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Abstract

We present a steering algorithm for general nonholonomic systems which are not required to possess special
properties such as flatness or exact nilpotentizability. The method makes use of local steering laws, with suitable
contraction properties, designed on the basis of a continuous approximation of the system.

1 Introduction
Nonholonomic systems attract the attention of the scientific community for the theoretical challenges arising from
the research on the control of these systems and for their relevance in applications. In particular, the problem
of generating feasible trajectories joining two system configurations (referred to as nonholonomic path planning)
has been solved for specific classes of driftless systems by effective techniques. These include a Lie-theoretical
method for steering nilpotentizable systems [10], open-loop control (e.g., sinusoidal inputs [12]) for chained-form
transformable systems and trajectory generation for flat systems [5].

However, there exist nonholonomic robots — also called general in this paper — whose kinematic model does
not fall into any of the aforementioned classes. For example, mobile robots with more than one trailer cannot
be transformed in chained form unless each trailer is hinged to the midpoint of the previous wheel axle — a
particular arrangement, very unusual in real trailer vehicles, known as ‘on-hooking’. Another such example are
robotic systems that perform object manipulation by rolling contacts [13]: even the simplest mechanism in this
category, the so-called plate-ball system, does not admit a chained-form transformation. More in general, for 2-
input systems, as soon as the dimension of the state space reaches 5, exact nilpotentizability becomes the exception
rather than the rule (whereas all systems up to dimension 4 possess this property [11]).

Techniques for steering general nonholonomic systems include the iterative method of [10], the generic loop
method of [14] and the continuation method of [17] and [4]. However, the practical applicability of these methods
is limited. In fact, the first two essentially require an a priori estimate of some “critical distance” which is generally
unknown1, while the third imposes strong assumptions on the system.

In a preceding work [9], we also proposed a global algorithm for steering regular nonholonomic systems, that
is, systems without any singular points. The algorithm is an iterative scheme based on uniform nilpotent approx-
imations, and the regularity assumption is essential to obtain the uniformity property. In this paper, we extend
this algorithm to general nonholonomic systems with singularities. For such systems, the main difficulty is the
construction of a uniform nilpotent approximation, and is dealt with a technique introduced in [18].

The paper is organized as follows. In Section 2 we fix the notation and recall the basic definitions, and
in Section 3 we describe the different steps of an approximate steering algorithm. Section 4 is devoted to the
construction of a local approximate steering methods based on the use of approximations. The uniform character

1In [14], this is “masked” by the fact that an optimization problem is solved at each iteration.
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of both the nilpotent approximation and the error estimates is dealt with in Section 5. The above mentioned local
methods are used in Section 6 for devising a globally convergent steering algorithm. Finally, Appendix A contains
the proof of some technical results of Section 5.

2 Nonholonomic control systems
We recall some basic tools used in sub-Riemannian geometry following [1].

Let Ω be an open connected subset of Rn, and VF (Ω) the set of C∞ vector fields on Ω. Let T be a positive
real number. Consider a nonholonomic control system

ẋ =
m∑
i=1

gi(x)ui, x ∈ Ω, (1)

where g1, . . . , gm belong to VF (Ω) and the input u(t) = (u1(t), . . . , um(t)) is an integrable vector function on [0, T ]
which takes values in Rm. This system is characterized by the m-tuple g = (g1, . . . , gm) ∈ VF (Ω)m.

Definition 1. The length of an input u is defined as

`(u) =
∫ T

0

√
u2

1(t) + . . .+ u2
m(t) dt.

Given xa ∈ Ω, let x(t, xa, u), t ∈ [0, T ] be a trajectory of (1) originating from xa under an input function u. We
define its length as

`(x(·, xa, u)) = `(u).

A point x = x(t, xa, u), for t ∈ [0, T ], is accessible from xa.

Definition 2. System (1) induces a sub-Riemannian distance d on Ω, defined as

d(x1, x2) = inf
u
`(x(·, x1, u)), (2)

where the infimum is taken over all inputs u such that the trajectory x(·, x1, u) is defined on [0, T ] and x(T, x1, u) =
x2.

Note that d(x1, x2) < ∞ if and only if x1 and x2 are accessible from each other. Chow’s Theorem states that
any two points in Ω are accessible from each other if the elements of the Lie Algebra Lg generated by the gi’s form
an n-dimensional vector space at each point. As system (1) is driftless, Chow’s condition implies controllability in
any usual sense [15]. Throughout this paper, we assume that system (1) is controllable.

Take xa ∈ Ω and let Ls(xa) be the vector space generated by the values at xa of the brackets of the elements
of g of length ≤ s, s = 1, 2, . . . (input vector fields are brackets of length 1). Controllability guarantees that there
exists a smallest integer r = r(xa) such that dimLr(xa) = n. This integer is called the degree of nonholonomy at
xa.

Definition 3. Let ns(x) = dimLs(x), s = 1, . . . , r, the sequence (n1(x), . . . , nr(x)) is the growth vector of g at x.

Point xa is said to be regular if the growth vector remains constant in a neighborhood of xa; otherwise xa is
singular. Points at which the degree of nonholonomy changes are singular. Regular points form an open and dense
set in Ω.

Consider a smooth real-valued function f . Call first-order nonholonomic derivatives of f the Lie derivatives
gif of f along gi, i = 1, . . . ,m. Call gi(gjf), i, j = 1, . . . ,m, the second-order nonholonomic derivatives of f , and
so on.

Definition 4. A function f is of order ≥ s at xa if its nonholonomic derivatives of order ≤ s− 1 vanish at xa. If
f is of order ≥ s and not of order ≥ s+ 1 at xa, it is of order s at xa.

Equivalently, if f is of order ≥ s at xa, then f(x) = O(ds(xa, x)).
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Definition 5. A vector field h is of order ≥ q at xa if, for every s and every f of order s at xa, hf has order
≥ q + s at xa. If h is of order ≥ q but not ≥ q + 1, it is of order q at xa.

It is easy to show that every element of g has order ≥ −1, bracket [gi, gj ], i, j = 1, . . . ,m, has order ≥ −2, and so
on.

Definition 6. Let the integer wj , j = 1, . . . , n, be defined by setting wj = s if ns−1 < j ≤ ns, with ns = ns(xa)
and n0 = 0. Local coordinates z1, . . . , zn centered at xa form a system of privileged coordinates if the order of zj
at xa equals wj (called the weight of coordinate zj), for j = 1, . . . , n.

The order of functions and vector fields expressed in privileged coordinates can be computed in an algebraic
way:

• The order of the monomial zα1
1 . . . zαn

n is equal to its weighted degree w(α) = w1α1 + · · ·+ wnαn.

• The order of a function f(z) at z = 0 (the image of xa) is the least weighted degree of the monomials actually
appearing in the Taylor expansion of f at 0.

• The order of a vector field h(z) =
∑n
j=1 hj(z)∂zj

at z = 0 is the least weighted degree of the monomials
actually appearing in the Taylor expansion of h at 0:

h(z) ∼
∑
α,j

aα,jz
α1
1 . . . zαn

n ∂zj ,

considering the term aαz
α1
1 . . . zαn

n ∂zj as a monomial and assigning to ∂zj the weight −wj .

Definition 7. Given the system z1, . . . , zn of privileged coordinates at xa, the function

‖z‖xa = |z1|1/w1 + · · ·+ |zn|1/wn ,

where w1, . . . , wn are the coordinate weights at xa, is called pseudonorm at xa.

