin or non-thin structures
in a single setting.
Résumé

Cet article est consacré a la présentation d’un nouvel algorithme de
contact entre solides subissant de grandes déformations. Nous nous
intéressons uniquement & l’aspect cinétique du probléme de contact,
c’est & dire & la prise en compte de la condition de non intersection. En
conséquence, les aspects mécaniques du contact comme les frottements,
I’adhésion ou l'usure ne sont pas abordés et nous restreignons notre
analyse au cas sans frottement. La méthode introduite permet par
contre de traiter le cas des contacts et des auto-contacts mettant en jeu
des structures minces ou non a l'aide d’une unique formulation.

1 Introduction

Industrial needs have stimulated the numerical simulation of mechanical contacts which has drawn a
lot of attention over the last years. Many algorithms have been proposed in order to solve problems
of growing complexity: contacts between rigid or (visco-)elastic bodies, submitted to small or finite
deformations, with or without friction, adhesion or wear. In this article, we restrict ourself to the
study of frictionless contact between deformable bodies undergoing large deformations. Such a goal
may sound limited, but as it constitutes the elementary component of any other contact algorithm,
it seems justified to study it for itself. If friction, wear or adhesion are mechanical properties that
depend on the nature of the surfaces in contact, this is not the case for the kinematic condition of
non-intersection.

The most common approach is known as the master/slave formulation. Let us briefly recall
what it consists in. Consider two deformable bodies whose reference configurations are two open
subsets of R” (n = 2 or 3), M7 and Ms. Let ¢, : M; — R™ (i = 1,2) be their deformations. One
of the two solids, say M, is called the master body, whereas the other one, i.e. My, is called the
slave. We introduce the gap function g¢,,, which maps every element x of M5 to the signed distance
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between () and ¢1(0M;), defined by

go(z) = { dist(p2(z), p1(0My))  if pa(z) & @1 (M)
v —dist(p2(z), p1(OM1))  if p2(x) € 1 (M)

In order to prevent any overlapping between the two deformed solids, a constraint is applied to
any element of the boundary of the slave body Ms. More precisely, it consists to impose that the
signed distance between any element of p(0Ms) and ¢(0M;) is non negative:

gp(x) > 0 for all € OMo. (1)

A breakdown of this formulation can be found in Laursen’s thesis [30], [18] (see also [17]). This
approach is confronted with two important difficulties. Firstly, it can not be directly applied neither
to the case of self-contacts (where M; = My and 1 = ¢3) nor to thin structures (¢; : M; — R™ and
M, is a submanifold of dimension m < n). For instance, in the self-contact case, the constraint (1) is
empty: The signed distance between an element of ¢ (0M;) and ¢, (0M,) is always zero. Moreover,
even if we consider contact between two distinct bodies such that det(Vp;) > 0, condition (1) is
not sufficient to ensure non-intersection (see [23]). Secondly, the gap function is not everywhere
differentiable with respect to 1 and 9. This lack of differentiability seems to be one the cause of
the well known chatter phenomena, a loss of convergence in the numerical schemes (the computed
solutions chatter around the equilibrium state). Several strategies have been developed in order
to overcome those reefs. Puso and Laursen [25] notably proposed a regularization of the gap
function, whereas Heinstein et al. [14] have adapted the master/slave approach to the study of
thin structures and self-contacts. Their algorithm seems to be efficient in most common cases, but
there is no guarantee it could correctly treat every situation. For a detailed presentation of the
different strategies developed in this context, we refer to the Hallquist et al. article [10], which
contains many references, and to the Kikuchi and Oden [15] or Wriggers [21] monographs (see also
[32, 16]). A different approach, called “material depth”, has been proposed by Hirota, Fisher and
State [11] to treat self-contacts, but it seems difficult to adapt to the case of thin structures. Other
methods have been designed to treat the particular case of rigid bodies. The Non Smooth Contact
Dynamic (NSCD) formulation has been introduced by M. Jean [12],[13] and J.-J. Moreau [20] for
the study of granular media. For computing graphics purposes (see also Baraff |2, 3], Baraff and
Witkin [4, 5]), Schmidl and Milenkovic [19] proposed an “Optimization Based Animation” (OBA)
approach. However similar the NSCD and OBA methods are, they seem to have been developed
independently.

