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MODULATION ANALYSIS FOR A STOCHASTIC NLS EQUATIONARISING IN BOSE-EINSTEIN CONDENSATIONANNE DE BOUARD1 AND REIKA FUKUIZUMI2
1 Centre de Mathématiques Appliquées,CNRS et Eole Polytehnique, 91128 Palaiseau edex, Frane;debouard�mapx.polytehnique.fr

2 Department of Mathematis, Hokkaido University, Sapporo 060-0810, Japan;reika�math.si.hokudai.jpAbstrat. We study the asymptoti behavior of the solution of a model equation for Bose-Einstein ondensation, in the ase where the trapping potential varies randomly in time. Themodel is the so alled Gross-Pitaevskii equation, with a quadrati potential with white noise�utuations in time whose amplitude ε tends to zero. The initial ondition of the solution is astanding wave solution of the unperturbed equation. We prove that up to times of the orderof ε−2, the solution deomposes into the sum of a randomly modulated standing wave and asmall remainder, and we derive the equations for the modulation parameters. In addition, weshow that the �rst order of the remainder, as ε goes to zero, onverges to a Gaussian proess,whose expeted mode amplitudes onentrate on the third eigenmode generated by the Hermitefuntions, on a ertain time sale. 1. IntrodutionThe �rst experimental realizations of Bose-Einstein ondensation in weakly interating gasessparked o� many theoretial and experimental studies on oherent atomi matter. The Shrödingerequation with ubi nonlinearity and a harmoni potential has been widely used as a modelequation (see for example [24℄). However, magneti trapping imposes limitations on the studyof Bose-Einstein ondensates, beause only the weak-�eld seeking atomi states are on�ned,whih may ause a hain of drawbaks (see [28℄). Suh problems are avoided if Bose-Einsteinondensation is ahieved in an optial trap based on the optial dipole fore whih on�nesatoms in all hyper�ne states. The authors in [28℄ sueeded to obtain ondensation in all-optialfar-o�-resonane laser trap. The use of optial traps may bring other advantages suh as ob-taining di�erent geometrial on�gurations or reating more dense ondensates. On the otherhand, in real situation, one should take into aount stohastiity in the dynamial behavior ofthe ondensate, for the reason that some �utuations of the laser intensity are observed in theexperiments. Those �utuations may be regarded as �utuations of the harmoni trap potentialin the mean �eld approximation (see [1℄). In this ase, one may be led to onsider the following1991 Mathematis Subjet Classi�ation. 35Q55, 60H15 .Key words and phrases. Nonlinear Shrödinger equation, stohasti partial di�erential equations, whitenoise, harmoni potential, standing waves, expeted mode powers.1



nonlinear Shrödinger equation (radially symmetri 2D Gross-Pitaevskii equation) perturbed bya random quadrati potential:
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+ (1 + εξ̇(t))r2u− λ|u|2u− iγu, (1.1)where λ = ±1 and ξ̇ is a white noise in time with orrelation funtion E(ξ̇(t)ξ̇(s)) = δ0(t − s).Here, δ0 denotes the Dira measure at the origin, γ ≥ 0 and ε > 0. The produt arising in theright hand side is interpreted in the Stratonovih sense, sine the noise here naturally arises asthe limit of proesses with nonzero orrelation length. We moreover assume that the noise isreal valued. The term εξ̇(t) represents the deviations of the laser intensity E(t) around its meanvalue (see [1℄). Also, in this model, the sign of λ is related to the sign of the atomi satteringlength, whih may be positive or negative. A similar model was used in [12℄ in dimension three,exept that the �utuations there were not assumed to be delta-orrelated. Related equationsmay also be found in the ontext of opti �bers. In [2℄ e.g., equation (1.1) without the harmonipotential term, and simply with a multipliative noise was onsidered as a model for optialsoliton propagation in �bers with random inhomogeneities. In [1℄, the qualitative properties ofsolutions of (1.1) is studied by using the �moments method" whih onsists in �nding (�nitedimensional) evolution equations satis�ed by a few integral quantities of the solutions, like e.g.,energy, momentum, and so on. A losed system of equations is found in the ase where there isno damping. The solutions of this system of stohasti di�erential equations are then formallyapproximated in the limit where the noise tends to zero.Our aim in this paper is, as a sequel to the mathematial study in [8℄, to investigate thein�uene of random perturbations on the propagation of deterministi standing waves. Themethod we will use, so alled olletive oordinate approah, onsists in writing that the mainpart of the solution is given by a modulated soliton and in �nding then the modulation equationsfor the soliton parameters. Suh ideas to analyze the asymptoti behavior have been used bymany authors in the physis literature, as well as in the study of mathematial problems (see forexample, Weinstein [30℄, Jonsson et al [15, 16℄). The modulation theory, in general, provides anapproximate and onstrutive answer to questions onerning the loation of the standing waveand the behavior of its phase for t > 0.In order to state preisely the problem and our results, we onsider a probability spae (Ω,F ,P)endowed with a standard �ltration (Ft)t≥0 and a standard real valued Brownian motion W (t)on R

+ assoiated with the �ltration (Ft)t≥0. We set ξ̇ = dW
dt and then onsider the stohastinonlinear Shrödinger equation:

idu+ (∆u− |x|2u+ λ|u|2σu+ iγu)dt = ε|x|2u ◦ dW, (1.2)where ◦ stands for a Stratonovih produt in the right hand side of (1.2), σ > 0, ε > 0, γ ≥ 0and λ = ±1. We will use the equivalent It� equation whih may be written as
idu+ (∆u− |x|2u+

i

2
ε2|x|4u+ λ|u|2σu+ iγu)dt = ε|x|2udW. (1.3)Moreover, we do not restrit ourselves to dimension two here, and onsider that in Eq. (1.2) or(1.3), x ∈ R

d, d = 1 or 2. 2



Let us give some notations. For p ≥ 1, Lp(Rd) is the Lebesgue spae of omplex valued, p-thsummable funtions, and the inner produt in the Hilbert spae L2(Rd) is denoted by (·, ·), i.e.,
(u, v) =

∫

Rd

u(x)v(x)dx, for u, v ∈ L2(Rd).Moreover 〈u, v〉 = Re(u, v). The norm in Lp(Rd) is denoted by | · |Lp . With the aim of studyingthe spetrum of linearized operator we will onsider the spae L
2(Rd) of R

2-valued funtions of
L2(Rd)×L2(Rd), and L̃

2(Rd) = L
2(Rd)+iL2(Rd), whih is identi�ed with the spae of C

2-valued,square integrable funtions. L̃
2(Rd) is endowed with inner produt

((U ,V)) = (u1, v1) + (u2, v2), |U|2
L̃2(Rd)

= ((U ,U)),where
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u1

u2

)

, V =

(

v1
v2

)

∈ L̃
2(Rd).Operator norms will be denoted by ‖ · ‖L(X) or ‖ · ‖L(X,Y ), if X and Y are Banah spaes wherethe operators are de�ned.We de�ne for s ∈ R the spae Hs(Rd) of tempered distributions v ∈ S ′

(Rd) whose Fouriertransform v̂ satis�es (1+|ξ|2)s/2v̂ ∈ L2(Rd). The norm in Hs(Rd) is denoted by |·|Hs . We denotethe weighted spae {v ∈ H1(Rd); |x|v ∈ L2(Rd)} by Σ and its norm by | · |Σ = (| · |2H1 + |x · |2L2)
1/2.We de�ne the energy

H(u) =
1

2
|∇u|2L2 +

1

2
|xu|2L2 −

λ

2σ + 2
|u|2σ+2

L2σ+2 , (1.4)whih is a onserved quantity of the deterministi equation without damping, i.e., (1.2) with
ε = 0 and γ = 0. We will onsider solutions in the spae Σ, whih is the natural spae where
H is well de�ned, thanks to the embedding Σ ⊂ H1(Rd) ⊂ L2σ+2(Rd), for σ < 2d

d−2 if d ≥ 3 or
σ < +∞ if d = 1, 2.In the ase where ε = 0 and γ = 0, it is known that in the energy spae Σ, equation (1.2) isloally well posed for λ = ±1, σ < 2d

d−2 if d ≥ 3 or σ < +∞ if d = 1, 2 and globally well posed ifeither λ = −1 or λ = 1 and σ < 2/d (see [21℄). Also, blow up phenomena appear for λ = 1 and
σ ≥ 2/d under ertain ondition on the initial data, for example, a data with negative energy(see [3℄). We generalized in [8℄ these deterministi results to equation (1.2) and we also studiedthe loal existene of solutions in dimensions d = 1 or 2.Theorem 1. ([8℄) Assume σ > 0, γ ≥ 0 and λ = ±1. Assume u0 ∈ Σ if d = 1, or u0 ∈ Σ2and 1/2 ≤ σ ≤ 1 if d = 2. Then there exist a stopping time τ∗(u0, ω) and a unique solution
u(t) adapted to (Ft)t≥0 of (1.2) with u(0) = u0, whih is almost surely in C([0, τ ]; Σ) for any
τ < τ∗(u0). Moreover, we have almost surely,

τ∗(u0, ω) = +∞ or lim sup
tրτ∗(u0,ω)

|u(t)|Σ = +∞.3



Here, for m ∈ N, m ≥ 1,
Σm = Hm ∩ {u ∈ L2(Rd) ; (1 + |x|2)m/2u ∈ L2(Rd)} ⊂ Σ.The dual spae of Σm in the L2 sense, whih we denote by Σ−m, is
Σ−m = H−m +

{

u ∈ S ′

(Rd) ;
u

(1 + |x|2)m/2 ∈ L2(Rd)

}

,and the norm in Σ−m is given by
|u|Σ−m = inf
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∣