Denote by B(x,R) the open sub-Riemannian ball of radius R centered at x.

Definition 8. A continuously varying system of privileged coordinates on Ω is a mapping Φ, with values in Rn,
defined and continuous on a neighborhood of the diagonal in Ω×Ω, and such that the partial mapping z = Φ(xa, ·)
is a system of privileged coordinates at xa. In this case, there exists a continuous function ρ : Ω → (0,+∞) such
that the coordinates Φ(xa, ·) are defined on B(xa, ρ(xa)); we call ρ an injectivity radius of Φ.

Privileged coordinates provide an estimate of the sub-Riemannian distance d, according to the following result.

Theorem 1 (Ball-Box Theorem). Consider g ∈ VF (Ω)m, a point xa ∈ Ω and a system of privileged coordinates z
at xa. There exist positive constants Cd(xa) and εd(xa) such that, for all x with d(xa, x) < εd(xa),

1
Cd(xa)

‖z(x)‖xa
≤ d(xa, x) ≤ Cd(xa) ‖z(x)‖xa

. (3)

If Ω contains only regular points and if Φ is a continuously varying system of privileged coordinates on Ω, then
there exist continuous positive functions Cd(·) and εd(·) on Ω such that inequality (3) holds with z = Φ(xa, ·) at all
(x, xa) satisfying d(x, xa) < εd(xa).

3 Steering by approximations
Consider a nonholonomic control system ẋ =

∑m
i=1 gi(x)ui on Ω. The path planning problem is: given two

configurations x0, x1 ∈ Ω, find an input u steering the system from x0 to x1.
The principle of an approximate steering algorithm is the following. Solve first the path planning problem for

a control problem “approximating” the original one (in a meaning to be specified); apply then the resulting input
to the original system from x0; iterate this procedure from the current point.

We will now define precisely the different steps of such an algorithm, and give properties ensuring its convergence.
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3.1 Local approximate steering methods
Let g = (g1, . . . , gm) ∈ VF (Ω)m.

Definition 9. A m-tuple ĝ = (ĝ1, . . . , ĝm) defined on a neighborhood of xa is a first-order approximation of g at xa
if the vector fields gi− ĝi, i = 1, . . . ,m, are of order ≥ 0 at xa. A first-order approximation of g on Ω is a mapping
A that associates to each xa ∈ Ω a first-order approximation ĝ = A(xa) of g at xa defined on a ball B(xa, ρ(xa)).
The function ρ : Ω→ (0,+∞) is called the approximation radius of A.

Since first-order approximations are always used in this paper, they are referred to simply as ‘approximations’.
Useful properties of approximations are continuity and nilpotency.

Definition 10. Let A : xa 7→ ĝ be an approximation on Ω.

• We say that A is continuous if the mapping

(xa, x) 7→ ĝ(x) ∈ Rn,

is defined and continuous on a neighborhood of the diagonal in Ω× Ω, and the approximation radius ρ of A
is continuous.

• We say that A is nilpotent of step s ∈ N if, for all xa ∈ Ω, the Lie algebra generated by ĝ is nilpotent of step
s.

Privileged coordinates allow to measure the error obtained when we replace g by a first-order approximation
(see [1, Prop. 7.29]).

Lemma 2. Consider a point xa ∈ Ω, a system of privileged coordinates z at xa, and a first-order approximation ĝ
of g at xa. Then, there exist positive constants Ce(xa) and εe(xa) such that, for all x ∈ Ω with d(xa, x) < εe(xa)
and all integrable control functions u(·) with `(u) < εe(xa), we have

‖z(x(T, x, u))− z(x̂(T, x, u))‖xa ≤ Ce(xa) max
(
‖z(x)‖xa , `(u)

)
`(u)1/r, (4)

where r is the degree of nonholonomy at xa and x(·, x, u) and x̂(·, x, u) are the trajectories of ẋ =
∑m
i=1 gi(x)ui

and ẋ =
∑m
i=1 ĝi(x)ui respectively.

If Ω contains only regular points, Φ is a continuously varying system of privileged coordinates on Ω and A a con-
tinuous approximation on Ω, then there exist continuous positive functions Ce(·) and εe(·) such that inequality (4)
holds, with z = Φ(xa, ·) and ĝ = A(x), for all (x, xa) with d(x, xa) < εe(xa) and all integrable control functions
u(·) with `(u) < εe(xa).

We also need to define precisely the notion of steering law for an approximation.

Definition 11. Let A : xa 7→ ĝ be an approximation on Ω and ρ its approximation radius. A steering law of A is
a mapping which, to every pair x, xa ∈ Ω satisfying d(xa, x) < ρ(xa), associates an integrable control function û(t),
t ∈ [0, T ] (henceforth called a steering control) such that the trajectory x̂(·, x, û) is defined on [0, T ] and satisfies
x̂(T, x, û) = xa. In other terms, û(·) steers A(xa) from x to xa.

For example, a systematic design of the steering law is possible when nilpotent approximations are used [10].

Given g, an approximation A of g, and a steering law for A, we define a local approximate steering method for
g as follow.

Definition 12. Fix xa ∈ Ω. For a point x ∈ B(xa, ρ(xa)), let û(·) be the steering control of A(xa) between x and
xa. The local approximate steering (LAS) method associated to A and its steering law is the function defined by:

AppSteer(x, xa) = x(T, x, û).

Definition 13. A LAS method is contractive if, for any xa ∈ Ω, there exist a positive constant µ(xa) such that,
for any x sufficiently close to xa, d(xa, x) < µ(xa) implies

d(xa,AppSteer(x, xa)) ≤ d(xa, x)1+β ,

where β is a positive constant independent of xa. A LAS method is uniformly contractive on a set K ⊂ Ω if it is
contractive and if µ(·) has a constant positive value µK on K.
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3.2 Toward convergent local and global algorithms
Assume first that we have a contractive LAS method AppSteer. We can easily build a locally convergent approxi-
mate steering algorithm, as follows. Let e be a given tolerance.

Local_Approximate_Steering(x0, x1)

1. k := 0;

2. xk := x0;

3. while d(xk, x1) > e

4. xk+1 = AppSteer(xk, x1);

5. k := k + 1;

This algorithm converges if d(x0, x1) < µ(x1).

Assume now that we have a uniformly contractive LAS method AppSteer on a set K ⊂ Ω. Based on the local
algorithm, the construction of a global approximate steering algorithm on K is inspired to the following idea2.
Consider a parameterized path3 γ ⊂ K connecting x0 to x1, and choose a finite sequence of intermediate goals
{xd0 = x0, x

d
1, . . . , x

d
n = x1} on γ, such that d(xdi−1, x

d
i ) < µK/2, i = 0, . . . , n. It is possible to prove that the

iterated application of the uniformly contractive LAS method AppSteer(xi−1, xdi ) from the current state to the
next subgoal (having set xdi = x1, ∀i ≥ n) yields a sequence xi which converges to x1.

To turn the above idea into a real algorithm, three issues are still remaining:

• we have to explain how to construct a uniformly contractive LAS method;

• the sub-Riemannian distance d is used in both local and global algorithm. This distance is in general not
computable, so we need estimates of d, like the one of Theorem 1. However the latter estimate is not usable
here because it does not hold uniformly: the radius of validity εd(xa) of the estimate tends to zero when xa
tends to singular points [7]. So we need computable uniform estimates of the sub-Riemannian distance d;

• the a priori knowledge of µK is required, but in practice is not available. The algorithm should achieve global
convergence without knowing µK .

