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1. Introduction

The global reconstruction method for the Gel’fand-Calderon inverse boundary value
problem in 3D was proposed for the first time by the author in 1987, 1988, see [HN] (Note
added in proof) and [No1]. The sheme of this global reconstruction can be presented as
follows:

Φ→ h
¯̄
Θ̄ρ
→ vρ → v, (∗)

where Φ denotes boundary measurements, h is the Faddeev generalized scattering am-
plitude (at zero energy for simplicity) defined in complex domain Θ, Θ̄ρ is the subset of
Θ with the imaginary part not greater than ρ, vρ is an approximate inverse scattering
reconstruction from h

¯̄
Θ̄ρ
, vρ → v for ρ → +∞, where v is the unknown potential to be

reconstructed from Φ. The global uniqueness in the Gel’fand- Calderon problem in 3D
follows from this global reconstruction as a corollary, see [No1].

Slightly earlier with respect to [No1] the global uniqueness in the Calderon problem
in 3D was proved in [SU]. Note that [SU] gives no reconstruction method.

Slightly later with respect to [No1] the global reconstruction from boundary measure-
ments in 3D similar to the global reconstruction of [No1] was also published in [Na1]. Note
that [Na1] contains a reference to the preprint of [No1].

The Gel’fand-Calderon problem is formulated as Problem 1.2 of Subsection 1.2 of this
introduction.

Reconstruction problems from the Faddeev generalized scattering amplitude h in the
complex domain at zero energy are formulated as Problems 1.1a, 1.1b and 1.1c of Subsec-
tion 1.1 of this introduction.

The reduction of Problem 1.2 to Problems 1.1 is given by formulas and equations
(1.23)-(1.25) mentioned in Subsection 1.2 of this introduction, see also [No2] for more
advanced version of these formulas and equations.

1



For a long time the main disadvantage of the global reconstruction (*) in 3D was
related with the following two facts:

(1) The determination of h
¯̄
Θ̄ρ
from Φ via formulas and equations of the type (1.23)-

(1.25) is stable for relatively small ρ, but is very unstable for ρ→ +∞ in the points of Θ̄ρ
with sufficiently great imaginary part, see Subsection 1.2 of this introduction.

(2) The decay of the error v − vρ for ρ→ +∞ was very slow (not faster than O(ρ−1)
even for infinitely smooth compactly supported v) in existing global results for stable
construction of vρ from h

¯̄
Θ̄ρ
in 3D, see Remarks 1.1, 1.2, 1.3 of Subsection 1.1 of this

introduction.
As a corollary, the global reconstruction (*) in 3D was not efficient with respect to its

stability properties.
The key point is that in the present work we give a global and stable construction of

vρ from h
¯̄
bΘρ

in 3D, where bΘρ denotes the boundary of Θ̄ρ, with rapid decay of the error

v−vρ for ρ→ +∞ (in particular, with v−vρ = O(ρ−∞) for v of the Schwartz class). This
gives a principal effectivization of the global reconstruction (*) with respect to its stability
properties.

Our new results are presented in detail below in Subsections 1.1, 1.2, 1.3 (of the
introduction) and in Sections 2 and 6. These results were obtained proceeding from [No3],
[No4].

1.1. Inverse scattering at zero energy. Consider the equation

−∆ψ + v(x)ψ = 0, x ∈ Rd, d ≥ 2, (1.1)

where
v is a sufficiently regular function on Rd

with sufficient decay at infinity
(1.2)

(precise assumptions on v are specified below in this introduction and in Section 2).
Equation (1.1) arises, in particular, in quantummechanics, acoustics, electrodynamics.

Formally, (1.1) looks as the Schrödinger equation with potential v at fixed energy E = 0.
For equation (1.1), under assumptions (1.2), we consider the Faddeev generalized

scattering amplitude h(k, l), where (k, l) ∈ Θ,

Θ = {k ∈ Cd, l ∈ Cd : k2 = l2 = 0, Imk = Im l}. (1.3)

Given v, to determine h on Θ one can use, in particular, the formula

h(k, l) = H(k, k − l), (k, l) ∈ Θ, (1.4)

and the linear integral equation

H(k, p) = v̂(p)−
Z
Rd

v̂(p+ ξ)H(k,−ξ)dξ
ξ2 + 2kξ

, k ∈ Σ, p ∈ Rd, (1.5)
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where

v̂(p) = (2π)−d
Z
Rd

eipxv(x)dx, p ∈ Rd, (1.6)

Σ = {k ∈ Cd : k2 = 0}. (1.7)

For more details concerning definitions of h, see [HN, Section 2.2], [No1, Section 2]
and [No4, Sections 1 and 3].

Actually, h onΘ is a zero energy restriction of a function h introduced by Faddeev as an
extension to the complex domain of the classical scattering amplitude for the Schrödinger
equation at positive energies (see [F2], [HN]). Note that the restriction h

¯̄
Θ
was not con-

sidered in Faddeev’s works and that h in its zero energy restriction was considered for
the first time in [BC] for d = 3 in the framework of Problem 1.1a formulated below. The
Faddeev function h was, actually, rediscovered in [BC]. The fact that ∂̄-scattering data of
[BC] coincide with the Faddeev function h was observed, in particular, in [HN].

In the present work, in addition to h on Θ, we consider, in particular, h
¯̄
Θ̄ρ
and h

¯̄
bΘρ
,

where
Θ̄ρ = Θρ ∪ bΘρ,
Θρ = {(k, l) ∈ Θ : |Imk| = |Im l| < ρ},
bΘρ = {(k, l) ∈ Θ : |Imk| = |Im l| = ρ},

(1.8)

where ρ > 0. Note that

dimΘ = 3d− 4, dimbΘρ = 3d− 5. (1.9)

Using (1.4), (1.5) one can see that

h(k, l) ≈ v̂(p), p = k − l, (k, l) ∈ Θ. (1.10)

in the Born approximation (that is in the linear approximation near zero potential). In
addition, one can see also that

(k, l) ∈ Θ̄ρ =⇒ p = k − l ∈ B̄2ρ, (1.11)

where
B̄r = Br ∪ ∂Br,
Br = {p ∈ Rd : |p| < r}, ∂Br = {p ∈ Rd : |p| = r}, r > 0.

(1.12)

In the present work we consider, in particular, the following inverse scattering prob-
lems for equation (1.1) under assumptions (1.2).

Problem 1.1.
(a) Given h on Θ, find v on Rd;
(b) Given h on Θ̄ρ for some (sufficiently great) ρ > 0, find v on Rd, at least, approxi-

mately;
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(c) Given h on bΘρ for some (sufficiently great) ρ > 0, find v on Rd, at least, approx-
imately.

Note that Problems 1.1a, 1.1b make sense for any d ≥ 2, whereas Problem 1.1c is
reasonable for d ≥ 3 only: dimbΘρ < dimRd for d = 2, see (1.9).

Note that: (1) any reconstruction method for Problem 1.1b with decaying error as
ρ → +∞ gives also a reconstruction method for Problem 1.1a and (2) for d ≥ 3, any
reconstruction method for Problem 1.1c gives also a reconstruction method for Problem
1.1b.

Note that in the Born approximation (1.10): (a) Problem 1.1a is reduced to finding v
on Rd from v̂ on Rd, (b) Problem 1.1b is reduced to (approximate) finding v on Rd from
v̂ on B2ρ, (c) Problem 1.1c for d ≥ 3 is reduced to (approximate) finding v on Rd from v̂
on B2ρ, where v̂ is defined by (1.6). Thus, in the Born approximation, Problem 1.1c for
d ≥ 3 (as well as Problem 1.1b for d ≥ 2) can be solved by the formula

v(x) = vlinappr(x, ρ) + vlinerr(x, ρ),

vlinappr(x, ρ) =

Z
B2ρ

e−ipxv̂(p)dp, vlinerr(x, ρ) =

Z
Rd\B2ρ

e−ipxv̂(p)dp, (1.13)

where x ∈ Rd. In addition, if, for example,

v ∈Wn,1(Rd) for some n ∈ N, (1.14)

and kvkn,1 ≤ C, where Wn,1(Rd) denotes the space of n-times smooth functions on Rd in
L1-sense and k · kn,1 denotes some fixed standard norm in Wn,1(Rd), then

|v̂(p)| ≤ c1(n, d)C(1 + |p|)−n, p ∈ Rd, (1.15)

and, therefore, for n > d,

|vlinerr(x, ρ)| ≤ c2(n, d)Cρ
−(n−d), x ∈ Rd, ρ ≥ 1, (1.16)

where c1(n, d), c2(n, d) are some fixed positive constants and vlinerr(x, ρ) is the error term
of (1.13).

Thus, in the Born approximation (1.10) (that is in the linear approximation near zero
potential) we have that:

(1) h on bΘρ for d ≥ 3 (as well as h on Θ̄ρ for d ≥ 2) stably determines vlinappr(x, ρ) of
(1.13) and

(2) the error vlinerr(x, ρ) = v(x)− vlinappr(x, ρ) = O(ρ−(n−d)) in the uniform norm as ρ→
+∞ for n-times smooth v in the sense (1.14), where n > d. In particular, vlinerr = O(ρ−∞)
in the uniform norm as ρ→ +∞ for v of the Schwartz class on Rd.

