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Abstract

We are interested in the study of models describing the evolution of a polymor-
phic population with mutation and selection in the specific scales of the biological
framework of adaptive dynamics. The population size is assumed to be large and the
mutation rate small. We prove that under a good combination of these two scales, the
population process is approximated in the long time scale of mutations by a Markov
pure jump process describing the successive trait equilibria of the population. This
process, which generalizes the so-called trait substitution sequence, is called polymor-
phic evolution sequence. Then we introduce a scaling of the size of mutations and we
study the polymorphic evolution sequence in the limit of small mutations. From this
study in the neighborhood of evolutionary singularities, we obtain a full mathematical
justification of a heuristic criterion for the phenomenon of evolutionary branching.
To this end we finely analyze the asymptotic behavior of 3-dimensional competitive
Lotka-Volterra systems.

MSC 2000 subject classification: 92D25, 60J80, 37N25, 92D15, 60J75

Key-words: Mutation-selection individual-based model, fitness of invasion, adaptive dy-
namics, polymorphic evolution sequence, competitive Lotka-Volterra system, evolutionary
branching.

1 Introduction

We consider an asexual population in which each individual’s ability to survive and repro-
duce is characterized by a quantitative trait, such as the size, the age at maturity, or the
rate of food intake. Evolution, acting on the trait distribution of the population, is the
consequence of three basic mechanisms: heredity, which transmits traits to new offsprings,
mutation, driving a variation in the trait values in the population, and selection between
these different trait values, which is due to the competition between individuals for limited
resources or area. Adaptive dynamics models aim at studying the interplay between these

∗EPI TOSCA, INRIA Sophia Antipolis – Méditerranée, 2004 route des Lucioles, BP. 93, 06902 Sophia
Antipolis Cedex, France; e-mail: Nicolas.Champagnat@sophia.inria.fr.

†CMAP, Ecole Polytechnique, CNRS, route de Saclay, 91128 Palaiseau Cedex-France; e-mail:
sylvie.meleard@polytechnique.edu.

2



different mechanisms [21, 25, 27]. Our approach is based on a microscopic individual-
based model that details the ecological dynamics of each individual. From the simulated
dynamics of this process initially issued from a monomorphic population, we observe that
it is essentially single-modal centered around a trait that evolves continuously, until some
time where the population divides into two separate sub-populations that are still in in-
teraction but are centered around distinct traits at a distance increasing with time. This
phenomenon, called Evolutionary Branching, is thought to be a possible explanation of
phenotypic separation without geographic separation [7]. (One speaks about sympatric
speciation though the population is asexual). Our aim in this paper is to understand the
dynamics of the process in long time scales and to highlight the evolutionary branching
phenomenon. In particular, we want to prove the conjecture stated by Metz et al. [26]
and giving conditions on the parameters of the model allowing one to predict whether
evolutionary branching will occur or not.

To this aim, we follow the basic description of adaptive dynamics based on the bi-
ologically motivated assumptions of rare mutations and large population. Under these
assumptions, we prove that the microscopic process describing the ecological dynamics can
be approximated by a Markov pure jump process on the set of point measures on the trait
space. The transitions of this process are given by the long time behavior of competitive
Lotka-Volterra systems. They describe the succession of mutant invasions followed by a
fast competition phase between the mutant population and the resident one. In the mu-
tation time scale, and for large populations, the successful traits in the competition are
given by the nontrivial equilibria of Lotka-Volterra systems which model the dynamics of
the sizes of each sub-population corresponding to each resident or mutant trait. We thus
generalize the situation introduced in [26] and mathematically developed in [4], where the
parameters of the model prevent the coexistence of two traits. In that case, the micro-
scopic model converges to a monomorphic (one trait support) pure jump process, called
Trait Substitution Sequence (TSS). This limit involves a timescale separation between the
mutations and the population dynamics driving the competition between traits.

In this article, we relax the assumption of non-coexistence and obtain a polymorphic
evolution sequence (PES), allowing coexistence of several traits in the population, from
the same microscopic model described in Section 2. In Section 2.3, we introduce the
competitive symmetric Lotka-Volterra systems describing the competition between traits.
We prove in Section 2.4 that the PES takes the form of a Markov jump process on the set of
measures on the trait space X that are finite sums of Dirac masses with positive weights,
and we characterize the transitions of this process in terms of the long time behaviour
of competitive Lotka-Volterra systems. In Section 3, we explain why the assumptions
ensuring the convergence to the PES are satisfied as long as no more than two traits
coexist. In this case, the dynamics of the PES can be explicitely characterized. Next
(Section 4), we study the transition from a monomorphic population to a stable dimorphic
population, and give a full mathematical justification of the criterion for evolutionary
branching proposed in [26], under the assumption of small mutation effects. To this end,
we first show in Sections 4.1 and 4.2 that, away from evolutionary singularities, the support
of the PES stays monorphic and converges to an ODE known as the “canonical equation” [8].
Finally, in Section 4.3, we characterize the situations where evolutionary branching occurs
by specializing to our situation the results of Zeeman [30] on the asymptotic behavior of
3-dimensional competitive Lotka-Volterra systems.
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Let us insist on the importance of the limits. Here we are concerned by the combination
of the limits of large populations and rare mutations, followed by a limit of small mutations.
An alternative approach would be first to study the limit of large population alone, giving in
the limit an integro-differential partial differential equation for the density of traits [5]; and
next to study a limit of small mutations on this equation with a proper time scaling that
would lead to some dynamics on the set of finite sums of Dirac masses on the trait space.
The second part of this program has already been partly studied in [9] in a specific model,
but is related to difficult problems on Hamilton-Jacobi equations with constraints [2].
In this case, evolutionary branching is numerically observed, but not yet fully justified.
Another approach would be to combine the three limits we consider directly at the level
of the microscopic model, allowing one to study the evolutionary process on several time
scales [3]. This requires a finer analysis of the invasion and competition phases after the
appearance of a new mutant. Note that all these approaches are based on the same idea
of separation between the time scales of mutation and competition.

2 Models and Polymorphic Evolution Sequence (PES)

Let us introduce here the main models on which our approach is based.

2.1 The individual-based model

The microscopic model we use is an individual-based model with density-dependence, which
has been already studied in ecological or evolutionary contexts by many authors [12, 5].

The trait space X is assumed to be a compact subset of R
l, l ≥ 1. For any x, y ∈ X ,

we introduce the following biological parameters

λ(x) ∈ R+ is the rate of birth from an individual holding trait x.

µ(x) ∈ R+ is the rate of “natural” death for an individual holding trait x.

r(x) := λ(x) − µ(x) is the “natural” growth rate of trait x.

K ∈ N is a parameter scaling the population size and the resources.

α(x,y)
K ∈ R+ is the competition kernel representing the pressure felt by an individual hold-

ing trait x from an individual holding trait y. It is not assumed to be a symmetric
function.

uK p(x) with uK , p(x) ∈ (0, 1], is the probability that a mutation occurs in a birth from
an individual with trait x. Small uK means rare mutations.

m(x, h)dh is the law of h = y − x, where the mutant trait y is born from an individual
with trait x. Its support is a subset of X − x = {y − x : y ∈ X}.

We consider, at any time t ≥ 0, a finite number Nt of individuals, each of them holding
a trait value in X . Let us denote by x1, . . . , xNt the trait values of these individuals.
The state of the population at time t ≥ 0, rescaled by K, is described by the finite point
measure on X

νK
t =

1

K

Nt
∑

i=1

δxi
, (2.1)

4



where δx is the Dirac measure at x. Let 〈ν, f〉 denote the integral of the measurable
function f with respect to the measure ν and Supp(ν) denote its support.
Then 〈νK

t ,1〉 = Nt

K and for any x ∈ X , the positive number 〈νK
t ,1{x}〉 is called the

density at time t of trait x.
Let MF denote the set of finite nonnegative measures on X , equipped with the weak
topology, and define

MK =

{

1

K

n
∑

i=1

δxi
: n ≥ 0, x1, . . . , xn ∈ X

}

.

An individual holding trait x in the population νK
t gives birth to another individual with

rate λ(x) and dies with rate

µ(x) +

∫

α(x, y)νK
t (dy) = µ(x) +

1

K

Nt
∑

i=1

α(x, xi).

The parameter K scales the strength of competition, thus allowing the coexistence of more
individuals in the population. A newborn holds the same trait value as its progenitor with
probability 1−uKp(x), and with probability uKp(x), the newborn is a mutant whose trait
value y is chosen according to y = x+h, where h is a random variable with law m(x, h)dh.
In other words, the process (νK

t , t ≥ 0) is a MK-valued Markov process with infinitesimal
generator defined for any bounded measurable functions φ from MK to R by

LKφ(ν) =

∫

X

(

φ

(

ν +
δx
K

)

− φ(ν)

)

(1 − uKp(x))λ(x)Kν(dx)

+

∫

X

∫

Rl

(

φ

(

ν +
δx+h

K

)

− φ(ν)

)

uKp(x)λ(x)m(x, h)dhKν(dx)

+

∫

X

(

φ

(

ν −
δx
K

)

− φ(ν)

) (

µ(x) +

∫

X
α(x, y)ν(dy)

)

Kν(dx). (2.2)

For ν ∈ MK , the integrals with respect to Kν(dx) in (2.2) correspond to sums over
all individuals in the population. The first term (linear) describes the births without
mutation, the second term (linear) describes the births with mutation, and the third term
(non-linear) describes the deaths by oldness or competition. The density-dependent non-
linearity of the third term models the competition in the population, and hence drives the
selection process.

Let us denote by (A) the following three assumptions

(A1) λ, µ and α are measurable functions, and there exist λ̄, µ̄, ᾱ < +∞ such that

λ(·) ≤ λ̄, µ(·) ≤ µ̄ and α(·, ·) ≤ ᾱ.

(A2) r(x) = λ(x) − µ(x) > 0 for any x ∈ X , and there exists α > 0 such that α ≤ α(·, ·).

(A3) There exists a function m̄ : R
l → R+ such that m(x, h) ≤ m̄(h) for any x ∈ X and

h ∈ R
l, and

∫

m̄(h)dh <∞.

For fixed K, under (A1) and (A3) and assuming that E(〈νK
0 ,1〉) < ∞, the existence and

uniqueness in law of a process on D(R+,M
K) with infinitesimal generator LK has been

proved in [12]. Assumption (A2) prevents the population to explode and to go extinct too
fast.
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2.2 An example

The birth-death-competition-mutation process described above has been heuristically stud-
ied in various ecological or evolutionary contexts. Let us illustrate the phenomenon of evo-
lutionary branching we are interested in with a simple example, adapted from a classical
model (Roughgarden [29], Dieckmann and Doebeli [7]). In this model, there is a single
optimal trait value for the birth rate and a symmetric competition kernel. The parameters
are the following:

X = [−2, 2]; µ(x) ≡ 0; p(x) ≡ p,

λ(x) = exp(−x2/2σ2
b ),

α(x, y) = α̃(x− y) = exp(−(x− y)2/2σ2
α).

(2.3)

and m(x, h)dh is the law of a N (0, σ2) r.v. Y (centered Gaussian with variance σ2) condi-
tioned on x+ Y ∈ X .
The growth rate λ(x) is maximal at x = 0 and there is local competition between traits,
in the sense that α(x, y) is maximal for x = y and is close to 0 when |x − y| is large. If
the competition kernel was flat (α ≡ 1), evolution would favor mutant traits with maximal
growth rate. However, if competition is local, numerical simulations of the microscopic
model give different patterns, as shown in Fig. 2.1. The pattern of Fig. 2.1(b), where the
population, initially composed of traits concentrated around a single trait value, is driven
by the evolutionary forces to states where the population is composed of two (or more)
groups, concentrated around different trait values. This phenomenon is called evolutionary
branching and has been observed in many biological models (see e.g. [26, 24, 17]). It is
believed to be a possible mechanism of traits separation that could lead to speciation [7].

In this particular model, the possibility of evolutionary branching seems to be governed by
the values of σb and σα, which represent respectively the width of the trait region with high
growth rate and the interaction range. In Fig. 2.1(a), σα > σb and there is no evolutionary
branching, whereas in Fig. 2.1(b), σα < σb and evolutionary branching occurs. We observe
in both simulations that, in a first phase, the population trait support is concentrated
around a mean trait value that converges to 0. In a second phase, new mutants feel two
different selective pressures: high growth rate (traits close to 0) and competition (traits
far from the rest of the population). If σα is small, the selection pressure is weaker for
traits away from 0 and allows the apparition of new branches. The goal of this article is
to justify mathematically this heuristics.

2.3 On scales

In order to analyze the phenomenon of evolutionary branching, we are going to consider
three biological asymptotics in the individual-based model: large population (K → +∞),
rare mutations (uK → 0) and small mutation amplitude. The combination of the two first
scales will allow us to describe the polymorphic evolution sequence, we will focus on. This
limit amounts to approximate the simulated dynamics of Fig. 2.1(a) and (b) of the previ-
ous section by the one of Fig. 2.2(a) and (b), respectively. These scales and the biological
heuristics of this approach were introduced in [26]. The main interest of the assumption of
rare mutations is the separation between ecological and evolutionary time scales: the selec-
tion process has sufficient time between two mutations to eliminate disadvantaged traits.
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(a) p = 0.1, K = 1000, σ = 0.01, σb = 0.9, σα =

1.0.
(b) p = 0.1, K = 1000, σ = 0.01, σb = 0.9, σα =

0.7.

Figure 2.1: Numerical simulations of the trait distribution (upper panels) and population size

(lower panels) of the microscopic model with parameters (2.3). The initial population is composed

of K individuals all with trait −1.0.