These three issues will be addressed in Sect. 4, 5, and 6 respectively. We will restrict ourselves to a particular
– but large – class of systems, that we describe now.

3.3 A class of generic systems
Consider two integers m and n, 2 ≤ m < n, and an open connected subset Ω of Rn. For j ≥ 1, denote by ñj the
dimension of the linear space generated by all words of length not greater than j in the free Lie algebra with m
generators. Recall that ñ1 = m and, for j > 1,

ñj − ñj−1 =
1
j

∑
d|j

µ(d)mj/d,

where µ is the Moebius function (see [3]). Denote also r = r(m,n) the integer such that ñr−1 < n ≤ ñr.

Definition 14. The class Λgen(Ω) is the set of m-tuple g ∈ VF (Ω)m which growth vector is equal to:

(i) (ñ1, . . . , ñr−1, n− 1, n) on a subset of codimension one or greater than one,

(ii) (ñ1, . . . , ñr−1, n) elsewhere.
2A similar idea is proposed in [10].
3If no such path exists, K is not arc-connected and the steering problem has no solution in K.
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The class Λreg(Ω) is the set of m-tuple g ∈ VF (Ω)m which growth vector is constant, that is the class of regular
m-tuples.

Notice that, for a m-tuple g ∈ Λgen(Ω), the case (i) corresponds to singular points and the case (ii) to regular
ones. On the other hand, a m-tuple g ∈ Λreg(Ω) has no singular points.

The class of control systems (1) associated to m-tuples in Λgen(Ω) ∪ Λreg(Ω) is wide enough for most of the
applications in robotics. It first contains the regular systems, i.e. systems associated to regular m-tuples, which
frequently occur (for instance flat systems, left-invariant systems on Lie groups, etc). Second, a generic control
system (1) can be considered as associated to a g ∈ Λgen(Ω). Indeed, the growth vector of a generic element of
VF (Ω)m is characterized by the following result of [19].

Lemma 3. For every g in an open and dense subset of VF (Ω)m endowed with the Whitney C∞ topology, there
exist a set Ω1 ⊂ Ω of codimension greater than one such that g belongs to Λgen(Ω\Ω1).

Notice that Ω\Ω1 is open and connected in Rn. For motion planning purposes, we can ignore Ω1 and work
on Ω\Ω1. But we must take account of the set Ω2 of codimension one where the growth vector is equal to
(ñ1, . . . , ñr−1, n− 1, n), since Ω\Ω2 may be non connected.

The case of a regular m-tuple g has already been settled in a previous article [9] (it can also be treated as a
simple adaptation of the present work). We will then focus on the class Λgen(Ω).

4 A local approximate steering method
From now on, we fix an open connected subset Ω of Rn and a m-tuple g = (g1, . . . , gm) in Λgen(Ω).

4.1 Regular and singular domains
Denote by L(1, . . . ,m) the free Lie algebra generated by the alphabet 1, . . . ,m, and by Ls(1, . . . ,m), s ≥ 1, the
subset of words of length not greater than s. Denote also by |I| the length of a word I ∈ L(1, . . . ,m). Choose a P.
Hall basis H of L(1, . . . ,m); in particular, for any s ≥ 1, H contains exactly ñs words of length not greater than
s, which form a basis of Ls(1, . . . ,m) (by definition, ñs = dimLs(1, . . . ,m)).

Let I1, . . . , Iñr−1 be all the words of length smaller than r inH. Among all the n-tuples (I1, . . . , Iñr−1 , Iñr−1+1, . . . , In)
of words in H, call J R1 , . . . ,J RN the ones with |Iñr−1+1| = · · · = |In| = r, and J S1 , . . . ,J SN ′ the ones with
|Iñr−1+1| = · · · = |In−1| = r, |In| = r + 1.

Let Eg be the evaluation map which assigns to each I ∈ L(1, . . . ,m) the vector field Eg(I) = gI obtained by
plugging in the gi, i = 1, . . . ,m, for the corresponding letter i. For a n-tuple J of words in L(1, . . . ,m), we define
VJ as the set of points x ∈ Ω such that rank{gI(x) : I ∈ J } = n. Each VJ is an open set, eventually empty. By
definition of Λgen(Ω), we have:

Regular set of g =
N⋃
i=1

VJR
i
, Singular set of g ⊂

N ′⋃
i=1

VJ S
i
,

Ω =
N⋃
i=1

VJR
i
∪
N ′⋃
i=1

VJ S
i
.

We call VJR
1
, . . . ,VJR

N
the regular domains, and VJ S

1
, . . . ,VJ S

N′
the singular domains.

4.2 Continuous approximation on a domain VJ
Consider a n-tuples of words J = (I1, . . . , In) equal to one of the J Ri ’s or to one of the J Sj ’s.

Let xa be a point in VJ and ns = dimLs(xa), s = 1, . . . , r + 1. By construction, ns = ñs for s = 1, . . . , r − 1,
nr+1 = n, and nr is equal to either n if xa is regular, or n− 1 if xa is singular. The vector fields gI1 , . . . , gIn

have
then the following property:

gI1(x), . . . , gIns
(x) is a basis of Ls(x), s = 1, . . . , r + 1,
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for any x in a neighborhood of xa (vector fields having this property are called an adapted frame at xa, see [1] or [8,
p. 14]).

Define local coordinates z at xa as follows:

• compute local coordinates y = (y1, . . . , yn) as

y = Γ−1(x− xa),

where Γ is the n× n matrix whose elements Γij are defined by gIj
(xa) =

∑n
i=1 Γij∂xi |xa

.

• build z = (z1, . . . , zn) via the recursive formula (j = 1, . . . , n)

zj = yj +
|Ij |−1∑
k=2

hk(y1, . . . , yj−1), (5)

where, for k = 2, . . . , |Ij | − 1,

hk(y1, . . . , yj−1) = −
∑
|α|=k

w(α)<|Ij |

gα1
I1
. . . g

αj−1
Ij−1

(yj +
k−1∑
q=2

hq)(xa)
j−1∏
i=1

yαi
i

αi!
,

with |α| =
∑n
i=1 αi and w(α) = α1|I1|+ · · ·+ αn|In|.

It results from [1] (see also [18]) that the mapping ΦJ : (xa, x) 7→ z is a continuously varying system of privileged
coordinates on VJ .

Notice that the polynomial change of coordinates (5) from y to z has a triangular structure. This implies
that the inverse change of coordinates from z to y has exactly the same form. As a consequence, the mapping
z = ΦJ (xa, ·) is defined on the whole Rn, i.e. ΦJ has an infinite injectivity radius.

We define a weighted degree relative to J as follows: a monomial function zα1
1 · · · zαn

n is of weighted degree
w(α) = α1|I1|+ · · ·+ αn|In|, and a monomial vector field zα1

1 · · · zαn
n ∂zi

on Rn is of weighted degree w(α)− |Ii|.
Fix now xa ∈ VJ . We use z to denote the system of privileged coordinates ΦJ (xa, ·) at xa, and, with a little

abuse of notations, gi(z) to denote z∗gi. For i = 1, . . . ,m, we expand gi(z) in Taylor series at 0 as:

gi(z) = g
(−)
i + g

(0)
i ,

where g(−)
i contains all the monomial vector fields of negative weighted degree. We denote then by ĝi the vector

field z∗g(−)
i on Ω.