The main results of the present work consist in global analogs for the nonlinearized
case for d = 3 of the aforementioned Born-approximation results for Problem 1.1c, see
Theorem 2.1 and Corollary 2.1 of Section 2. In particular, we give a stable approximate
solution of nonlinearized Problem 1.1c for d = 3 and v satisfying (1.14), n > d = 3,
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with the error term decaying as O(ρ−(n−d) ln ρ) in the uniform norm as ρ → +∞ (that
is with almost the same decay rate of the error for ρ → +∞ as in the linearized case
near zero potential, see (1.13), (1.16)). The results of the present work were obtained in
the framework of a development of the ∂̄-approach to inverse scattering at fixed energy in
dimension d ≥ 3 of [BC], [HN], [No3], [No4], with applications to the Gel’fand-Calderon
inverse boundary value problem via the reduction going back to [No1]. See Subsections
1.2, 1.3 and Sections 2, 3, 4, 5, 6 for details.

Remark 1.1. Note that if

v ∈ L∞(Rd), ess sup
x∈Rd

(1 + |x|)d+ε|v(x)| ≤ C,

for some positive ε and C,

(1.17)

then (see [HN], [No1], [Na1], [No4]):

v̂(p) = lim
ρ→+∞, k−l=p

h(k, l) for any p ∈ Rd, d ≥ 3, (1.18)

|v̂(k − l)− h(k, l)| ≤ c3(ε, d)C
2ρ−1 as ρ→ +∞, (1.19)

where (k, l) ∈ bΘρ, c3(ε, d) is some positive constant. Formulas (1.18), (1.19) show that
the Born approximation (1.10) holds on bΘρ (and on Θ\Θρ) for any sufficiently great ρ
(actually, for any sufficiently great ρ in comparison with C of (1.17)). However, because
of O(ρ−1) in the right-hand side of (1.19), formulas (1.18), (1.19) give no method to
reconstruct v on Rd from h on bΘρ (or on Θ̄ρ) with the error term decaying more rapidly

than O(ρ−1) in the uniform norm as ρ → +∞ (even for v of the Schwartz class on Rd,
d ≥ 3).

Remark 1.2. On the other hand (in comparison with the result mentioned in Remark
1.1), for sufficiently small potentials v, in [No4] we succeeded, in particular, to give a stable
method for solving Problem 1.1b for d = 3 with the same type rapid decay of the error
term for ρ→ +∞ as in formulas (1.13), (1.16) for the linearized case near zero potential.
Moreover, in this result of [No4], v is approximately reconstructed already from non-
overdetermined restriction h

¯̄
Θρ∩Γ, where Γ ⊂ Θ, dimΓ = d = 3. However, this result of

[No4] is local: the smallness of v is used essentially.

Remark 1.3. We emphasize that before the present work no results were given, in
general, in the literature on solving Problems 1.1c and 1.1b for d ≥ 3 with the error term
decaying more rapidly than O(ρ−1) as ρ→ +∞ even for v of the Schwartz class on Rd (and
even for the infinitely smooth compactly supported case in the framework of sufficiently
stable rigorous algorithms). In addition, rapid decay of this error term is a property of
principal importance in the framework of applications of methods for solving Problems 1.1
to the Gel’fand-Calderon inverse boundary value problem (Problem 1.2) via the reduction
of [No1], see the next part of introduction.

Note that Problem 1.1a was considered for the first time in [BC] for d = 3 from
pure mathematical point of view without any physical applications. No possibility to
measure h on Θ\{(0)} directly in some physical experiment is known at present (here
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{0} = {(k, l) ∈ Θ : |k| = |l| = 0}). However, as it was shown in [No1] (see also [HN] (Note
added in proof), [Na1], [No2]), Problems 1.1 naturally arise in the electrical impedance
tomography and, more generally, in connection with Problem 1.2 formulated in the next
subsection.

1.2. The Gel’fand-Calderon problem. Consider the equation (1.1) in D ⊂ Rd only,
where

D is an open bounded domain in Rd, d ≥ 2,
with sufficiently regular boundary ∂D,

v is a sufficiently regular function on D̄ = D ∪ ∂D.

(1.20)

For simplicity we assume also that

0 is not a Dirichlet eigenvalue for

the operator −∆+ v in D.
(1.21)

Consider the map Φ such that
∂ψ

∂ν

¯̄
∂D
= Φ

¡
ψ
¯̄
∂D

¢
(1.22)

for all sufficiently regular solutions ψ of (1.1) in D̄, where ν is the outward normal to ∂D.
The map Φ is called the Dirichlet-to-Neumann map for equation (1.1) in D. We consider
the following inverse boundary value problem for equation (1.1) in D:

Problem 1.2. Given Φ, find v.
This problem can be considered as the Gel’fand inverse boundary value problem for the

Schrödinger equation at zero energy (see [G], [No1]). This problem can be also considered
as a generalization of the Calderon problem of the electrical impedance tomography (see
[C], [SU], [No1]).

One can see that the Faddeev function h of Problems 1.1 does not appear in Problem
1.2. However, as it was shown in [No1] (see also [HN] (where this result of [No1] was
announced in Note added in proof), [Na1], [Na2], [No2]), if h corresponds to equation (1.1)
on Rd, where v is the potential of Problem 1.2 on D and v ≡ 0 on Rd\D̄, then h on Θ
can be determined from the Dirichlet-to-Neumann map Φ via the following formulas and
equation:

h(k, l) = (2π)−d
Z
∂D

Z
∂D

e−ilx(Φ−Φ0)(x, y)ψ(y, k)dydx for (k, l) ∈ Θ, (1.23)

ψ(x, k) = eikx +

Z
∂D

A(x, y, k)ψ(y, k)dy, x ∈ ∂D, (1.24)

A(x, y, k) =

Z
∂D

G(x− z, k)(Φ−Φ0)(z, y)dz, x, y ∈ ∂D, (1.25)

G(x, k) = −(2π)−deikx
Z
Rd

eiξxdξ

ξ2 + 2kξ
, x ∈ Rd, (1.26)
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where k ∈ Cd, k2 = 0 in (1.24)-(1.26), Φ0 denotes the Dirichlet-to-Neumann map for
equation (1.1) in D with v ≡ 0, and (Φ − Φ0)(x, y) is the Schwartz kernel of the integral
operator Φ − Φ0. Note that (1.23), (1.25), (1.26) are explicit formulas, whereas (1.24) is
a linear integral equation (with parameter k) for ψ on ∂D. In addition, G of (1.26) is
the Faddeev’s Green function of [F1] for the Laplacian ∆. Formulas and equation (1.23)-
(1.26) reduce Problem 1.2 to Problems 1.1. In addition, from numerical point of view
h(k, l) for (k, l) ∈ Θ̄ρ can be relatively easily determined from Φ via (1.25), (1.24), (1.23)
if ρ is sufficiently small. However, if (k, l) ∈ Θ\Θρ, where ρ is sufficiently great, then the
determination of h(k, l) from Φ via (1.25), (1.24), (1.23) is very unstable (especially on the
step (1.24)); see, for example, [BRS], [No2], [No4]. This explains the principal importance
(mentioned in Remark 1.3) of the error term rapid decay as ρ → +∞ in methods for
solving Problems 1.1b and 1.1c.

1.3. Final remarks. In the present work we consider, mainly, Problems 1.1 and 1.2
for d = 3. The main results of the present work are presented in Sections 2 and 6. Some
of these results were already mentioned above. Note that only restrictions in time prevent
us from generalizing all main results of the present work to the case of the Schrödinger
equation at arbitrary (not necessarily zero) fixed energy E for d ≥ 3.

Note that results of the present work permit to complete (at least for d = 3) the proof
of new stability estimates for Problem 1.2, d ≥ 3, announced as Theorem 2.2 of [NN]. We
plan to return to this proof in a separate article.

Our new global reconstruction for Problem 1.2 in 3D is summarized in schemes (6.1),
(6.2) of Section 6. We expect that this reconstruction can be implemented numerically in
a similar way with implementations developed in [ABR], where the parameter ρ of (6.1),
(6.2) will play in some sense the role of the wave number k0 of [ABR].

As regards results given in the literature on Problem 1.1, see [BC], [HN], [GN], [Na1],
[Na2], [LMS], [No4] and references therein.

As regards results given in the literature on Problem 1.2 (in its Calderon or Gel’fand
form), see [SU], [No1], [Al], [Na1], [Na2], [Ma], [No2], [LMS], [No4], [NN], [B], [HM], [Am]
and references therein.

2.Main new results
In the present work we consider, mainly, the three dimensional case d = 3. In addition,

in the main considerations of the present work for d = 3 our basic assumption on v consists
in the following condition on its Fourier transform:

v̂ ∈ L∞µ (R
3) ∩ C(R3) for some real µ ≥ 2, (2.1)

where v̂ is defined by (1.6),

L∞µ (R
d) = {u ∈ L∞(Rd) : kukµ < +∞},

kukµ = ess sup
p∈Rd

(1 + |p|)µ|u(p)|, µ > 0, (2.2)

and C denotes the space of continuous functions. Actually, (2.1) is a specification of (1.2).
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Note that
v ∈Wn,1(Rd) =⇒ v̂ ∈ L∞µ (R

d) ∩ C(Rd),
kv̂kµ ≤ c4(n, d)kvkn,1 for µ = n,

(2.3)

where Wn,1, L∞µ are the spaces of (1.14), (2.2).
Let

Θ∞ρ,τ = {(k, l) ∈ Θ\Θ̄ρ : k − l ∈ B2ρτ},
bΘρ,τ = {(k, l) ∈ bΘρ : k − l ∈ B2ρτ},

(2.4)

where Θ, Θ̄ρ, bΘρ, Br are defined by (1.3), (1.8), (1.12), ρ > 0, 0 < τ < 1. In (2.4) by
symbol ∞ we emphasize that Θ∞ρ,τ is unbounded with respect to k, l. One can see also
that by definition

bΘρ,τ ⊂ bΘρ, ρ > 0, 0 < τ < 1. (2.5)

Our main new results on Problem 1.1 are summarized as Theorem 2.1 and Corollary
2.1 below.