If the master/slave formulation consists in a natural extension of the contact treatment between
a deformable body and a rigid foundation, it has no complete theoretical justification. The main
theoretical issues linked to the study of frictionless contacts deal with the definition of the set of
admissible deformations, the existence of minimizers of the energy over this set and the derivation
of the Euler-Lagrange equations. Ball [1] considered the case of hyperelastic bodies fixed on all
of their boundaries, and whose stored energy grows to infinity as the determinant of the gradient
of the deformation goes to zero. Assuming the polyconvexity of the stored energy function, he
states an existence result to the minimization problem of the energy and proves that minimizers
of the energy are injective almost everywhere : local injectivity implies global injectivity. Ciarlet
and Necas [6] extended his works to mixed boundary conditions (see also Tang Qi [31], Giaguinta
et al [7],[8]). Nevertheless their analysis does not apply to the study of thin structures. Gonzalez
et al. [9] and Schuricht et al. [29] introduced the notion of global curvature in order to consider
contacts and self-contacts between unidimensional structures (see also [27],[26] and [28]). In a
recent work [23], we have proposed a new modeling of the contacts and self-contacts between
deformable bodies, which seems physically relevant in the static case when dim(M;) = m and
2m > n (where n is the dimension of the space where M; is injected, that is ¢; is a mapping from



M; into R™). This modeling relies on the introduction of a new set of admissible deformations. A
topological constraint is introduced to ensure that no admissible deformation exhibits transversal
(self)intersections.

In this article, we only address the numerical aspect of the problem, excluding any theoretical
considerations. As we previously underline, the master/slave approach is not completely consistent
when self-intersections or thin structures are involved. Even if it could be adapted in order to
correctly manage such cases in most situations, this is done only to a costly development price:
Many subtle tricks have to be introduced to this end. Instead of trying to adapt the master/slave
approach, we adopt a totally different point of view, which allows us to consider contacts and
self-contacts as well as contact between thin structures in a single setting.

2 Setting of the problem

Let us consider a family of connected deformable bodies M = (M;) moving in R” (n = 2 or 3), such
that for each index i, we have n > dim(M;) > 1. We denote by ¢; : M; — R” the deformation of
the body M;, which maps each point x of M; onto its position ¢;(z) in R™. In the static case, the
state of the system is completely described by the mapping ¢ from U; M; into R™ whose restriction
to each body M; is its deformation ;.

We assume that we can associate to each state of the system an energy, and denote by J the
functional that maps every deformation ¢ onto its energy. Our goal is to determine the minimum
energy state, that is to find ¢ € A(M) such that

Te)= nt (). @

where A(M) is the set of deformations without self-intersection. It remains to give a mathematical
definition to this set.

Remark 2.1. The family of bodies M could not contain single points as we assume for each index
i the dimension of M; to be positive. The results we present in the following could be extended in
order to take into account this particular class of bodies. As it is difficult to consider single material
points as “deformable” bodies, we have chosen to exclude them from our analysis. It allows us to
slightly simplify the presentation.

The master /slave approach consists in imposing constraint (1) to any couple of bodies of the
collection M. Unfortunately, this constraint is empty if M is made of a single body. Moreover, it
can not be applied whenever M contains more than one thin structure (it is still reasonable for one
thin structure, chosen as the slave, and one solid of dimension equal to n, chosen as the master). In
order to take these cases into account, we have to look for another definition. Firstly, let us recall
that an embedding of M into R" is a regular one-to-one mapping from M with values in R", whose
gradient Dy is everywhere of maximal rank (that is equal to m). We denote by Emb(M;R"™) the
set of embeddings of M into R", and define the admissible set A(M) as the closure of Emb(M;R™)
(for a topology depending on the energy J):

A(M) = Emb(M;R").