Then evolution proceeds by a succession of phases of mutant invasion and phases of compe-
tition between traits. We will choose parameters such that the ecological and evolutionary
time scales are separated, leading to an evolutionary dynamics where competition phases
are infinitesimal on the mutation time scale. In addition, the large population assumption
allows one to assume a deterministic population dynamics between mutations, so that the
outcome of the competition can be predicted. More formally, between two mutations, a
finite number of traits are present, namely x1, . . . , xd, and the population dynamics can be
reduced to a Markov process in N

d.
Assume that, for all i ∈ {1, . . . , d}, 1

K 〈νK
0 ,1{xi}〉 has bounded second-order moments

and converge in distribution to ni(0) ∈ R+. Then, as proved in [6, Thm.4.2], when K →
+∞, the process 1

K (〈νK
t ,1{x1}〉, . . . , 〈ν

K
t ,1{xd}〉) converges in distribution for the Skorohod

topology to the solution of the d-dimensional competitive Lotka-Volterra system LV (d,x)
with initial condition (n1(0), . . . , nd(0)).

Definition 2.1 For any x = (x1, . . . , xd) ∈ X d, we denote by LV (d,x) the competitive
Lotka-Volterra system defined by

ṅ(t) = Fx(n(t)), 1 ≤ i ≤ d, t ≥ 0, (2.4)
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(a) µ = 0.0001, K = 1000, σ = 0.08, σb = 0.9,
σα = 1.0.

(b) µ = 0.0001, K = 1000, σ = 0.08, σb = 0.9,
σα = 0.7.

Figure 2.2: Numerical simulations of the trait distribution (upper panels) and population size

(lower panels) of the microscopic model with parameters (2.3). The initial population is composed

of K individuals all with trait −1.0. The value of σ is higher than in Fig. 2.1 so that the jumps

are visible.

where n(t) = (n1(t), . . . , nd(t)),

Fx

i (n) := niG
x

i (n) where Gx

i (n) := r(xi) −
d

∑

j=1

α(xi, xj)nj . (2.5)

The equilibria of LV (d,x) are given by the intersection of hyperplanes (Pi)1≤i≤d, where
Pi has equation either ni = 0 or Gx

i (n) = 0. We need to introduce the following notion of
coexisting traits.

Definition 2.2 For any d ≥ 0, we say that x1, . . . , xd coexist if LV (d,x) admits a unique
non-trivial equilibrium n̄(x) ∈ (R∗

+)d locally strongly stable, in the sense that the eigenval-
ues of the Jacobian matrix of LV (d,x) at n̄(x) have all (strictly) negative real part. In
particular, for all i ∈ {1, . . . , d},

Gx

i (n̄(x)) = 0 and DFx(n̄(x)) = ((−α(xi, xj)n̄i(x)))1≤i,j≤d. (2.6)

In the monomorphic case (d = 1) and when r(x) > 0, the competitive Lotka-Volterra
system LV (1, x) takes the form of the so-called logistic equation

ṅx = nx(r(x) − α(x, x)nx). (2.7)
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The unique stable equilibrium of this equation is n̄(x) = r(x)/α(x, x).
Similarly, in the dimorphic case where d = 2, the system LV (2, (x, y)) takes the form

{

ṅx = nx(r(x) − α(x, x)nx − α(x, y)ny)

ṅy = ny(r(y) − α(y, x)nx − α(y, y)ny).
(2.8)

Under Assumption (A2), the equilibria of (2.8) are (0, 0), (n̄(x), 0), (0, n̄(y)) and possibly a
non-trivial equilibrium in (R∗

+)2. It is known (see e.g. [22]) that the non trivial equilibrium
exists and is locally strongly stable, (traits x and y coexist), if and only if f(x; y) > 0 and
f(y;x) > 0, where

f(y;x) = r(y) − α(y, x)n̄(x). (2.9)

2.4 Convergence to the Polymorphic Evolution Sequence (PES)

Our goal here is to examine the asymptotic behavior of the microscopic process when the
population size grows to infinity as well as the mutation rate converges to 0, in a long time
scale. Before stating our convergence result, we first give an idea of the argument used,
extending the biological heuristics of [26] and the special case of the trait substitution
sequence (TSS) developed in [4] (see also Section 3.1).

2.4.1 Idea of the proof

Let us roughly describe the successive steps of mutation, invasion and competition. The
two steps of the invasion of a mutant in a given population are firstly the stabilization
of the resident population before the mutation and secondly the invasion of the mutant
population after the mutation.
Fix η > 0. In the first step, assuming that d traits x1, . . . , xd that coexist are present, we
prove that the population densities (〈νK

t ,1{x1}〉, . . . , 〈ν
K
t ,1{xd}〉) belong to the η-neighborhood

of n̄(x) with high probability for large K until the next mutant y appears. To this aim,
we use large deviation results on the problem of exit from a domain [13] to prove that the
time needed for the population densities to leave the η-neighborhood of n̄(x) is bigger than
exp(V K) for some V > 0 with high probability. Therefore, until this exit time, the rate
of mutation from trait xi in the population is close to uKp(xi)λ(xi)Kn̄i(x) and thus, the
first mutation appears before this exit time if one assumes that

1

KuK
≪ eV K .

In particular, the mutation rate from trait xi on the time scale t/KuK is close to

p(xi)λ(xi)n̄i(x).

In the second step, we divide the invasion of a given mutant trait y into 3 phases shown in
Fig. 2.3, in a similar way as done classically by population geneticists dealing with selective
sweeps [23].
In the first phase (between time 0 and t1 in Fig. 2.3), the number of mutant individuals is
small, and the resident population stays close to its equilibrium density n̄(x). Therefore,
the dynamics of the mutant individuals is close to a branching process with birth rate λ(y)
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6

0

η

n̄y

n̄x

population size

t1 t2 t3 t

〈νK
t ,1{y}〉

〈νK
t ,1{x}〉

Figure 2.3: The three steps of the invasion of a mutant trait y in a monomorphic population with

trait x.

and death rate µ(y)+
∑d

i=1 α(y, xi)n̄i(x). Hence, the growth rate of this branching process
is equal to the so-called fitness

f(y;x) = f(y;x1, . . . , xd) = r(y) −
d

∑

j=1

α(y, xj)n̄j(x), (2.10)

describing the ability of the initially rare mutant trait y to invade the equilibrium resident
population with traits x1, . . . , xd. If this fitness is positive (i.e. if the branching process is
super-critical), the probability that the mutant population reaches density η > 0 at some
time t1 is close to the probability that the branching process reaches ηK, which is itself
close to its survival probability [f(y;x)]+/λ(y) when K is large.
In the second phase (between time t1 and t2 in Fig. 2.3), we use the fact that, when
K → +∞, the population densities (〈νK

t ,1{x1}〉, . . . , 〈ν
K
t ,1{xd}〉, 〈ν

K
t ,1{y}〉) are close to

the solution of the Lotka-Volterra system LV (d+1, (x1, . . . , xd, y)) with same initial condi-
tion, on any time interval [0, T ]. We will need an assumption (called (B1) in Section 2.4.2)
ensuring that, if η is sufficiently small, then any solution to the Lotka-Volterra system
starting in some neighborhood of (n̄1(x), . . . , n̄d(x), 0) converges to a new equilibrium
n
∗ ∈ R

d+1 as time goes to infinity. Therefore, the population densities reach with high
probability the η-neighborhood of n

∗ at some time t2.
Finally, in the last phase, we use the same idea as in the first phase: under the assumption
(called (B2) in Section 2.4.2) that n

∗ is a strongly locally stable equilibrium, we approx-
imate the densities of the traits xj such that n∗j = 0 by branching processes which are
sub-critical. Therefore, they reach 0 in finite time and the process comes back to the first
step until the next mutation.
We will prove that the duration of these three phases is of order logK. Therefore, under
the assumption

logK ≪
1

KuK
,
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the next mutation occurs after these three phases are completed with high probability.

2.4.2 Assumptions

As explained above, we need to introduce two assumptions on the Lotka-Volterra systems
involved in the previous heuristics. These assumptions involve the fitness function defined
in (2.10). This function is linked to Lotka-Volterra systems by the following property.

Proposition 2.3 Assume that the traits x1, . . . , xd ∈ X coexist. Then

(i) For any i ∈ {1, . . . , d}, f(xi;x1, . . . , xd) = 0.

(ii) If f(y;x1, . . . , xd) < 0, the equilibrium (n̄1(x), . . . , n̄d(x), 0) of LV (d+1, (x1, . . . , xd, y))
is locally strongly stable, and if f(y;x1, . . . , xd) > 0, this equilibrium is unstable.

Proof The first point is immediate. The second point comes from the following relation
between Jacobian matrices of Lotka-Volterra systems

DF (x1,...,xd,y)(n̄1(x), . . . , n̄d(x), 0) =















DFx(n̄(x))

−n̄1(x)α(x1, y)
...

−n̄d(x)α(xd, y)

0 . . . 0 f(y;x)















.

Since x1, . . . , xd coexist, all the eigenvalues of DFx(n̄(x)) have negative real parts. �

Let (B) denote the following Assumptions (B1) and (B2).

(B1) Given any x = (x1, . . . , xd) ∈ X d such that x1, . . . , xd coexist, for Lebesgue almost
any mutant trait y ∈ X such that f(y;x) > 0, there exists a neighborhood U ⊂ R

d+1

of (n̄1(x), . . . , n̄d(x), 0) such that all the solutions of LV (d + 1, (x1, . . . , xd, y)) with
initial condition in U ∩ (R∗

+)d+1 converge as t → +∞ to a unique equilibrium in
(R+)d+1, denoted by

n
∗(x1, . . . , xd, y).

(B2) Writing for simplicity xd+1 = y and n
∗ for n

∗(x1, . . . , xd+1), let

I(n∗) :=
{

i ∈ {1, . . . , d+ 1} : n∗i > 0
}

and x
∗ = (xi; i ∈ I(n∗)).

Then, for Lebesgue almost any mutant trait xd+1 as above, {xi; i ∈ I(n∗)} coexist
and

for all j 6∈ I(n∗) , f(xj ;x
∗) < 0.

Assumption (B1) prevents cycles or chaotic dynamics in the Lotka-Volterra systems. More-
over, it also prevents situations as in Fig. 2.4, where the equilibrium n

∗ is unstable. In
this case, a solution of the Lotka-Volterra system LV (d + 1, (x1, . . . , xd, y)) starting from
a point in any neighborhood of (n̄1(x), . . . , n̄d(x), 0), represented by the curved line in
Fig. 2.4, does not need to converge to n

∗.
Assumption (B2) is stated in the way permitting one to use the comparison with branching
processes argument described in Section 2.4.1 when a mutant trait fixates in the population.
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(n̄1(x), . . . , n̄d(x), 0)

n
∗

Figure 2.4: Assumption (B1) prevents such situation.

Definition 2.4 An equilibrium n of LV (d, (x1, . . . , xd)) is hyperbolic if the Jacobian ma-
trix of LV (d, (x1, . . . , xd)) at n has no eigenvalue with 0 real part.

Assumption (B2) can also be replaced by one of the following simpler two assumptions.

(B3) For Lebesgue almost any mutant trait xd+1 as in (B1), n
∗ is hyperbolic.

(B4) For Lebesgue almost any mutant trait xd+1 as in (B1), n
∗ is strongly locally stable.

Proposition 2.5 Assumptions (B1) and (B2) are equivalent to Assumptions (B1) and (B3),
and to Assumptions (B1) and (B4).

Proof Let k := Card(I(n∗)). Assume that x1, . . . , xd+1 are reordered in a way such that
I(n∗) = {1, 2, . . . , k}. Then it is clear, by the definition of coexistence and the fact that

DF (x1,...,xd+1)(n∗) =















DFx
∗
(n∗1, . . . , n

∗
k) (−α(xi, xj)n

∗
j )1≤i≤k, k+1≤j≤d+1

0

f(xk+1,x
∗) 0

. . .

0 f(xd+1,x
∗)















that (B2) implies (B4) which also trivially implies (B3). Assuming (B3), the stable mani-
fold theorem (see e.g. [18] pp. 13–14) says that the set of points such that the solution of
LV (d+1, (x1, . . . , xd+1)) started at this point converges to n

∗ is a submanifold of (R∗
+)d+1

of dimension l, where l is the number of eigenvalues of DF (x1,...,xd+1)(n∗) with negative
real part. In particular, if l < d+1, this manifold does not contain an open set of (R∗

+)d+1,
which is in contradiction with (B1). Therefore, l = d+ 1, which implies (B2). �

Therefore, Assumption (B2) essentially means that n
∗ is hyperbolic, which is a property

satisfied under very weak assumptions. In Section 3, various situations ensuring Assump-
tions (B1) and (B2) will be discussed.
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2.4.3 Definition of the PES and Convergence Theorem

Before stating our convergence result, let us first describe the limiting process (Zt; t ≥ 0)
of the population process (νK

t/KuK
; t ≥ 0) on the mutation time scale. This is a pure jump

Markov process in M0 ⊂ MF defined by

M0 :=

{

d
∑

i=1

n̄i(x)δxi
; d ≥ 1, x1, . . . , xn ∈ X coexist

}

,

which describes the successive population states at the evolutionary (mutation) time scale.
As explained in Section 2.4.1, the quantity p(xj)λ(xj)n̄j(x) is the re-scaled mutation rate
in the resident sub-population with trait xj and size n̄j(x). When a mutant xj +h is chosen

with law m(xj , h)dh, the quantity
[f(xj+h;x)]+

λ(xj+h) is the invasion probability of the mutant.