Theorem 2.1. Let v̂ satisfy (2.1) and kv̂kµ ≤ C. Let 2 ≤ µ0 < µ, 0 < δ < 1,

0 < τ < τ1(µ, µ0, C, δ), ρ ≥ ρ1(µ, µ0, C, δ), (2.6)

where τ1, ρ1 are the constants of (4.36) and, in particular, 0 < τ1 < 1. Then h on bΘρ,τ
stably determines v̂±(·, τ, ρ) via (6.2) (where the nonlinear integral equation (4.31) is solved
by successive approximations) and

|v̂(p)− v̂±(p, τ, ρ)| ≤ c5(µ, µ0, τ, δ)C
2(1 + |p|)−µ0ρ−(µ−µ0) for p ∈ B2τρ, (2.7)

where c5 is the constant of (6.4), see Section 6.
Construction (6.2) is actually a definition of v̂±(·, τ, ρ). We consider v̂±(·, τ, ρ) as an

approximation to v̂ on B2τρ. The error between v̂ and v̂±(·, τ, ρ) on B2τρ is estimated in
(2.7). Estimate (2.7) is especially interesting for ρ→ +∞ at fixed τ .

Theorem 2.1 follows from Proposition 4.2, Corollary 4.1 and formulas (5.2), (5.3),
(5.6) (and related results of Sections 4 and 5). A more detailed version of (2.7) is given by
(6.3). The stability mentioned in Theorem 2.1 follows from estimate (6.10). See Sections
4, 5, 6 for additional details.

An outline of the reconstruction formalized in Theorem 2.1 is given also at the end of
the present section.

Let

v±(x, τ, ρ) =

Z
B2τρ

e−ipxv̂±(p, τ, ρ)dp, x ∈ R3, (2.8)

where v̂±(p, τ, ρ) is the approximation of Theorem 2.1.
Formula (2.3) and Theorem 2.1 imply the following

Corollary 2.1. Let v satisfy (1.14), n > d = 3, and kvkn,1 ≤ D. Let τ and ρ
satisfy (2.6) for µ = n, µ0 = 3, C = c4(n, 3)D and fixed δ ∈]0, 1[. Then h on bΘρ,τ stably
determines v±(·, τ, ρ) via (6.2), (2.8) and

|v(x)− v±(x, τ, ρ)| ≤ (c6(n, τ)D + c7(n, τ, δ)D
2 ln (1 + 2τρ))ρ−(n−3) for x ∈ R3, (2.8)
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where the constants c6, c7 are simply related with c2 and c5. In addition, in particular,

kv − v±(·, τ, ρ)k
L∞(R3

)
= O(ρ−(n−3) ln ρ) for ρ→ +∞ for fixed τ,

0 < τ < τ1(n, 3, c4(n, 3)D, δ).
(2.9)

We consider Theorem 2.1 as a global nonlinear analog of the result that in the Born
approximation h

¯̄
bΘρ

is reduced to a v̂ on B2ρ for d ≥ 3. One can see, in particular, that
in Theorem 2.1 we even do not try to reconstruct v̂ on R3\B2ρ from h on bΘρ.

We consider Corollary 2.1 as a global nonlinear analog of the Born approximation
result (for Problem 1.1c) consisting in formulas (1.13), (1.16).

In the derivations of the present work we rewrite h on Θ, Θ̄ρ, bΘρ, Θ
∞
ρ,τ and bΘρ,τ as

H on Ω, Ω̄ρ, Ω
∞
ρ,τ and bΩρ,τ (respectively), where h is related with H by (1.4),

Ω = {k ∈ Cd, p ∈ Rd : k2 = 0, p2 = 2kp},
Ω̄ρ = Ωρ ∪ bΩρ,
Ωρ = {(k, p) ∈ Ω : |Imk| < ρ},
bΩρ = {(k, p) ∈ Ω : |Imk| = ρ},
Ω∞ρ,τ = {(k, p) ∈ Ω\Ω̄ρ : p ∈ B2ρτ},
bΩρ,τ = {(k, p) ∈ bΩρ : p ∈ B2ρτ},

(2.10)

where ρ > 0, 0 < τ < 1.
Note that

Ω ≈ Θ, Ω̄ρ ≈ Θ̄ρ, bΩρ ≈ bΘρ,

Ω∞ρ,τ ≈ Θ∞ρ,τ , bΩρ,τ ≈ bΘρ,τ .
(2.11)

or more precisely

(k, p) ∈ Ω =⇒ (k, k − p) ∈ Θ, (k, l) ∈ Θ =⇒ (k, k − l) ∈ Ω
and the same for Ω̄ρ, bΩρ, Ω

∞
ρ,τ , bΩρ,τ and Θ̄ρ, bΘρ, Θ

∞
ρ,τ , bΘρ,τ ,

respectively, in place of Ω and Θ.

(2.12)

An outline of the reconstruction formalized in Theorem 2.1 consists in the following:
1. We rewrite h on bΘρ,τ ⊂ bΘρ as H on bΩρ,τ ⊂ bΩρ as mentioned above.
2. We consider H on bΩρ as boundary data for H on Ω\Ωρ, which solves the non-linear

∂̄-equation (3.5) with estimates (3.2), (3.3).
3. Using this ∂̄-equation and these estimates we obtain the non-linear integral equation
(4.31) for finding H̃ρ,τ on Ω

∞
ρ,τ from H on bΩρ,τ , where H̃ρ,τ approximates H on Ωρ,τ

(with estimate (4.31)).
4. The function H̃ρ,τ determines v̂

±(·, τ, ρ) by formulas (4.32), where v̂±(·, τ, ρ) approx-
imates v̂ on B2τρ.
As it was already mentioned in introduction, the results of the present work were

obtained in the framework of a development of the ∂̄-approach to inverse scattering at
fixed energy in dimension d ≥ 3 of [BC], [HN], [No3], [No4]. In particular, there is a
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considerable similarity between the reconstruction scheme of the present work for the case
of Problem 1.1c and the reconstruction scheme of [No3] for the case of inverse scattering
at fixed positive energy E. Actually, in the present work the parameter ρ of Problem 1.1
plays the role of E1/2 of [No3]. Some results of [BC], [HN], [No4] we use in the present
work are recalled in the next section.

3. Background results
For simplicity always in this section we assume that d = 3.

3.1. Estimates for H on Ω\Ωρ. Let v satisfy (2.1) and kv̂kµ ≤ C. Let

η(C, ρ, µ)
def
= a(µ)C(ln ρ)2ρ−1 < 1, ln ρ ≥ 2, (3.1)

where a(µ) is the constant c2(µ) of [No4]. Then (according to [No4]):

H ∈ C(Ω\Ωρ), (3.2)

|H(k, p)| ≤ C

(1− η(C, ρ, µ))(1 + |p|)µ , (k, p) ∈ Ω\Ωρ, (3.3)

v̂(p) = lim
|k|→∞, (k,p)∈Ω

H(k, p), p ∈ R3, (3.4)

where |k| = ((Rek)2 + (Imk)2)1/2. (These and some additional estimates on H are given
in Proposition 3.2 of [No4].) Note that, for sufficiently regular v on R3 with sufficient
decay at infinity, formula (3.4) was obtained for the first time in [HN].

3.2. The ∂̄-equation for H on Ω\Ωρ. Let v satisfy (2.1), kv̂µk ≤ C, and (3.1) hold.
Then (see [No4]):

∂̄kH(k, p)
¯̄
Ω\Ωρ =

3X
j=1

µ
−2π

Z
ξ∈Sk

ξjH(k,−ξ)H(k + ξ, p+ ξ)
ds

|Imk|2
¶
dk̄j
¯̄
Ω\Ωρ ,

(3.5)

where
Sk = {ξ ∈ R3 : ξ2 + 2kξ = 0}, (3.6)

ds is arc-length measure on the circle Sk in R3. Actually, under some stronger assumptions
on v than in the present subsection, the ∂̄- equation (3.5) was obtained for the first time
in [BC].

An important property of the ∂̄-equation (3.5) is that (3.5) can be considered for H
on Ω\Ωρ only, see, in particular, formulas (3.24) of Subsection 3.4.

3.3. Coordinates on Ω\Ωρ. Let

Ων = {(k, p) ∈ Ω : p 6∈ Lν}, (3.7)

where
Lν = {p ∈ R3 : p = tν, t ∈ R}, ν ∈ S2. (3.8)
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For p ∈ R3\Lν we consider θ(p) and ω(p) such that

θ(p), ω(p) smoothly depend on p ∈ R3\Lν ,
take values in S2, and

θ(p)p = 0, ω(p)p = 0, θ(p)ω(p) = 0.