Proposition 4. The mapping AJ : xa 7→ ĝ = (ĝ1, . . . , ĝm) is a continuous approximation of g on VJ . Moreover,
it is nilpotent of step r + 1.

Definition 15. We call AJ the non-homogeneous nilpotent approximation on VJ .

Proof of Proposition 4. The continuity is clear, it results from the one of ΦJ . Moreover, if xa is a regular point and
J is one of the J Ri ’s or if xa is a singular point and J is one of the J Si ’s, then the weights w1 = |I1|, . . . , wn = |In| are
equal to the nonholonomic orders at xa of the privileged coordinates z. In these cases, ĝ is the usual homogeneous
nilpotent approximation at xa in the coordinates z (see [1]) and the conclusion follows.

Assume now that xa is a regular point and J is one of the J Si ’s. The weights w1 = |I1|, . . . , wn−1 = |In−1| are
equal to the nonholonomic orders at xa of the privileged coordinates z1, . . . , zn−1, but wn = r + 1 is greater than
the nonholonomic order of zn, which is equal to r.

To prove that ĝ is an approximation of g at xa, it suffices to show that, in the Taylor expansion of gi(z), all
monomial vector fields of negative nonholonomic order belongs to g(−)

i . Equivalently, it suffices to show that a
monomial vector field with negative nonholonomic order is of negative weighted degree. Now the nonholonomic
order of a monomial vector field zα1

1 · · · zαn
n ∂zi is equal to

• α1|I1|+ · · ·+ αn−1|In−1|+ αnr − |Ii|, i.e. its weighted degree minus αn, if i 6= n;
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• α1|I1|+ · · ·+ αn−1|In−1|+ (αn − 1)r, i.e. its weighted degree minus (αn − 1), if i = n.

Therefore, when the nonholonomic order is negative, we have αn = 0, and so the weighted degree is negative too.
Finally, the nilpotency is a consequence of the definition. Indeed, in z coordinates, consider two monomial

vector fields g and g′ of negative weighted degree, respectively −s and −s′. Then the Lie bracket [g, g′] is a sum of
terms of weighted degree −(s+ s′). Thus g(−)

I is a sum of terms of weighted degree not greater than −|I|. Since a
weighted degree can not be smaller than −(r + 1), g(−)

I = 0 if |I| > r + 1.

4.3 Construction of AppSteer

Recall that a local approximate steering method is defined by the given of an approximation A of g, and a steering
law for A. To obtain contractive LAS method we also need some conditions on the steering law of the approximation.

Definition 16. Let A be an approximation on Ω and d̂xa
the sub-Riemannian distance associated to A(xa). We

say that a steering law of A is quasi-optimal if there exists a constant C` > 0 and a continuous positive function
ε`(·) such that, for any xa, x ∈ Ω with d(xa, x) < ε`(xa), the control û(·) steering ĝ = A(xa) from x to xa satisfies:

`(û) ≤ C` d̂xa
(x, xa) = C` d̂xa

(x̂(0, x, û), x̂(T, x, û)).

Note that, due to the definition of the sub-Riemannian distance d̂xa
, quasi-optimal steering laws always exist.

Furthermore, if A is a nilpotent approximation, one can verify that the steering laws proposed in [10] are quasi-
optimal (use the characterizations (8) and (18)) .

Consider one of the n-tuple J = (I1, . . . , In) in {J R1 , . . . ,J RN ,J S1 , . . . ,J SN ′}, and choose a steering law of AJ .
Since AJ is nilpotent, we can choose for instance the steering law proposed in [10]. We define AppSteerJ as the
LAS method on VJ associated to AJ and its steering law.

For x ∈ Ω, set detJ (x) = det(gI1(x), . . . , gIn
(x)). By definition, x belongs to VJ if and only if detJ (x) 6= 0.

Definition 17. The LAS method AppSteer on Ω is defined as

AppSteer(x, xa) = AppSteerJ (x, xa),

where J is the first n-tuple (for the lexicographic order) in {J R1 , . . . ,J RN ,J S1 , . . . ,J SN ′} satisfying

detJ (xa) = max(detJR
1

(xa), . . . ,detJR
N

(xa),detJ S
1

(xa), . . . ,detJ S
N′

(xa)).

5 Uniformity properties
In this section we will provide a uniform estimate for the sub-Riemannian distance and prove that AppSteer is
uniformly contractive. We first distinguish regular domains from singular ones and show that the corresponding
LAS methods AppSteerJ are uniformly contractive.

5.1 Regular domains
Let J = (I1, . . . , In) be one of the J Ri ’s. Using Theorem 1 and Lemma 2, there exist continuous positive functions
CJ (·) and εJ (·) on the regular domain VJ such that, for all xa, x in VJ satisfying d(xa, x) < εJ (xa),

1
CJ (xa)

‖z(x)‖xa ≤ d(xa, x) ≤ CJ (xa) ‖z(x)‖xa (6)

and, for all integrable control functions u(·) with `(u) < εJ (xa),

‖z(x(T, x, u))− z(x̂(T, x, u))‖xa ≤ CJ (xa) max
(
‖z(x)‖xa , `(u)

)
`(u)1/r, (7)

where z = ΦJ (xa, ·), ĝ = AJ (xa), and x(·, x, u), x̂(·, x, u) are the trajectories of ẋ =
∑m
i=1 gi(x)ui and ẋ =∑m

i=1 ĝi(x)ui respectively.
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Remark. Note that, for any xa ∈ VJ , the coordinates ΦJ (xa, ·) are also privileged coordinates at xa of ĝ = AJ (xa).
Since both ΦJ (xa, ·) and ĝ = AJ (xa) vary continuously with xa, we obtain the following uniform estimate of d̂xa

(the sub-Riemannian distance associated to AJ (xa)), up to reducing εJ (·) and increasing CJ (·): for all xa, x in
VJ satisfying d(xa, x) < εJ (xa),

1
CJ (xa)

‖z(x)‖xa ≤ d̂xa(xa, x) ≤ CJ (xa) ‖z(x)‖xa , with z = ΦJ (xa, ·).

As a consequence, a steering law of AJ is quasi-optimal if and only if there exist continuous positive functions
C`(·) and ε`(·) on VJ such that, for any xa, x ∈ VJ with d(xa, x) < ε`(xa), the control û(·) steering ĝ = AJ (xa)
from x to xa satisfies:

`(û) ≤ C`(xa) ‖z(x)‖xa
, with z = ΦJ (xa, ·). (8)

This characterization is useful in particular to check that a given steering law is quasi-optimal.

The property of uniform contraction follows for AppSteerJ .

Proposition 5. Let VJ be a regular domain. Then the LAS method AppSteerJ is uniformly contractive on every
compact subset of VJ .

Proof. Given xa ∈ Ω, we set z = ΦJ (xa, ·) and ĝ = AJ (xa). For x ∈ B(xa, ρ), let û(·) be the steering control
of ĝ between x and xa, i.e. x(T, x, û) = AppSteerJ (x, xa). Let us apply (7) to the input û. By construction
x̂(T, x, û) = xa, and z(xa) = 0; therefore, if d(xa, x) and `(û) are smaller than εJ (xa), then

‖z(x(T, x, û))‖xa ≤ CJ (xa) max
(
‖z(x)‖xa , `(û)

)
`(û)1/r.