Once the latter has invaded, the new population state is given by the asymptotic behavior
of the Lotka-Volterra system described in Assumption (B1). Because of the timescale
separation (2.13), the stabilization of the population at its new equilibrium occurs before
the next mutation and within infinitesimal time.
Hence, the process Z will jump

from
d

∑

i=1

n̄i(x)δxi
to

d
∑

i=1

n∗i (x1, . . . , xd, xj + h)δxi
+ n∗d+1(x1, . . . , xd, xj + h)δxj+h

with infinitesimal rate

p(xj)λ(xj)n̄j(x)
[f(xj + h;x)]+
λ(xj + h)

m(xj , h)dh (2.11)

for all j ∈ {1, . . . , d}. In other words, the infinitesimal generator of the process Z will be

Lϕ
(

d
∑

i=1

n̄i(x)δxi

)

=

∫

X
dh

d
∑

j=1

p(xj)λ(xj)n̄j(x)
[f(xj + h;x)]+
λ(xj + h)

m(xj , h)×

(

ϕ
(

d
∑

i=1

n∗i (x1, . . . , xd, xj + h)δxi
+ n∗d+1(x1, . . . , xd, xj + h)δxj+h

)

− ϕ
(

d
∑

i=1

n̄i(x)δxi

))

.

(2.12)

We call this process Polymorphic Evolution Sequence (PES), by analogy with the so-called
“Trait Substitution Sequence” (TSS) described in Section 3.1.

Proposition 2.6 Under Assumptions (A) and (B), the PES is well-defined on R+ and
belongs almost surely to M0 for all time.

Proof It follows from Assumption (A) and from (2.6) that the jump rates are bounded.
Moreover, by Assumption (B1), n∗(x1, . . . , xn, y) is well-defined for almost all mutant traits
y such that f(y;x) > 0, and by Assumption (B2), for such y,

∑d
i=1 n

∗
i (x1, . . . , xd, y)δxi

+
n∗d+1(x1, . . . , xd, y)δy ∈ M0. �
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Theorem 2.7 Assume (A) and (B). Take x1, . . . , xd ∈ X that coexist and assume that
νK
0 =

∑d
i=1 n

K
i δxi

with nK
i → n̄i(x) in probability for all 1 ≤ i ≤ d. Assume finally that

∀V > 0, logK ≪
1

KuK
≪ exp(V K). (2.13)

Then, (νK
t/KuK

; t ≥ 0) converges to the process (Zt; t ≥ 0) with infinitesimal genera-

tor (2.12) and with initial condition Z0 =
∑d

i=1 n̄i(x)δxi
. The convergence holds in the

sense of finite dimensional distributions on MF equipped with the topology induced by the
functions ν 7→ 〈ν, f〉 with f bounded and measurable on X .

The proof of this result follows closely the heuristic argument of Section 2.4.1 and is very
similar to the proof of Theorem 1 of [4], that states a similar result in the case where no
pair of traits can coexist. We detail in Appendix A all the steps and results of [4] that are
modified in order to prove Theorem 2.7.

3 Particular cases and extensions of the PES

In this section, we discuss various situations where Assumptions (B1) and (B2) are satisfied
allowing one to explicitly obtain the PES.

3.1 The "no coexistence" case: an extension of the trait substitution
sequence (TSS)

In this section we characterize the case where the PES is well defined until the first co-
existence time of two different traits. Assumption (B) with d = 1 (only one resident trait)
involves the fitness function defined in (2.9).

Proposition 3.1 Let us assume the hypothesis

(C1) For all x ∈ X , the set of y such that f(y;x) = 0 has Lebesgue measure 0.

Then (B) is satisfied for d = 1.

Proof The assumption (B) for d = 1 involves 2-dimensional competitive Lotka-Volterra
systems. Their asymptotic behavior is well-known (see e.g. [22]). In particular,

• if f(x; y) > 0 and f(y;x) < 0, any solution of LV (2, (x, y)) starting from R+ × R
∗
+

converges to (n̄(x), 0),

• if f(x; y) < 0 and f(y;x) > 0, any solution of LV (2, (x, y)) starting from R
∗
+ × R+

converges to (0, n̄(y)),

• if f(x; y) > 0 and f(y;x) > 0, any solution of LV (2, (x, y)) starting from (R∗
+)2

converges to n̄(x, y),

• if f(x; y) < 0 and f(y;x) < 0, (n̄(x), 0) and (0, n̄(y)) are both locally strongly stable.
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Moreover, all the equilibria are hyperbolic if and only if f(y;x) 6= 0 and f(x; y) 6= 0.
Therefore, Assumption (C1) implies Assumption (B) for d = 1 sincem(x, h)dh is absolutely
continuous w.r.t. Lebesgue’s measure. �

Let us now introduce the following killed PES (Z
(1)
t , t ≥ 0) as a Markov jump process on

M0∪{∂}, where ∂ is a cemetery state, with infinitesimal generator L(1) defined as follows.
Let ν := n̄(x)δx, then

L(1)ϕ(n̄(x)δx)

=

∫

X

(

ϕ
(

n̄(x+ h)δx+h

)

− ϕ(n̄(x)δx)
)

p(x)λ(x)n̄(x)
[f(x+ h;x)]+
λ(x+ h)

1{f(x;x+h)<0}m(x, h)dh

+

∫

X

(

ϕ(∂) − ϕ(n̄(x)δx)
)

p(x)λ(x)n̄(x)1{f(x;x+h)>0,f(x+h;x)>0}m(x, h)dh. (3.1)

By construction, the killed PES (Z
(1)
t , t ≥ 0) is always monomorphic before killing. Once

the killed PES reaches the cemetery state ∂, it no longer jumps.
This modification amounts to construct the killed PES as the PES, and send it to the
cemetery state ∂ as soon as a mutant trait y appears in a monomorphic population of trait
x ∈ X such that x and y coexist. Note that ∂ is reached as soon as a mutant appears,
that could coexist with the resident trait, even if this mutant actually does not invade the
population. That explains why the invasion probability [f(y;x)]+/λ(y) does not appear in
the last line of (3.1).
The following proposition is a consequence of the previous discussion.

Proposition 3.2 Under Assumptions (A) and (C1), the killed PES (Z
(1)
t , t ≥ 0) is almost

surely well-defined and belongs almost surely to M0 ∪ {∂} for all time.

The proof of the following result can be easily adapted from that of Theorem 2.7.

Corollary 3.3 With the same assumption and notation as in Theorem 2.7, except that
Assumption (B) is replaced by Assumption (C1) and that d = 1, let

τK := inf{t ≥ 0 : Supp(νK
t ) = {x, y} such that (x, y) coexist}.

Then the process
(

νK
t

KuK

1{ t
KuK

≤τK} + ∂ 1{ t
KuK

>τK}, t ≥ 0
)

converges as K → +∞ to the killed PES (Z
(1)
t , t ≥ 0) with initial condition Z

(1)
0 = n̄(x)δx.

The convergence is understood in the same sense as in Theorem 2.7.

Remark 3.4 The killed PES generalizes the so-called “Trait Substitution Sequence” (TSS),
introduced in [26], and rigorously studied in [4]. This TSS is obtained when the parameters
of the microscopic model prevent the coexistence of two traits. Such an assumption, known
as “Invasion-Implies-Fixation” (IIF) principle [15] is given by:

(IIF) for all x ∈ X , almost all y ∈ X such that f(y;x) > 0 satisfy f(x; y) < 0.
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Hence, the TSS Z has on R+ the form

Zt = n̄(Xt)δXt , t ≥ 0,

where X is a Markov pure jump process on X with infinitesimal generator

Lϕ(x) =

∫

Rl

(ϕ(x+ h) − ϕ(x))p(x)λ(x)n̄(x)
[f(x+ h;x)]+
λ(x+ h)

m(x, h)dh. (3.2)

The killed PES (Z
(1)
t , t ≥ 0) prevents the coexistence of two or more traits. Therefore, this

process is not suited to our study of evolutionary branching in Section 4. To this end, we
need to examine a more general situation.

3.2 The “no triple coexistence” case

In this section we characterize the case where the PES is well defined until the first coex-
istence time of three different traits.
In the case d = 2 the fitness function (2.10) of a mutant trait z in a population with two
coexisting resident traits x and y is given by

f(z;x, y) = r(z) − α(z, x)n̄1(x, y) − α(z, y)n̄2(x, y) (3.3)

with

n̄1(x, y) =
r(x)α(y, y) − r(y)α(x, y)

α(x, x)α(y, y) − α(x, y)α(y, x)
, (3.4)

n̄2(x, y) =
r(y)α(x, x) − r(x)α(y, x)

α(x, x)α(y, y) − α(x, y)α(y, x)
. (3.5)

We need to extend this definition to any x, y ∈ X such that f(x; y)f(y;x) > 0 (and not
only for the ones that coexist). It can be easily checked that α(x, x)α(y, y)−α(x, y)α(y, x)
cannot be 0 under this condition.

We can now introduce the following assumption :

(C2) For all x, y ∈ X that coexist, the set of z such that f(x; z) = 0, f(z;x) = 0,
f(y; z) = 0, f(z; y) = 0, f(x; y, z) = 0 or f(y;x, z) = 0 (when these last quantities
are defined) has Lebesgue measure 0.

Proposition 3.5 There exists a set Ccoex (defined in (3.6)) such that Assumption (C2)
implies (B) for d = 2 and for all (x, y, z) ∈ X 3 \ Ccoex.

Proof As in the previous section, we have to distinguish coexistence and non coexistence
of three traits. To this aim we need to introduce the classification of the asymptotic
behavior of 3-dimensional competitive Lotka-Volterra systems done by Zeeman [30]. Any
3-dimensional competitive Lotka-Volterra system admits an invariant hypersurface Σ called
carrying simplex, such that any non-zero solution of the system is asymptotic as t→ +∞
to one in Σ (cf. [19]). Σ is a Lipschitz submanifold of R

3
+ homeomorphic to the unit

simplex in R
3
+ by radial projection. Moreover, Σ is a global attractor for the dynamics in
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R
3
+ \ {0} ([20, Thm.3]). In particular, one can deduce from the asymptotic behavior of

trajectories on Σ the asymptotic behavior of trajectories starting in a neighborhood of Σ.
Zeeman obtained a full classification of the topological equivalence classes of the 3-dimensional
competitive Lotka-Volterra systems by determining the 33 topological equivalence classes of
those systems restricted on their carrying simplex. (In an equivalence class, the trajectories
of the systems are related by a homeomorphism of R

3
+). For a given system LV (3, (x, y, z)),

the equivalence class to which it belongs is determined by the sign of the 2-dimensional fit-
nesses f(x; y), f(y;x), f(x; z), f(z;x), f(y; z), f(z; y) and of the 3-dimensional fitnesses
f(x; y, z), f(y;x, z), f(z;x, y) when they are defined. The equivalence classes of [30] are
characterized by drawing on the unit simplex of R

3
+ the fixed points and the limit cycles

of the system, joined by their stable and unstable manifolds1.

x y

Figure 3.1: The pattern on the carrying simplex that corresponds to the situation of Assump-

tion (B). Traits x and y are the resident traits.

The signs of the fitnesses correspond to the arrows in each diagram. For example, f(y;x) >
0 means that, on the edge of the simplex that reach x and y, there is an arrow starting
from x in the direction of y. In other words, the unstable manifold of (n̄(x), 0, 0) contains
(a part of) the edge of the simplex that reach x to y. Similarly, f(z;x, y) > 0 means
that f(x; y)f(y;x) > 0, i.e. that LV (3, (x, y, z)) has as fixed point (n̄1(x, y), n̄2(x, y), 0),
represented as the midpoint of the edge of the simplex linking x and y, and that this fixed
point has an unstable manifold pointing in the direction of the interior of the simplex. The
situation represented in Fig. 3.1 corresponds to this case, when x and y coexist.
In order to check if Assumption (B) holds, we only need to restrict to the equivalence classes
in which two traits coexist (the resident traits, say x and y), and the third (mutant) trait
(say z) satisfy f(z;x, y) > 0. This situation corresponds to the cases where the carrying
simplex has one side containing the pattern of Fig. 3.1. Among the 33 equivalence classes
of [30], there are only 10 of them that satisfy this requirement, shown in Fig 3.2. We label
them with the same numbers as in [30]. In Fig. 3.2, the figures obtained by exchanging x
and y belong to the same equivalence class. An attracting fixed point of LV (3, (x, y, z))
is represented by a closed dot •, a repulsive fixed point by an empty dot ◦, a saddle point
by the intersection of its stable and unstable manifolds. When the interior fixed point
(the non-trivial equilibrium) is not a saddle point, it can be either stable or unstable.
Depending on cases, this equilibrium can also be surrounded by one or several stable or
unstable cycles. In particular, the sign of the fitnesses is not sufficient to determine the
precise asymptotic behavior of the system near the interior equilibrium. The undetermined

1The stable manifold of an equilibrium is the set of starting points of the Lotka-Volterra system such
that the solution converges to this equilibrium. The unstable manifold is defined in the same way, but for
the time-reversed system.
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type of these equilibria is represented in Fig. 3.2 by the symbol ⊙.

7 8

9 10 11 12

26 29 31 33

Figure 3.2: The phase portrait on Σ for the 3-dimensional competitive Lotka-Volterra systems

corresponding to the situation described in Assumption (B).