We proved several properties of this set in [22, 23]. In particular, it does not contain any deforma-
tion with transversal self-intersections. This definition enables to treat in a single setting contacts,
self-contacts, thin or non-thin structures, however, it is implicit. Contrarily to the definition arising
from the master/slave approach, it is not obvious to find out whether or not a given deformation
belongs to the admissible set. In [22, 23], we prove that any deformation of A(M) satisfies an
explicit criterion. Moreover, we conjecture that this criterion is only fulfilled (in dimension n = 2)



by the elements of A(M). This allows to solve problem (2) by a penalization method (see [24]).
Nevertheless, to our knowledge, there is currently no explicit definition of A(M) in the general
case.

3 An optimization algorithm under nonconvex constraints

A major difficulty in the resolution of problem (2) is due to the strong nonlinearity introduced by
the nonconvex constraint of non-interpenetration. There is no general method to directly solve
such problems. On the other hand, efficient algorithms are available to minimize convex functions
under convex constraints. Thus, a classical method for tackling this sort of problem is to recast it
as a sequel of convex problems. With this in mind, two radically different options are conceivable.
One consists in removing any constraint: We minimize on the set of all deformations and penalize
the non-admissible ones. We have developed this strategy in [24]. Another approach consists in
minimizing on a convex subsets of the admissible set. A local minimizer could thus be achieved
by a recursive procedure. At each step, the energy is minimized over a convex “neighborhood” of
the previous solution, included in the admissible set, until a fixed point is reached. This option
has two advantages. Firstly, it requires neither the introduction of a penalization function nor the
definition of an explicit characterization of the admissible set, which is to our knowledge an open
problem in the general case. Secondly, no undesirable intersections have to be removed during the
minimization process, which seems to be a difficult issue. To be more precise, our algorithm has
three steps :

1. Initialization of o by an admissible deformation.

2. For all n > 0, we denote ¢, 41 € T(pn), the solution of the minimization problem

J (o = inf  J(v),
(Pn+1) ot ()

3. STOP when J(pni1) ~ J(on),

where T'(-) maps any admissible deformation ¢ to a convex subset T'(¢) of the admissible defor-
mations that contains the element 1. Note that the stopping criterion is always reached as J(vy,)
is a decreasing sequence, bounded from below (assuming the inifimum is finite). If ¢ belongs to
the interior of the admissible set, T'(v)) will always be chosen as a (closed) neighborhood of 1. On
the contrary, if ¢ belongs to the boundary of the admissible set, it is not granted that any con-
vex neighborhood of ¥ in A(M) does actually exist, since A(M) is not necessarily locally convex.
Nevertheless, we will often refer to T'(¢)) as a “neighborhood” of ¢ by language abuse.

We will not apply this algorithm directly to the initial problem (2), but to a discretized version
for which we have an explicit definition of the admissible set.

4 Discretization
We assume that the space of deformations is discretized with P, Lagrangian elements. Let 7, be

a regular mesh of M — the parameter h is the mesh size — and X}, the space of P, Lagrange
elements over this mesh,

X, = {d} € COM;R") : |y € P, forall T € Th}



where P is the set of polynomials of degree lower or equal to one. We introduce another parameter
¢, the minimal distance we will impose between any disjoint elements of the mesh. Finally, the
discretized set of admissible deformations is defined by

Ape = {d}h € Xy, ¢ dist(¥p(Th), ¥n(T2)) > €, for all Ty and T» € T, such that Ty NTy = (Z)}.

We set to solve the discretized minimization problem of J over A, .

min J(vn) (3)

using the procedure introduced in the previous section. To this end, it remains to define the map
T that maps every element v, of A, . onto a convex “neighborhood” T'(v,) included in A, ..

Remark 4.1. The definition of A; . can be generalized by choosing a parameter ¢ depending on
the elements 77 and 75 of the mesh considered. Note that, in the definition of A} ., 71 and 75 can
be any elements of the mesh 7},, that is vertices, edges, triangles or tetrahedrons.