Now, the steering law of AJ is quasi-optimal and thus satisfies (8). Using then (6) two times, we obtain

1
CJ (xa)

d(xa, x(T, x, û)) ≤ CJ (xa)C`(xa)1+1/r ‖z(x)‖xa ≤ CJ (xa)2+1/rC`(xa)1+1/r d(xa, x)1+1/r,

provided that d(xa, x) is smaller than εJ (xa) (which is assumed smaller than ε`(xa)).
Let K be a compact subset of VJ . Since the functions εJ , CJ , and C` are all continuous, there exists a positive

constant µK such that, for any xa ∈ K and x ∈ VJ , d(xa, x) < µK implies

d(xa, x(T, x, û)) = d(xa,AppSteerJ (x, xa)) ≤ d(xa, x)1+ 1
2r .

Thus the LAS method AppSteerJ is uniformly contractive on K.

5.2 Singular domains
Let now J = (I1, . . . , In) be one of the J Si ’s. On the singular domain VJ the weights w1, . . . , wn defining the
pseudo-norm ‖ · ‖xa are not the same at singular points as at regular ones; thus the function

(xa, x) 7→ ‖ΦJ (xa, x)‖xa

can not be continuous at (xa, x) if xa is a singular point. As a consequence, the statement of Theorem 1, and so
the one of Lemma 2, can not hold uniformly.

We need then to define a notion generalizing the pseudo-norm in a continuous way around singular points.
Let Jn, . . . , Jñr

be the words in the P. Hall basis H completing I1, . . . , In−1 in a basis of Lr(1, . . . ,m). On VJ ,
we write the vector fields gJn

, . . . , gJñr
as

gJk
=

n∑
i=1

αikgIi
, k = n, . . . , ñr, (9)

the components αik being smooth functions on VJ . We set α = maxn≤j≤ñr
|αnj |.

For each xa ∈ VJ , we define the functions DJxa
(·) on Ω and DJxa

(·, ·) on Ω× Ω as

9



DJxa
(x) = |z1(x)|1/|I1| + · · ·+ |zn−1(x)|1/|In−1| + min

(∣∣ zn(x)
α(xa)

∣∣1/r, |zn(x)|1/(r+1)
)

DJxa
(x, y) = |z1(x)− z1(y)|1/|I1| + · · ·+ |zn−1(x)− zn−1(y)|1/|In−1| +

+ min
(∣∣zn(x)− zn(y)

α(xa)

∣∣1/r, |zn(x)− zn(y)|1/(r+1)
)

where z = ΦJ (xa, ·). The function DJxa
(·) = DJxa

(xa, ·) is a kind of uniform generalization of the pseudo-norm.

Proposition 6. Let VJ be a singular domain. There exist continuous positive functions CJ (·) and εJ (·) on VJ
such that, for any xa, x in VJ satisfying d(xa, x) < εJ (xa), we have

1
CJ (xa)

DJxa
(x) ≤ d(xa, x) ≤ CJ (xa)DJxa

(x).

Proposition 7. Let VJ be a singular domain. Then the LAS method AppSteerJ is uniformly contractive on every
compact subset of VJ .

The proofs of both above results relies on the desingularization of the m-tuple g by a lifting method introduced
in [7]. For the sake of clarity, they are postponed to Appendix A.

5.3 Global result
Similarly to the construction of AppSteer, we define a “uniform pseudo-norm” on Ω by choosing at every point xa
one of the functions DJxa

.

Definition 18. Let xa ∈ Ω, and J be the first n-tuple (for the lexicographic order) in the set {J R1 , . . . ,J RN ,J S1 , . . . ,J SN ′}
satisfying

detJ (xa) = max(detJR
1

(xa), . . . ,detJR
N

(xa),detJ S
1

(xa), . . . ,detJ S
N′

(xa)).

We define the functions Dxa
(·, ·) on Ω× Ω as

Dxa
(x, y) =

{
‖ΦJ (xa, x)− ΦJ (xa, y)‖xa

, if J is one the J Ri ’s,

DJxa
(x, y), if J is one the J Si ’s,

,

and Dxa
(·) = Dxa

(xa, ·).
Theorem 8. Let K be a compact subset of Ω. Then the LAS method AppSteer is uniformly contractive on K.

Moreover there exists positive constants CK and εK , such that, for any xa ∈ K and x ∈ Ω satisfying d(xa, x) <
εK , we have

1
CK

Dxa(x) ≤ d(xa, x) ≤ CKDxa(x).

Proof. For every J in {J R1 , . . . ,J RN ,J S1 , . . . ,J SN ′}, the set of points xa ∈ Ω such that

detJ (xa) = max(detJR
1

(xa), . . . ,detJR
N

(xa),detJ S
1

(xa), . . . ,detJ S
N′

(xa))

is a compact subset KJ of VJ . Therefore the points xa ∈ Ω such that AppSteer(xa, ·) = AppSteerJ (xa, ·) all
belongs to KJ . The first part of the theorem follows then directly from Propositions 5 and 7.

The second part results from (6) and Proposition 6 by setting

εK = min
J

inf
KJ

εJ and CK = max
J

sup
KJ

CJ .

Remark. As a corollary of Theorem 8, the property of uniform contraction of AppSteer can also be written in the
following way. Up to reducing εK , for any xa ∈ K and x ∈ Ω satisfying d(xa, x) < εK , we have

d(AppSteer(x, xa), xa) ≤ 1
2
d(x, xa) (10)

Dxa
(AppSteer(x, xa)) ≤ 1

2
Dxa

(x). (11)
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6 The global approximate steering algorithm
In this section, we devise an algorithm to steer system (1) from any x0 ∈ Ω to the origin (assumed w.l.o.g. to be
the goal) using the uniformly contractive LAS method AppSteer designed in Sect. 4. The algorithm is described
in Fig. 1.

The parameterized path t 7→ δ0,t(x) is defined as follows. Let J be the n-tuple of words inH such that D0 = DJ0
(and so AppSteer(·, 0) = AppSteerJ (·, 0)). Then

δ0,t(x) = (t|I1|z1(x), . . . , t|In|zn(x)),

where z = ΦJ (0, ·). The parameter t give an estimate of the distance D0 on the path since, for t, s ≥ 0,

D0(δ0,t(x), δ0,s(x)) ≤ |t− s|D0(x).

The function Subgoal is the following.

Subgoal(x, ηi, j)

1. tj := max(0, 1− jηi

D0(x) );

2. xd := δ0,tj (x)

The formula for generating tj guarantees that D0(xd, xdj−1) ≤ ηi and that xd = 0 for j large enough.

Global(x0, 0)

1. i := 0; j := 1;

2. xi := x0; x := x0;

3. ηi := D0(x0); initial choice of the maximum step size;

4. while D0(xi) > e while the pseudonorm at 0 of the state
is above a given tolerance e. . . ;

5. xd := Subgoal(x, ηi, j); choose the subgoal xd at a distance ηi from xdj−1;

6. x := AppSteer(xi−1, x
d); steer the system from xi−1 using an

approximate steering control with destination xd;
7. if Dxd(x) > 1

2Dxd(xi−1) if the system is not approaching the subgoal. . . ;

8. then ηi := ηi

2 ; reduce the maximum step size;

x := xi−1; j := 1; and change the path δ0,t(x);

9. else xi := x; xdi := xd;

i := i+ 1; j := j + 1;

Figure 1: The approximate steering algorithm

The global convergence of the approximate steering algorithm is established in the following result. For the
sake of simplicity we assume to work on a compact set K ⊂ Ω. Alternatively, this can be guaranteed by adding a
step to the algorithm, as proposed at the end of the section.