∣

∣

∣

L2

; u = u1 + u2

} for u ∈ Σ−m.The Σ2 regularity for the initial data in the ase d = 2 is required for the energy equality, andin order to get pathwise ontinuous solutions with values in Σ : the solution given by Theorem1 is a strong solution in the probabilisti sense. >From now on, we �x λ = 1 and γ = 0, so thatwe onsider the equation
idu+ (∆u− |x|2u+

i

2
ε2|x|4u+ |u|2σu)dt = ε|x|2udW. (1.5)We now go bak to the deterministi ase and onsider the two parameter family of standingwave solutions

ei(µt+θ)φµ(x) (1.6)of equation (1.2) with ε = 0 and θ, µ ∈ R, i.e.,
i∂tu+ ∆u− |x|2u+ |u|2σu = 0, x ∈ R

d, t ≥ 0. (1.7)The standing wave solution satis�es (1.7) if and only if φµ satis�es the following semilinear elliptiequation:
−∆φ+ |x|2φ+ µφ− |φ|2σφ = 0, x ∈ R

d. (1.8)The existene of the standing wave solutions is proved, with the help of the ompat embedding
Σ ⊂ L2, for any µ > −λ0 where

λ0 = inf{|∇v|2L2 + |xv|2L2 ; v ∈ Σ, |v|L2 = 1} = d. (1.9)The inverse sattering method gives some qualitative properties (e.g. asymptoti stability) forthis type of solitary waves for ompletely integrable systems. However integrability is restritedto 1D ubi nonlinear Shrödinger equation without any potential term and does not apply to(1.7). Stability properties of suh solutions in non-integrable ase have also been the objet ofseveral studies, beginning with Cazenave and Lions [4℄, Weinstein [31℄, and Grillakis Shatah andStrauss [14℄. For the spei� equation (1.8) with a harmoni potential, there have been somestudies on the orbital stability; see for example, Rose and Weinstein [26℄, the seond author andOhta [10℄. Note that together with the energy (1.4), another onserved quantity for equation(1.7) is given by
Q(u) =

1

2
|u|2L2 (1.10)4



namely, we have Q(u(t)) = Q(u(0)) for any solution u ∈ C([0, T ]; Σ) of (1.7), and Eq.(1.8) anbe written as H ′(φµ) + µQ′(φµ) = 0. The proof of orbital stability is based on the use of thefuntional
Sµ(u) = H(u) + µQ(u), u ∈ Σ, (1.11)as a Lyapunov funtional. In order to show the positivity of the seond derivative of this Lya-punov funtional, the positivity of the following linearized operator
L−
µ = −∆ + |x|2 + µ− (2σ + 1)φ2σ

µ (1.12)is essential. It appears that S′′
µ(φµ) is positive when restrited to the subspae of Σ of funtionsorthogonal in L2 to both φµ and iφµ provided µ is su�iently lose to −λ0 and σ > 0, or µ > 0 issu�iently large and σ ≤ 2/d. This implies that the set {eiθφµ, θ ∈ R} is a set of loal minimizersof Sµ restrited to the manifold {u ∈ Σ, Q(u) = Q(φµ)}.Another ondition whih gives the positivity of S′′

µ(φµ),
∂µ|φµ|2L2 > 0 (1.13)is often used (see, e.g., [14, 26℄). The saling invariane of the equation for the standing wavesallows, in general, to hek whether (1.13) is satis�ed for general µ; however we annot expet thissaling property here due to the harmoni potential. Thus it is natural to onsider frequenies

µ whih are lose to −λ0 and make use of the properties of spetrum and solutions of linearproblems that are already known. Reall that the linear eigenvalue problem
−∆u+ |x|2u = λu, λ ∈ Ronsists only of disrete eigenvalues λk (k ∈ N ∪ {0}) and the assoiated eigenfuntions are theHermite funtions (see [29℄). Thus the bifuration argument near µ = −λ0 is e�etive, whih isalso another method to ensure the existene of bound state solutions of (1.8) (see Kurth [19℄).We will onsider only the ground state φµ of (1.8) in this paper. Namely φµ is the uniquepositive radial solution of (1.8) (see Li and Ni [20℄ for the radial symmetry, Kabeya and Tanaka[17℄ for the uniqueness). For (1.7), it was veri�ed in [10℄ that there exists µ∗ suh that for any

µ ∈ (−λ0, µ
∗) the positivity of S′′

µ(φµ) holds under the above suitable orthogonality onditionsfor any σ > 0. We summarize here the properties of φµ that we will use later.Proposition 1. Let d = 1 or 2, 0 < σ < +∞ and µ > −λ0. Let φµ be the unique positiveradial solution of (1.8).(i) µ 7→ φµ is a C1 mapping from (−λ0,+∞) to Σ2 ( and Σ4 if σ ≥ 1/2 ), moreover it is a
C2 mapping if σ ≥ 1/2.(ii) There is a µ∗ > −λ0 suh that for any µ ∈ (−λ0, µ∗) there exist ν = ν(µ) > 0, for any
v ∈ Σ satisfying Re(v, φµ) = Re(v, iφµ) = 0, we have

〈S′′
µ(φµ)v, v〉 ≥ ν|v|2Σ. (1.14)(iii) (φµ, ∂µφµ) is stritly positive for µ ∈ (−λ0, µ

∗).(iv) φµ ∈ ⋂2≤q<∞W 2,q ∩ C2.(v) For any µ1 > 0, there are positive onstants C0,C1, depending on µ1, suh that for all
µ ∈ (−λ0, µ1), the inequality |φµ(x)| ≤ C0e

−C1|x|2 holds, for all x ∈ R
d.5



We will give a few referenes onerning the proof of this proposition in Setion 6.The linearization problem around eiµtφµ in (1.7) is preisely written as
dy

dt
= JLµy in Σ−1,where

J = −i :

(

Re u
Im u

)

7→
(

0 1
−1 0

)(

Re u
Im u

)

Lµ = S′′
µ(φµ) =

(

L−
µ 0
0 L+

µ

)

, (1.15)
L+
µ = −∆ + |x|2 + µ− φ2σ

µ , (1.16)
L−
µ is already de�ned in (1.12) above. Note that the operator L+

µ is nonnegative sine φµ is apositive solution of Eq.(1.8). Note also that






L+
µ φµ = 0

L−
µ ∂µφµ = −φµ;

(1.17)more preisely, JLµ has a two dimensional generalized null-spae spanned by
(

∂µφµ
0

)

,

(

0
φµ

)

,and the rest of spetrum is purely disrete on the imaginary axis for the frequenies µ lose to
−λ0. We will study this linearized problem in details in Setion 6 below, regarding JLµ as aperturbed operator from JL−λ0 , where

JL−λ0 =

(

0 1
−1 0

)(

Ξ 0
0 Ξ

)

=

(

0 Ξ
−Ξ 0

)and Ξ = −∆+ |x|2 −λ0. This kind of analysis was used in Pelinovsky and Kevrekidis [23℄ wherethe spetrum of linearized operators around the standing wave solution are investigated using,similarly, a bifuration analysis and a regular perturbation method.Conerning results related to the asymptoti behavior of solutions of (1.7) starting from thestanding wave solution (1.6), Jonsson, Fröhlih, Gustafson and Sigal [15, 16℄ analysed the mod-ulation equation, assuming that the e�et of the harmoni potential term is su�iently small.Our purpose here is to investigate the in�uene of random perturbations of the form given inequation (1.5) on the phase and the frequeny of standing wave solutions (1.6). We onsider thesolution uε(t, x) of equation (1.5), given by Theorem 1, and with uε(0, x) = φµ0(x) where µ0 is�xed suh as µ0 ∈ (−λ0, µ
∗). We may expet that, if ε is small, the main part of the solution is astanding wave, randomly modulated in its phase θ and frequeny µ. We will brie�y omment inSetion 3 that this is true for time less than ε−2, following the proof of the same kind of result bythe �rst author and Debusshe in [6℄ for the Korteweg-de Vries equation with an additive noise.6



Next, we study more preisely the behavior at order one in ε of the remaining term in thepreeding deomposition as ε goes to zero. The preeding deomposition says that the solution
uε(t, x) is written as

uε(t, x) = eiθ
ε(t)(φµε(t)(x) + εηε(t, x))where θε(t) and µε(t) are the modulation parameters; these are semi-martingale proesses de�nedup to times of the order of ε−2. That means that the shape of the standing wave is preservedover this time sale. We will show that the proess ηε onverges as ε goes to zero, in probability,to a Gaussian proess η. Moreover, θε(t) and µε(t) an be developed up to order one in ε, andwe get







dµε(t) = o(ε),

dθε(t) = µ0dt − ε
(|x|2φµ0 , ∂µφµ0)

(φµ0 , ∂µφµ0)
dW + o(ε).