Since no pattern as in Fig. 2.4 occurs in diagrams 7 to 12 in Fig. 3.2, we see that Assump-
tion (B1) is always satisfied except possibly in the cases of diagrams 26, 29, 31 and 33. It
could be violated either if the interior equilibrium is surrounded by a stable cycle, or in
diagram 26 in the case where the unstable manifold of the equilibrium (n̄1(x, y), n̄2(x, y), 0)
(midpoint of the lower edge of the simplex) admits the equilibrium (0, n̄1(y, z), n̄2(y, z))
as limit point. Moreover, as before, all the steady states are hyperbolic if all the 2- and
3-dimensional fitnesses are nonzero.
Thus, if we define the set Ccoex as

Ccoex := {(x, y, z) ∈ X 3 : LV (3, (x, y, z)) belongs to classes 26, 29, 31 or 33}, (3.6)

Assumption (B) will be satisfied for all (x, y, z) ∈ X 3\Ccoex as soon as Assumption (C2)
is satisfied.

Remark in addition that, as checked from Fig. 3.2, if x and y coexist and f(z;x, y) > 0,
then (x, y, z) ∈ Ccoex if and only if both of the following properties are satisfied

(P1) If f(y;x, z) is well-defined, then f(x; z), f(z;x) and f(y;x, z) have all the same sign.

(P2) If f(x; y, z) is well-defined, then f(y; z), f(z; y) and f(x; y, z) have all the same sign.

�

Assumptions (C1) and (C2) will be summarized in Assumption (C).

Similarly as in Section 3.1, we define the killed PES (Z
(2)
t , t ≥ 0) as a Markov pure jump

process on M0∪{∂}, with infinitesimal generator L(2). The latter is given by (2.12) for d =

18



1, and for d = 2 and coexisting x1, x2, it is modified as follows. Let ν :=
∑2

i=1 n̄i(x1, x2)δxi
,

then

L(2)ϕ(ν) =

∫

Rl

2
∑

j=1

(

ϕ
(

2
∑

i=1

n∗i (x1, x2, xj + h)δxi
+ n∗3(x1, x2, xj + h)δxj+h

)

− ϕ(ν)
)

×

p(xj)λ(xj)n̄j(x1, x2)
[f(xj + h;x1, x2)]+

λ(xj + h)
1{(x1,x2,xj+h) 6∈Ccoex}m(xj , h)dh

+

∫

Rl

2
∑

j=1

(

ϕ(∂) − ϕ(ν)
)

p(xj)λ(xj)n̄j(x1, x2)1{(x1,x2,xj+h)∈Ccoex}m(xj , h)dh. (3.7)

This modification amounts to construct the killed PES as the PES, and send it to the
cemetery state as soon as a mutant trait x3 appears in a dimorphic population of traits
x1, x2 ∈ X such that the Lotka Volterra dynamics associated with traits x1, x2, x3 belongs
to classes 26, 29, 31 or 33. Notice that the killed PES’s support has at most two traits at
each time.

As in Section 3.1, we deduce the following results.

Proposition 3.6 Under Assumptions (A) and (C), the killed PES (Z
(2)
t , t ≥ 0) is almost

surely well-defined and belongs almost surely to M0 ∪ {∂} for all time.

Moreover this PES is the limiting process, on the mutation time scale, of the mutation-
invasion process killed at the first triple-coexistence time.

Corollary 3.7 With the same assumption and notation as in Theorem 2.7, except that
Assumption (B) is replaced by Assumption (C) and that d ∈ {1, 2}, let

τ̃K := inf{t ≥ 0 : Supp(νK
t ) = {x, y, z} such that (x, y, z) ∈ Ccoex}.

Then the process
(

νK
t

KuK

1{ t
KuK

≤τ̃K} + ∂ 1{ t
KuK

>τ̃K}, t ≥ 0
)

converges as K → +∞ to the killed PES (Z
(2)
t , t ≥ 0) with initial condition Z

(2)
0 =

∑d
i=1 n̄i(x)δxi

.

Note that the killed PES obtained in this section is sufficient to study the phenomenon of
evolutionary branching in Section 4 when X ⊂ R.

4 Evolutionary branching and small jumps

We will assume, in all what follows, that the initial population is monomorphic, in the
sense that at time 0, all individuals have the same trait.
We have seen in Section 3.1 that, as long as there is no coexistence of two traits in the
population (Assumption (IIF)), the support of the PES is reduced to a single trait and the
asymptotic dynamics of the population is given by the killed PES Z(1) with generator (3.1).
In this section, our aim is to characterize the traits around which (IIF) fails and how
evolutionary branching can occur in this case, as observed in Fig. 2.2(b). To do so, following
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a general idea of the biological literature [26, 8, 16, 15, 9, 14], a key assumption is that the
mutation amplitude is small. In this situation, we will study the behavior of the PES on
large time scales which will allow us to observe a global evolutionary dynamics.
In Subsection 4.1, we assume that (IIF) is always satisfied and we study the TSS with a
small mutation step scaling ε. We prove that on the longer time scale t

ε2 , the dynamics
of the re-scaled TSS converges, when ε tends to zero, to the solution of a (deterministic)
ODE, called canonical equation of adaptive dynamics, or, more simply canonical equation.
In Subsection 4.2, we come back to the general case. We show that (IIF) is satisfied on the
time scale of the canonical equation and that evolutionary branching can only occur on a
longer time scale. We are able to characterize the points, called “evolutionary singularities”,
in the neighborhood of which evolutionary branching may occur. In Subsection 4.3, we
state and prove our main result of this section, giving a criterion for evolutionary branching
in the limit of small mutational jumps. We thus rigorously prove a criterion stated with a
heuristic justification in [26].

Let us firstly introduce the following additional technical Assumptions (A’):

(A’1) The trait space X is convex. It is often implicitly assumed for biological models
with continuous trait space.

(A’2) The distribution m(x, h)dh has finite and bounded (in x) third-order moments.

(A’3) The map x 7→ m(x, h)dh is Lipschitz continuous from X to the set of probability
measures P(Rl), for the Wasserstein metric

ρ(P1, P2) = inf
{

∫

Rl×Rl

|x−y|R(dx, dy);R ∈ P(Rl×R
l) with marginals P1 and P2

}

.

(A’4) The function

g(y;x) = p(x)λ(x)n̄(x)
f(y;x)

λ(y)

is continuous on X 2 and of class C1 with respect to its first coordinate, where f(·; ·)
is defined in (2.9). Since X is a compact set of R

l, there exists a constant γ > 0 such
that ∀x, y ∈ X , [g(y;x)]+ ≤ γ.

Later in this section, we will also need Assumption (A”):

(A”) The functions λ(x) and µ(x) are C3 on X and the function α(x, y) is C4 on X 2.

Note that (A”) implies (A’4).

Finally, let us introduce the parameter ε ∈ (0, 1] scaling the size of mutation. Since X is
convex, x + εY ∈ X a.s. for all x ∈ X and 0 ≤ ε ≤ 1, where Y is distributed following
m(x, h)dh. Therefore, it is possible to define a PES in which mutational jumps are scaled
by the parameter ε, by replacing in its generator (2.12) m(xj , h)dh by m(xj , h)dh ◦H−1

ε

for all j ∈ {1, . . . , d}, where Hε(h) = εh. Under Assumptions (A) and (B), we define this
way a “rescaled PES” (Zε

t , t ≥ 0). If only Assumptions (A) and (C) are satisfied, we do
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similar changes in (3.7) to obtain a “rescaled killed PES” (Z
(2),ε
t , t ≥ 0). Finally, we do a

time scaling of order 1/ε2 to obtain the rescaled PES

Z̃ε
t =

{

Zε
t/ε2 if Assumptions (A) and (B) are satisfied

Z
(2),ε
t/ε2 if only Assumptions (A) and (C) are satisfied.

Since both Zε
t and Z

(2),ε
t agree as long as there is no triple coexistence, and since we will

only be interested in the sequel to the cases where the PES is monomorphic or dimorphic,
we will not need to distinguish between these two cases.

4.1 The TSS and the Canonical Equation of Adaptive Dynamics

Doing a similar time scaling as for Z̃ε, we can define for all ε ∈ (0, 1], the ε-rescaled TSS
(Xε

t , t ≥ 0) by modifying the generator (3.2) as follows. For all C1
b -valued function ϕ,

Lεϕ(x) =
1

ε2

∫

Rl

(ϕ(x+ εh) − ϕ(x))[g(x+ εh;x)]+m(x, h)dh. (4.1)

>From a mathematical point of view, the multiplicative term ε−2 takes into account that
the integral term is of order ε2, because of g(x;x) = 0 and Assumption (A’4).

Let us now state the convergence theorem of the rescaled TSS to the canonical equation
of adaptive dynamics. Its proof is based on a standard uniqueness-compactness method.

Theorem 4.1 Assume (A) and (A’). Suppose also that the family of initial states {Xε
0}0<ε≤1

is bounded in L
2 and converges in law to a random variable X0 as ε→ 0.

Then for each T > 0, the sequence (Xε) converges when ε→ 0, for the Skorohod topology of
D([0, T ],X ), to the process (x(t), t ≤ T ) with initial state X0 and with deterministic sample
paths, unique solution of the ordinary differential equation, known as canonical equation of
adaptive dynamics.

dx

dt
=

∫

Rl

h[h · ∇1g(x;x)]+ m(x, h)dh. (4.2)

Remark 4.2 In the case where m(y, ·) is a symmetrical measure on R
l for all y ∈ X ,

Equation (4.2) gets the classical form, heuristically introduced in [8],

dx

dt
=

1

2
K(x)∇1g(x;x), (4.3)

where K(x) = (kij(x))1≤i,j≤l is the covariance matrix of m(x, h)dh.

Proof
(i) Uniqueness of the solution of Equation (4.2) with given initial condition.
Let us show that a(x) =

∫

Rl h[h ·∇1g(x;x)]+ m(x, h)dh is Lipschitz continuous on X . We
have

‖a(x) − a(x′)‖ ≤

∫

Rl

‖h‖ ×
∣

∣[h · ∇1g(x;x)]+ − [h · ∇1g(x
′;x′)]+

∣

∣ m(x, h)dh

+

∥

∥

∥

∥

∫

Rl

h[h · ∇1g(x
′;x′)]+(m(x, h) −m(x′, h))dh

∥

∥

∥

∥

. (4.4)
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Because of |[a]+ − [b]+| ≤ |a − b|, Assumptions (A’2) and (A’4), and that the support of
all measures m(x, h)dh is included in a bounded set, the first term of the right hand side
of (4.4) is bounded by some constant times ‖x− x′‖.

If we denote by ξ the vector ∇1g(x
′;x′) and ψ(h) = h[h · ξ]+, then

‖ψ(h)−ψ(h′)‖ ≤ ‖(h− h′)[h · ξ]+‖+ ‖h′([h · ξ]+ − [h′ · ξ]+)‖ ≤ 2‖ξ‖ ‖h− h′‖ (‖h‖+ ‖h′‖).

Thus, using the dual form of the Kantorovich-Rubinstein metric (see Rachev [28]) and
(A’3), one obtains that the second term of the right-hand side of (4.4) is also bounded
by some constant times ‖x − x′‖. Hence Cauchy-Lipschitz Theorem can be applied and
(x(t), t ≥ 0) is uniquely defined.

(ii) The processes Xε, ε > 0, with generator Lε can be constructed on the same
probability space.
Recall the definition of γ in Assumption (A’4).

Lemma 4.3 Assume (A) and (A’). Let (Ω,F , P ) be a probability space and N(dh, dθ, ds)
be a point Poisson measure on R

l × [0, 1] × R+ with intensity γm̄(h)dhdθds. Let ε > 0
and denote by N ε the image measure of N by the mapping s 7→ ε2s. Let Xε

0 be a X -valued
random variable, independent of N . Then the process Xε defined by

Xε
t = Xε

0 +

∫

Rl×[0,1]×[0,t]
(ε h) 1

θ≤
[g(Xε

s−
+εh;Xε

s−
)]+

γ

m(Xε
s−

,h)

m̄(h)

ffN ε(dh, dθ, ds), (4.5)

is a jump Markov process with generator Lε. Its law will be called P
ε
Xε

0
.

Indeed, using Itô’s formula, one observes that for a bounded function ϕ on X ,

ϕ(Xε
t ) − ϕ(Xε

0)

−

∫ t

0

∫

Rl×[0,1]

(

ϕ(Xε
ε2s + εh) − ϕ(Xε

ε2s)
)

1{ε2s≤t}g(X
ε
ε2s + εh;Xε

ε2s)m(Xε
ε2s, h)dhdθds

is a martingale, which implies the result.

(iii) Tightness of the sequence of laws {Pε
Xε

0
}ε>0.

We will use the Aldous criterion [1]. Let τ be a stopping time less than T and (δε) positive
numbers converging to 0 when ε → 0. We remark that |g(x + εh;x)| ≤ εC‖h‖, by an
expansion of g with respect to its first variable and the fact that g(x;x) = 0, and since
∇1g is bounded by a constant C. We have

E(‖Xε
τ+δε

−Xε
τ‖) = E

(∫ τ+δε

τ

∫

Rl

‖εh‖[g(Xε
s− + εh;Xε

s−)]+ m(Xε
s−, h)dh

ds

ε2

)

≤ CM2δε,

where M2 =
∫

‖h‖2m̄(h)dh. Then, for any α > 0,

P(‖Xε
τǫ+δε

−Xε
τε
‖ > α) ≤

nCM2

α
δε → 0 when ε→ 0.

This gives the first part of the Aldous criterion. For the second part, we have to prove
the uniform tightness of the laws of (supt≤T ‖Xε

t ‖)ε>0. We use Itô’s formula to write
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(Xε
t )2 from (4.5), Schwarz’ and Doob’s inequalities and obtain that E(supt≤T ‖Xε

t ‖
2) ≤

CT (E(‖Xε
0‖

2) + 1), where CT is a constant depending on time T , on M2 and on an
upper-bound of [g]+. Since (Xε

0)0<ε≤1 is bounded in L
2, the tightness of the laws of

(supt≤T ‖Xε
t ‖)ε>0 follows.