Theorem 9. Assume that the sequences (xi)i≥0 and (xdi )i≥0 resulting from the use of the algorithm Global(x0, 0)
both belong to a compact set K ⊂ Ω. Then the algorithm terminates in a finite number of steps for any choice of
the tolerance e.

11



Proof. Note first that, if the conditional statement of Step 7 is not true for every i greater than some i0, then xdi = 0
after a finite number of iterations. In this case, the error D0(xi) is reduced at each iteration and the algorithm
stops when it becomes smaller than the given tolerance e. This happens in particular if d(xi−1, x

d) < εK for all i
greater than i0, since condition (11) is then verified.

Another preliminary remark is that, due to the continuity of the control distance and of the function D0, there
exists η > 0 such that, for any x, y ∈ K,

D0(x, y) < η ⇒ d(x, y) <
εK
2
. (12)

In the following, we will prove by induction that if, for some i0, ηi0 < η, then, for all i > i0,

d(xi−1, x
d
i ) < (1/2 + · · ·+ (1/2)i−i0)εK < εK .

We assume w.l.o.g. i0 = 0 and x = x0. For i = 1, by construction xd = Subgoal(x0, η0, 1) and

D0(x0, x
d) ≤ η0 < η.

In view of (12) we have then d(x0, x
d) < εK/2, and so xd1 = xd by (11). Therefore d(x0, x

d
1) < εK/2.

Assume now that for i > 1 we have:

d(xi−2, x
d
i−1) < (1/2 + · · ·+ (1/2)i−1)εK . (13)

Let xd = Subgoal(x, ηi, j). We can write

d(xi−1, x
d) ≤ d(xi−1, x

d
i−1) + d(xdi−1, x

d).

By construction, it is
D0(xdi−1, x

d) ≤ ηi < η,

which implies d(xdi−1, x
d) < εK/2. The induction hypothesis (13) implies that

d(xi−1, x
d
i−1) ≤ 1

2
d(xi−2, x

d
i−1).

Finally, we have

d(xi−1, x
d) ≤ 1

2
d(xi−2, x

d
i−1) + d(xdi−1, x

d)

≤ (1/2 + · · ·+ (1/2)i)εK .

In view of (11), the conditional statement of Step 7 is not true, and so xdi = xd.

If, for some i, ηi ≥ η the conditional statement of Step 7 could be false. In this case, ηi is decreased as in Step
8. The updating law of ηi guarantees that after a finite number of iterations of Step 8, there holds ηi < η. This
ends the proof.

When the working space Ω is equal to the whole Rn, the assumption that the algorithm stays in a compact set
can be removed. This requires a simple modification of the last step of the algorithm.

We choose a real number R close to one, precisely ( 1
2 )1/(r+1)2 < R < 1. For every nonnegative integer k, we

set Rk = 1 + R + · · · + Rk. The algorithm is modified as follows. Introduce first a new variable k, and add the
initialization k := 0 to Step 1. Replace then Step 9 by Step 9’ below (Figure 2).

This step guarantees that the sequences (xi)i≥0 and (xdi )i≥0 of the algorithm both belong to the compact set

K = {x ∈ Rn : D0(x) ≤ 1
1−R

D0(x0)}.

Moreover, at each iteration of the algorithm, the new variable k is such that

D0(xi) ≥ RkD0(x0) ⇒ ηi ≤
D0(x0)

2k
.
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9’. else

9’.1. if D0(x) ≥ Rk+1D0(x0) ηi := ηi

2 ;

9’.2. if RkD0(x0) ≤ D0(x) < Rk+1D0(x0)

xi := x; xdi := xd; i := i+ 1; j := j + 1;

ηi := ηi−1
2 ; k := k + 1;

9’.3. if D0(x) ≤ RkD0(x0)

xi := x; xdi := xd; i := i+ 1; j := j + 1;

Figure 2: Step 9’

Proposition 10. The modified algorithm Global (with Step 9’ instead of Step 9) terminates in a finite number of
iterations for any choice of x0 and of the tolerance e.

Proof. Notice that Step 9’.3 is identical to Step 9. It is therefore enough to show that, after a finite number of
iterations, only Step 9’.3 occurs in Step 9’.

Another preliminary remark is that the distance D0 give a rough estimate of the sub-Riemannian distance.
Indeed it follows from Theorem 8 that, for any x, y in K close enough one from each other,

1
C0
D0(x, y)r+1 ≤ d(x, y) ≤ C0D0(x, y)1/(r+1), (14)

where C0 is a positive constant. As a consequence, Relation (12) holds if η ≤ (εK/(2C0))r+1.
Let us choose a positive η as above. We will prove that if, for some i0, ηi0 < η, then Steps 9’.1 and 9’.2 appear

only in a finite number of iterations.
Recall first that, from the proof of Theorem 9, we get, for every i > i0,

D0(xdi ) ≤ D0(xi0) and d(xi−1, x
d
i ) ≤ εK .

In view of (14), an obvious adaptation of the latter proof yields, for every i > i0, d(xi−1, x
d
i ) ≤ 2C0η

1/(r+1)
i0

, and

so D0(xi−1, x
d
i ) ≤ (2C2

0 )1/(r+1)η
1/(r+1)2

i0
. Finally we get

D0(xi) ≤ D0(xdi+1) +D0(xi, xdi+1) ≤ D0(xi0) + (2C2
0 )1/(r+1)η

1/(r+1)2

i0
. (15)

On the other hand, there exists an integer k0 such that ηi0 ≥
D0(x0)

2k0
, which implies D0(xi0) ≤ Rk0D0(x0). Up

to reducing η, and so increasing k0, we can assume

(2C2
0 )1/(r+1)(

D0(x0)
2k0

)1/(r+1)2 ≤ Rk0+1D0(x0),

since we have chosen R > ( 1
2 )1/(r+1)2 . Using (15), it holds, for every i ≥ i0,

D0(xi) ≤ Rk0D0(x0) +Rk0+1D0(x0) = Rk0+1D0(x0).

Therefore Steps 9’.1 and 9’.2 can appear in at most k0 + 1 iterations.
Applying again the arguments of the proof of Theorem 9, the conclusion follows.
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A Proofs of Propositions 6 and 7
Both proofs rely on the desingularization of the m-tuple g by a lifting method described in the following result
from [7].

Proposition 11. Set ñ = ñr + 1, Ω̃ = Ω × Rñ−n, and let a ∈ Ω. There exist a neighborhood Ũ ⊂ Ω̃ of (a, 0); a
neighborhood U ⊂ Ω of a with U × {0} ⊂ Ũ ; local coordinates y on U and (y, v) on Ũ ; and smooth functions bij,
i = 1, . . . ,m, j = 1, . . . , ñ− n on Rñ, such that the m-tuple of vector fields ξ = (ξ1, . . . , ξm) on Ũ defined in (y, v)
coordinates by

ξi(y, v) = gi(y) +
ñ−n∑
j=1

bij(y, v)∂vj

has a growth vector equal to (ñ1, . . . , ñr, ñ) on Ũ . In particular ξ has no singular points.
Moreover, denoting π : Ω̃→ Ω the canonical projection and d̃ the sub-Riemannian distance defined by ξ on Ũ ,

we have, for all x1, x2 in U ,
d(x1, x2) = inf

x̃2∈π−1(x2)
d̃((x1, 0), x̃2).

Remark. In this proposition, and in the following, we use h(y) instead of y∗h to denote a vector field h in local
coordinates y.