It is not straightforward to extend our analysis to other space discretizations. Moreover, if the
energy contains some flexion terms, affine by parts maps do not have a finite energy. Nevertheless,
different discretizations could be used for the contact constraint and for the energy. To be more
precise, let Y} be a discretized subset of the deformations of finite energy and r; be a linear
interpolation operator from Y}, into X}, then the minimization problem

min J(vp)
rh(Vh)EAR, e, v EYS

can be solved using our algorithm and the map 7T'(-) defined thereafter. However, the precision of
the scheme will be limited by the contact discretization, which could be coarse in comparison with
the one of the energy.

4.1 Definition of a convex “neighborhood”

In this section, we define the map 7'(-) that maps every admissible deformation ¢, € Ap . to a
closed convex subset of 4, . containing v,. Let us underline that there is a margin of freedom in
the definition of 7. Our choice is mostly guided by a wish for simplicity, others are conceivable. In
order to avoid an unnecessarily complex formalism, we distinguish the two-dimensional case from
the three-dimensional one.

4.1.1 The two-dimensional case

In the two-dimensional case, that is n = 2, we define the map 7'(-) by

Tn) = {on € X+ i () - (onln) = 0(0) > =
for all edge a and all vertex x of the mesh such that x ¢ a}, (4)

where ng (1) is defined for all edge a and vertex = of the mesh such that « ¢ a as the only
unitary element of R™ such that

min ng,0(Yn) - (Vn(2a) = Yn(2)) = dist(vn(a), ¥n(2)) 2 e. (5)



Lemma 4.2. For all element vy, of Ap e, the convex set T(3y,) is included in Ap, .

Proof. Let ¢, be a deformation that does not belong to Ay .. There exists 77 and 75 elements
of 7, such that Th N Ty = (0 and dist(pp(T1), pr(T2)) < e. We introduce the deformation 1),
parametrized by s € [0, 1] and defined by

s = (1= s)n + spp.

We also denote by f the function that maps any real s € [0, 1] onto the distance between 14 (T})
and dJs (TQ),
f(s) = dist(vs(T1), ¥s(T2)).

The map f is continuous, f(0) > ¢ and f(1) < e. Thus, there exists a real s € [0,1] such that
0 < f(s) < e (let us remark that f(1) could be equal to zero, hence s = 1 is not necessarily
suitable). As the minimal distance between v,(77) and ¢,(7%) is not zero, it is reached, up to a
permutation of 7)1 and T5, for a couple of points (x,z,) of 71 x T where x is a vertex of the mesh,
and z, belongs to an edge a of 7,. We have

Naa(Vn) - (Ys(2a) =¥s(@)) < |¥s(@a) — Ps(2)]
dist(vs(T1), ¥s(T2)) <e.

We deduce from this relation that v, does not belong to T'(15). As 1) is a convex combination of
vy, and @y, they could not both belong to T'(¢,). O
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Figure 1: Constraints associated with a vertex

Figures 1 represents the constraints imposed to a vertex x of the mesh, assuming the rest of the
structure remains fixed. On the left-hand side, only the constraint associated with the single edge
a is represented, whereas on the right-hand side all the constraints imposed by the lower structure
are displayed.

4.1.2 The three-dimensional case

In the three-dimensional case, the definition is slightly more complex. Not only do we have to
associate a constraint to each couple vertex/triangle but also to each couple edge/edge. Thus,we



set

T(Yn) = {@h € Xy ¢ gier}lna,b(iﬁh) (pn(za) — pn(xp)) > ¢,

€D
for all edges a and b of the mesh 7}, such that a Nb = and

mg% nr.z(Yn)-(en(xr)—pn(z)) > €, for all triangle T and all vertex x of the mesh 73, such that = ¢ T},
(6)

where n4,5(1r) and nr 5 (1) are the unitary elements of R™ defined by

min nap - (Yn(za) = Pn(as)) = dist(yn(a), ¥n (b))
€D

and

min nrg - (Y (rr) = Pn(@)) = dist(@n(T), ¥n(z))-

fds ol S
Lemma 4.2 remains true in this case.