(iv) Convergence of the generators.
Let us now prove that

∀ϕ ∈ C2
b (X ),

1

ε2
Lεϕ→ L0ϕ uniformly on X , (4.6)

where Lε is defined in (3.2) and L0 is defined by

L0ϕ(x) =

∫

Rl

(h · ∇ϕ(x))[h · ∇1g(x;x)]+ m(x, h)dh,

where ∇ϕ(x) is the gradient vector of ϕ(x). We have,

∣

∣

∣

∣

1

ε2
Lεϕ(x) − L0ϕ(x)

∣

∣

∣

∣

≤

∫

Rl

[h · ∇1g(x;x)]+×

∣

∣

∣

∣

ϕ(x+ εh) − ϕ(x)

ε
− h · ∇ϕ(x)

∣

∣

∣

∣

m(x, h)dh

+

∫

Rl

∣

∣

∣

∣

ϕ(x+ εh) − ϕ(x)

ε

∣

∣

∣

∣

×

∣

∣

∣

∣

[

g(x+ εh;x)

ε

]

+

− [h · ∇1g(x;x)x)]+

∣

∣

∣

∣

m(x, h)dh. (4.7)

Let us call I1 and I2 the quantities inside the integral in the first and the second term,
respectively. Now, ϕ is C1, g(x;x) = 0 and by Assumption (A’), g(x; y) is C1 with respect
to the first variable x. So, we can find θ1, θ2 and θ3 in [0, 1] depending on x and h such
that

I1 = [h · ∇1g(x;x)]+ × |h · ∇ϕ(x+ θ3εh) − h · ∇ϕ(x)|;

I2 = |h · ∇ϕ(x+ θ1εh)| × |[h · ∇1g(x+ θ2εh;x)]+ − [h · ∇1g(x;x)]+|.

Since ϕ is in C2
b , and because of Assumption (A’), we can choose a number C such that

∇ϕ and ∇1g are both C-Lipschitz and bounded by C on X and X 2 respectively. Then

I1 ≤ C‖h‖ × ‖h‖C‖θ3εh‖ ≤ εC2‖h‖3;

I2 ≤ C‖h‖ × |h · ∇1g(x+ θ2εh, x) − h · ∇1g(x, x)| ≤ εC2‖h‖3.

It remains to put these bounds in Equation (4.7) to obtain:

∣

∣

∣

∣

1

ε2
Lεϕ(x) − L0ϕ(x)

∣

∣

∣

∣

≤ 2εC2

∫

Rl

‖h‖3m(x, h)dh.

We conclude using Assumption (A’2).

(v) Martingale problem for limiting distributions.
Finally, let us show that any accumulation point P of the family of laws {Pε

Xε
0
} on

D([0, T ],X ) is the law of the process X solution to (4.2) with initial state X0. Fix such
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a P. Let us endow the space D([0, T ],X ) with the canonical filtration Gt, and for any
ϕ ∈ C2(X ), let us define on this space the processes

Mϕ
t (w) = ϕ(wt) − ϕ(w0) −

∫ t

0
L0ϕ(ws)ds

M ε,ϕ
t (w) = ϕ(wt) − ϕ(w0) −

∫ t

0

1

ε2
Lεϕ(ws)ds.

We will show that Mϕ = 0 P-a.s. Fix ϕ ∈ C2(X ). It is standard, using Itô formula for
jump processes, to show that, under P

ε
Xε

0
, M ε,ϕ is a square-integrable Gt-martingale and

that

M ε,ϕ
t (Xε) =

∫

Rl×[0,1]×[0,t]
(ϕ(Xε

s + εh) − ϕ(Xε
s ))

1

θ≤
[g(Xε

s−
+εh,Xε

s−
)]+

γ

m(Xε
s−

,h)

m̄(h)

ffÑ ε (dh, dθ, ds)

where Ñ ε = N ε − qε is the compensated Poisson measure associated with N ε, and
qε(dh, dθ, ds) is the image measure of γm̄(h)dhdθds by s 7→ ε2s. Thus, using computation
similar to (4.1),

E
ε(〈M ε,ϕ〉t) =

1

ε2
E

ε

(∫ t

0

∫

Rl

(ϕ(Xε
s + εh) − ϕ(Xε

s ))2[g(Xε
s + εh,Xε

s )]+ m(Xε
s , h)dhds

)

≤ CC ′M3 t ε, (4.8)

where E
ε denotes the expectation under P

ε
Xε

0
, C ′ is a bound for ∇ϕ, and M3 a bound of

the third-order moment of m(y, h)dh. Using (4.8) and the fact that Mϕ
t (w) = M ε,ϕ

t (w) +
∫ t
0 ( 1

ε2L
εϕ(ws) − L0ϕ(ws))ds, it follows that

E
ε(|Mϕ

t |
2) ≤ 2t2‖

1

ε2
Lεϕ− L0ϕ‖2

∞ + 2C2C ′2M2
3 t

2ε2

which converges to 0 when ε→ 0 thanks to (4.6). Moreover by (4.5), we have that almost
surely, supt≤T ‖Xε

t −Xε
t−‖ ≤ C ′′ε, which implies that each limit process X with law P is

almost surely continuous. Hence, for any t ∈ [0, T ], the functional ω 7→ ϕ(wt) − ϕ(w0) −
∫ t
0 L

0ϕ(ws)ds is continuous at X for the weak topology and since P is the weak limit of
an extracted sequence of (Pε

Xε
0
), it follows that, under P, Mϕ(w) = 0 a.s, which concludes

the proof. �

4.2 PES and Evolutionary Singularities

Until the end of Section 4, we will assume for simplicity that the trait space is
one-dimensional (l = 1), i.e. X ⊂ R.

We have proved in the last subsection that, when ε → 0, the TSS is very close to the
solution of the canonical equation (4.2) on any time interval [0, T ]. The equilibria of this
equation are given by the points x∗ such that either ∂1g(x

∗;x∗) = 0, or
∫

R+
m(x∗, h)dh = 0
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and ∂1g(x
∗;x∗) > 0, or

∫

R−
m(x∗, h)dh = 0 and ∂1g(x

∗;x∗) < 0. We will concentrate on

the points such that ∂1g(x
∗;x∗) = 0, or equivalently, ∂1f(x∗;x∗) = 0, since

∂1g(x;x) =
1

λ(x)
∂1f(x;x)p(x)λ(x)n̄(x) = p(x)n̄(x)∂1f(x;x).

Remark that, since f(x;x) = 0 for all x ∈ X ,

∂1f(x;x) + ∂2f(x;x) = 0, ∀x ∈ X (4.9)

∂11f(x;x) + 2∂12f(x;x) + ∂22f(x;x) = 0, ∀x ∈ X . (4.10)

Therefore, ∂1f(x∗;x∗) = ∂2f(x∗;x∗) = 0.

Definition 4.4 Points x∗ such that ∂1g(x
∗;x∗) = 0, or equivalently, ∂1f(x∗;x∗) =

∂2f(x∗;x∗) = 0 are called evolutionary singularities (ES).

Lemma 4.5 Assume (A), (A’) and (A”).

(1) The solution x(t) of (4.2) starting from a point that is not an ES cannot attain an ES
in finite time.

(2) Assume that x(0) is not an ES and let IT = {x(t), t ∈ [0, T ]}. Then, for any sufficiently
small η > 0, for any x at a distance to IT smaller than η and for any y sufficiently
close to x, x and y satisfy (IIF) and (y − x)f(y;x) has constant sign.

Proof (1) Let c be a constant such that x 7→
∫

R
h[h · ∂1g(x;x)]+m(x, h)dh is c-Lipschitz

(the fact that this is a Lipschitz function is shown in the proof of Theorem 4.1). Then, for
any ES x∗,

∣

∣

∣

d

dt
(x(t) − x∗)2

∣

∣

∣
≤ 2 |ẋ(t)| |x(t) − x∗| ≤ 2 c (x(t) − x∗)2.

Thus, |x(t) − x∗| ≥ |x(0) − x∗| exp(−ct) > 0.

(2) Remark first that, from Point (1), C = infx∈IT
|∂1f(x(t);x(t))| > 0. Therefore, for

η > 0 sufficiently small, {x ∈ X : dist(x, IT ) ≤ η} ⊂ {x ∈ X : |∂1f(x(t);x(t))| > C/2}.
Fix such an η.
Let us now consider some point x in X such that ∂1f(x;x) > C/2. Consider first y in X
such that x < y. Using that f(x;x) = 0 and (4.9), a second-order expansion of f(y;x) at
(x, x) implies that f(y;x) > C(y − x)/4 provided that |y − x| < C

2C′ , where C ′ > 0 is a
constant uniformly upper-bounding the second-order derivatives of f(·; ·) on the compact
set X 2. Under the same condition, f(x; y) < C(x− y)/4. Therefore, f(x; y)f(y;x) < 0 if
|y−x| is small enough and (y−x)f(y;x) has constant sign. This reasoning gives the same
conclusion if y < x or ∂1f(x;x) < −C/2, giving the required result. �

Now we come back to the rescaled PES (Z̃ε
t , t ≥ 0) defined in the beginning of this section

and assume that its initial condition Z̃ε
0 is monomorphic. We want to determine when

evolutionary branching can occur in this process. This requires that (IIF) (ensuring non
coexistence) fails. For ε > 0, we define the first coexistence time

τ ε = inf{t > 0, f(Z̃ε
t , ; Z̃

ε
t−) > 0 and f(Z̃ε

t−; Z̃ε
t ) > 0},
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and for any η > 0, the entrance time of the process in a η-neighborhood of an ES x∗,

θε
η = inf{t ≥ 0, Supp(Z̃ε

t ) ∩ (x∗ − η, x∗ + η) 6= ∅}. (4.11)

Theorem 4.6 Assume that (A), (A’), (A”) and (B) or (C) hold. Assume also that Z̃ε
0 =

n̄(x)δx where x ∈ X is not an evolutionary singularity. Then,

(i) For any T > 0,
lim
ε→0

P(τ ε > T ) = 1.

Moreover, for all η > 0,

lim
ε→0

P(∀t ∈ [0, T ], Card(Supp(Z̃ε
t )) = 1, ‖Supp(Z̃ε

t ) − x(t)‖ ≤ η) = 1.

(ii) For any η > 0, there exists ε0 > 0 such that, for all ε < ε0,

P(θε
η < τ ε) = 1 and

P(∀t ∈ [0, θε
η], Supp(Z̃ε

t ) = {Y ε
t } with t 7→ Y ε

t monotonous on [0, θε
η]) = 1. (4.12)

Proof (i) Before the stopping time τ ε, and since the initial condition is monomorphic,
it is clear that the support of Z̃ε

t is a singleton whose dynamics is that of the rescaled
TSS (Xε

t , t ≥ 0). Because of Theorem 4.1, when ε → 0, the TSS is close to the canonical
equation. In particular, for all η > 0, its values on the time interval [0, T ] belong to the
set {x ∈ X : dist(x, IT ) ≤ η} with probability converging to 1. Moreover, since X is
compact, Supp(m(x, ·)) ⊂ X − x is included in the closed ball of R

l centered at 0 with
diameter 2diam(X ). Therefore, the distance between a mutant trait and the trait of its
progenitor in the rescaled PES Z̃ε is a.s. less that εc, where c is a constant. Hence, the
result immediately follows from Lemma 4.5.

(ii) We also deduce from this lemma that for any T > 0 such that IT ∩ (x∗−3η/2, x∗ +
3η/2) = ∅, limε→0 P(θε

η > T ) = 1. Moreover, the process Y ε
t in (4.12), which is exactly the

TSS of the previous section, is almost surely monotonous before time θε
η. �

Remark 4.7 Theorem 4.6 implies that, when the initial population is monomorphic and
away from evolutionary singularities, evolutionary branching can only occur in the neigh-
borhood of an evolutionary singularity and on a longer time scale than T/ε2 when ε → 0,
for all T > 0.

The next result shows that we can restrict to ES that are not repulsive for the canonical
equation.

Proposition 4.8 Under the assumptions of Theorem 4.6, coexistence of two traits can only
occur in the neighborhood of evolutionary singularities x∗ ∈ X which are not repulsive, i.e.
which satisfy

∂22f(x∗;x∗) ≥ ∂11f(x∗;x∗). (4.13)

More precisely, for any neighborhood U of the set of evolutionary singularities satisfy-
ing (4.13), for all ε small enough,

P(τ ε < +∞ and Supp(Zε
τε−) 6∈ U) = 0.
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Proof Let us remark that an ES such that

∂11f(x∗;x∗) + ∂12f(x∗;x∗) > 0. (4.14)

is always a repulsive point for the canonical equation, in the sense that, for any solution
x(t) of the canonical equation starting sufficiently close from x∗, the distance between x(t)
and x∗ is non-decreasing in the neighborhood of time 0. In other words, there exists a
neighborhood U of x∗ such that no solution of the canonical equation starting out of U can
enter U . To this end, we remark that (4.14) implies that there exists ηx∗ with

• ∂1g(x;x) > 0 if x ∈ (x∗, x∗ + ηx∗ ],

• ∂1g(x;x) < 0 if x ∈ [x∗ − ηx∗ , x∗),

and conclude in view of (4.2).
Observe that, by (4.10), (4.14) is equivalent to ∂11f(x∗;x∗) − ∂22f(x∗;x∗) > 0.
Let S be the set of repulsive ES and define V = ∪x∗∈S(x∗ − ηx∗ , x∗ − ηx∗). Fix U as in
the statement of Proposition 4.8 and assume (without loss of generality) that U ∩ V = ∅
and x 6∈ U ∪ V. Let [a, b] be any connected component of X \ (U ∪ V). Since ∂1f(y, y) 6= 0
for all y ∈ [a, b], reproducing the argument of the proof of Theorem 4.6 easily shows
that coexistence never happens in a monomorphic population with trait in X \ (U ∪ V)
if ε is sufficiently small. Similarly, for ε sufficiently small, no mutant in V born from a
monomorphic population with trait not belonging to V has a positive fitness. Therefore,
the TSS cannot drive the population inside V starting from outside. Thus Proposition 4.8
is clear. �

4.3 Evolutionary branching criterion

In this section we will prove a criterion of evolutionary branching. We need the following
last assumption.