(1.18)This shows in partiular that at �rst order the noise does not at on the frequeny of the standingwave, but only on its phase.Finally we investigate the behavior of the proess η as t goes to +∞, in the ase σ > 1.We study in Setion 6 the distribution of the mode powers of η, i.e., E(|ηk(t)|2) for eah k ∈
N ∪ {0}, when the frequeny µ0 is su�iently lose to −λ0. Here, ηk is the omponent of ηon the k-th eigenfuntion of −∆ + |x|2 (reall that the family of those eigenfuntions forms aomplete orthonormal system in L2(Rd)). Spei�ally, on a time sale of order of (µ0 + λ0)

−1/σ,one an expet the power to be onentrated mainly in the third mode. This observation isatually inspired by Papaniolaou [22℄, Kirr and Weinstein [18℄. The authors in [22, 18℄ treated asystem perturbed by a multipliative random potential with a small parameter κ desribing theamplitude of the random potential. In the limit t→ +∞, κ→ 0, κ2t = onstant (at least in theirase), the mode powers satisfy a system of oupled equations whih are alled master equations.In this ontext, the question of how the mode powers evolve with t is of fundamental interest.We also derive our redued master equation whih explains the mode-power onentration.The paper is organized as follows: in Setion 2, we state preisely our results. In Setion 3,we justify the existene of the modulation parameters and we give an estimate on the time up towhih the modulation proedure is available. In Setion 4 we give the equations of the modulationparameters. Setion 5 is devoted to estimates on the remainder term whose most tehnial partsare postponed to Setion 7. Using these estimates, we will also show the onvergene as ε goesto zero. Setion 6 is devoted to analyze the drift part of the limit equation where we will use abifuration and a perturbation method from the linear eigenvalue problem for µ0 lose to −λ0.The mode-power onentration will also be proved in Setion 6, deriving the master equation. Tolighten notations, we denote sometimes in what follows by C(α, · · · ) a onstant whih dependson α and so on. 2. main resultsWe �x µ0 ∈ (−λ0, µ
∗) and onsider for ε > 0 the solution uε(t, x) of equation (1.5) given byTheorem 1 with initial data uε(0, x) = φµ0(x).The �rst theorem says that we an deompose uε as the sum of a modulated standing waveand a remainder with small Σ norm, for t less than some stopping time τ ε, and that this τ ε goes7



to in�nity in probability as ε goes to zero. We will see then that the remaining part is of orderone with respet to ε. The proof of the theorem is rather similar to those in [6, 7℄, but for thesake of ompleteness we repeat it in the next setion. We remark that the proof of theorems 2and 3 will be ompleted in subsetion 6.3 (see Remark 2.1 below). This deomposition is in theform
uε(t, x) = eiθ

ε(t)(φµε(t)(x) + εηε(t, x)) (2.1)for some semi-martingale proesses θε(t), µε(t) with values in R, and ηε with value in Σ. We notethat the expression of the main part of the solution is not unique, neither are the modulationparameters. They depend on the hoie of some spei� onditions on the remaining part. Forinstane, in order to obtain the simple equation (1.18) for θε, the spetral projetion of theremaining part of the solution on the generalized nullspae of JLµ0 must be zero, at least atorder one in ε. However, in order to estimate the exit time, it is more onvenient to use theorthogonality of the remaining part to the nullspae of Lµ0 , sine it ensures the positivity of
S′′
µ0

(φµ0). This is why we do not state preisely the orthogonality onditions in the followingTheorem 2 (see Remark 2.1 below).Theorem 2. Assume d = 1 and 1/2 ≤ σ, or d = 2 and 1/2 ≤ σ ≤ 1. Let µ0 ∈ (−λ0, µ
∗) be �xed.For ε > 0, let uε(t, x), as de�ned above, be the solution of (1.5) with u(0, x) = φµ0(x). Thenthere exists α0 > 0 suh that, for eah α, 0 < α ≤ α0, there is a stopping time τ εα ∈ (0, τ∗(φµ0))a.s., and there are semi-martingale proesses µ̃ε(t) and θ̃ε(t), de�ned a.s. for t ≤ τ εα, with valuesin R, so that if we set εη̃ε(t, x) = e−iθ̃

ε(t)uε(t, x) − φµ̃ε(t)(x), then, a.s. for t ≤ τ εα,
|µ̃ε(t) − µ0| ≤ α (2.2)and
|εη̃ε(t)|Σ ≤ α. (2.3)In addition, there is a onstant C = C(α, µ0) > 0, suh that for any T > 0 and any α ≤ α0,there is an ε0 > 0, suh that for eah ε < ε0,

P(τ εα ≤ T ) ≤ exp
(

− C

ε2T

)

. (2.4)Remark 2.1. For the proof of the estimate (2.4), the following orthogonality onditions will beused :
Re(ηε, φµ0) = 0, a.s., t ≤ τ ε, (2.5)and
Re(ηε, iφµ0) = 0, a.s., t ≤ τ ε (2.6)where τ ε is the same stopping time as in Theorem 1. Hene, we �rst use these onditions onthe remaining part in Setion 3, in order to de�ne ηε, and in Setion 6 we make a hange of themodulation parameters whih allows to get a new deomposition (with the same stopping time

τ ε), satisfying at order one in ε the simple equation Eq. (1.18).Remark 2.2. Attention is given to the upper bound (2.4) where the produt ε2T appears.From the theorem, we an expet, with high probability, that the solution of (1.2) stays in aneighborhood of the randomly modulated standing wave at least for times small ompared to
ε−2. Whether this time sale of ε−2 is optimal or not still leaves a room for disussion in ourase. In [9℄, the authors onsidered the same exit problem for Korteweg-de Vries equation withan additive noise. An exponential lower bound of the same order in the parameters T and ε as8



the upper bound is proved in [9℄, whih ensures that the typial time sale on whih the solutionremains in the neighborhood of the modulated soliton is indeed ε−2. The proof of suh a lowerbound requires the use of a Large Deviation Priniple together with the resolution of a ontrolproblem, whih allows to get an upper bound on the rate funtion. The proof of the LDP isfar from obvious in our ase sine we annot solve equation (1.5) by a ontration argument;moreover the ontrol problem is a ontrol problem by a potential; as far as we know, the nonlinearontrollability problems by a time dependent potential is an open problem.Next the following result is onerned with the analysis of the behavior of ηε, and of themodulation parameters as ε goes to zero.Theorem 3. Assume d = 1 and 1 ≤ σ, or d = 2 and σ = 1. Let µ0 ∈ (−λ0, µ
∗) be �xed and η̃ε,

θ̃ε, µ̃ε, for ε > 0 be given by Theorem 2, with α ≤ α0 �xed. Then, for any T > 0, the proess
(η̃ε(t))t∈[0,T∧τε

α] onverges in probability, as ε goes to zero, to a proess η̃ satisfying
dη̃ = JLµ0 η̃dt− (I − Pµ0)

(

0
|x|2φµ0

)

dW, (2.7)with η̃(0) = 0, where Pµ0 is the spetral projetion onto the generalized null spae of JLµ0 . Theonvergene holds in C([0, τ εα ∧ T ], L2).The above proess η̃ satis�es for any T > 0 the estimate
E

(

sup
t≤T

|η̃(t)|2Σ

)

≤ CT (2.8)for some onstant C > 0.Moreover the modulation parameters may be written, for t ≤ τ εα, as
dθ̃ε = µ̃εdt + εỹεdt + εz̃εdW, (2.9)and

dµ̃ε = εãεdt+ εb̃εdW (2.10)for some adapted proesses ỹε, ãε, z̃ε, b̃ε with values in R satisfying: as ε goes to zero, ãε,
b̃ε, ỹε onverge to 0 in probability in C([0, T ]), while z̃ε onverges in probability in C([0, T ]) to
−(∂µφµ0 , φµ0)

−1(∂µφµ0 , |x|2φµ0).At last, we derive the following theorem onerning the asymptoti behaviour of η̃(t, x) for large
t > 0. As mentioned in the introdution, the operator JLµ0 may be regarded as a perturbationfrom JL−λ0 . Let us write the equation as

dη̃ = (JL−λ0 +Bµ0)η̃dt− (I − Pµ0)

(

0
|x|2φµ0

)

dW,and onsider this equation as perturbation of the system
dη̃ = JL−λ0 η̃dt (2.11)by the small bounded operator Bµ0 plus an additive noise with small amplitude as µ0 tends to

−λ0. The system (2.11) an be studied by deomposing the initial state on the omplete systemof eigenstates of JL−λ0 . When (2.11) is perturbed, then the system of ODE's beomes an in�niteoupled system of equations, and the behavior of its solutions may be rather omplex. We get9



the following result on the evolution of the average power in the k-th mode of η. This result isrestrited to the one dimensional ase, beause it requires the ondition σ > 1 (see Remark 2.4)below.Let us denote by λ̃k = λk − λ0 the eigenvalues of the operator −∆ + |x|2 − λ0 in 1D, and let
Φk(x) =

1

(2kk!)1/2π1/4
Hk(x)e

−|x|2/2be the orresponding eigenfuntion for k ∈ N ∪ {0}, Hk(x) being the Hermite polynomials. Wewill see that JL−λ0 has purely disrete eigenvalues denoted by ξ±k = ±iλ̃k whose assoiatedeigenfuntions may be hoosen as
~Φ±
k =

(

±iΦk

∓Φk

)

, for k ≥ 1, ~Φ−
0 =

(

Φ0

0

)

, and ~Φ+
0 =

(

0
Φ0

) for k = 0.We then de�ne η±k = ((η, ~Φ±
k )) for k ∈ N ∪ {0} in 1D.Theorem 4. Assume d = 1 and σ > 1. Then the proess η̃ de�ned by (2.7) and η̃(0) = 0 veri�es,as µ0 tends to −λ0, for all t ∈ [0, T ],

E(|η̃±2 (t)|2) =

√
π

4
(σ + 1)

1
2σ (µ0 + λ0)

1/σt+O((µ0 + λ0)
κ+1/σt),

E(|η̃±k (t)|2) = O((µ0 + λ0)
κ+1/σt) for k 6= 2.with κ = min{1 − 1/σ, 1/2σ}.Remark 2.3. Theorem 4 says that on a time sale of order (µ0 + λ0)

−1/σ, one an expetthat the power distribution of η onentrates in the ~Φ±
2 -mode in 1D. However the total energy,