Remark 4.3. In the master/slave approach, only the triangle/vertex constraints are usually con-
sidered with the exclusion of the edge/edge type constraints.

5 Optimality conditions

Let us assume that the proposed algorithm converges toward an element ¢ of Ay .. Contrarily
to our hopes, ¢ is not, in general, a solution of the minimization problem of J over A .. Such
a result is not surprising. Since A . is not convex, the functional J may possess several local
minimas, even if J is strongly convex. Because of the sequential nature of our algorithm, we could
at most expect that a local minimum is reached. Yet this does not occur. Indeed, a fixed point
of our algorithm does not necessary fulfill the optimality conditions: The action/reaction principle
is partially violated. This result would have been disastrous if, as we will prove, the optimality
conditions associated to the minimization problem of J over Aj;, . were not almost fulfilled by the
fixed points of our algorithm.

5.1 Optimality conditions associated to the discretized problem
5.1.1 two-dimensional case

Let ¢ be a solution of the minimization problem of J over Ay, .. If V is a small enough neighborhood
of ¢ in X, arguing as in the proof of Lemma 4.2, it is easy to show that

Ap.NV = {(p € Xy, : mindist(p(z,), o(z)) > ¢

T.€a -

for all edge a and all vertex x of 73, such that x ¢ a} nv.

For all vertex x and all edge a of 7}, the constraint

Fou(¢) = e — dist(¢(a), ¥ (2)) (7)



is continuously differentiable on V. More precisely, let us denote by ag and a; the endpoints of the
edge a, by pa.(¢) the element of the edge a that is mapped by ¢ onto the projection of ¢(z) on
¢(a) and by of , and o, , the homogeneous barycentric coordinates of p, . (¢) on a. We have

pa,ﬂ?(@) ca
Pae(®) = af) a0 + a} a1 (8)
dist(p(a), p(7)) = |p(Pax(®)) — p(2)],
ag . +a,, =1,

al ol >0,

a,x) “a,x =

and

<DFa,w(50)v 95> = _na,w(LP) ’ (@(CU) - Sb(pa,w(W)))a
where n, () is defined by (5). Since (DF, .(¢),¢) < 0, the constraints are qualified. Hence, the
optimality conditions are given by the following proposition.

Lemma 5.1. Let ¢ : M — R? be a solution of (3), that is a minimizer of J over Aj .. Assume
that J is differentiable, then there exists a family of nonnegative reals A\, ., where a spans the edges
of T, and x its vertices, such that for any test function ¢ € X}, we have

(J'(9),8) =D _ hdawas - ($(x) = $(Pas)),

"% (9)
)\a,mFa,x(SD) =0,
(RS Ah,sa

where pq , is define by (8), na by (5) and F, , by (7).

Remark 5.2. The Lagrange multiplier A, , is the contact force by unit length exerted by the edge
a onto the point x (in the reference configuration). Note that at most six edges may be in contact
with a given vertex of the mesh.

5.1.2 The three-dimensional case

In order ot obtain the optimality conditions fulfilled by the solutions of (3) in the three-dimensional
case, we can proceed exactly as in the two-dimensional case. However, the formulation is slightly
more complicated, since two kinds of contacts have to be considered, not only contacts between
two edges but also contacts between a vertex and a triangle. For any couple of edges (a, b) of the
mesh 7}, we introduce the constraint

Fap(¥) := e —dist(¥(a), (b)) (10)
Likewise, for all vertex x and all triangle T' of the mesh 7}, we set
Fra(¢) :=e —dist(¢(T), ¢(x)). (11)

For all couple of edges (a, b) of 73, we denote by P, 1, the set of couples of points belonging to a x b
that minimize the distance between p(a) and ¢(b), that is

Pab = {(Pab,Pb.a) € a x b such that dist(p(a), 9(b)) = |¢(pa,p) = ¢(Po,a)l}- (12)