The construction of AppSteerJ is based on the particular system of privileged coordinates ΦJ . To simplify the
paper, we will replace in the proofs ΦJ by another system of privileged coordinates Φ, easier to work with. With
ΦJ , the arguments would be very similar but more involved. For instance, the case n = 5, m = 2 has already been
treated in [18] using ΦJ .

The new system of privileged coordinates Φ is defined as follow. For every xa ∈ VJ , consider the local
diffeomorphism

ψxa
: z = (z1, . . . , zn) 7→ ezngIn ◦ · · · ◦ ez1gI1 (xa)

defined on a neighborhood of 0 in Rn, and set Φ(xa, x) = ψ−1
xa

(x) for x near xa. Then Φ is a continuously varying
system of privileged coordinates on VJ [6].

Proof of Proposition 6. Fix a point a ∈ VJ , and consider the neighborhoods U , Ũ , the coordinates (y, v), and the
m-tuple ξ given in Proposition 11. We assume Ũ ⊂ VJ × Rñ−n.

Let Eξ be the evaluation map which assigns to each I ∈ L(1, . . . ,m) the vector field Eξ(I) = ξI obtained by
plugging in the ξi, i = 1, . . . ,m, for the corresponding letter i. In coordinates (y, v), the vector field ξI is written
as

ξI(y, v) = gI(y) +
ñ−n∑
j=1

bIj(y, v)∂vj
,

where the bIj ’s are smooth functions.
Recall that Jn, . . . , Jñr

are the words in the P. Hall basis H completing I1, . . . , In−1 in a basis of Lr(1, . . . ,m).
Therefore the vector fields ξI1 , . . . , ξIn−1 , ξJn , . . . , ξJñr

, ξIn
form an adapted frame at every point of Ũ .

Let xa ∈ U , and x̃a = (xa, 0) ∈ Ũ . Define vector fields ζn, . . . , ζñr
on Ũ by

ζk(y, v) = αnk (xa)ξIn
+
ñ−n∑
j=1

bJkj(y, v)∂vj
, k = n, . . . , ñr,

where αnk are the functions introduced in (9). Since ζk(x̃a) = ξJk
(x̃a) −

∑n−1
i=1 α

i
k(xa)ξIi(x̃a), the vector fields

ξI1 , . . . , ξIn−1 , ζn, . . . , ζñr
, ξIn form an adapted frame at x̃a. As a consequence (see [6]), the mapping

ψx̃a
: z̃ = (z̃1, . . . , z̃ñ) 7→ ez̃ñξIn ◦ ez̃ñr ζñr ◦ · · · ◦ ez̃nζn ◦ ez̃n−1ξIn−1 ◦ · · · ◦ ez̃1ξI1 (x̃a)
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is a local diffeomorphism at 0 ∈ Rñ, and Φ̃ : (x̃a, x̃) 7→ ψ−1
x̃a

(x̃) is a continuously varying system of privileged
coordinates on Ũ .

Since Ũ contains only regular points (for ξ), Theorem 1 applies: there exist continuous positive functions Cd̃(·)
and εd̃(·) on Ũ such that, for any x̃a, x̃ in Ũ satisfying d̃(x̃a, x̃) < εd̃(x̃a),

1
Cd̃(x̃a)

‖z̃(x̃)‖x̃a
≤ d̃(x̃a, x̃) ≤ Cd̃(x̃a) ‖z̃(x̃)‖x̃a

,

where z̃ = Φ̃(x̃a, ·) and ‖z̃‖x̃a
= |z̃1|1/|I1| + · · ·+ |z̃n−1|1/|In−1| + |z̃n|1/r + · · ·+ |z̃ñ−1|1/r|+ |z̃ñ|1/(r+1).

Therefore, using the last property of Proposition 11, there exist continuous positive functions εJ (·) and CJ (·)
on U such that, for any xa, x in U satisfying d(xa, x) < εJ (xa), we have

1
CJ (xa)

inf
x̃∈Πx

‖Φ̃(x̃a, x̃)‖x̃a
≤ d(xa, x) ≤ CJ (xa) inf

x̃∈Πx

‖Φ̃(x̃a, x̃)‖x̃a

where x̃a = (xa, 0) and Πx = {x̃ ∈ π−1(x) : d̃(x̃a, x̃) ≤ εJ (xa)} (choose for instance εJ (xa) = εd̃(x̃a)/2Cd̃(x̃a)
and CJ (xa) = Cd̃(x̃a)).

Let us compute now the coordinates z = Φ(xa, x) in function of the coordinates z̃ = Φ̃(x̃a, x̃) when x = π(x̃).
Due to the particular form of the vector fields ξIi

and ζj , we have

π(ψx̃a
(z̃)) = ez̃ñgIn ◦ ez̃ñrα

n
ñr

(xa)gIn ◦ · · · ◦ ez̃nα
n
n(xa)gIn ◦ ez̃n−1gIn−1 ◦ · · · ◦ ez̃1gI1 (xa)

= e(z̃ñ+
∑ñr

j=n z̃jα
n
j (xa))gIn ◦ ez̃n−1gIn−1 ◦ · · · ◦ ez̃1gI1 (xa) (16)

= ψxa
(z̃1, . . . , z̃n−1, z̃ñ +

ñr∑
j=n

z̃jα
n
j (xa)).

Equivalently, z1 = z̃1, . . . , zn−1 = z̃n−1, zn = z̃ñ +
∑ñr

j=n z̃jα
n
j (xa). As a consequence,

inf
x̃∈Πx

‖Φ̃(x̃a, x̃)‖x̃a
= inf

(z̃n,...,z̃ñr )∈Rñ−n

(
|z1|1/|I1| + · · ·+ |zn−1|1/|In−1| +

+|z̃n|1/r + · · ·+ |z̃ñr
|1/r|+ |zn −

ñr∑
j=n

z̃jα
n
j (xa)|1/(r+1)

)
= DJxa

(x). (17)

Thus, there exist continuous positive functions CJ (·) and εJ (·) on a neighborhood U of a such that, for any
xa, x in U satisfying d(xa, x) < εJ (xa), we have

1
CJ (xa)

DJxa
(x) ≤ d(xa, x) ≤ CJ (xa)DJxa

(x).

This holds for every point a ∈ VJ . Using then a continuous partition of unity, we get Proposition 6.

Remark. Note that, for any xa ∈ VJ , the coordinates ΦJ (xa, ·) are also privileged coordinates at xa of ĝ = AJ (xa).
Since both ΦJ (xa, ·) and ĝ = AJ (xa) vary continuously with xa, we obtain the following uniform estimate of d̂xa

(the sub-Riemannian distance associated to AJ (xa)), up to reducing εJ (·) and increasing CJ (·): for all xa, x in
VJ satisfying d(xa, x) < εJ (xa),

1
CJ (xa)

DJxa
(x) ≤ d̂xa(xa, x) ≤ CJ (xa)DJxa

(x), with z = ΦJ (xa, ·).

As a consequence, a steering law of AJ is quasi-optimal if and only if there exist continuous positive functions
C`(·) and ε`(·) on VJ such that, for any xa, x ∈ VJ with d(xa, x) < ε`(xa), the control û(·) steering ĝ = AJ (xa)
from x to xa satisfies:

`(û) ≤ C`(xa)DJxa
(x). (18)
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Before proving Proposition 7, we will show in the next lemma that the non-homogeneous nilpotent approxima-
tion AJ admits a lifting which is an approximation of the lifting of g. As in the proof of Proposition 6 above, the
point a ∈ VJ is fixed, and the neighborhoods U , Ũ , the coordinates (y, v), and the m-tuple ξ are the one given in
Proposition 11.