E(|η̃(t)|2L2), is not onserved in (2.7), our result is di�erent from the energy di�usion disussedin [18℄.Remark 2.4. The spatial dimension d is limited to d = 1. This is only beause we do nothave any result on the loal existene of solutions for σ > 1, with an existene time that onlydepends on the energy norm, in higher dimension. The problem is related to the lak of dispersiveestimate for the linear part of (1.2) (see [8℄). However, with suh a result in hand, a result similarto Theorem 4 would be valid in 2D (see Remark 6.3 in Setion 6).3. modulation and estimates on the exit timeIn this setion, we give a proof of the existene of modulation parameters and the estimate onthe exit time (2.4). The arguments are similar to those in [7℄ but we repeat them for the sake ofompleteness. The following lemma gives the evolution of the harge Q and of the energy H by(1.5). For the proof, refer to Theorem 3 (i) in [8℄.Lemma 3.1. Assume d = 1 and 0 < σ, or d = 2 and 1/2 ≤ σ ≤ 1. Let µ0 ∈ (−λ0, µ
∗) be �xed.Let uε be the solution of (1.5) given by Theorem 1, with uε(0, x) = φµ0 . Then for any stoppingtime τ < τ∗(φµ0) we have

|uε(τ)|L2 = |φµ0 |L2 , a.s., (3.1)10



H(uε(τ)) = H(φµ0) − 2εIm

∫ τ

0

∫

Rd

∇uε · xūεdxdW (s) + 2ε2
∫ τ

0
|xuε|2L2ds, a.s. (3.2)We give a proof of existene of the modulation parameters using the impliit funtion theoremunder the orthogonality onditions (2.5) and (2.6). We will hange parameters in subsetion 6.3.Proof of Theorem 2. Let Bφµ0

(2α) = {v ∈ Σ, |v − φµ0 |Σ ≤ 2α} for α with 0 < α < µ0/4. Letalso for some δ > 0,
Uφµ0

(δ) = {v ∈ Σ, inf
θ∈R

|v − eiθφµ0 |Σ < δ}.We then onsider a C2 mapping
I : (µ0 − 2α, µ0 + 2α) × (−2α, 2α) ×Bφµ0

(2α) → R × R

(µ, θ, u) 7→ (I1,I2)de�ned by
I1(µ, θ, u) = Re

∫

Rd

(e−iθu− φµ)φµ0dxand
I2(µ, θ, u) = Im

∫

Rd

(e−iθu− φµ)φµ0dx.We then obtain, using Proposition 1 (i) and (iii),
I(µ0, 0, φµ0) = 0, ∂θI1(µ0, 0, φµ0) = ∂µI2(µ0, 0, φµ0) = 0,

∂µI1(µ0, 0, φµ0) = −1

2
∂µ|φµ|2L2

∣

∣

∣

µ=µ0

< 0,

∂θI2(µ0, 0, φµ0) = |φµ0 |2L2 > 0.Here we apply the impliit funtion theorem and, for α ≤ α0 where α0 is su�iently small, thereexists a C2 mapping (µ(u), θ(u)) de�ned for u ∈ Bφµ0
(2α), suh that

I1(µ(u), θ(u), u) = I2(µ(u), θ(u), u) = 0.We apply this with u = uε(t), we get the existene of µε(t) = µ(uε(t)) and θε(t) = θ(uε(t))suh that the orthogonality onditions (2.5) and (2.6) hold with εηε(t) = e−iθ
ε(t)uε(t) − φµε(t).Sine uε(t) is a Σ-valued proess, it follows that uε(t) is a semi-martingale proess in Σ−4. Notingthat I is a C2 funtional of u on Σ−4 (see Proposition 1 (i)), the proesses µε and θε are givenloally by a deterministi C2 funtion of uε ∈ Σ. Then the It� formula shows that µε and θεare semi-martingale proesses. Moreover, sine it is lear that I(µε(t), 0, e−iθ

ε(t)uε(t)) = 0, theexistene of µε and θε holds as long as
|µε(t) − µ0| < α, and |e−iθε(t)uε(t) − φµ0 |Σ < α.We now de�ne two stopping times

τ̌ εα = inf{t ≥ 0, |µε(t) − µ0| ≥ α, or |e−iθε(t)uε(t) − φµ0 |Σ ≥ α},

τ εβ = inf{t ≥ 0, |µε(t) − µ0| ≥ β, or |e−iθε(t)uε(t) − φµε(t)|Σ ≥ β}.11



The inequality |φµ0 − φµε(t)|Σ ≤ Cα holds as long as |µε(t) − µ0| ≤ α ≤ α0, with a onstantdepending only on α0 and µ0. Indeed, we have
|φµε(t) − φµ0 |Σ ≤ |µε(t) − µ0| sup

t≤T∧τε

|∂µ(φµε(t))|Σ ≤ C(α0, µ0)|µε(t) − µ0|. (3.3)It then follows that
τ εα ≤ τ̌ ε(C+1)α ≤ τ ε(C+1)2α.Taking α0 su�iently small again, the proesses θε(t) and µε(t) are de�ned for all t ≤ τ εα0

, andsatisfy (2.2) and (2.3) for all t ≤ τ εα, α ≤ α0 under the orthogonality onditions (2.5) and (2.6).It remains to prove (2.4). We give a proof in a similar way to the method in [6, 9℄. We maywrite a.s. for t ≤ τ εα, α ≤ α0,

Sµ0(e
−iθε(t)uε(t, ·)) − Sµ0(φµε(t))

= 〈S′
µ0

(φµε(t)), εη
ε(t)〉 + 〈S′′

µ0
(φµε(t))εη

ε(t), εηε(t)〉 + o(|εηε(t)|2Σ).Note that o(|εηε(t)|2Σ) is uniform in ω, ε and t, sine S′
µ0

(φµ0) and S′′
µ0

(φµ0) depend ontinuouslyon µ0, and sine |µε(t) − µ0| ≤ α and |e−iθε(t)uε(t, ·) − φµε(t)|Σ = |εηε(t, ·)|Σ ≤ α for all t ≤ τ εα.We then assume α0 small enough so that the last term is less than ν
2 |εηε(t)|2Σ for all t ≤ τ εα.Sine, by Proposition 1, for any µ0 ∈ (−λ0, µ∗),

〈S′′
µ0

(φµ0)εη
ε, εηε〉 ≥ ν|εηε|2Σholds a.s. for t ≤ τ εα, and by the following inequality with σ ≥ 1/2,

|φ2σ
µε(t) − φ2σ

µ0
|Σ ≤ |µε(t) − µ0| sup

t≤T∧τε

|∂µ(φ2σ
µε(t))|Σ ≤ C(α0, µ0)|µε(t) − µ0|, (3.4)we get

‖S′′
µ0

(φµε(t)) − S′′
µ0

(φµ0)‖L(Σ;Σ−1) ≤ C|µε(t) − µ0|.It thus follows
Sµ0(e

−iθε(t)uε(t, x)) − Sµ0(φµε(t))

≥ 〈S′
µ0

(φµε(t)), εη
ε(t)〉 + ν|εηε|2Σ − C|µε(t) − µ0||εηε|2Σ − ν

2
|εηε(t)|2Σ.On the other hand, sine S′

µ0
(φµ0) = 0, using again (3.3) and (3.4), we get a.s. for t ≤ τ εα,

〈S′
µ0

(φµε(t)), εη
ε(t)〉 = 〈S′

µ0
(φµε(t)) − S′

µ0
(φµ0), εη

ε(t)〉,

|〈S′
µ0

(φµε(t)), εη
ε(t)〉| ≤ C|µε(t) − µ0||εηε(t)|Σ ≤ ν

4
|εηε(t)|2Σ +C|µε(t) − µ0|2.Finally, for all α ≤ α0, and for all t ≤ τ εα, we obtain a.s.

Sµ0(e
−iθε(t)uε(t, ·)) − Sµ0(φµε(t)) ≥

ν

8
|εηε(t)|2Σ − C|µε(t) − µ0|2 (3.5)for a onstant C depending only on α0, µ0 and ν.Here we estimate |µε(t) − µ0|2. Let t > 0, we denote the stopping time by τ = τ εα ∧ t. >From(3.1) and (ηε, φµ0) = 0,

|uε(τ)|2L2 = |φµ0 |2L2 = |eiθε(t)(φµε(τ) + εηε)|2L2

= |φµε(τ)|2L2 + |εηε|2L2 + 2(φµε(τ) − φµ0 , εη
ε).12



Using this equality and (iii) of Proposition 1, we have for some onstants C > 0 and δ > 0,
δ|µε(t) − µ0| ≤ ||φµε(τ)|2L2 − |φµ0 |2L2 |

≤ |εηε|2L2 + 2α|φµε(τ) − φµ0 |L2

≤ |εηε|2L2 + αC(µ0)|µε(t) − µ0|.Choosing then α0 su�iently small, we get
|µε(t) − µ0| ≤ C(α0, µ0)|εηε|2L2 . (3.6)On the other hand, using S′

µ0
(φµ0) = 0 and (3.3),

|Sµ0(φµε(t)) − Sµ0(φµ0)| ≤ C(α0, µ0)|µε(t) − µ0|2;using the above inequality, together with (3.6), and inserting these in (3.5), we obtain
ν

8
|εηε(t)|2Σ ≤ Sµ0(u

ε(t, ·)) − Sµ0(φµ0) + C(α0, µ0)|εηε|4L2 .Again we hoose α0 su�iently small, then make use of (3.2) to get, for any τ ≤ τ εα
ν

16
|εηε(τ)|2Σ ≤ Sµ0(u

ε(τ, x)) − Sµ0(φµ0) = H(uε(τ, x)) −H(φµ0)

= −2εIm

∫ τ

0

∫

Rd

∇uε(s, x) · xūε(s, x)dxdW (s) + 2ε2
∫ τ

0
|xuε(s, ·)|2L2ds. (3.7)Let us now �x T > 0. We may write setting τ = τ εα ∧ T ,

P(τ εα ≤ T ) ≤ P(|µε(τ) − µ0| ≥ α) + P(|εηε(τ)|Σ ≥ α).Note that if |µε(τ)−µ0| ≥ α then |µε(τ)−µ0| = α and |εηε(τ)|Σ ≤ α, in partiular, |εηε(τ)|L2 ≤
α. On the other hand, it follows from (3.6) that α ≤ C(α0, µ0)α