Observe that P, contains a unique element, except when ¢(a) and ¢(b) are colinear. Finally, for
any couple of vertex = and triangle T', we denote by pr . the element of 1" such that

dist(¢(T), ¢(z)) = l¢(pr,z) — ¢(z)| and pr; € T. (13)



The function Fr, is differentiable and for all test function ¢ € X}, we have

(DFr5(0), §) = —n12(9) - (P(2) — P(p1.2))-

On the other hand, the function F, ; is not differentiable. Nevertheless, it admits a subdifferential
containing the linear forms L for which there exists an element (pq b, Po.a) € Pa,p such that

L(¢) = —nap - (&(pb,a) — &(Pap))-
A proposition similar to the one obtained in the two-dimensional case can be stated.

Lemma 5.3. Assume that J is differentiable. Let o : M — R> be a solution of the minimization
problem (3). Then, there exist two families of non negative reals A, and At 5, where a and b span
the set of edges of Tp,, T its triangles, and x its vertices, such that for any test function p € Xp,
we have

<Jl(‘P)v <»5> = Z hz)‘a,bna,b : (@(pb,a) - @(pa,b)) + Z hz)‘T,mnTﬂc : (@(33) - Qb(pT,m))a
a,b

s T,x
anb=0 z¢T
A2 Fra(p) =0, (14)
)\a,bFa,b(SD) =0,

p < Ah@.

where (Da b, Pb,a) € Pap, and (pr.) is defined by (13).

5.2 Optimality conditions associated with a fixed point

In this section, we derive the optimality conditions fulfilled by a fixed point of our algorithm.
However, if those conditions differ from the one associated with the solutions of the discrete mini-
mization problem (3) obtained in the previous section, they remain close. Every fixed point of the
algorithm satisfies the optimality conditions associate with the discretized optimization problem
up to a small error, which scales like the size h of the mesh. For the sake of simplicity, we confine
to the two-dimensional case. The three-dimensional case may be addressed in a similar way.

Lemma 5.4. Let ¢ be a fixed point of the algorithm presented in section 8 applied to the mini-
mization of J over Ay, ., where the “neighborhoods” T'(1)) are defined by (4) or equivalently by

T(y) = {gph e Xy Fg}x(gph) <0 et F}m(aph) <0, for any vertexr x and any edge a ofﬂ},

where F., and F , are defined by
Fyo(pn) = € = naa(¥) - (on(ao) — ¢n(x)),

Fyu(on) = € = naa(¥) - (on(ar) — on(x)).

and ag and ay are the endpoints of the edge a. Then, there exists a family )\f” (where i = 0,1, a
is any edge of the mesh T;, and x any of its vertices) of non negative reals, such that for any test
function ¢ € Xy,

('(@):0) = D hnag - (Moo + Aaw)@(@) = N 2@ (a0) = Mg oB(ar)),

zé¢a
X Fo o (9) =0, (15)
)‘tlz,acFal,:z(SD) =Y
P EAne



Remark 5.5. The dependence of the functions F . and F, , with respect to ¢ in the definition of
T(3)) is implicit and does not appear in the notations used.

Proof. The optimality conditions associated with the minimization problem

J(pni1) = min J
(¢nt1) i ()

satisfied by ¢,+1 € T(¢n) are
(T (Pn41), @) = D Paa(n) - (N0, + A0 2)@(2) = AQ p@(a0) = Ag o p(ar)) =0,
zé¢a
for any test function ¢ € X,

)\?L ’I‘F(l T(Lanrl) 0 >‘(11 TF(L T(LPnJrl) 07

and ¢, 11 € T(pn) with X} , (i = 0,1) positive reals. Thence, if ¢ is a fixed point of our algorithm,
we have