(A” ’) For any x in the interior of X ,
∫

R−
m(x, h)dh > 0 and

∫

R+
m(x, h)dh > 0.

4.3.1 Definition and main result

We first need to precisely define what we mean by evolutionary branching.

Definition 4.9 Let x∗ be an ES. For all η > 0, we call η-branching the event

• there exists t1 > 0 such that the support of the PES at time t1 is composed of a single
point belonging to [x∗ − η, x∗ + η]

• there exists t2 > t1 such that the support of the PES at time t2 is composed of exactly
2 points distant of more than η/2

• between t1 and t2, the support of the PES is always a subset of [x∗ − η, x∗ + η], and
is always composed of at most 2 traits, and has increasing (in time) diameter.
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We only consider binary evolutionary branching. We will actually prove that the simulta-
neous subdivision of a single branch into three branches (or more) is a.s. impossible. Note
that this notion of evolutionary branching requires the coexistence of two traits, but also
that these two traits diverge from one another.

Our main result is the following.

Theorem 4.10 Assume (A), (A’), (A”), (A” ’) and either (B) or (C). Assume also that
Zε

0 = n̄(x)δx and that the canonical equation with initial condition x converges to an ES
x∗ in the interior of X such that

∂22f(x∗;x∗) > ∂11f(x∗;x∗) (4.15)

and ∂22f(x∗;x∗) + ∂11f(x∗;x∗) 6= 0. (4.16)

Then, for all sufficiently small η, there exists ε0 > 0 such that for all ε < ε0,

(a) if ∂11f(x∗;x∗) > 0, P
ε(η-branching) = 1.

(b) if ∂11f(x∗;x∗) < 0, P
ε(η-branching) = 0. Moreover,

P
ε
(

∀t ≥ θε
η, Card(Supp(Z̃ε

t )) ≤ 2 and Supp(Z̃ε
t ) ⊂ (x∗ − η, x∗ + η)

)

= 1,

where θε
η has been defined in (4.11).

This criterion appeared for the first time in [26] with an heuristic justification. We see that,
locally around x∗, one of the two following events can occur almost surely: either there is
binary evolutionary branching and the two branches diverge monotonously, or there is no
evolutionary branching, and the population stays forever inside any neighborhood of x∗.
Coexistence can occur in this case, but cannot drive the support of the population away
from a small neighborhood of x∗. We will actually prove that, in this case, as soon as
there is coexistence of two traits in the population, the diameter of the support of the PES
can only decrease until it reaches 0 (i.e. until the next time when the population becomes
monomorphic).

We give in the following subsections a full proof of this result. In Section 4.3.3, we will prove
regularity results on the 2- and 3-dimensional fitness functions and give their second order
expansions in the neighborhood of evolutionary singularities. A first corollary of this result
is given in Section 4.3.4 where, using the results of M.-L. Zeeman [30] and Fig. 3.2, we will
show that no triple coexistence can occur in the neighborhood of evolutionary singularities.
Finally, a case by case study of the zone of coexistence and of the signs of fitness functions
in the neighborhood of an evolutionary singularity will allow us to conclude the proof in
Section 4.3.5.

Before coming to the proof and in order to illustrate the difference between coexistence
and evolutionary branching, we state a result that will be needed in the course of the proof
of Theorem 4.10. Its proof will be given in Subsection 4.3.4. We recall that two traits x
and y coexist if and only if f(x; y) > 0 and f(y;x) > 0.

Proposition 4.11 Assume (A) and that λ, µ and α are C2. Let x∗ ∈ X be any ES.
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(a) If ∂11f(x∗;x∗)+∂22f(x∗;x∗) > 0, then for all neighborhood U of x∗, there exist x, y ∈ U
that coexist.

(b) If ∂11f(x∗;x∗) + ∂22f(x∗;x∗) < 0, then there exists a neighborhood U of x∗ such that
any x, y ∈ U do not coexist.

This shows that the criterion of evolutionary branching (∂11f(x∗;x∗) > 0) is different
from the criterion of coexistence (∂11f(x∗;x∗) + ∂22f(x∗;x∗) > 0). In particular, if one
assumes as in Theorem 4.10 that ∂22f(x∗;x∗) > ∂11f(x∗;x∗), the evolutionary branching
condition ∂11f(x∗;x∗) > 0 implies the coexistence criterion ∂11f(x∗;x∗)+∂22f(x∗;x∗) > 0,
as expected.

4.3.2 Example

Let us come back to the example introduced in Subsection 2.2.

The fitness function is

f(y;x) = λ(y) − α(y, x)n̄(x)

= exp
(

−
y2

2σ2
b

)

− exp
(

−
(x− y)2

2σ2
α

)

exp
(

−
x2

2σ2
b

)

.

Computation gives

∂1f(x∗;x∗) = −
x∗

σ2
b

exp
(

−
(x∗)2

2σ2
b

)

= 0 ⇐⇒ x∗ = 0.

Moreover, ∂11f(0; 0) = 1
σ2

α
− 1

σ2
b

and ∂22f(0; 0) = 1
σ2

α
+ 1

σ2
b

. Thus, the coexistence criterion

of Proposition 4.11 (a) is always satisfied. We furthermore observe that (4.15) and (4.16)
hold, and that

∂11f(0; 0) > 0 ⇐⇒ σα < σb.

Then if σα < σb, we have almost surely branching and when σα > σb, we have only
coexistence. This is consistent with Fig. 2.2 (a) and (b).

4.3.3 Trait smoothness of fitnesses around evolutionary singularities

The problem of local expansion of fitness functions has been already studied in [10] for
general models. In this section, we establish regularity and expansion results on our 2- and
3-dimensional fitness functions in the neighborhood of evolutionary singularities. To this
aim, we need the following lemma.

Lemma 4.12 Let h(x, y, z) be a Ck function for k ≥ 1 defined on X 3 such that h(x, x, z) =
0 for all x, z ∈ X . Then, the function

(x, y, z) 7→
h(x, y, z)

x− y

can be extended on {x = y} as a Ck−1 function ĥ(x, y, z) on X 3 by setting ĥ(x, x, z) =
∂1h(x, x, z) for all x, z ∈ X .
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Proof Taylor’s formula with integral remainder yields

h(x, y, z)

x− y
=

∫ 1

0
∂1h(y + (x− y)u, y, z)du

for all x 6= y. The right-hand side also has a sense for x = y and defines a Ck−1 function
on X 3. �

Let x∗ ∈ X be an ES as in the statement of Theorem 4.10. By Assumptions (A) and (A”),
the 2-dimensional fitness function f(y;x) defined in (2.9) is well-defined for all x, y ∈ X
and is a C3 function. We extend the definition of the 3-dimensional fitness function

f(z;x, y) = r(z) − α(z, x)n̄1(x, y) − α(z, y)n̄2(x, y),

where n̄i(x, y), i = 1, 2, are defined in (3.4) and (3.5) to all x, y ∈ X such that

α(x, x)α(y, y) − α(x, y)α(y, x) 6= 0.

We will also use the notation

a = ∂11f(x∗;x∗) and c = ∂22f(x∗;x∗). (4.17)

Note that, by (4.10),

∂12f(x∗;x∗) = −
a+ c

2
. (4.18)

Proposition 4.13 Under the assumptions of Theorem 4.10, the following properties hold.

(i) For all x, y ∈ X in a neighborhood of x∗,

x 6= y =⇒ α(x, x)α(y, y) 6= α(x, y)α(y, x).

This implies in particular that n̄(x, y) and f(·;x, y) are well-defined for such x, y.

(ii) When x, y → x∗ in such a way that x 6= y, and for all z ∈ X ,

n̄1(x, y) + n̄2(x, y) −→ n̄(x∗) =
r(x∗)

α(x∗, x∗)
; (4.19)

f(z;x, y) −→ f(z;x∗). (4.20)

(iii) With the notation (4.17), as x, y → x∗,

f(y;x) =
1

2
(x− y)

(

c(x− x∗) − a(y − x∗)
)

+ o
(

|x− y| (|x− x∗| + |y − x∗|)
)

. (4.21)

(iv) The function f(z;x, y) can be extended as a C2 function on {(x, y, z) : z ∈ X , x, y ∈ U}
for some neighborhood U of x∗ in X . Still denoting by f(z;x, y) the extended function,
as x, y → x∗,

f(z;x, y) =
a

2
(z − x)(z − y) + o

(

|z − x| |z − y|
)

. (4.22)
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Proof Let D(x, y) := α(x, x)α(y, y) − α(x, y)α(y, x). It follows from Lemma 4.12 that
D(x, y)/(x− y) can be extended on X 2 as a C3 function, which has value

∂1α(x, x)α(x, x) + ∂2α(x, x)α(x, x) − ∂1α(x, x)α(x, x) − α(x, x)∂2α(x, x) = 0

at the point (x, x). Therefore, Lemma 4.12 can be applied once more to prove that
D(x, y)/(x − y)2 can be extended as a C2 function D̂(x, y) on X 2. Hence, an elemen-
tary computation involving the second-order Taylor expansion of D(x, y) yields that

D(x, y) = (x− y)2
(

α(x∗, x∗)∂12α(x∗, x∗) − ∂1α(x∗, x∗)∂2α(x∗, x∗)
)

+ o(|x− y|2).

Thus, Point (i) follows from the fact that α(x∗, x∗)∂12α(x∗, x∗) 6= ∂1α(x∗, x∗)∂2α(x∗, x∗),
which is a consequence of (4.16). Indeed, an elementary computation shows that

a = r′′(x∗) − r(x∗)
∂11α(x∗, x∗)

α(x∗, x∗)

and c = −r′′(x∗) + 2r′(x∗)
∂1α(x∗, x∗)

α(x∗, x∗)

+ r(x∗)
α(x∗, x∗)

(

∂11α(x∗, x∗) + 2∂12α(x∗, x∗)
)

− 2∂1α(x∗, x∗)
(

∂1α(x∗, x∗) + ∂2α(x∗, x∗)
)

α(x∗, x∗)2
.

Using the fact that

r′(x∗) = r(x∗)
∂1α(x∗, x∗)

α(x∗, x∗)
(4.23)

since x∗ is an ES, we have that

α2(x∗, x∗)(a+ c) = 2r(x∗)
(

α(x∗, x∗)∂12α(x∗, x∗) − ∂1α(x∗, x∗)∂2α(x∗, x∗)
)

.

Hence,

α(x∗, x∗)∂12α(x∗, x∗) − ∂1α(x∗, x∗)∂2α(x∗, x∗) 6= 0 ⇐⇒ a+ c 6= 0.

In particular, this implies that the function D̂(x, y) is non-zero in a neighborhood of x∗.
For Point (ii), observe that

n̄1(x, y) + n̄2(x, y) =
r(x)α(y,y)−α(y,x)

x−y + r(y)α(x,x)−α(x,y)
x−y

(x− y)D̂(x, y)
.

By the proof of Lemma 4.12, the numerator can be extended as a C3 function h(x, y) by
setting

h(x, y) = −r(x)

∫ 1

0
∂2α(y, y + (x− y)u)du+ r(y)

∫ 1

0
∂2α(x, y + (x− y)u)du

for all x, y ∈ X . In particular, h(x, x) = 0 for all x ∈ X . Therefore, Lemma 4.12 can be
applied once more to prove that n̄1(x, y) + n̄2(x, y) can be extended as a C2 function in
the neighborhood of x∗ and that

lim
x,y→x∗, x 6=y

n̄1(x, y)+n̄2(x, y) =
∂h
∂x(x∗, x∗)

D̂(x∗, x∗)
=

r(x∗)∂12α(x∗, x∗) − r′(x∗)∂2α(x∗, x∗)

α(x∗, x∗)∂12α(x∗, x∗) − ∂1α(x∗, x∗)∂2α(x∗, x∗)
.
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Hence, (4.19) and then (4.20) follow from (4.23).

Point (iii) is obtained from the fact that f(x;x) = 0, from Lemma 4.12 and from the
second-order Taylor expansion of f(y;x). In this computation, one must use the fact that
x∗ is an ES and (4.18).

The fact that f(z;x, y) is C2 in U × U × X can be proven exactly as the regularity of
n̄1(x, y) + n̄2(x, y) above, observing that

f(z;x, y) = r(z) −
r(x)α(z,x)α(y,y)−α(z,y)α(y,x)

x−y + r(y)α(z,y)α(x,x)−α(z,x)α(x,y)
x−y

(x− y)D̂(x, y)
.