(3.9)

Assumptions (3.9) imply that

ω(p) =
p× θ(p)

|p| for p ∈ R3\Lν (3.10a)

or

ω(p) = −p× θ(p)

|p| for p ∈ R3\Lν , (3.10b)

where × denotes vector product.
To satisfy (3.9), (3.10a) we can take

θ(p) =
ν × p

|ν × p| , ω(p) =
p× θ(p)

|p| , p ∈ R3\Lν . (3.11)

Let θ, ω satisfy (3.9). Then (according to [No4]) the following formulas give a diffeo-
morphism between Ων and (C\0)× (R3\Lν):

(k, p)→ (λ, p), where λ = λ(k, p) =
2k(θ(p) + iω(p))

i|p| , (3.12a)

(λ, p)→ (k, p), where k = k(λ, p) = κ1(λ, p)θ(p) + κ2(λ, p)ω(p) +
p

2
,

κ1(λ, p) =
i|p|
4
(λ+

1

λ
), κ2(λ, p) =

|p|
4
(λ− 1

λ
),

(3.12b)

where (k, p) ∈ Ων , (λ, p) ∈ (C\0)×(R3\Lν). In addition, formulas (3.12a), (3.12b) for λ(k)
and k(λ) at fixed p ∈ R3\Lν give a diffeomorphism between Zp = {k ∈ C3 : (k, p) ∈ Ω}
for fixed p and C\0.

In addition, for k and λ of (3.12) we have that

|Imk| = |p|
4

¡
|λ|+ 1

|λ|
¢
, |Rek| = |p|

4

¡
|λ|+ 1

|λ|
¢
, (3.13)

where (k, p) ∈ Ων , (λ, p) ∈ (C\0)× (R3\Lν).
Let

Ω∞ρ,τ,ν = Ω
∞
ρ,τ ∩Ων , (3.14)

where Ω∞ρ,τ , Ων are defined as in (2.10), (3.7). Let

Λρ,ν = {(λ, p) : λ ∈ Dρ/|p|, p ∈ R3\Lν}, (3.15)
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Λρ,τ,ν = {(λ, p) : λ ∈ Dρ/|p|, p ∈ R3\Lν , |p| < 2τρ},
bΛρ,τ,ν = {(λ, p) : λ ∈ Tρ/|p|, p ∈ R3\Lν , |p| < 2τρ},

where ρ > 0, 0 < τ < 1, ν ∈ S2,

Dr = {λ ∈ C\0 :
1

4
(|λ|+ |λ|−1) > r}, r > 0. (3.16)

Tr = {λ ∈ C :
1

4
(|λ|+ |λ|−1) = r}, r ≥ 1/2. (3.17)

Using (3.13) one can see that formulas (3.12) give also the following diffeomorphisms

Ων\Ω̄ρ ≈ Λρ,ν , Ω∞ρ,τ,ν ≈ Λρ,τ,ν ,
bΩρ,τ ∩Ων ≈ bΛρ,τ,ν ,

Z∞p,ρ = {k ∈ C3 : (k, p) ∈ Ων\Ω̄ρ} ≈ Dρ/|p| for fixed p,

(3.18)

where ρ > 0, 0 < τ < 1, ν ∈ S2.
In [No4] λ, p of (3.12) were used as coordinates on Ω. In the present work we use them

also as coordinates on Ω\Ωρ (or more precisely on Ων\Ωρ).
3.4. ∂̄-equation for H in the λ, p coordinates and some related estimate. Let λ, p be

the coordinates of Subsection 3.3, where θ, ω satisfy (3.9), (3.10). Then (see Lemma 5.1
of [No4]) in these coordinates the ∂̄-equation (3.5) for p 6= 0 takes the form:

∂

∂λ̄
H(k(λ, p), p) = −π

4

Z π

−π

µ
|p|
2

(|λ|2 − 1)
λ̄|λ| (cosϕ− 1)− |p| 1

λ̄
sinϕ

¶
×

H(k(λ, p),−ξ(λ, p, ϕ))H(k(λ, p, ϕ), p+ ξ(λ, p, ϕ))dϕ

(3.19)

for (λ, p) ∈ Λρ,ν , where k(λ, p) is defined in (3.12b) (and also depends on ν, θ, ω), Λρ,ν is
defined in (3.15),

ξ(λ, p, ϕ) = Rek(λ, p)(cosϕ− 1) + k⊥(λ, p) sinϕ, (3.20)

k⊥(λ, p) =
Imk(λ, p)×Rek(λ, p)

|Imk(λ, p)| , (3.21)

where × in (3.21) denotes vector product.
Note that (3.19) can be written as

∂

∂λ̄
H(k(λ, p), p) = {H,H}(λ, p), (λ, p) ∈ Λρ,ν , (3.22)

where

{U1, U2}(λ, p) = −
π

4

Z π

−π

µ
|p|
2

|λ|2 − 1
λ̄|λ| (cosϕ− 1)− |p|

λ̄
sinϕ

¶
×

U1(k(λ, p),−ξ(λ, p, ϕ))U2(k(λ, p) + ξ(λ, p, ϕ), p+ ξ(λ, p, ϕ))dϕ,

(3.23)
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where U1, U2 are test functions on Ω\Ω̄ρ, k(λ, p), ξ(λ, p, ϕ) are defined by (3.12b), (3.20),
(λ, p) ∈ Λρ,ν . Note that in the left-hand side of (3.19), (3.22)

(k(λ, p), p) ∈ Ων\Ω̄ρ (3.24a)

and in the right-hand side of (3.19), (3.23)

(k(λ, p),−ξ(λ, p, ϕ)) ∈ Ω\Ω̄ρ,
(k(λ, p) + ξ(λ, p, ϕ), p+ ξ(λ, p, ϕ)) ∈ Ω\Ω̄ρ,

(3.24b)

where (λ, p) ∈ Λρ,ν , ϕ ∈ [−π, π].
Let U1, U2 ∈ L∞µ (Ω\Ω̄ρ), µ ≥ 2, where

L∞µ (Ω\Ω̄ρ) = {U ∈ L∞(Ω\Ω̄ρ) : |||U |||ρ,µ < +∞},
|||U |||ρ,µ = ess sup

(k,p)∈Ω\Ω̄ρ
(1 + |p|)µ|U(k, p)|, µ > 0. (3.25)

Let {U1, U2} be defined by (3.23). Then (as a corollary of Lemma 5.2 of [No4]):

{U1, U2} ∈ L∞local(Λρ,ν) (3.26)

and

|{U1, U2}(λ, p)| ≤
|||U1|||ρ,µ|||U2|||ρ,µ

(1 + |p|)µ b(µ, |λ|, |p|)

for almost all (λ, p) ∈ Λρ,ν , b(µ, |λ|, |p|) =µ
b1(µ)|λ|
(|λ|2 + 1)2 +

b2(µ)|p|||λ|2 − 1|
|λ|2(1 + |p|(|λ|+ |λ|−1))2 +

b3(µ)|p|
|λ|(1 + |p|(|λ|+ |λ|−1))

¶
,

(3.27)

where Λρ,ν is defined in (3.15), b1(µ), b2(µ), b3(µ) are the constants c3(µ), c4(µ), c5(µ) of
[No4].

4. Approximate finding H on Ω∞ρ,τ from H on bΩρ,τ
We recall that Ω∞ρ,τ and bΩρ,τ were defined in Section 2, see formulas (2.10). We

assume that d = 3.
Consider χrH, where χr denotes the multiplication operator by the function

χr(p) = 1 for |p| < r, χr(p) = 0 for |p| ≥ r, where p ∈ R3, r > 0. (4.1)

Note that
χ2τρH(k, p) = H(k, p) for (k, p) ∈ Ω∞ρ,τ
χ2τρH(k, p) = 0 for (k, p) ∈ (Ω\Ω̄ρ)\Ω∞ρ,τ ,

(4.2)

where ρ > 0, τ ∈]0, 1[.
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As a corollary of (3.5), (3.22), (3.23) we have that

∂

∂λ̄
χ2τρH(k(λ, p), p) = {χ2τρH,χ2τρH}(λ, p) +Rρ,τ (λ, p), (4.3)

Rρ,τ (λ, p) =

{(1− χ2τρ)H,χ2τρH}(λ, p) + {χ2τρH, (1− χ2τρ)H}(λ, p)+
{(1− χ2τρ)H, (1− χ2τρ)H}(λ, p)

(4.4)

for (λ, p) ∈ Λρ,τ,ν of (3.15).
Because of the remainder Rρ,τ of (4.3), (4.4), the ∂̄-equation (3.5), (4.3) is only an

approximate ∂̄- equation for χ2τρH = H on Ω∞ρ,τ or on Λρ,τ,ν in the coordinates λ, p.
However, Rρ,τ rapidly vanishes when ρ increases for fixed τ ∈]0, 1[; see Lemma 4.1.