2 whih is impossible for αsu�iently small. Then |µε(τ) − µ0| < α and
P(τ εα ≤ T ) ≤ P(|εηε(τ)|Σ ≥ α).Now we will estimate P

(

|εηε(τ)|Σ ≥ α
) as in [9℄. Here we remark that there exists a onstant

C(α0, µ0) > 0 suh that |uε(s, ·)|2Σ ≤ C for any s ∈ [0, τ ]. Taking ε su�iently small, dependingon C, α, T , and ν we obtain using (3.7):
P

(

|εηε(τ)|Σ ≥ α
)

≤ P

(64

ν
ε
∣

∣

∣

∫ τ

0

∫

Rd

∇uε(s, x) · xūε(s, x)dxdW (s)
∣

∣

∣
≥ α

2

)

≤ P

(64

ν
ε sup
t∈[0,T ]

∣

∣

∣

∫ t∧τ

0

(

∫

Rd

∇uε(s, x) · xūε(s, x)dx
)

dW (s)
∣

∣

∣
≥ α

2

)

.We onlude thanks to the lassial exponential tail estimates for 1D stohasti integrals, onewe have notied that for any t ∈ [0, τ ],
∣

∣

∣

∫

Rd

∇uε · xūε(t, x)dx
∣

∣

∣

2
≤ sup

t∈[0,τ ]
|uε(t)|2Σ ≤ C(α0, µ0), a.s.

�Remark 3.1. The stopping time τ εα here is the �rst time for whih the solution quits a neigh-borhood of the modulated standing wave, but we do not know whether it also orresponds tothe exit time of a tubular neighborhood Uφµ0
(δ).13



We summarize the onlusion of this setion; the solution uε(t, x) of Eq.(1.5) with uε(0, x) =
φµ0(x) may be written, for any t ≤ τ εα∧T , as the form (2.1) under the onditions (2.5) and (2.6),where θε(t) and µε(t) are semi-martingale proesses and τ εα is a stopping time satisfying (2.4)with (2.2) and (2.3). 4. modulation equationsIn this setion we derive the system of equations oupling the modulation parameters µε, θε,to the remaining term ηε. We �x α so that the onlusion of Setion 3 holds and we write τ ε for
τ εα from now on. Sine µε and θε are semi-martingale proesses, adapted to the �ltration (Ft)t≥0generated by (W (t))t≥0, we may thus write a priori the equations for µε and θε in the form

{

dθε = µεdt + εyεdt+ εzεdW,
dµε = εaεdt+ εbεdW,

(4.1)where aε and yε are real valued adapted proesses with paths in L1(0, τ ε) a.s., zε and bε are realvalued preditable proesses, with paths in L2(0, τ ε) a.s.Lemma 4.1. Let ηε = ηεR + iηεI , where ηεR = Re ηε and ηεI = Im ηε. With the above notations,
ηεR and ηεI satisfy the equations

dηεR = L+
µ0
ηεIdt− aε∂µφµεdt + (µε − µ0)η

ε
Idt+ (φ2σ

µ0
− φ2σ

µε )ηεIdt+ εyεηεIdt −
ε

2
|x|4φµεdt

−ε
2
(zε)2φµεdt − εzε|x|2φµεdt− ε

2
(bε)2∂2

µφµεdt− εhεIdt−
ε2

2
|x|4ηεRdt

−ε2zε|x|2ηεRdt −
ε2

2
(zε)2ηεRdt − bε∂µφµεdW + ε|x|2ηεIdW + εzεηεIdW, (4.2)

dηεI = −L−
µ0
ηεRdt − yεφµεdt − (µε − µ0)η

ε
Rdt+ (2σ + 1)(φ2σ

µε − φ2σ
µ0

)ηεRdt

−εyεηεRdt + εhεRdt−
ε2

2
|x|4ηεIdt− ε2zε|x|2ηεIdt −

ε2

2
(zε)2ηεIdt

−|x|2φµεdW − zεφµεdW − ε|x|2ηεRdW − εzεηεRdW, (4.3)where hεR and hεI are de�ned by
ε2hεR + iε2hεI =

∫ 1

0
(1 − s)

∂2

∂s2

(

|φµε + sεηε|2σ(φµε + sεηε)
)

ds.Proof. First we formally derive Eqs. (4.2) and (4.3). Using the fat that uε satis�es Eq.(1.5)and θε satis�es equation (4.1), It� formula gives
d(e−iθ

ε(t)uε(t)) = e−iθ
ε(t)
(

i∆uε − i|x|2uε − ε2

2
|x|4uε

+i|uε|2σuε − iµεuε − iεyεuε − ε2zε|x|2uε − ε2

2
(zε)2uε

)

dt (4.4)
−ie−iθε(t)(εzεuε + ε|x|2uε)dW.We use It� formula for φµε(t) and we get

d(φµε(t)) = εaε∂µφµε(t)dt +
ε2

2
(bε)2∂2

µφµε(t)dt+ εbε∂µφµε(t)dW. (4.5)14



Next, we use the following properties
L−
µεηεR = L−

µ0
ηεR + (µε − µ0)η

ε
R − (2σ + 1)(φ2σ

µε − φ2σ
µ0

)ηεR,

L+
µεηεI = L+

µ0
ηεI + (µε − µ0)η

ε
I − (φ2σ

µε − φ2σ
µ0

)ηεI ,

(ηεR, φµ0) = 0, (ηεI , φµ0) = 0.Also, we write for σ ≥ 1/2,
|φµε + εηε|2σ(φµε + εηε) = φ2σ+1

µε + ε(2σ + 1)ηεRφ
2σ
µε + iεηεIφ

2σ
µε + ε2hεR + iε2hεI .Using these fats, (1.8) and (4.5), replaing e−iθε(t)uε(t) by φµε(t) + εηε(t, x) in (4.4), and iden-tifying the real and imaginary parts, we dedue the equations (4.2) and (4.3).Here, we brie�y explain how to justify the above omputations; let Pn1 be the projetiononto the �nite-dimensional spae R

n1 spanned by the eigenfuntions Φk(x) of −∆ + |x|2 for
k = 0, 1, · · · , n1. We use a sequene of approximations indexed by n = (n1, n2) ∈ N

2. We mean,by n goes to ∞, that �rst n1 goes to ∞ and then n2 goes to ∞. We onsider the solutions
uε,n =

∑n1
k=0(u

ε,n,Φk)Φk, of the following equation.
duε,n =

(

i∆uε,n− i|x|2uε,n +
ε2

2
Pn1Θ

2
n2

(x)|x|4uε,n + iPn1gn2(u
ε,n)
)

dt− iεPn1Θn2(x)|x|2uε,ndW,(4.6)where Θ(x) is a smooth funtion suh that
Θ(x) =

{

1, |x| ≤ 1/2,
0, |x| ≥ 1

and Θn2(x) = Θ
( |x|2
n2

)

. Also, gn2(x) =

{

|s|2σs, |s| ≤ n2,
n2σ

2 s, |s| ≥ n2.Sine this �nite system involves only globally Lipshitz funtions, we see that (4.6) has aunique solution uε,n with paths a.s. in C(R+,Σm) with uε,n(0) = φµ0 and m ≥ 1. Moreover itan be proved similarly to [8℄ that uε,n onverges to the solution uε of (1.5), in probability, in
C([0, τ εα ∧ T ],Σ) as n goes to ∞. Indeed, this onvergene holds in C([0, τ∗(φµ0)),Σ) and it islear that τ εα < τ∗(φµ0) almost surely. All the arguments in Setion 3 are valid uniformly in n if
n ≥ n0(α0) for some n0 > 0. Hene, for �xed n, we apply the above arguments to uε,n insteadof uε and take the limit as n goes to in�nity. �As in [6, 7℄, we now take the L2 inner produt of Eqs.(4.2) and (4.3) with φµ0 and makeuse of the orthogonality onditions (2.5) and (2.6), we obtain the equations for the modulationparameters yε, zε, aε and bε from the identi�ation of drift parts and that of martingale parts.Let

Zε(t) =

(

zε(t)
bε(t)

) and Y ε(t) =

(

yε(t)
aε(t)

)

. (4.7)Lemma 4.2. Under the assumptions of Theorem 2, the modulation parameters satisfy the systemof the equations, for any t ≤ τ ε,

Aε(t)Zε(t) = F ε(t), (4.8)and
Aε(t)Y ε(t) = Gε(t), (4.9)where Zε and Y ε are de�ned above, Aε is de�ned by

Aε(t) =

(

(φµε , φµ0) 0
0 (∂µφµε , φµ0)

) (4.10)15



and F ε and Gε are given as follows;
F ε(t) =

(

−(|x|2φµε , φµ0) − ε(|x|2ηεR, φµ0)
ε(|x|2ηεI , φµ0)

) (4.11)and
Gε =

(

Gε1(t)
Gε2(t)

) (4.12)with
Gε1(t) = 2σ(ηεR, φ

2σ+1
µ0

) + (2σ + 1)((φ2σ
µε − φ2σ

µ0
)ηεR, φµ0) + ε(hεR, φµ0)

−1

2
ε2(|x|4ηεI , φµ0) − ε2zε(|x|2ηεI , φµ0)and

Gε2(t) = ((φ2σ
µ0

− φ2σ
µε )φµ0 , η

ε
I) −

ε

2
(|x|4φµε , φµ0) − εzε(|x|2φµε , φµ0) −

ε

2
(zε)2(φµε , φµ0)