Therefore, using the fact that f(x;x, y) = f(y;x, y) = 0, Lemma 4.12 can be applied twice
to prove that

f(z;x, y) =
γ

2
(z − x)(z − y) + o(|z − x| |z − y|)

for some constant γ ∈ R. The second-order Taylor expansion of f(z;x, y) shows that
γ = ∂11f(x∗;x∗, x∗). Now, because of (4.20), ∂11f(z;x∗, x∗) = ∂11f(z;x∗) for all z ∈ X .
Hence γ = a, which ends the proof of Point (iv). �

Remark 4.14 Let us remark that, if x∗ is not an evolutionary singularity, Point (ii) of
Proposition 4.13 need not to be true anymore, which may be surprising for the intuition
and which has been a source of errors in some biological works.

Moreover, if x∗ is an ES but Assumption (4.16) (a + c 6= 0) is not true, Point (ii) of
Proposition 4.13 may also fail. Indeed, in the case where α(x, x)∂12α(x, x) 6= ∂1α(x, x)∂2α(x, x)
for x 6= x∗,

n̄1(x, x) + n̄2(x, x) =
r(x)∂12α(x, x) − r′(x)∂2α(x, x)

α(x, x)∂12α(x, x) − ∂1α(x, x)∂2α(x, x)

=
r(x∗)

(

∂112α(x∗, x∗) + ∂122α(x∗, x∗)
)

− r′(x∗)∂22α(x∗, x∗) − r′′(x∗)∂2α(x∗, x∗) + o(1)

α(x∗, x∗)
(

∂112α(x∗, x∗) + ∂122α(x∗, x∗)
)

− ∂2α(x∗, x∗)∂11α(x∗, x∗) − ∂1α(x∗, x∗)∂22α(x∗, x∗) + o(1)

as x→ x∗. This expression involves r′′(x∗), whose value is not imposed by the assumptions.
Therefore, changing the function r in such a way that r(x∗) and r′(x∗) are fixed but r′′(x∗)
changes also changes the value of limx,y→x∗ n̄1(x, y) + n̄2(x, y).

4.3.4 On triple coexistence in the neighborhood of x∗

Points (iii) and (iv) of Proposition 4.13 allow one to determine the signs of the 2- and 3-
dimensional fitnesses in a trimorphic population with traits x, y, z close to x∗. Combining
this with the classification of Zeeman [30] (see Section 3.2 and Figure 3.2) gives the following
corollary.

Corollary 4.15 For all ES x∗ satisfying the assumptions of Theorems 4.10 and such that
∂11f(x∗;x∗) 6= 0, there exists a neighborhood U of of x∗ such that, for all distinct x, y, z ∈ U ,
(x, y, z) 6∈ Ccoex, where Ccoex is defined in (3.6).
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Proof Let us assume for simplicity that x∗ = 0. We shall distinguish between the
cases a > 0 and a < 0, and prove in each case that the fitnesses cannot have any of the
sign configuration corresponding to the classes 26, 29, 31 and 33 in the neighborhood of
x∗. Since all these classes contain the pattern of Fig. 3.1, we can assume without loss of
generality that f(x; y) ≥ 0, f(y;x) ≥ 0, f(z;x, y) ≥ 0 and x < y.
Consider first the case a < 0. It follows from Proposition 4.13 (iv) that the function f(·; ·, ·)
has the shape of Fig. 4.1 (a) in the neighborhood of x∗. In particular, this implies that
x < z < y, f(z;x, y) > 0, f(x; y, z) < 0 and f(y;x, z) < 0 as soon as x, y, z are sufficiently
close to x∗. In view of Fig. 3.2, these conditions are incompatible with classes 31 and 33.
Moreover, ∂11f(x; y) < 0 for all x, y sufficiently close to x∗. Therefore, by Lemma 4.12,

∂

∂x

(f(x; y)

y − x

)

= −

∫ 1

0
u∂11f(y + u(x− y); y)du (4.24)

is positive for all x, y sufficiently close to x∗. Hence, since x < z < y, we have f(z; y)/(y−
z) > f(x; y)/(y − x) ≥ 0 and thus f(z; y) > 0. Similarly, f(z;x) > 0. Together with
f(z;x, y) > 0, these conditions are incompatible with classes 26 and 29. This ends the
proof in the case where a < 0.

x y z

f(z;x, y)

(a) a < 0.

x y

z

f(z;x, y)

(b) a > 0.

Figure 4.1: The shape of the 3-dimensional fitness as a function of the sign of a.

In the case where a > 0, by Proposition 4.13 (iv), f(·; ·, ·) has the shape of Fig. 4.1 (b)
in the neighborhood of x∗. Therefore, z 6∈ [x, y]. Assume for example that z < x < y.
By Proposition 4.13 (iv) again, f(x; y, z) < 0 and f(y;x, z) > 0. These conditions are
incompatible with class 33. Moreover, using the fact that ∂11f(x; y) > 0 for all x, y
sufficiently close to x∗, it follows from the fact that (4.24) is negative that f(z; y)/(y−z) >
f(x; y)/(y − x) ≥ 0 and thus that f(z; y) > 0. Similarly, because of Assumption (4.15),
∂22f(x; y) > 0 for all x, y sufficiently close to x∗. Therefore, by Lemma 4.12,

∂

∂x

(f(y;x)

y − x

)

= −

∫ 1

0
u∂22f(y; y + u(x− y))du < 0

for all x, y sufficiently close to x∗. Thus, f(y;x) ≥ 0 implies that f(y; z) > 0. Together
with the fact that f(x; y, z) < 0, these conditions are incompatible with classes 26, 29 and
31.
In the case where x < y < z, the method above proves that f(x; z) > 0, f(z;x) > 0 and
f(y;x, z) < 0, which is again incompatible with classes 26, 29, 31 and 33. This ends the
proof of Corollary 4.15. �
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4.3.5 Double coexistence region in the neighborhood of x∗

We prove here Proposition 4.11, that gives a criterion for the coexistence of two traits in the
neighborhood of x∗, and we end the proof of Theorem 4.10. The proof of Proposition 4.11
is based on the study of the region of double coexistence, defined as {(x, y) ∈ X : f(x; y) >
0 and f(y;x) > 0} in the neighborhood of x∗. The proof of Theorem 4.10 is based on a
case-by-case study that extends the proof of Corollary 4.15.

Proof of Proposition 4.11 It follows from Proposition 4.13 (iii) that the set of (x, y) ∈
X such that f(y;x) = 0 is composed of the line {y = x} and of a set which is, because of
the Implicit Function Theorem, a curve in the neighborhood of x∗, containing (x∗, x∗) and
admitting as tangent at this point the line {a(y−x∗) = c(x−x∗)}. Let us call γ this curve.
Since a < c, the curves γ and {y = x} divide X 2 in the neighborhood of (x∗, x∗) into 4
regions. Moreover, because of (4.21), f(y;x) changes sign when the point (x, y) changes
region by crossing either the line {y = x} or the curve γ.
It is elementary from a case-by-case study to check that coexistence can occur in the
neighborhood of x∗ if c > a > 0, a > c > 0, −a < c < 0 < a and a < 0 < −a < c, and
that coexistence cannot occur in the neighborhood of x∗ if c < −a < 0 < a, c < a < 0,
a < c < 0 and a < 0 < c < −a. The cases where coexistence is possible are represented
in Fig. 4.2 in the case where x∗ = 0. In these figures, the curve γ is represented by its
tangent line {a(y−x∗) = c(x−x∗)} and the sign of f(y;x) is represented by + and − signs
depending on the position of (x, y) with respect to γ and {y = x}. The sign of f(x; y)
is obtained by an axial symmetry of the figure with axis {y = x}. We denote by γs the
symmetric of the curve γ with respect to this axis. The region of coexistence is the one
where f(y;x) > 0 and f(x; y) > 0.
Note that the expansion of f(y;x) of Proposition 4.13 (iii) does not make use of any
assumption on a and c. Therefore, a similar study can be done to treat the degenerate
cases. One easily obtains that coexistence is possible in the neighborhood of (x∗, x∗) if
c = a > 0, c = 0 and a > 0 or a = 0 and c > 0. Similarly, coexistence cannot occur in
the neighborhood of (x∗, x∗) if c = a < 0, c = 0 and a < 0 or a = 0 and c < 0. The case
c = −a is undetermined and depends on higher-order expansions of the fitness function.2

Proof of Theorem 4.10 (b): case a < 0
It follows from Theorems 4.6 that for any fixed η > 0, for ε small enough, the PES
stays monomorphic until it reaches (x∗ − η, x∗ + η). Moreover, in view of the proof of
Proposition 4.8, no mutant out of (x∗ − η, x∗ + η) can invade the population as long as it
is monomorphic with support inside this interval.
Now, by Proposition 4.11, when a < 0, coexistence may happen in the rescaled PES if
c > −a. In this case, at the first coexistence time τ ε, the two traits x and y that coexist
belong to (x∗ − η, x∗ + η) and are distant of less than εDiam(X ) since m(x, ·) has support
in X − x.
Let us examine what happens when a mutant trait z invades this population. Remind that
we showed in the proof of Corollary 4.15 that, if a < 0, x < y, f(x; y) > 0, f(y;x) > 0 and
f(z;x, y) > 0, then f(x; y, z) < 0, f(y;x, z) < 0, f(z; y) > 0 and f(z;x) > 0. Examining
Fig. 3.2, we see that these conditions are incompatible with all classes except classes 7 and
9. Therefore, once the mutant z invades, the new state of the rescaled PES can be either
n̄(z)δz in the case of class 7, or either n̄1(x, z)δx + n̄2(x, z)δz or n̄1(y, z)δy + n̄2(y, z)δz in
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the case of class 9. In particular, we see that either the population becomes monomorphic
again, or it stays dimorphic, but the distance between the two traits of the support of the
PES has decreased. In addition, in both cases, the support of the new state of the PES is
a subset of (x∗ − η, x∗ + η). Hence, η-branching, as defined in Definition 4.9, cannot occur
as soon as ε < η/(2Diam(X )). This ends the proof of Theorem 4.10 (b). 2

Proof of Theorem 4.10 (a): case a > 0
By Proposition 4.11, when a > 0, under the assumptions of Theorem 4.10, we are in the
situation of Fig. 4.2 (a), and hence coexistence is always possible in the neighborhood of
x∗. Fix η > 0. We are going to prove that, if η is small enough, then for ε small enough,

(i) the first time of coexistence τ ε is a.s. finite and Supp(Zε
τε−) ⊂ (x∗ − η, x∗ + η) a.s.;

(ii) after time τ ε, the distance between the two points of the support of the rescaled PES
is non-descreasing and becomes a.s. bigger than η/2 in finite time, before exiting the
interval (x∗ − η, x∗ + η).

These two points will clearly imply Theorem 4.10 (a).
For Point (i), observe first that, by Proposition 4.8, if τ ε < +∞, then Supp(Zε

τε−) ⊂
(x∗ − η, x∗ + η). Thus we only have to prove that P(τ ε <∞) = 1.
In view of Fig. 4.2 (a), we observe that for a given jump size, the closer the support is
from x∗, the easier co-existence is. The proof is based on this fact, taking into account the
additional difficulty that the jump rate is almost zero in that case.
Fix κ > 0. Let us define

θκ = inf
{

t ≥ 0 : Supp(Zε
t ) ⊂ (x∗ − κε, x∗ + κε)

}

.

>From Assumptions (A’3) and (A”’), the functions

x 7→

∫ +∞

0
h m(x, h)dh and x 7→

∫ 0

−∞
h m(x, h)dh

are continuous and there exists β > 0 such that, for all x ∈ [x∗ − η, x∗ + η],

∫ +∞

0
h m(x, h)dh > β > 0 and

∫ 0

−∞
h m(x, h)dh < −β < 0. (4.25)

It is thus elementary to check, using (4.21), that for any x ∈ [x∗ − η, x∗ − κε], resp.
x ∈ [x∗ + κε, x∗ + η],

∫ +∞

β/2
[g(x+ εh, x)]+m(x, h)dh ≥ Cε2βκ > 0 ;

resp.

∫ −β/2

−∞
[g(x+ εh, x)]+m(x, h)dh ≤ −C ′ε2βκ < 0.

Assume that P(τ ε = ∞ ; θβ/2 = ∞) > 0. Then, on this event, in view of (4.1), the
previous inequalities show that there are infinitely many jumps in the TSS, with jump
size bigger than εβ/2. This yields a contradiction since the TSS is monotonous before τ ε.
Indeed, drawing a vertical line at some level x in Fig. 4.2 (a) (for example the vertical
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dotted line), one can see that all the mutants invading the monomorphic population with
trait x either coexist with x or are closer to x∗ than x. On the other hand, it is clear
from Fig. 4.2 that the first jump after time θβ/2 in the TSS with jump size bigger than
εβ/2 (which almost surely happens) drives the TSS in the coexistence region. Therefore,
P(τ ε = ∞ ; θβ/2 <∞) = 0 and then P(τ ε = ∞) = 0.

For Point (ii), assume that the rescaled PES is dimorphic at some time t, with support
{x, y}, x < y. Let us examine what happens when a mutant trait z invades this population.
Remind that we showed in the proof of Corollary 4.15 that, if a > 0 and x, y, z belong
to (x∗ − η0, x

∗ + η0) for some η0 > 0 and satisfy x < y, f(x; y) > 0, f(y;x) > 0 and
f(z;x, y) > 0, then

• either z < x < y and f(x; y, z) < 0, f(y;x, z) > 0, f(z; y) > 0 and f(y; z) > 0,

• or x < y < z and f(x; y, z) > 0, f(y;x, z) < 0, f(z;x) > 0 and f(x; z) > 0.