For approximate finding H on Ω∞ρ,τ from H on Ω∞ρ,τ we proceed from (3.2), (3.3), (4.3),
(4.4), (3.26), (3.27) and the following formulas

u+(λ) =
1

2πi

Z
T +
r

u+(ζ)
dζ

ζ − λ
− 1

π

Z Z
D+
r

∂u+(ζ)

∂ζ̄

dRe ζ d Imζ

ζ − λ
, λ ∈ D+r , (4.5a)

u−(λ) = −
1

2πi

Z
T −r

u−(ζ)
λdζ

ζ(ζ − λ)
− 1

π

Z Z
D−r

∂u−(ζ)

∂ζ̄

λdRe ζ d Imζ

ζ(ζ − λ)
, λ ∈ D−r , (4.5b)

where

D±r = {λ ∈ C\0 :
1

4
(|λ|+ |λ|−1) > r, |λ|±1 < 1},

T ±r = {λ ∈ C : 1
4
(|λ|+ |λ|−1) = r, |λ|±1 ≤ 1}, r > 1/2,

(4.6)

u+(λ) is continuous and bounded on D+r ∪ T +r , ∂u+(λ)/∂λ̄ is bounded on D+r , u−(λ) is
continuous and bounded on D−r ∪ T −r , ∂u−(λ)/∂λ̄ is bounded on D−r , and ∂u−(λ)/∂λ̄ =
O(|λ|−2) as |λ|→∞ (and where the integrals along T ±r are taken in the counter-clockwise
direction). The aforementioned assumptions on u± in (4.5) can be somewhat weakened.
Formulas (4.5) follow from the well-known Cauchy-Green formula

u(λ) =
1

2πi

Z
∂D

u(ζ)
dζ

ζ − λ
− 1

π

ZZ
D

∂u(ζ)

∂ζ̄

dRe ζ d Imζ

ζ − λ
, λ ∈ D, (4.7)

where D is a bounded open domain in C with sufficiently regular boundary and u is a
sufficiently regular function on D̄ = D ∪ ∂D.

Let
H(λ, p) = H(k(λ, p), p), (λ, p) ∈ (C\0)× (R3\Lν), (4.8)

where λ, p are the coordinates of Subsection 3.3 under assumption (3.10a).
Let

Λ±ρ,τ,ν = {(λ, p) : λ ∈ D±ρ/|p|, p ∈ B2τρ\Lν},
bΛ±ρ,τ,ν = {(λ, p) : λ ∈ T ±ρ/|p|, p ∈ B2τρ\Lν},

(4.9)
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where Br, Lν , D±r , T ±r are defined by (1.12) for d = 3, (3.8), (4.6), ρ > 0, τ ∈]0, 1[, ν ∈ S2.
Note that

Λρ,τ,ν = Λ
+
ρ,τ,ν ∪ Λ−ρ,τ,ν , Λ+ρ,τ,ν ∩ Λ−ρ,τ,ν = ∅, bΛρ,τ,ν = bΛ+ρ,τ,ν ∪ Λ−ρ,τ,ν , (4.10)

where Λρ,τ,ν , bΛρ,τ,ν were defined in (3.15), ρ > 0, τ ∈]0, 1[, ν ∈ S2.
As a corollary of (3.2), (3.3), (4.3), (4.4), (3.26), (3.27), (4.5), we obtain the following

Proposition 4.1. Let v and ρ satisfy the same assumptions that in Subsection 3.1.
Let H(λ, p) be defined by (4.8). Then H = H(λ, p) as a function of (λ, p) ∈ Λρ,τ,ν of (4.10),
where τ ∈]0, 1[, satisfies the following nonlinear integral equation

H = H0 +Mρ,τ (H) +Qρ,τ , τ ∈]0, 1[, (4.11)

where

H0(λ, p) =
1

2πi

Z
T +
ρ/|p|

H(ζ, p)
dζ

ζ − λ
, (λ, p) ∈ Λ+ρ,τ,ν , (4.12a)

H0(λ, p) = − 1

2πi

Z
T −
ρ/|p|

H(ζ, p)
λdζ

ζ(ζ − λ)
, (λ, p) ∈ Λ−ρ,τ,ν , (4.12b)

where T ±r are defined by (4.6);

Mρ,τ (U)(λ, p) =M+
ρ,τ (U)(λ, p) =

− 1
π

Z Z
D+
ρ/|p|

(U,U)ρ,τ (ζ, p)
dRe ζ d Imζ

ζ − λ
, (λ, p) ∈ Λ+ρ,τ,ν , (4.13a)

Mρ,τ (U)(λ, p) =M−ρ,τ (U)(λ, p) =

− 1
π

Z Z
D−
ρ/|p|

(U,U)ρ,τ (ζ, p)
λdRe ζ d Imζ

ζ(ζ − λ)
, (λ, p) ∈ Λ−ρ,τ,ν , (4.13b)

(U1, U2)ρ,τ (ζ, p) = {χ2τρU 01, χ2τρU 02}(ζ, p), (ζ, p) ∈ Λρ,τ,ν ,
χ2τρU

0
j(k, p) = Uj(λ(k, p), p), (k, p) ∈ Ω∞ρ,τ,ν ,

χ2τρU
0
j(k, p) = 0, |p| ≥ 2τρ, j = 1, 2,

(4.14)

where U,U1, U2 are test functions on Λρ,τ,ν , {·, ·} is defined by (3.23), λ(k, p) is defined in
(3.12a);

Qρ,τ (λ, p) = −
1

π

Z Z
D+
ρ/|p|

Rρ,τ (ζ, p)
dRe ζ d Imζ

ζ − λ
, (λ, p) ∈ Λ+ρ,τ,ν , (4.15a)

Qρ,τ (λ, p) = −
1

π

Z Z
D−
ρ/|p|

Rρ,τ (ζ, p)
λdRe ζ d Imζ

ζ(ζ − λ)
, (λ, p) ∈ Λ−ρ,τ,ν , (4.15b)
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where Rρ,τ is defined by (4.4).

Remark 4.1. In addition to (4.14), note that the definition of (U1, U2)ρ,τ can be also
written as

(U1, U2)ρ,τ (λ, p) = −
π

4

Z π

−π

µ
|p|
2

|λ|2 − 1
λ̄|λ| (cosϕ− 1)− |p|

λ̄
sinϕ

¶
×

U1(z1(λ, p, ϕ),−ξ(λ, p, ϕ))U2(z2(λ, p, ϕ), p+ ξ(λ, p, ϕ))×
χ2τρ(ξ(λ, p, ϕ))χ2τρ(p+ ξ(λ, p, ϕ))dϕ,

(4.16)

where

z1(λ, p, ϕ) =
2k(λ, p)(θ(−ξ(λ, p, ϕ)) + iω(−ξ(λ, p, ϕ)))

i|p| ,

z2(λ, p, ϕ) =
2(k(λ, p) + ξ(λ, p, ϕ))(θ(p+ ξ(λ, p, ϕ)) + iω(p+ ξ(λ, p, ϕ)))

i|p| ,

(4.17)

(λ, p) ∈ Λρ,τ,ν , ϕ ∈ [−π, π], k(λ, p) is defined in (3.12b), ξ(λ, p, ϕ) is defined by (3.20), θ,
ω are the vector functions of (3.9), (3.10a).

We consider (4.11) as an integral equation for finding H from H0 with unknown
remainder Qρ,τ , where H, H

0, Qρ,τ are considered on Λρ,τ,ν . Thus, actually, we consider
(4.11) as an approximate equation for finding H on Λρ,τ,ν from H0 on Λρ,τ,ν . To deal with
(4.11) we use Lemmas 4.1-4.5 given below.

Let
|||U |||ρ,τ,µ = ess sup

(λ,p)∈Λρ,τ,ν
(1 + |p|)µ|U(λ, p)| (4.18)

for U ∈ L∞(Λρ,τ,ν), where ρ > 0, τ ∈]0, 1[, ν ∈ S2, µ > 0.

Lemma 4.1. Let v and ρ satisfy the same assumptions that in Subsection 3.1. Let
Rρ,τ , Qρ,τ be defined by (4.4), (4.15), τ ∈]0, 1[. Then

Rρ,τ ∈ L∞local(Λρ,τ,ν), (4.19a)

|Rρ,τ (λ, p)| ≤
3b(µ0, |λ|, |p|)C2

(1− η)2(1 + 2τρ)µ−µ0(1 + |p|)µ0 , (λ, p) ∈ Λρ,τ,ν , (4.19b)

Qρ,τ ∈ L∞(Λρ,τ,ν), (4.20a)

|||Qρ,τ |||ρ,τ,µ0 ≤
3b4(µ0)C

2

(1− η)2(1 + 2τρ)µ−µ0
, (4.20b)

where 2 ≤ µ0 ≤ µ, b(µ, |λ|, |p|) is defined in (3.27), η = η(C, ρ, µ) is defined by (3.1),

b4(µ) =
1

π
(b1(µ)n1 + b2(µ)n2 + b3(µ)n3), (4.21)

where b1, b2, b3 are the constants of (3.27) (the constants c3, c4, c5 of Lemma 5.2 of [No4]),
n1, n2, n3 are the constants of Lemma 11.1 of [No4].
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Lemma 4.1 is proved in Section 7.

Lemma 4.2. Let v and ρ satisfy the same assumptions that in Subsection 3.1. Let
H0 be defined by (4.8), (4.12), τ ∈]0, 1[. Then

H0 ∈ L∞(Λρ,τ,ν), (4.22a)

|||H0|||ρ,τ,µ0 ≤
C

1− η

µ
1 +

b4(µ0)C

1− η

¶
, (4.22b)

where 2 ≤ µ0 ≤ µ, η = η(C, ρ, µ) is defined by (3.1), b4 is defined by (4.21).
Lemma 4.2 is proved in Section 7.