−ε
2
(bε)2(∂2

µφµε , φµ0) − ε(hεI , φµ0) −
ε2

2
(|x|4ηεR, φµ0) − ε2zε(|x|2ηεR, φµ0).We dedue from the modulation equations obtained in Lemma 4.2 the following estimates forthe modulation parameters.Corollary 4.3. Under the assumptions of Theorem 2, there is a α1 > 0 suh that for any α ≤ α1,there is a onstant C(µ0, α) with

|zε(t)| + |bε(t)| ≤ C(µ0, α), for all t ≤ τ ε, ε ≤ ε0. (4.13)Moreover, there are onstants C1 and C2 depending only on α and µ0 suh that
|aε(t)| + |yε(t)| ≤ C1|ηε(t)|L2 + εC2 a.s. for all t ≤ τ ε, ε ≤ ε0. (4.14)In order to prove Corollary 4.3, we reall how hεR and hεI express in terms of φµε and εηε :

hεR =
2σ

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−1

×
{

2((φµε + sεηεR)εηεR + s(εηεI)
2)εηεR + ((εηεR)2 + (εηεI)

2)(φµε + sεηεR)
}

ds

+
4σ(σ − 1)

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×{(φµε + sεηεR)εηεR + s(εηεI)
2}2(φµε + sεηεR)ds,

hεI =
2σ

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−1

×
{

2((φµε + sεηεR)εηεR + s(εηεI)
2)εηεI + ((εηεR)2 + (εηεI)

2)sεηεI

}

ds

+
4σ(σ − 1)

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×{(φµε + sεηεR)εηεR + s(εηεI)
2}2sεηεIds.16



Proof. We may write almost surely for t ≤ τ ε that Aε(t) = A0 +O(|µε−µ0|+ |εηε|Σ), where
A0 =

(

|φµ0 |2L2 0
0 (∂µφµ0 , φµ0)

)and O(|µε−µ0|+ |εηε|Σ) holds uniformly in ε, t and ω as long as t ≤ τ ε. Hene, hoosing α ≤ α1smaller if neessary (depending only on µ0), it follows that setting
Ãε(t) = A0 + 1l[0,τε)(t)(A

ε(t) −A0),the matrix Ãε(t) is invertible, for all t, and for a.e. ω ∈ Ω,
‖(Ãε(t))−1‖L(R2) ≤ C(µ0, α).Then Eq. (4.8) may be solved as Zε(t) = (Ãε(t))−1F ε(t) for t ≤ τ ε, whih implies, using (3.3),

|zε(t)| + |bε(t)| ≤ C(µ0, α)|F ε(t)| ≤ C(µ0, α)(|φµ0 |2Σ + |µε − µ0|2 + |εηε|2Σ),for any t ≤ τ ε.We now prove the estimates for the drift part. Thanks to the Sobolev embedding Σ ⊂ L4σ if
d = 1, 2, we have

|(εhεR, φµ0)| + |(εhεI , φµ0)| ≤ ε

∫ 1

0
(1 − s)((|φµε |2σ + |εηε|2σ)(|ηεR| + |ηεI |), φµ0)ds

≤ C(|φµε |2σL4σ + |εηε|2σL4σ)|ηε|L2 |φµ0 |L∞

≤ C(α, µ0)|ηε|L2 . (4.15)The estimates (4.15), (3.4) and (4.13) lead to
|Gε1(t)| + |Gε2(t)| ≤ C1|ηε(t)|L2 + εC2, a.s. for all t ≤ τ ε,where C1 and C2 depend only on µ0 and α. Lastly applying the same argument with (Ãε(t))−1as above, (4.14) follows, with possibly di�erent onstants. �We state the following orollary whih will be useful to prove Lemmas 5.1, 5.2 and 5.4 below.Corollary 4.4. Under the assumptions of Theorem 2, there exist some onstants C1 and C ′

2suh that
|µε(t) − µ0| ≤ ε

(

C1

∫ T∧τε

0
|ηε(s)|L2ds+ TC ′

2

)

, a.s. for all t ≤ T ∧ τ ε. (4.16)Proof. This orollary follows immediately from Corollary 4.3 and
µε(t ∧ τ ε) − µ0 = ε

∫ t∧τε

0
aε(s)ds+ ε

∫ t∧τε

0
bε(s)dW.

�17



5. estimates on the remainder term and onvergeneLet η = ηR + iηI with ηR = Re η and ηI = Im η. Consider the equation
dη = JLµ0dt − y

(

0
φµ0

)

dt−
(

0
|x|2φµ0

)

dW − z

(

0
φµ0

)

dW, (5.1)where we set for all t ≥ 0,
y(t) = −

(L−
µ0
ηR, φµ0)

|φµ0 |2L2

, z(t) = −|xφµ0 |2L2

|φµ0 |2L2

. (5.2)Note that JL−λ0 is skew-adjoint and generates a C0 unitary group by Stone's theorem. Otherterms are linear, or deterministi and bounded in Σ, thus, equation (5.1) with η(0) = 0 hasa unique adapted solution η ∈ C(R+,Σ), a.s. Moreover, it is easy to hek that η satis�es
(ηR, φµ0) = 0 and (ηI , φµ0) = 0. In this setion we will show that ηε onverges to η in probabilityin C([0, τ ε ∧ T ], L2) for any T > 0 as ε goes to 0. First we list some estimates to prove thatonvergene. For the proof of these estimates, see Setion 7. We note that ηε, yε, zε, aε, bε givenby Setion 3 and (4.1) are a priori de�ned only for t ≤ τ ε. We de�ne them for t ∈ R

+ by simplysetting ηε(t) = ηε(τ ε) for t ≥ τ ε and the same for the others.Lemma 5.1. Let T > 0 �xed. Under the assumption of Theorem 2, there exist onstants C1 and
C2 depending only on T , α, µ0, ( and N if d = 2 ) suh that

(i) E

(

sup
t≤τ̃ε∧T

|ηε(t)|2L2

)

≤ C1, and (ii) E

(

sup
t≤τ̃ε∧T

|ηε(t)|4L2

)

≤ C2,where τ̃ ε = τ ε if d = 1, or τ̃ ε = τ ε ∧ τ̄ εN if d = 2, with
τ̄ εN = inf{t ≤ τ ε ∧ T, |εηε|Σ2 ≥ N}, for any N > 0.Lemma 5.2. Let T > 0 �xed. Under the assumption of Theorem 3, there exists a onstant C3depending only on T , α, µ0, (and N if d = 2) suh that

E

(

sup
t≤τ̃ε∧T

|ηε(t)|4Σ

)

≤ C3,where τ̃ ε is de�ned in Lemma 5.1.Lemma 5.3. Let T > 0 �xed. Under the assumption of Theorem 2, there exist C4, C5 and C6depending only on T , α, µ0 suh that
(i) E

(

sup
t≤T

|η(t)|4L2

)

≤ C4, (ii) E

(

sup
t≤T

|η(t)|2Σ

)

≤ C5,and
(iii) E

(

sup
t≤T

|(1 + |x|4)η(t)|2L2

)

≤ C6.We remark that the assumption σ ≥ 1 is needed only for Lemma 5.2. Using these lemmas weobtain the following onvergene. 18



Lemma 5.4. Let T > 0 and N > 0 be �xed. Under the assumptions of Theorem 3, ηε onvergesto η, as ε tends to 0, in L2(Ω;C([0, τ̃ ε ∧ T ], L2)).The onvergene in probability in the time interval [0, τ ε ∧ T ] follows from Lemma 5.4 :Corollary 5.5. Let T > 0 be �xed. Under the assumptions of Theorem 3, ηε onverges to η, as
ε tends to 0, in probability, in C([0, τ ε ∧ T ], L2).First, we admit Lemma 5.4 and we prove Corollary 5.5.Proof of Corollary 5.5. In the 1D ase, the onlusion follows diretly from Lemma 5.4. In2D, we prove that for any β > 0, δ > 0

P

(

sup
t∈[0,T ]

|1l[0,τε∧T ]η
ε − 1l[0,T ]η|L2 > δ

)

≤ β, (5.3)provided that ε is su�iently small. We note that
P

(

sup
t∈[0,T ]

|1l[0,τε∧T ]η
ε − 1l[0,T ]η|L2 > δ

)

≤ P

(

sup
t∈[0,T ]

|1l[0,τε∧T ](η
ε − η)|L2 > δ

)

+ P(τ ε ∧ T < T ).It follows from (2.4) that for any β > 0 there exists ε0 > 0, P(τ ε ∧ T < T ) ≤ β/3 for any ε ≤ ε0.On the other hand,
P

(

sup
t∈[0,T ]

|1l[0,τε∧T ](η
ε − η)|L2 > δ

)

≤ P

(

sup
t∈[0,T ]

|1l[0,τ̄ε
N∧τε∧T ](η

ε − η)|L2 > δ
)

+ P(τ̄ εN ∧ τ ε ∧ T < T ). (5.4)Conerning the seond term, we �rst show that for any β > 0 there exist N0 and ε0 suh thatfor any ε ≤ ε0,
P

(

sup
t∈[0,τε∧T ]

|εηε|Σ2 ≥ N0

)

≤ β/3.Remarking εηε(t, x) = e−iθ
ε(t)uε(t, x) − φµε(t), it su�es to mention the estimate

P

(

sup
t∈[0,τε∧T ]

|uε(t)|Σ2 ≥ N
)

≤
E

(

supt∈[τε∧T ](1 + log(1 + |uε(t)|2Σ2))
)

1 + log(1 +N2)
≤ C(T, µ0, α)

1 + log(1 +N2)
≤ β

3for su�iently large N ; this follows simply from the bound (2.10) of Lemma 2.7 in [8℄. It shows
P(τ̄ εN0

∧ τ ε ∧ T < T ) ≤ P

(

sup
t∈[0,τε∧T ]

|εηε|Σ2 ≥ N0

)