5) = D hnaw(@) - (Mo +M00)@(@) = AQo@(a0) — A'@(ar)) =0,
zéda

NFEY () =0, AL, Fl.(p)=0,

a,r— a,r a,r— a,xr

and ¢ € Aj,. O

Lemma 5.6. Every fized point of the algorithm of the Section 3 applied to the discrete minimization
problem (8), where the map T(-) is defined by (4) satisfies the optimality conditions (9) up to an
error of order h. More precisely, there exists a family A\, of non negative reals, where a spans the
edges of Tp,, and x its vertices such that

[ R(en, Ml -1 (arm2) < v/Clon) [ AInh
)\a,xFa,x (‘P) = Oa
©Yn € Ah,sv

where R(pp, \) is the residual associated to the minimization problem (3)
R(pn: A) = (J'(#), @) = D hhaanae - (2(x) = $(Pas)),
zé¢a

I-lln is the norm associated with the Lagrange multipliers A,

1/2
M = (Z |Aa,m|2h> :

zé¢a
and C(py,) is the constant defined by

C(pn) := max {Ca(gph) .= Card ({x € Ty, such that Fy 40} ) }

Remark 5.7. We recall that the Lagrange multipliers )\, , represent the linear force exerted by a
part of the solid on another. The sum which defines the norm ||\||, contains Ch? elements so that,
at the first glance, this sum may not remain bounded as the discretization gets finer. Fortunately,
the number of edges in contact with one vertex is bounded independently of h. Thus, the sum
which defined ||A||;, only contains a number of nonzero elements of order at most h~!. This justifies
the normalisation by h (and not h?) used in the definition of the norm ||.||.
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Remark 5.8. Assume that the sequence p;, converges toward a regular deformation ¢ (as h and ¢
goes to zero) and that a uniform mesh is used, then the number of vertices C, () in contact with
one edge a is of the order

Calen) = Y leWl/le@),

e~ (o(y)
TFy

where y is an element of the edge a. In such a situation, C(p},) remains bounded.

Proof. The deformation ¢, verifies the optimality conditions given by Proposition 5.4. We set
Aaaz =N, + AL, then

a,r?

<R(<ph7 )‘)a ¢> = Z hn(lw ' ((ag,w/\(lwf - Ag,m)@(ao) + (Oétlz,w/\(lwf - )‘zlz,:r)gb(al))

zé¢a
= Z hna,ﬂC : ((ﬁ(a,()) - @(al))(ag,m/\tlz,x - atlz,x/\g,x)

zé¢a

1/2
1/2
< Y (Z hlag A — a;,mA‘;,zP) > h(@(ag) — @(ar))?
¢ e N
1/2 1/2

< ¥ (Z hm,xP) (Catenntotan) - ooy

a

zda

$(ag) — plar)
h

< AT lon) (Z

5\ 1/2
h) h.
Moreover, since ¢y, is a fixed point, we have

Fa(pn) = min(Fy . (o), Fa - (¢n))- (16)

If Ao, # 0, we either have X) | # 0 or A} , # 0. Then, from the optimality conditions satisfied by
©n, we infer that either F) () or F} (i) is equal to zero. From (16), it follows that F, .(¢n) = 0,
and that for any couple vertex/edge (z,a), we have

Fa,m(@h)Aa,x =0.
O

Remark 5.9. The error made on the residual due to the contact algorithm is of the same order
as the error due to the P; finite element discretization. Though it is possible to use an alternate
definition of the “neighborhood” T'(-) so that any fixed point of our algorithm exactly matched
the optimality conditions associated to the discrete minimization problem of J on Ay, ., it will not
increase the precision of the global scheme.

6 The dynamic case

We can extend our analysis to the study of dynamic systems with frictionless contacts and soft
impacts. Our method can be applied to most time-discretization schemes in order to take into
account the contact constraint. Let us give a simple example. In the dynamic case, the evolution
of a family of deformable bodies can be approximated by a sequence of minimization problems
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defined on the set of admissible deformations. More precisely, once the problem is discretized
in time and space, we have to compute at each time ¢ = i(At) the solution of the minimization
problem

1 2
min - m (Vi1 —v;) dx + J(pir1),
i g [ m =) e+ TGe)

where v; 11 = (pi11 — @i)/At, and m is the inertial mass per volume unit. Each of this problems
can be solved using our algorithm. Naturally, ohter time distretization schemes can be used (like
Newmark for instance).