Lemma 4.3. Let ρ > 0, ν ∈ S2, τ ∈]0, 1[, µ ≥ 2. Let Mρ,τ be defined by (4.13), (4.14)
(where λ, p the coordinates of Subsection 3.3 under assumption (3.10a)). Let U1, U2 ∈
L∞(Λρ,τ,ν), |||U1|||ρ,τ,µ < +∞, |||U2|||ρ,τ,µ < +∞. Then

Mρ,τ (Uj) ∈ L∞(Λρ,τ,ν), j = 1, 2, (4.23)

|||Mρ,τ (Uj)|||ρ,τ,µ ≤ c8(µ, τ, ρ)(|||Uj |||ρ,τ,µ)2, j = 1, 2, (4.24)

|||Mρ,τ (U1)−Mρ,τ (U2)|||ρ,τ,µ ≤
c8(µ, τ, ρ)(|||U1|||ρ,τ,µ + |||U2|||ρ,τ,µ)|||U1 − U2|||ρ,τ,µ,

(4.25)

where
c8(µ, τ, ρ) = 3b1(µ)τ

2 + 4b2(µ)ρ
−1 + 4b3(µ)τ, (4.26)

where b1, b2, b3 are the constants of (3.27).
Lemma 4.3 is proved in Section 7.
Lemmas 4.1, 4.2, 4.3 show that, under the assumptions of Proposition 4.1, the nonlin-

ear integral equation (4.11) for unknown H can be analysed for H0, Qρ,τ , H ∈ L∞(Λρ,τ,ν)
using the norm ||| · |||ρ,τ,µ0 , where 2 ≤ µ0 ≤ µ.

Consider the equation

U = U0 +Mρ,τ (U), ρ > 0, τ ∈]0, 1[, (4.27)

for unknown U (where U0, U are functions on Λρ,τ,ν). Actually, under the assumptions of
Proposition 4.1, we suppose that U0 = H0 +Qρ,τ or consider U

0 as an approximation to
H0 +Qρ,τ .

Lemma 4.4. Let ρ > 0, ν ∈ S2, τ ∈]0, 1[, µ ≥ 2 and 0 < r < (2c8(µ, τ, ρ))
−1. Let

Mρ,τ be defined by (4.13), (4.14) (where λ, p are the coordinates of Subsection 3.3 under
assumption (3.10a)). Let U0 ∈ L∞(Λρ,τ,ν) and |||U0|||ρ,τ,µ ≤ r/2. Then equation (4.27) is
uniquely solvable for U ∈ L∞(Λρ,τ,ν), |||U |||ρ,τ,µ ≤ r, and U can be found by the method of
successive approximations, in addition,

|||U − (Mρ,τ,U0)n(0)|||ρ,τ,µ ≤
r(2c8(µ, τ, ρ)r)

n

2(1− 2c8(µ, τ, ρ)r)
, n ∈ N, (4.28)

where Mρ,τ,U0 denotes the map U → U0 +Mρ,τ (U).
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Lemma 4.4 is proved in Section 8 (using Lemma 4.3 and the lemma about contraction
maps).

Lemma 4.5. Let the assumptions of Lemma 4.4 be fulfilled. Let also Ũ0 ∈ L∞(Λρ,τ,ν),

|||Ũ0|||ρ,τ,µ ≤ r/2, and Ũ denote the solution of (4.27) with U0 replaced by Ũ0, where

Ũ ∈ L∞(Λρ,τ,ν), |||Ũ |||ρ,τ,µ ≤ r. Then

|||U − Ũ |||ρ,τ,µ ≤ (1− 2c8(µ, τ, ρ)r)−1|||U0 − Ũ0|||ρ,τ,µ. (4.29)

Lemma 4.5 is proved in Section 8.
Estimates (3.2), (3.3), Proposition 4.1 and Lemmas 4.1, 4.2, 4.3, 4.4, 4.5 imply, in

particular, the following result.
Proposition 4.2. Let v and ρ satisfy the same assumptions that in Subsection 3.1.

Let ν ∈ S2, τ ∈]0, 1[, 2 ≤ µ0 < µ. Let H, H0 be defined on Λρ,τ,ν by (4.8), (4.12) and Mρ,τ

be defined by (4.13). Let

rmin(µ, µ0, τ, ρ, C) ≤ r < (2c8(µ0, τ, ρ))
−1,

rmin
def
=

2C

1− η(C, ρ, µ)
+

2b4(µ0)C
2

(1− η(C, ρ, µ))2

µ
1 +

3

(1 + 2τρ)µ−µ0

¶
,

(4.30)

where η is defined in (3.1), c8 is defined by (4.26). Then the equation

H̃ρ,τ = H0 +Mρ,τ (H̃ρ,τ ) (4.31)

is uniquely solvable for H̃ρ,τ ∈ L∞(Λρ,τ,ν), |||H̃ρ,τ |||ρ,τ,µ0 ≤ r, by the method of successive
approximations and

|||H − H̃ρ,τ |||ρ,τ,µ0 ≤
3b4(µ0)C

2

(1− 2c8(µ0, τ, ρ)r)(1− η(C, ρ, µ))2(1 + 2τρ)µ−µ0
. (4.32)

Note that (4.30) can be fulfilled if and only if

rmin(µ, µ0, τ, ρ, C) < (2c8(µ0, τ, ρ))
−1. (4.33)

Using the definitions of η of (3.1) and c8 of (4.26) one can see that:

conditions (3.1) and (4.33) are fulfilled,

if C ≤ c9(µ, µ0, ρ, τ) for appropriate positive c9,
(4.34)

where 2 ≤ µ0 < µ, ln ρ ≥ 2, 0 < τ < 1. Using (4.34) one can see that Proposition 4.2 gives
a method for approximate findingH on Ω∞ρ,τ fromH on bΩρ,τ with estimate (4.32), at least,
for sufficiently small potentials v in the sense kv̂kµ < C, C ≤ c9(µ, µ0, ρ, τ). However, the
main point is that Proposition 4.2 also contains a global result, see considerations given
below in this section.
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Due to (4.26) we have that

c8(µ0, τ, ρ) ≤ ε if 0 < τ ≤ τ(ε, µ0), ρ ≥ ρ(ε, µ0) (4.35)

for any arbitrary small ε > 0 and appropriate sufficiently small τ(ε, µ0) ∈]0, 1[ and suffi-
ciently great ρ(ε, µ0). Using (4.35) and the definition of η of (3.1) we obtain that:

conditions (3.1), (4.33) are fulfilled and

0 ≤ η(C, ρ, µ) < δ, 0 ≤ 2c8(µ0, τ, ρ) rmin(µ, µ0, τ, ρ, C) < δ,

if 0 < τ ≤ τ1(µ, µ0, C, δ), ρ ≥ ρ1(µ, µ0, C, δ),

(4.36)

where τ1 and ρ1 are appropriate constants such that τ1 ∈]0, 1[ is sufficiently small and ρ1
is sufficiently great, 2 ≤ µ0 < µ, 0 < δ < 1.

As a corollary of Proposition 4.2 and property (4.36), we obtain the following result.

Corollary 4.1. Let v satisfy (2.1) and kv̂kµ ≤ C. Let

0 < τ ≤ τ1(µ, µ0, C, δ), ρ ≥ ρ1(µ, µ0, C, δ), (4.37)

where 2 ≤ µ0 ≤ µ, 0 < δ < 1. Then H on bΩρ,τ determines via (4.12), (4.31) the

approximation H̃ρ,τ to H on Ω∞ρ,τ with the error estimate (4.32) (where r can be taken, for
example, as r = rmin of (4.30)) and, in particular, with

|||H − H̃ρ,τ |||ρ,τ,µ0 = O(ρ−(µ−µ0)) as ρ→ +∞. (4.38)

The constant C can be arbitrary great in Corollary 4.1 and, therefore, the result of
Corollary 4.1 is global.

5. Approximate finding v̂ on B2τρ from H̃ρ,τ on Ω
∞
ρ,τ

Consider, first, H on Ω∞ρ,τ,ν in the coordinates k, p as H on Λρ,τ,ν in the coordinates
λ, p according to (4.8). If v̂ satisfies (2.1), then formulas (3.4), (4.8), (3.12b), (3.13) imply
that

H(λ, p)→ v̂(p) as λ→ 0,

H(λ, p)→ v̂(p) as λ→∞,
(5.1)

where p ∈ B2τρ\Lν , τ ∈]0, 1[.
Consider now H̃ρ,τ defined in Proposition 4.2. Under the assumptions of Proposition

4.2, the following formulas hold:

H̃ρ,τ (λ, p)→ v̂+(p, ρ, τ) as λ→ 0, (5.2a)

H̃ρ,τ (λ, p)→ v̂−(p, ρ, τ) as λ→∞, (5.2b)

where

v̂+(p, ρ, τ) =
1

2πi

Z
T +
ρ/|p|

H(ζ, p)
dζ

ζ
−

1

π

Z Z
D+
ρ/|p|

(H̃ρ,τ , H̃ρ,τ )ρ,τ (ζ, p)
dRe ζd Imζ

ζ
,

(5.3a)
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v̂−(p, ρ, τ) =
1

2πi

Z
T −
ρ/|p|

H(ζ, p)
dζ

ζ
+

1

π

Z Z
D−
ρ/|p|

(H̃ρ,τ , H̃ρ,τ )ρ,τ (ζ, p)
dRe ζd Imζ

ζ
,

(5.3b)

where p ∈ B2τρ\Lν , τ ∈]0, 1[, (H̃ρ,τ , H̃ρ,τ )ρ,τ is defined by means of (4.14), (4.16), (4.17).