≤ β/3.Now, using Lemma 5.4, we have for any β > 0,
P

(

sup
t∈[0,T ]

|1l[0,τ̄ε
N0

∧τε∧T ](η
ε − η)|L2 > δ

)

≤ β

3
,provided ε is su�iently small, and we get (5.3) by simply �xing N = N0 in (5.4). �Next, we prove Lemma 5.4. 19



Proof of Lemma 5.4. Let vε = ηε − η, and also let the imaginary part and real part of vε be
vεR = ηεR − ηR, vεI = ηεI − ηI respetively. Then, vεR and vεI satisfy for t ≤ τ ε ∧ T :
dvεR = L+

µ0
vεIdt− aε∂µφµεdt+ (µε − µ0)η

ε
Idt+ (φ2σ

µ0
− φ2σ

µε )ηεIdt−
ε

2
|x|4φµεdt

−εzε|x|2φµεdt+ εyεηεIdt− εhεIdt−
ε

2
(bε)2∂2

µφµεdt− ε

2
(zε)2φµεdt

−ε
2

2
|x|4ηεRdt− ε2zε|x|2ηεRdt−

ε2

2
(zε)2ηεRdt− bε∂µφµεdW + ε|x|2ηεIdW + εzεηεIdW,

dvεI = −L−
µ0
vεRdt− yεφµεdt+ yφµ0dt− (µε − µ0)η

ε
Rdt + (2σ + 1)(φ2σ

µε − φ2σ
µ0

)ηεRdt

+εhεRdt− εyεηεRdt−
ε2

2
|x|4ηεIdt− ε2zε|x|2ηεIdt−

ε2

2
(zε)2ηεIdt − |x|2(φµε − φµ0)dW

−zεφµεdW + zφµ0dW − ε|x|2ηεRdW − εzεηεRdW.Now we apply It� formula to L2 norms of |vεR|2L2 and |vεI |2L2 , then we obtain, after someompensations, for any τ = τ̃ ε ∧ t,
|vεR(τ)|2L2 + |vεI(τ)|2L2 =

∫ τ

0
(D1(s) +D2(s) +D3(s))ds +

∫ τ

0
M1(s)dW (s), (5.5)where

D1(t) = 4σ(vεI , φ
2σ
µ0
vεR) − 2(vεI , y

εφµε − yφµ0) − ε(vεR, |x|4φµε)

−2εzε(vεR, |x|2φµε) − ε(bε)2(vεR, ∂
2
µφµε) − ε(zε)2(vεR, φµε),

D2(t) = ||x|2(φµε − φµ0)|2L2 + 2zε(|x|2(φµε − φµ0), φµε) − 2z(|x|2(φµε − φµ0), φµ0)

−2(µε − µ0)(ηR, η
ε
I) + 2(µε − µ0)(ηI , η

ε
R) − 2((φ2σ

µ0
− φ2σ

µε )ηεI , ηR)

−2(2σ + 1)(ηI , (φ
2σ
µε − φ2σ

µ0
)ηεR) + 4σ(ηεI , (φ

2σ
µε − φ2σ

µ0
)ηεR)

+(bε)2|∂µφµε |2L2 + |zεφµε − zφµ0 |2L2 − 2εyε(ηR, η
ε
I) + 2εyε(ηI , η

ε
R)

−2εbε(|x|2ηεI , ∂µφµε) − 2εzεbε(ηεI , ∂µφµε) + 2ε(|x|2(φµε − φµ0), |x|2ηR)

+εzε(|x|2(φµε − φµ0), η
ε
R) + 2εzε(|x|2ηεR, φµε) − 2εz(|x|2ηεR, φµ0) + 2ε(zε)2(φµε , ηεR)

−2εzεz(ηεR, φµ0) + 2ε2zε(ηR, |x|2ηεR) + ε2(|x|3ηR, |x|ηεR) + ε2(|x|3ηI , |x|ηεI)
+ε2(zε)2(ηR, η

ε
R) + ε2(zε)2(ηI , η

ε
I) + 2ε2zε(ηI , |x|2ηεI),

D3(t) = −ε(hεI , vεR) + ε(hεR, v
ε
I) − 2aε(vεR, ∂µφµε),

M1(t) = −2ε(ηR, |x|2ηεI) + 2ε(ηI , |x|2ηεR) − 2εzε(ηR, η
ε
I)

+2εzε(ηI , η
ε
R) − 2bε(vεR, ∂µφµε) − 2(vεI , |x|2(φµε − φµ0)) − 2(vεI , z

εφµε − zφµ0).One we have obtained that, for ε su�iently small,
E

(

sup
t≤T∧τ̃ε

|vεR(t)|2L2 + |vεI(t)|2L2

)

≤ C(T )

∫ T

0
E

(

sup
t≤T∧τ̃ε

|vεR(t)|2L2 + |vεI(t)|2L2

)

dt+ εC ′T, (5.6)20



where C ′ may depend on N , we will onlude by Gronwall's lemma, that
E

(

sup
t≤T∧τ̃ε

|vεR(t)|2L2 + |vεI(t)|2L2

)

≤ εC ′T 2 exp(CT ),i.e.,
E

(

sup
t≤T∧τ̃ε

|ηε(t) − η(t)|2L2

)

→ 0, as ε→ 0.We �rst onsider the drift part D1. Remarking Proposition 1 (i), (v) and (4.13), we have theestimate for t ≤ τ ε ∧ T,
|D1(t)| ≤ C|vε(t)|2L2 + εC ′,where the onstants depend only on µ0, σ and α exept the term −2(vεI , y

εφµε − yφµ0). Let usexplain how to majorize this term. Noting that
(φµε(t), φµ0) ≥

1

2
|φµ0 |2L2 , t ≤ τ ε ∧ T (5.7)and using (4.13), (3.3) and (3.4),

|yε(t) − y(t)| =
∣

∣

∣
−

(L−
µ0
vεR, φµ0)

|φµ0 |2L2

+ (L−
µ0
ηεR, φµ0)

( 1

|φµ0 |2L2

− 1

(φµε , φµ0)

)

+(2σ + 1)
1

(φµε , φµ0)
((φ2σ

µε − φ2σ
µ0

)ηεR, φµ0) −
ε2

2(φµε , φµ0)
(|x|4ηεI , φµ0)

− ε2zε

(φµε , φµ0)
(|x|2ηεI , φµ0)

∣

∣

∣
≤ C(α, µ0)(|vεR|L2 + |µε − µ0||ηεR|L2 + ε2|ηεI |L2).Then, we have

|(vεI , yεφµε − yφµ0)| ≤ |(vεI , yε(φµε − φµ0))| + |(yε − y)(vεI , φµ0)|
≤ C(α, µ0)|µε − µ0||vεI |L2(|ηε|L2 + ε) + C(α, µ0)|yε − y||vεI |L2

≤ C(α, µ0)(|vεI |L2 |vεR|L2 + |µε − µ0||vεI |L2 |ηε|L2

+ε2|vεI |L2 |ηεI |L2 + ε|µε − µ0||vεI |L2)and it su�es to estimate, putting τ = τ̃ ε ∧ T,

E

∫ T

0
sup
t≤τ

(|µε − µ0||vεI |L2 |ηε|L2)dt.Note that
∫ T

0
E

(

sup
t≤τ

|µε − µ0||vεI |L2 |ηε|L2

)

dt

≤
∫ T

0
E

(

sup
t≤τ

|µε − µ0|4
)1/4

E

(

sup
t≤τ

|ηε|4L2

)1/4
E

(

sup
t≤τ

|vεI |2L2

)1/2
dt (5.8)

≤ εC(T ) + εC ′(T )

∫ T

0
E

(

sup
t≤τ

|vεI |2L2

)

dt,21



where we have used (4.16), Lemma 5.1 (ii) in the seond inequality. Note that we have atuallyfrom (4.16), by Hölder inequality,
|µε(t) − µ0| ≤ εC1T

3/4
(

∫ T

0
sup
s≤τ

|ηε(s)|4L2ds
)1/4

+ εTC ′
2.Therefore,

E

(

sup
t≤τ

|µε(t) − µ0|4
)1/4

≤ εCT 3/4
(

E

∫ T

0
sup
s≤τ

|ηε(s)|4L2ds
)1/4

+ εCT.The terms in D2 are estimated as
E

(

∫ T

0
sup

t≤τ̃ε∧T
|D2(t)|dt

)

≤ εC(T ). (5.9)We study some representative terms in D2 in what follows. The �rst term is estimated as, usingProposition 1 (i) (v),
||x|2(φµε(t) − φµ0)|2L2 ≤ C(α, µ0)|µε(t) − µ0|2 sup

t≤τε∧T
||x|2∂µφµε |2L2 ≤ C(α, µ0)|µε(t) − µ0|2.Then using (4.16) together with Lemma 5.1 (i), we get

E

(

∫ T

0
sup

t≤τ̃ε∧T
(||x|2(φµε(t) − φµ0)|2L2)dt

)

≤ εC(α, µ0, T ).This argument is also valid for the 2nd and the 3rd terms. Conerning the 4th and 5th terms,putting τ = τ̃ ε ∧ T,
∣

∣

∣

∫ τ

0

(

− 2(µε − µ0)(ηR, η
ε
I) + 2(µε − µ0)(ηI , η

ε
R)
)

dt
∣

∣

∣

≤ C

∫ T

0
sup
t≤τ

(|µε − µ0||η|L2 |ηε|L2)dt,whih is estimated as (5.8).For the 6th term, we estimate simply using (3.4) and Proposition 1 (i),
∫ τ

0
| − 2((φ2σ

µ0
− φ2σ

µε )ηεI , ηR)|dt ≤ C(α, µ0)

∫ τ

0
|µε(t) − µ0||ηεI(t)|L2 |ηR(t)|L2dtand then we may ontinue the omputation as (5.8) above. The 7th and 8th terms are similarlyestimated.The 9th term is estimated as follows, writing bε in details. First we note