7 A numercial example

In this section, we present an application of our method in the two dimensional static case. We
consider a system made of elastic membranes M;, diffeomorphic to the interval [0, 1] that contains
a gas. The stored elastic energy of a membrane M; is defined by

oy [(FP =12 i [Pl >1
WZ(F)_”Z{O if |[F| < 1.

where p; > 0 is an elasticity coefficient. The internal energy of a deformation v; of the membrane
Mi is

Moreover, we assume that each membrane is fixed on a plane support and that the space between
the membranes and the supports is filled with a perfect gas, which exerts on each membrane a
uniform pressure inversely proportional to the area V; it is occupying. Thus, the total energy
associated to the deformations (;) = v of the membranes is

1) =3 /MV Wi )dz — Cs In(V7),

where C; are positive constants depending on the quantity of gas contained in each membrane
M,;. Any equilibrium position of the membranes is a critical points of the energy over the set
of admissible deformations. As the functions W, are convex, there exists a configuration ¢ that
minimizes the energy over the set of admissible deformations,

1) = inf 1)

We solve the discretized version of this problem

I = inf  I(¢p), 17
(¢n) B (Yn) (17)

using our method. Let us recall the steps of our algorithm
1. Initialization of o by an admissible deformation.

2. For all n > 0, we denote by ,,+1 € T(¢,) the solution of the minimization problem

I(pns1) = I(¥), (18)

inf
PYET (pn)
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2 RS

Figure 2: Different steps of the minimization of the energy of a system made of inflated elastic
balloons.

where T'(-) maps any admissible deformation ) onto the convex subset of the admissible set
Ap.(M) defined by

() = {whexh e ()-(on () — n(2)) > e,

for all edge a and all vertex z of the mesh such that = ¢ a},

where g, (1) is defined for each edge a and each vertex = of the mesh such that = ¢ a by

min ng . (Yn) - (Y (2a) — ¥n(z)) = dist(Yn(a), Yn(z)) > €.

Ta€aQ

3. STOP when I(pn41) >~ I(pn)-

We solve each minimization problem (18) with the classical Uzawa’s algorithm. Figure 2 shows
different steps of the minimization process. Here, four membranes are considered. After few
iterations of the algorithm, an unstable symmetric equilibrium state is reached (drawn on the
center of Figure 2), then the symmetry is broken leading to a stable equilibrium state.

8 Conclusion

The main advantage of the method proposed in this article in order to take into account frictionless
(self)contacts between deformable bodies is its robustness. During the numerical simulations we
have performed, never was the classical chatter problem, that undermines many other algorithms,
encountered. The drawback of our method lies in the resolution of a minimization problem with
N? constraints (where N is the number of elements of our discretization) at each step, which is
prohibitive as the number of elements of the mesh becomes important. Moreover, the number
of steps also depends on the size of the discretization, and is of order max(h,c)~!. In the case
of self-contacts, € has to be chosen smaller than h, which entails that we have to solve about N
minimization problems with N? constraints each. Nevertheless, it is possible to drastically reduce
the computational time by regrouping the elements in bundles, and imposing non-intersection
constraints to their convex hull. Moreover, in the present form, our algorithm does not take
into account the rigid case. In such a case, the natural variables are the position of the gravity
center, and the orientation of the solid (and not, for polygonal shapes, the position of the vertices).
Thus, the definition of the “neighborhoods” T'(+) can not be trivially extended since they are not
convex sets with respect to those variables. The rigidity constraints introduce a new nonlinearity,

13



which has to be treated on its own. Finally, in order to consider realistic applications, mechanical
phenomena involved during the contact have also to be taken into account, in particular friction.
It seems that classical treatments of friction should be easily adapted to our approach.
acknowledgement. Iam very grateful to Karim Trabesi for his carefull reading of the manuscript
and the different improvements he suggested.
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