Lemma 12. There exists a continuous approximation Ã : x̃a 7→ ξ̂ of ξ on Ũ such that ξ̂i, i = 1, . . . ,m, in
coordinates (y, v) are written as

ξ̂i(y, v) = ĝi(y) +
ñ−n∑
j=1

b̂ij(y, v)∂vj
,

where ĝ = AJ (xa), and the b̂ij’s are smooth functions on Rñ.

Proof. Let V ⊂ T Ũ be the distribution on Ũ spanned by the vector fields ∂v1 , . . . , ∂vñ−n
. For every x̃a ∈ Ũ and

i = 1, . . . ,m, we are looking for vector fields ξ̂i, i = 1, . . . ,m, written in coordinates (z, v) as

ξ̂i(z, v) = ĝi(z) +
ñ−n∑
j=1

bij(z, v)∂vj + Vi(z, v),

where Vi ∈ V , and z are the privileged coordinates Φ(xa, ·), xa = π(x̃a). The lemma will be proved if we show that
we can choose the vector fields Vi depending continuously on x̃a and so that ξi− ξ̂i is of non-negative nonholonomic
order at x̃a (for the nonholonomic order defined by ξ on Ũ).

Notice first that, by definition of ĝ, the vector field gi(z)−ĝi(z) is a sum of monomial vector fields of non-negative
weighted degree, that is

gi(z)− ĝi(z) =
n∑
j=1

Rij(z)∂zj
, where Rij(z) =

∑
w(α)≥|Ij |

aαz
α1
1 · · · zαn

n .

Therefore (ξi − ξ̂i)(z, v) =
∑n
j=1Rij(z)∂zj − Vi(z, v).

Recall also that z1 = z̃1, . . . , zn−1 = z̃n−1, zn = z̃ñ +
∑ñr

j=n z̃jα
n
j (xa), where z̃ = Φ̃(x̃a, ·) are the privileged

coordinates at x̃a defined in the proof of Proposition 6 above. For j = 1, . . . , n − 1, set Zj = ∂zj − ∂z̃j
. For

k = 1, . . . , n, there holds dzk(Zj) = 0, and so Zj ∈ V . Moreover, due to the definition of coordinates z and to
Equation (16), we have ∂zn

= gIn
, and ∂z̃j

− αnj (xa)gIn
∈ V , for j = n, . . . , ñ − 1. Equivalently, the vector fields

Z ′j = αnj (xa)∂zn
− ∂z̃j

, j = n, . . . , ñ− 1, belong to V . To summarize,

(ξi − ξ̂i)(z, v) =
n−1∑
j=1

Rij(z)∂z̃j
+
n−1∑
j=1

Rij(z)Zj +Rin(z)∂zn − Vi(z, v). (19)

Denote by õrd the ξ-nonholonomic order at x̃a. We have õrd(z1) = õrd(z̃1) = |I1|, . . . , õrd(zn−1) = õrd(z̃n−1) =
|In−1|, and õrd(zn) ≥ r. Moreover, õrd(∂zn

) ≥ −(r + 1) since ∂zn
is non zero. Since the weighted degree of zj

is |Ij |, we have õrd(Rij(z)) ≥ |Ij | for j = 1, . . . , n − 1, and Rin(z) = cizn + R′in(z), where ci is a constant and
õrd(R′in(z)) ≥ r + 1. Now, due to the definition of Z ′j , we have

cizn∂zn
= ciz̃n∂zn

+ ci

ñ−1∑
j=n

z̃j(∂z̃j
+ Z ′j).

Hence Equation (19) rewrites as

(ξi − ξ̂i)(z, v) =

n−1∑
j=1

Rij(z)∂z̃j
+ R′in(z)∂zn

+ ciz̃n∂zn
+ ci

ñ−1∑
j=n

z̃j∂z̃j

+

+

n−1∑
j=1

Rij(z)Zj + ci

ñ−1∑
j=n

z̃jZ
′
j − Vi(z, v)

 .
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In the second-hand member of this equality, the first term into bracket is of non-negative order and the second one
belongs to V . We then choose the vector field Vi as

Vi(z, v) =
n−1∑
j=1

Rij(z)Zj + ci

ñ−1∑
j=n

z̃jZ
′
j ∈ V,

which depends continuously on x̃a, and we obtain õrd(ξi − ξ̂i) ≥ 0. This proves the lemma.

Proof of Proposition 7. Once again, we fix a point a ∈ VJ , and so the neighborhoods U , Ũ , the coordinates (y, v),
and the m-tuple ξ.

Given xa, x in U close enough, let u(·) be the steering control of ĝ = AJ (xa) between x and xa, and xb =
AppSteerJ (xa, x). The steering law of AJ being quasi-optimal, we have `(u) ≤ Cqo d̂xa

(xa, x).
Let x̃a = (xa, 0). Consider the approximation Ã given in Lemma 12, and set ξ̂ = Ã(x̃a). Due to the form of ξ̂,

there exists a point x̃ ∈ π−1(x) such that u(·) steers ξ̂ from x̃ to x̃a. This control u(·) steers ξ from x̃ to a point
x̃b ∈ π−1(xb). Notice that, denoting by d the sub-Riemannian distance defined by ξ̂, we have d(x̃a, x̃) ≤ `(u), and,
from [1, Cor. 7.33], d̃(x̃a, x̃) ≤ 2d(x̃a, x̃) ≤ 2`(u), provided that `(u) is smaller than a continuous positive function
of x̃a (recall that Ũ contains only regular points for ξ).

Using Lemma 2, there exist continuous positive functions Cẽ(·) and εẽ(·) on Ũ such that d(xa, x) < εẽ(xa)
implies

1
Cẽ(x̃a)

‖z̃(x̃)‖x̃a
≤ d̃(x̃a, x̃) ≤ Cẽ(x̃a) ‖z̃(x̃)‖x̃a

and ‖z̃(x̃b)‖x̃a
≤ Cẽ(x̃a) max

(
‖z̃(x̃)‖x̃a

, `(u)
)
`(u)1/(r+1),

where z̃ = Φ̃(x̃a, ·) are the privileged coordinates at x̃a defined in the proof of Proposition 6.
In order to obtain a relation between d(xa, xb) and d(xa, x), we establish three inequalities. First, (17) implies

‖z̃(x̃b)‖x̃a
≥ DJxa

(xb), that is
d(xa, xb) ≤ CJ (xa)‖z̃(x̃b)‖x̃a

.

Second, since d̃(x̃a, x̃) ≤ 2`(u) there holds

max(‖z̃(x̃)‖x̃a
, `(u)) ≤ 2Cẽ(x̃a)`(u).

Third, it results from (18) and Proposition 6

`(u) ≤ CJ (xa)C`(xa)d(xa, x).

Grouping all together, we obtain that there exist a continuous positive functions µ(·) on the neighborhood U
of a such that, for any xa, x in U satisfying d(xa, x) < µ(xa), we have

d(xa,AppSteerJ (xa, x)) ≤ d(xa, x)1+ 1
2r .

Therefore AppSteerJ is uniformly contractive on any compact subset of the neighborhood U of a. Since this
property holds for every point a ∈ VJ , we get Proposition 7.
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