Formulas (5.2), (5.3) follow from (4.31), where |||H̃ρ,τ |||ρ,τ,µ0 < ∞, µ0 ≥ 2, formulas
(4.12), (4.13) and estimate (3.27).

Formulas (5.1), (5.2), (4.18) imply that

kv̂ − v̂±(·, ρ, τ)k2τρ,µ0 ≤ |||H − H̃ρ,τ |||ρ,τ,µ0 , (5.4)

where
kwkr,µ = ess sup

p∈Br\Lν
(1 + |p|)µ|w(p)|, µ > 0, r > 0, (5.5)

and ρ, τ, µ0 are the same that in Proposition 4.2. Thus, under the assumptions of Propo-
sition 4.2 (or under the assumptions of Corollary 4.1), formulas (5.2), (5.3), (5.4), (4.32)
imply that v̂ on B2τρ can be approximately determined from H̃ρ,τ on Ω

∞
ρ,τ as v̂±(·, ρ, τ) of

(5.2), (5.3) and

kv̂ − v̂±(·, ρ, τ)k2τρ,µ0 is smaller or equal than the right− hand side of (4.32)
and, in particular, is O(ρ−(µ−µ0)) as ρ→ +∞.

(5.6)

6. Reconstruction of v from Φ
In this section we summarize our global 3D reconstruction

Φ
1→ h

¯̄
bΘρ,τ

2→ v̂
¯̄
B2τρ

3→ v (6.1)

developed in [No1], [No2] and in Sections 4, 5 of the present work. See formulas (1.22),
(1.3)-(1.12), (2.4) for notations used in (6.1). In (6.1) the numbers ρ > 0 and τ ∈]0, 1[ are
parameters. The reconstruction (6.1) for fixed ρ and τ is approximate on the steps 2 and
3. The steps 1, 2, 3 of (6.1) consist in the following:

(1) To find h
¯̄
bΘρ,τ

from Φ we use formulas and equations (1.23)-(1.25). In addition,

if v is sufficiently close to some known non-zero background potential v0, then instead of
(1.23)-(1.25) one can use their advanced version of [No2] for improving the reconstruction
stability.

(2) To find v̂ on B2τρ from h on bΘρ,τ (approximately but stably and with minimal
approximation error) we proceed as follows

h
¯̄
bΘρ,τ

−→
(1.4)

H
¯̄
bΩρ,τ

−→
(3.12)

H
¯̄
bΛρ,τ,ν

−→
(4.12)

H0
¯̄
Λρ,τ,ν

−→
(4.31)

H̃ρ,τ on Λρ,τ,ν

−→
(5.3)

v̂±(·, τ, ρ) on B2τρ,

(6.2)
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where v̂±(·, τ, ρ) approximates v̂ on B2τρ. See also formulas (2.4), (2.10), (2.11), (3.15),
(3.18) concerning the sets bΩρ,τ , bΛρ,τ,ν , Λρ,τ,ν mentioned in (6.2). In (6.2) the substep

from H0 to H̃ρ,τ consists in solving the nonlinear integral equation (4.31), whereas all
other substeps are given by explicit formulas.

(3) Finally, from v̂±(·, τ, ρ) of (6.2) we find v±(·, τ, ρ) by formula (2.8), where v±(·, τ, ρ)
approximates v on R3.

One can see that on its steps 1 and 3 reconstruction (6.1) is reduced to results of [No1],
[No2] and to the inverse Fourier transform, whereas (6.2) is developed in the present work.
Some rigorous results concerning (2.8), (6.2), were already summarized as Theorem 2.1
and Corollary 2.1 of Section 2.

In addition, under the assumptions of Theorem 2.1, a more detailed version of (2.7)
is given by

|v̂(p)− v̂±(p, τ, ρ)| ≤ q(µ, µ0, τ, ρ, C)C
2

(1 + 2τρ)µ−µ0
,

q(µ, µ0, τ, ρ, C) =
3b4(µ0)

(1− 2c8(µ0, τ, ρ)rmin(µ, µ0, τ, ρ, C))(1− η(C, ρ, µ))2
,

(6.3)

where η, b4, c8, rmin are defined in (3.1), (4.21), (4.26), (4.30). Estimate (2.7) with

c5(µ, µ0, τ, δ) =
3b4(µ0)

(1− δ)3(2τ)µ−µ0
(6.4)

follows from (6.3) and (4.36).
Note that h

¯̄
bΘρ,τ

, H
¯̄
bΩρ,τ

and H
¯̄
bΛρ,τ,ν

represent the same function in different co-

ordinates. For stability analysis of (6.2) it is convenient to fix this function as H
¯̄
bΛρ,τ,ν

.

Under the assumptions of Theorem 2.1, this function has, in particular, the following
properties (see (3.2), (3.3) and the proof of (4.22b)):

H ∈ C(bΛρ,τ,ν), (6.5)

kHkρ,τ,µ0 ≤
C

1− η(C, ρ, µ)
, (6.6)

kTbHkρ,τ,µ0 ≤
C

1− η(C, ρ, µ)

¡
1 +

b4(µ0)C

1− η(C, ρ, µ)

¢
, (6.7)

where C denotes the space of continuous functions, η is defined by (3.1),

(TbU)(λ, p) =
1

2πi

Z
T +
ρ/|p|

U(ζ, p)
dζ

ζ − λ(1− 0) , (λ, p) ∈ bΛ+ρ,τ,ν ,

(TbU)(λ, p) = −
1

2πi

Z
T −
ρ/|p|

U(ζ, p)
λdζ

ζ(ζ − λ(1 + 0))
, (λ, p) ∈ bΛ−ρ,τ,ν ,

(6.8)
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kUkρ,τ,µ0 = sup
(λ,p)∈bΛρ,τ,ν

(1 + |p|)µ0 |U(λ, p)|, (6.9)

where U is a test function on bΛρ,τ,ν , bΛ
±
ρ,τ,ν are defined in (4.9)

(and bΛρ,τ,ν = bΛ+ρ,τ,ν ∩ bΛ−ρ,τ,ν , see (4.10)).
Properties (6.5)-(6.7) are necessary properties of H

¯̄
bΛρ,τ,ν

under the assumptions of

Theorem 2.1. In addition, if two functions H1, H2 satisfy (6.5)-(6.7), where τ , ρ satisfy
(2.6), C > 0, 2 ≤ µ0 < µ, 0 < δ < 1, then v̂±i (·, τ, ρ) on B2τρ can be constructed from Hi

via (4.12), (4.31), (5.2), (5.3), i = 1, 2 (in the same way as v̂±(·, τ, ρ) is constructed from
H
¯̄
bΛρ,τ,ν

in the framework of Theorem 2.1), and

kv̂±1 (·, τ, ρ)− v̂±2 (·, τ, ρ)k2τρ,µ0 ≤ (1− δ)−1kTb(H1 −H2)kρ,τ,µ0 , (6.10)

where k · k2τρ,µ0 in the left-hand side of (6.10) is defined as in (5.5), k · kρ,τ,µ0 in the
right-hand side of (6.10) is defined by (6.9), Tb is defined by (6.8).

The stability estimate (6.10) follows from:
(a) the maximum principle in λ for H0

1 , H
0
2 , H

0
1 −H0

2 , where H
0
n is constructed from

Hn via (4.12), n = 1, 2,
(b) Lemma 4.5 and statement of (4.36),
(c) arguments similar with the arguments used for (5.4).
In the present work, restrictions in time prevent us from discussing the stability of

(6.1), (6.2) in more detail.

7. Proofs of Lemmas 4.1, 4.2, 4.3

Proof of Lemma 4.1. Under the assumptions of Subsection 3.1, due to (3.2), (3.3),
(3.25), (4.2), we have that

H, χ2τρH, (1− χ2τρ)H ∈ L∞µ0(Ω\Ω̄ρ),
|||H|||ρ,µ0 ≤ (1− η)−1C, |||χ2τρH|||ρ,µ0 ≤ (1− η)−1C,

|||(1− χ2τρ)H|||ρ,µ0 ≤ (1− η)−1(1 + 2τρ)−(µ−µ0)C,

(7.1)

where η is given by (3.1), τ ∈]0, 1[, 0 ≤ µ0 ≤ µ.
Formulas (4.19) follow from (4.4), (7.1), (3.26), (3.27).
Formulas (4.20) follow from (4.15), (4.19), Lemma 11.1 of [No4] and the following

formulas Z
D−r

uj(ζ, s)
|λ|
|ζ|

dRe ζ d Imζ

|ζ − λ| =

Z
D+
r

uj(ζ, s)
dRe ζ d Imζ

|ζ − λ−1| ,

j = 1, 2, 3, r > 1/2, λ ∈ D−r , s > 0,

(7.2)

u1(ζ, s) =
|ζ|

(|ζ|2 + 1)2 , u2(ζ, s) =
(|ζ|2 + 1)s

|ζ|2(1 + s(|ζ|+ |ζ|−1))2 ,

u3(ζ, s) =
s

|ζ|(1 + s(|ζ|+ |ζ|−1)) .
(7.3)
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Lemma 4.1 is proved.

Proof of Lemma 4.2. Using (4.5), (4.12) and (4.8), (3.22) we obtain that

H0(λ, p) = H(λ, p) +
1

π

Z Z
D+
ρ/|p|

{H,H}(ζ, p)dRe ζ d Imζ

ζ − λ
, (λ, p) ∈ Λ+ρ,τ,ν , (7.4a)

H0(λ, p) = H(λ, p) +
1

π

Z Z
D−
ρ/|p|

{H,H}(ζ, p)λ dRe ζ d Imζ

ζ(ζ − λ)
, (λ, p) ∈ Λ−ρ,τ,ν . (7.4b)

Formulas (4.22) follow from (7.4), (3.2), (3.3), (3.26), (3.27), Lemma 11.1 of [No4] and
formulas (7.2), (7.3).