We can assume without loss of generality that η < η0. Examining Fig. 3.2, we see that
both situations are only compatible with classes 9, 10, 11 and 12. Therefore, once the
mutant z invades, the new state of the rescaled PES is n̄1(x, z)δx + n̄2(x, z)δz if x < y < z
or n̄1(y, z)δy + n̄2(y, z)δz if z < x < y. In both cases, we see that the distance between the
two traits of the support of the PES can only increase until the stopping time θ′ where one
of the points of the support leaves (x∗ − η, x∗ + η). In order to end the proof, it suffices to
prove that, if η is sufficiently small,

θ′ <∞ a.s. and Diam(Supp(Z̃ε
θ′)) > η/2.

The fact that θ′ <∞ a.s. can be proved using (4.25) in a similar way as for Point (i). The
lower bound of the diameter of the PES immediately follows from the fact that

τ ε > θκ0 a.s., where κ0 =
2cDiam(X)

c− a
.

This inequality follows from the following argument: for any x, y ∈ R such that

|x− x∗| ≥
2c|x− y|

c− a
, (4.26)

it can be easily checked that

|y − x∗| ≥
1

2

(

1 +
a

c

)

|x− x∗| and |y − x∗| ≤
(

1 +
c− a

2c

)

|x− x∗|.

Since 0 < a < c, we have

1

2

(

1 +
a

c

)

>
a

c
and 1 +

c− a

2c
< 1 +

c− a

a
=
c

a
.

Now, {(y−x∗) = (c/a)(x−x∗)} is tangent to γ at (x∗, x∗) and {(y−x∗) = (a/c)(x−x∗)}
is tangent to γs at (x∗, x∗). Therefore, in view of Fig. 4.2 (a), any x, y ∈ R satisfying (4.26)
do not coexist together.
To conclude, it suffices to observe that, in the rescaled PES Z̃, the distance between a
mutant trait and the trait of its progenitor in the PES is always smaller than εDiam(X ).
Therefore, for any x ∈ (x∗ − η, x∗ + η) such that |x− x∗| ≥ εκ0, any mutant trait y born
from x do not coexist with x. 2
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A Proof of Theorem 2.7

The proof of this result is very similar to the proof of [4, Thm.1]. We will not repeat all the
details and we will restrict ourselves to the steps that must be modified. The general idea
of the proof follows closely the heuristic argument of Section 2.4.1. Its skeleton is similar
to the one in [4] for monomorphic populations.
For all ε > 0, t > 0, and Γ ⊂ X measurable, let

Aε,d(t,Γ) :=
{

Supp(νt/KuK
) ⊂ Γ has d elements that coexist, say x1, . . . , xd,

and ∀1 ≤ i ≤ d, |〈νt/Kuk
,1{xi}〉 − n̄i(x)| < ε}.

To prove Theorem 2.7, we establish that for all ε > 0, t > 0 and Γ ⊂ X measurable,

lim
K→+∞

P(Aε,d(t,Γ)) = P(Supp(Zt) ⊂ Γ and has d elements). (A.1)

where (Zt, t ≥ 0) is defined in Theorem 2.7. The first ingredient of the proof is the following
proposition, which generalizes Theorem 3 (a) and (b) of [4].

Proposition A.1 Assume that, for any K ≥ 1, Supp(νK
0 ) = {x1, . . . , xd} and 〈νK

0 ,1{xi}〉 ∈
C a.s., where C is a compact subset of R+. Let φ(t, (n1, . . . , nd)) denote the value at time
t of the solution of LV (d,x) with initial condition (n1, . . . , nd). Then, for all T > 0,

lim
K→+∞

sup
1≤i≤d, t∈[0,T ]

∣

∣

∣〈νK
t ,1{xi}〉 − φi(t, (〈ν

K
0 ,1{x1}〉, . . . , 〈ν

K
0 ,1{xd}〉))

∣

∣

∣ = 0 a.s. (A.2)

This result is a direct corollary of Theorem 11.2.1 of [11], except for two small difficulties.
The first one is that Theorem 11.2.1 of [11] assumes that the function n 7→ Fx(n) involved
in the definition (2.4) of the Lotka Volterra system is uniformly Lipschitz on R

d
+, which is

not the case. However, observe first that, if ni ≤M for some M > 0 for all i ∈ {1, . . . , d},
then φi(t, (n1, . . . , nd)) ≤ M ∨ (2λ̄/α) for all t ≥ 0. Indeed, if there is equality for some
t ≥ 0 and i ∈ {1, . . . , d}, then φ̇i(t, (n1, . . . , nd)) < 0. Therefore, the coefficients of the
system LV (d,x) are uniformly Lipschitz on the set of states that can be attained by the
solution of the system starting from any initial conditions in a compact set. The second
difficulty is that Theorem 11.2.1 of [11] only implies that (A.2) holds on the event where
there is no mutation between 0 and T . In Lemma 2 (a) of [4], it is proved that for general
initial condition νK

0 , the probability of mutation on the time interval [0, T ] converges to 0,
thus the conclusion follows.

The second ingredient is the following exponential deviation estimate on the so-called
“problem of exit from an attracting domain” [13]. It generalizes Theorem 3 (c) of [4].

Proposition A.2 Let x1, . . . , xd ∈ X coexist. Then there exist constants c, V > 0 such
that, for any sufficently small ε > 0, if (〈νK

0 ,1{xi}〉)1≤i≤d belongs to the (ε/2)-neighborhood

of n̄(x), the time of exit of (〈νK
t ,1{xi}〉)1≤i≤d from the ε-neighborhhod of n̄(x) is bigger

than eV K ∧ τ with probability converging to 1, where τ denotes the first mutation time.
Moreover, the previous result also holds if, for all i ∈ {1, . . . , d}, the death rate of an
individual with trait xi

µ(xi) +

d
∑

j=1

α(xi, xj)〈ν
K
t ,1{xj}〉 (A.3)
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is perturbed by an additional random process that is uniformly bounded by cε.

Such results are fairly standard and can be proved in a variety of ways. We let the proof to
the reader. The first part of this proposition is used to prove that, when the first mutation
occurs, the population densities have never left the ε-neighborhood of n̄(x) and the second
is used to prove that, after the first mutation, as long as the mutant population is small,
the resident population densities do not leave the ε-neighborhood of n̄(x). In this case, the
additional term in (A.3) is α(xi, y)〈ν

K
t ,1{y}〉, where y is the mutant trait, which is smaller

that ᾱε if 〈νK
t ,1{y}〉 ≤ ε.

From these two results can be deduced the following lemma, which is the extension of
Lemma 2 (b) and (c) of [4]. The proof is a simple copy of the argument in [4].

Lemma A.3 Let Supp(νK
0 ) = {x1, . . . , xd} that coexist and let τ denote the first mutation

time. There exists ε0 such that, if (〈νK
0 ,1{xi}〉)1≤i≤d belongs to the ε0-neighborhood of n̄(x),

then, for any ε < ε0,

lim
K→+∞

P

(

τ > logK, sup
1≤i≤d, t∈[log K,τ ]

|〈νK
t ,1{xi}〉 − n̄i(x)| < ε

)

= 1,

KuKτ
L

=⇒
K→∞

Exp
(

d
∑

j=1

p(xj)λ(xj)n̄j(x)
)

and lim
K→+∞

P(at time τ , the mutant is born from trait xi) =
p(xi)λ(xi)n̄i(x)

∑d
j=1 p(xj)λ(xj)n̄j(x)

for all i ∈ {1, . . . , d}, where
L

=⇒ denotes the convergence in law of real r.v. and Exp(u)
denotes the exponential law with parameter u.

The fourth ingredient is the following lemma, which is an extension of Lemma 3 of [4].

Lemma A.4 Let Supp(νK
0 ) = {x1, . . . , xd, y} where x1, . . . , xd coexist and y is a mutant

trait that satisfy Assumption (B). Let τ denote the first next mutation time, and define

τ1 = inf{t ≥ 0 : ∀i ∈ I(n∗), |〈νK
t ,1{xi}〉 − n∗i | < ε and ∀i 6∈ I(n∗), 〈νK

t ,1{xi}〉 = 0}

τ2 = inf{t ≥ 0 : 〈νK
t ,1{y}〉 = 0 and ∀i ∈ {1, . . . , d}, |〈νK

t ,1{xi}〉 − n̄i(x)| < ε}.

Assume that 〈νK
0 ,1{y}〉 = 1/K (a single initial mutant). Then, there exists ε0 such that

for all ε < ε0, if (〈νK
0 ,1{xi}〉)1≤i≤d belongs to the ε-neighborhood of n̄(x),

lim
K→+∞

P(τ1 < τ2) =
[f(y;x)]+
λ(y)

, lim
K→+∞

P(τ2 < τ1) = 1 −
[f(y;x)]+
λ(y)

and ∀η > 0, lim
K→+∞

P

(

τ1 ∧ τ2 <
η

KuK
∧ τ

)

= 1.

The proof of this lemma is similar to the proof of Lemma 3 in [4]. The main steps are the
following. Assume first that ε < 1/2. We introduce the following stopping times:

RK
ε = inf{t ≥ 0 : ∃i ∈ {1, . . . , d}, |〈νK

t ,1{xi}〉 − n̄i(x)| ≥ ε}

SK
ε = inf{t ≥ 0 : 〈νK

t ,1{y}〉 ≥ ε}

SK
0 = inf{t ≥ 0 : 〈νK

t ,1{y}〉 = 0}.
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RK
ε is the time of drift of the resident population away from its equilibrium, SK

ε is the
time of invasion of the mutant trait (time t1 in Fig. 2.3) and SK

0 is the time of extinction
of the mutant trait. By the second part of Proposition A.2, it can be proven exactly as
in [4] that there exists ρ, V > 0 and c < 1 such that, for K large enough,

P

( ρ

KuK
< τ

)

≥ 1 − ε and P(SK
ε ∧ τ ∧ eKV < RK

ε/c) ≥ 1 − ε.

Then, on [0, τ ∧ SK
ε ∧RK

ε/c], by computing lower and upper bounds on the death rate of a
mutant individual, it can be easily checked that, for K large enough, almost surely,

Z1,ε
t

K
≤ 〈νK

t ,1{y}〉 ≤
Z−1,ε

t

K

where, for i = 1 or −1, Zi,ε is a continuous-time branching process such that Zi,ε
0 = 1 and

with birth rate (1 − iε)λ(y) and death rate

µ(y) +
d

∑

j=1

α(y, xi)n̄i(x) + i(d+ 1)ᾱ
ε

c
.

Next, we use the results of Theorem 4 of [4] on branching processes in order to control
the probability that Zi,ε/K exceeds ε before it reaches 0, and to upper bound the time at
which one of these events happens. As in [4], we obtain that there exists C > 0 such that,
for all η > 0, ε > 0 sufficiently small and K large enough,

P

(

τ2 < τ ∧
η

KuK
∧ SK

ε ∧RK
ε/c

)

≥ 1 −
[f(y;x)]+
λ(y)

− Cε (A.4)

P

(

SK
ε < τ ∧

η

KuK
∧ SK

0 ∧RK
ε/c

)

≥
[f(y;x)]+
λ(y)

− Cε.

On the event {SK
ε < τ ∧ SK

0 ∧RK
ε/c}, we introduce for ε′ > 0 the stopping times

TK
ε = inf{t ≥ SK

ε : ∀i ∈ {1, . . . , d}, |〈νK
t ,1{xi}〉 − n∗i | < ε2 and |〈νK

t ,1{y}〉 − n∗d+1| < ε2},

UK
ε,ε′ = inf{t ≥ TK

ε : ∃i ∈ I(n∗), |〈νK
t ,1{xi}〉 − n∗i | ≥ ε′}

V K
ε = inf{t ≥ TK

ε : ∃i 6∈ I(n∗), 〈νK
t ,1{xi}〉 ≥ ε}.

We next use the Markov property at time SK
ε and apply Proposition A.1 as in [4] to obtain

that there exists C ′ > C such that, for K large enough,

P

(

SK
ε < TK

ε < τ ∧
η

KuK

)

≥
[f(y;x)]+
λ(y)

− C ′ε.

Next, we can use again Proposition A.2 to prove that there exists V ′ > 0, C ′′ > C ′ and
c′ < 1 such that

P
(

SK
ε < TK

ε < V K
ε ∧ τ ∧ eKV ′

< UK
ε,ε/c′

)

≥
[f(y;x)]+
λ(y)

− C ′′ε.
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In a last step, we can as before prove that, for all t ∈ [TK
ε , UK

ε,ε/c′∧V
K
ε ] and for all i 6∈ I(n∗),

〈νK
t ,1{xi}〉 ≤

Z̃i,ε
t

K
,

where Z̃i,ε is a continuous-time branching process such that Z̃i,ε
T K

ε
= ⌈ε2K⌉ and with birth

rate λ(xi) and death rate

µ(xi) +
∑

j∈I(n∗)

α(xi, xj)n
∗
j − Card(I(n∗))ᾱ

ε

c′
.

Since, by Assumption (B2), f(xi;x
∗) < 0, this branching process is sub-critical if ε is

small enough. Hence, with arguments similar to the ones in [4] (especially the results of
Theorem 4), we can prove that there exist C ′′′ > 0 such that, for all η > 0, ε > 0 sufficiently
small and K large enough,

P

(

SK
ε < τ1 < τ ∧

η

KuK
∧ UK

ε,ε/c′

)

≥
[f(y;x)]+
λ(y)

− C ′′′ε.

Combining this with (A.4), we obtain Lemma A.4 by letting ε go to 0.

Finally, (A.1) is deduced from these lemmas exactly as in [4] and similarly, the proof of
Theorem 2.7 from (A.1). 2
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Figure 4.2: In the four cases where coexistence is possible, these figures show the sign configuration

of f(y;x) depending on the position of (x, y) with respect to the curve γ and the line {y = x} and

the region of coexistence. For convenience, we assumed x∗ = 0.
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