Lemma 4.2 is proved.

Proof of Lemma 4.3. Consider

Iρ,τ (U, V )(λ, p) = I+ρ,τ (U, V )(λ, p) =

− 1
π

Z Z
D+
ρ/|p|

(U, V )ρ,τ (ζ, p)
dRe ζ d Imζ

ζ − λ
, (λ, p) ∈ Λ+ρ,τ,ν , (7.5a)

Iρ,τ (U, V )(λ, p) = I−ρ,τ (U, V )(λ, p) =

− 1
π

Z Z
D−
ρ/|p|

(U, V )ρ,τ (ζ, p)
λ dRe ζ d Imζ

ζ(ζ − λ)
, (λ, p) ∈ Λ−ρ,τ,ν , (7.5b)

where U, V ∈ L∞(Λρ,τ,ν), |||U |||ρ,τ,µ < +∞, |||V |||ρ,τ,µ < +∞, (U, V )ρ,τ is defined by
(4.14), (4.16), ρ, ν, τ , µ are the same that in Lemma 4.3.

Note that

Mρ,τ (Uj) = Iρ,τ (Uj , Uj), j = 1, 2, (7.6)

Mρ,τ (U1)−Mρ,τ (U2) = Iρ,τ (U1 − U2, U1) + Iρ,τ (U2, U1 − U2), (7.7)

where U1, U2 are the functions of Lemma 4.3.
Using (7.6), (7.7) one can see that in order to prove Lemma 4.3 it is sufficient to prove

that

Iρ,τ (U, V ) ∈ L∞(Λρ,τ,ν), (7.8)

|||Iρ,τ (U, V )|||ρ,τ,µ ≤ c8(µ, τ, ρ)|||U |||ρ,τ,µ|||V |||ρ,τ,µ (7.9)

under the same assumptions that in (7.5).
Formulas (7.8), (7.9) follow from (7.5), (4.14), (4.16), (3.26), (3.27), (7.2), (7.3) and

the following estimates:Z
D+
ρ/|p|

uj(ζ, |p|)
dRe ζ d Imζ

|ζ − λ| ≤

⎧⎨⎩ (3/4)π(|p|/ρ)
2 for j = 1

4π/ρ for j = 2
2π|p|/ρ for j = 3,

(7.10)
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where u1, u2, u3 are defined by (7.3), 0 < |p| < 2τρ, 0 < τ < 1, λ ∈ D+ρ/|p|.
In turn, estimates (7.10) follow from the estimates

ζ ∈ D+r ⇒ |ζ| ≤ (2r)−1, r ≥ 1/2, (7.11)

Z
|ζ|≤ε

uj(ζ, s)
dRe ζ d Imζ

|ζ − λ| ≤

⎧⎨⎩ 3πε2 for j = 1
8πε/(ε+ s) for j = 2

4πε for j = 3,
(7.12)

where 0 ≤ ε ≤ 1, s > 0, |λ| ≤ ε. (To obtain (7.10) we use (7.11), (7.12) for r = ρ/|p|,
ε = (2r)−1, s = |p|.)

The proof of (7.11). One can see that

ζ ∈ D+r
(4.6)⇒ |ζ|2 − 4|ζ|r + 1 > 0, |ζ| < 1⇒

|ζ| < 2r(1−
p
1− 1/(2r)2) ≤ (2r)−1,

(7.13)

where r ≥ 1/2.

The proof of (7.12). We have that

Z
|ζ|≤ε

uj(ζ, s)
dRe ζ d Imζ

|ζ − λ| ≤

µ Z
|ζ|≤ε, |ζ|≤|ζ−λ|

+

Z
|ζ|≤ε, |ζ|≥|ζ−λ|

¶
uj(ζ, s)

dRe ζ d Imζ

|ζ − λ| ≤ Aj +Bj ,

Aj =

Z
|ζ|≤ε

uj(ζ, s)
dRe ζ d Imζ

|ζ| ,

Bj =

Z
|ζ−λ|≤|ζ|≤ε

uj(ζ, s)
dRe ζ d Imζ

|ζ − λ| ,

(7.14)

where j = 1, 2, 3. Further,

A1 ≤
Z

|ζ|≤ε

dRe ζ d Imζ = πε2,

B1 ≤ ε

Z
|ζ−λ|≤ε

dRe ζ d Imζ

|ζ − λ| = 2πε2,

(7.15)
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A2 ≤
Z

|ζ|≤ε

(1 + ε2)s dRe ζ d Imζ

(|ζ|+ s(|ζ|2 + 1))2|ζ| ,

B2 ≤
Z

|ζ−λ|≤ε

(1 + ε2)s dRe ζ d Imζ

(|ζ − λ|+ s(|ζ − λ|2 + 1))|ζ − λ| ,

A2 +B2 ≤ 4s
Z

|ζ|≤ε

dRe ζ d Imζ

(|ζ|+ s)2|ζ| = 8πs
εZ
0

dr

(r + s)2
= 8πε/(ε+ s),

(7.16)

A3 ≤
Z

|ζ|≤ε

s dRe ζ d Imζ

(|ζ|+ s(|ζ|2 + 1))|ζ| ,

B3 ≤
Z

|ζ−λ|≤ε

s dRe ζ d Imζ

(|ζ − λ|+ s(|ζ − λ|2 + 1))|ζ − λ| ,

A3 +B3 ≤ 2
Z

|ζ|≤ε

s dRe ζ d Imζ

(|ζ|+ s)|ζ| = 4πs

εZ
0

dr

r + s
= 4πs ln

¡
1 +

ε

s

¢
≤ 4πε.

(7.17)

Estimates (7.12) follow from (7.14)-(7.17).
Lemma 4.3 is proved.

8. Proof of Lemmas 4.4 and 4.5

Proof of Lemma 4.4. For

U0, U, U1, U2 ∈ L∞(Λρ,τ,ν),

|||U0|||ρ,τ,µ ≤ r/2, |||U |||ρ,τ,µ ≤ r, |||U1|||ρ,τ,µ ≤ r, |||U2|||ρ,τ,µ ≤ r,
(8.1)

using Lemma 4.3 and the assumptions of Lemma 4.4 we obtain that

Mρ,τ,U0(U) ∈ L∞(Λρ,τ,ν),

|||Mρ,τ,U0(U)|||ρ,τ,µ ≤ |||U0|||ρ,τ,µ + |||Mρ,τ (U)|||ρ,τ,µ ≤
r/2 + c8(µ, τ, ρ)r

2 < r,

(8.2)

|||Mρ,τ,U0(U1)−Mρ,τ,U0(U2)|||ρ,τ,µ ≤ 2c8(µ, τ, ρ)r|||U1 − U2|||ρ,τ,µ,
2c8(µ, τ, ρ)r < 1,

(8.3)

where
Mρ,τ,U0(U) = U0 +Mρ,τ (U). (8.4)

Due to (8.1)-(8.4),Mρ,τ,U0 is a contraction map of the ball U ∈ L∞(Λρ,τ,ν), |||U |||ρ,τ,µ ≤ r.
Using now the lemma about contraction maps and using the formulas

|||U −Mn
ρ,τ,U0(0)|||ρ,τ,µ ≤

∞X
j=n

|||M j+1
ρ,τ,U0(0)−M j

ρ,τ,U0(0)|||ρ,τ,µ, (8.5)

|||Mρ,τ,U0(0)− 0|||ρ,τ,µ = |||U0|||ρ,τ,µ ≤ r/2, (8.6)
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|||M j+1
ρ,τ,U0(0)−M j

ρ,τ,U0(0)|||ρ,τ,µ
(8.3)

≤ 2c8(ρ, τ, µ)r×

|||M j
ρ,τ,U0(0)−M j−1

ρ,τ,U0(0)|||ρ,τ,µ, j = 1, 2, 3, . . . ,
(8.7)

where U is the fixed point ofMρ,τ,U0 in the aforementioned ball,M
0
ρ,τ,U0(0) = 0, we obtain

Lemma 4.4.

Proof of Lemma 4.5. We have that

U − Ũ = U0 − Ũ0 +Mρ,τ (U)−Mρ,τ (Ũ), (8.8a)

Mρ,τ (U)−Mρ,τ (Ũ)
(7.7)
= Iρ,τ (U − Ũ , U) + Iρ,τ (Ũ , U − Ũ), (8.8b)

where Iρ,τ (U, V ) is defined by (7.5).
In view of (8.8b) we can consider (8.8a) as a linear integral equation for ”unknown”

U − Ũ with given U0 − Ũ0, U , Ũ . Using (7.9) and the properties |||U |||ρ,τ,µ ≤ r,

|||Ũ |||ρ,τ,µ ≤ r we obtain that

|||Iρ,τ (U − Ũ , U)− Iρ,τ (Ũ , U − Ũ)|||ρ,τ,µ ≤ 2c8(µ, τ, ρ)r|||U − Ũ |||ρ,τ,µ. (8.9)

Using (8.8b), (8.9) and solving (8.8a) by the method of successive approximations we
obtain (4.29). Lemma 4.5 is proved.
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