(∂µφµε , φµ0) ≥
1

2
(∂µφµ0 , φµ0) > 0, for t ≤ τ ε ∧ T, (5.10)by Proposition 1 (i), taking α smaller if neessary. Then, using Lemma 4.2,

(bε)2|∂µφµε |2L2 = ε2
(ηεI , |x|2φµ0)

2

(∂µφµε , φµ0)
2
|∂µφµε |2L2 ≤ ε2C(µ0, α)|ηεI |2L2 .The use of Lemma 5.1 (i) leads to (5.9). 22



To estimate the 10th term we remark that
|zε(t) − z(t)| ≤ Cε|ηεR|L2 + C|µε − µ0| (5.11)holds. Indeed, we an hek this easily developing zε in details (see Lemma 4.2 and Eq. (5.2))

zε(t) − z(t) = −ε(η
ε
R, |x|2φµ0)

(φµε , φµ0)
+

(|x|2φµ0 , φµ0)

|φµ0 |2L2

− (|x|2φµε , φµ0)

(φµε , φµ0)

= −ε(η
ε
R, |x|2φµ0)

(φµε , φµ0)

−(|x|2(φµε − φµ0), φµ0)

(φµε , φµ0)
+

(φµε − φµ0 , φµ0)

|φµ0 |2L2(φµε , φµ0)
(|x|2φµ0 , φµ0).Realling (5.7), then, using (4.13) and (3.3),

∫ τ

0
|zεφµε − zφµ0 |2L2dt ≤ 2

∫ τ

0
|zε(φµε − φµ0)|2L2dt + 2

∫ τ

0
|(zε − z)φµ0 |2L2dt

≤ C

∫ τ

0
|µε − µ0|2dt+ Cε

∫ τ

0
|ηεR|2L2dt,and

∫ T

0
E

(

sup
t≤τ

|zεφµε − zφµ0 |2L2

)

dt ≤ εC(T ),from (4.16) and Lemma 5.1 (i).All the other terms are similarly majorized; Lemma 5.3 (iii) is required for the 21st, 22nd,23rd and 26th terms; the veri�ation is left to the reader.We estimate the terms of D3. Lemma 5.2 is needed here, together with the regularity σ ≥ 1of the nonlinearity. We �rst note that
∣

∣

∣
− ε

∫ t∧τ̃ε

0
(hεI , v

ε
R)ds + ε

∫ t∧τ̃ε

0
(hεR, v

ε
I)ds

∣

∣

∣

≤
∫ t∧τ̃ε

0
(ε|ηε|2(|φµε |2σ−1 + |εηε|2σ−1), |vε|)ds

≤ εC(α, µ0)

∫ t∧τ̃ε

0
|ηε|2Σ|vε|L2ds

≤ C(α, µ0)C(T )
(

∫ t∧τ̃ε

0
ε2|ηε|4Σds+

∫ t∧τ̃ε

0
|vε|2L2ds

)

, (5.12)where we have used the Sobolev embedding Σ ⊂ L4σ+2(Rd) with d = 1 or 2, in the seondinequality. Then, an appliation of Lemma 5.2 implies (5.6) for the terms of D3, with a onstant
C ′ that may depend on N . In order to estimate −aε(vεR, ∂µφµε), we look at aε in details. From23



Lemma 4.2,
−2aε(vεR, ∂µφµε)

= −2(vεR, ∂µφµε)

(∂µφµε , φµ0)
×
[

− 1

2
ε(|x|4φµε , φµ0) − εzε(|x|2φµε , φµ0) − ((φ2σ

µε − φ2σ
µ0

)φµ0 , η
ε
I)

−ε
2
(zε)2(φµε , φµ0) −

1

2
ε2(ηεR, |x|4φµ0) − ε2zε(ηεR, |x|2φµ0) −

ε

2
(bε)2(∂2

µφµε , φµ0) − ε(hεI , φµ0)
]

.Exept the terms −ε(hεI , φµ0) and −((φ2σ
µε −φ2σ

µ0
)φµ0 , η

ε
I), we see easily that all the terms inside thebraket are bounded by εC(α, µ0), using (4.13) and noting |εηε(t)|L2 ≤ C(α, µ0) for t ≤ τ ε ∧ T.On the other hand, by (3.4) and (5.12) we get

|((φ2σ
µε − φ2σ

µ0
)φµ0 , η

ε
I)| ≤ C(α, µ0)|µε − µ0||ηεI |L2 , |ε(hεI , φµ0)| ≤ εC(α, µ0)|ηε|2Σ.Realling (5.10), we have

| − 2aε(vεR, ∂µφµε)| ≤ C(α, µ0)
{

ε|vεR|L2 + ε|ηε|2Σ|vεR|L2 + |µε − µ0||ηεI |L2 |vεR|L2

}

,whih is estimated similarly as above.Next, we onsider the martingale part M1. We give a proof for the terms, as representativeones, −2(vεI , |x|2(φµε − φµ0)), and (vεI , z
εφµε − zφµ0). In a same way we an deal with the otherterms of M1. First we mention that it is possible to estimate

| − 2(vεI , |x|2(φµε − φµ0))| ≤ C|vεI |L2 ||x|2(φµε − φµ0)|L2 ≤ C|µε(t) − µ0||vεI |L2 ,using (3.3), but with Σ2 instead of Σ. With this observation, we have, putting τ = τ̃ ε ∧ T ,
E

(

sup
t≤τ

|
∫ t∧τ

0
(vεI , |x|2(φµε − φµ0))dW |

)

≤ CE

((

∫ τ

0
|vεI |2L2 |µε − µ0|2ds

)1/2)

≤ CT 1/2
E

(

sup
t≤τ

|vεI |L2 |µε − µ0|
)

≤ εC(T )E
(

sup
t≤τ

|vεI |L2

(

∫ T

0
|ηε(s)|L2ds

)

+ 1
))

≤ εC(T )E
(

sup
t≤τ

|vεI |2L2

)

+ εC(T ),where we have used a martingale inequality in the �rst inequality, (4.16) in the third one, andCauhy-Shwarz inequality together with Lemma 5.1 (i) in the last inequality.Next we write (vεI , z
εφµε − zφµ0) as follows.

∫ τ

0
(vεI , z

εφµε − zφµ0)dW =

∫ τ

0
(vεI , z

ε(φµε − φµ0))dW +

∫ τ

0
(zε − z)(vεI , φµ0)dW.24



Only the seond term requires an explanation, sine the �rst term may be estimated as above.We reall the estimate (5.11), and we obtain
E

(

sup
t≤τ

∣

∣

∣

∫ t

0
(zε − z)(vεI , φµ0)dW

∣

∣

∣

)

≤ CE

((

∫ τ

0
|zε − z|2|vεI |2L2 |φµ0 |2L2ds

)1/2)

≤ εCT 1/2
E

(

sup
t≤τ

|ηεR|L2 |vεI |L2

)

+CT 1/2
E

(

sup
t≤τ

|µε(t) − µ0||vεI |L2

)

.Then this right hand side is learly majorized as previously (see (5.8)). Proeeding in the sameway with the other terms, we get
E

(

sup
t≤τ

∣

∣

∣

∫ t∧τ

0
M1(s)dW (s)

∣

∣

∣

)

≤ εC(T )E
(

sup
t≤τ

|vε|2L2

)

+ εC ′(T )and (5.6) holds, assuming that ε is small enough so that εC(T ) ≤ 1/2. �6. the limit equationIn the previous setions we have seen that a remaining term ηε satisfying the orthogonalityonditions (2.5) and (2.6) onverges to a proess η(t) de�ned by (5.1) as ε goes to zero, inprobability, in C([0, τ ε ∧ T ], L2). Also, the modulation parameters verify, at order one in ε, thesystem
{

dµε = o(ε),
dθε = µ0dt+ εy(t)dt + εz(t)dW + o(ε),

(6.1)where y(t) and z(t) are de�ned by (5.2).In this setion we study the statistial properties of this proess η(t), in partiular, as men-tioned in the introdution, we are interested in the quantities
E(|η±k (t)|2), k ∈ {0} ∪ N, if d = 1.For this purpose, we proeed in the following way.

• Investigate the properties of φµ0 when µ0 is lose to −λ0

• Analyze the spetral properties of the operator JLµ0

• Simplify the oupling terms in Eq.(6.1)At the end of this setion, we will give a proof of Theorem 4, deriving the master equation inour ase.6.1. Properties of φµ0. First, we give some arguments and referenes onerning the proof ofProposition 1. Conerning (i), we refer to Theorem 18 of Shatah and Strauss [27℄, for the fatthat µ 7→ φµ is C1 (or C2) with values in Σ. To obtain the same result with Σ2 (or Σ4) insteadof Σ, it su�es to di�erentiate Eq.(1.8) with respet to µ, noting that φµ is real valued, and thento use a bootstrap argument, inverting the operator −∆ + |x|2 + 1. See [10℄ for the proof of (ii)whih implies (iii); indeed, assume (∂µφµ, φµ) = 0 and (ii). Then we have
0 = −(φµ, ∂µφµ) = 〈L−

µ (∂µφµ), ∂µφµ〉 ≥ ν|∂µφµ|2Σ > 025



whih is a ontradition. Suppose that there exists µ1 ∈ (−λ0, µ
∗) suh that (∂µφµ1 , φµ1) < 0.Then ψ(µ, x) =

|φµ1 |L2

|φµ|L2

φµ(x) satis�es (∂µψµ1 , φµ1) = 0 and
〈S′′(φµ1)∂µψµ1 , ∂µψµ1〉 ≤ (∂µφµ1 , φµ1) < 0,whih also ontradits to (ii). The statement of (iv) and (v) has been shown in [11℄.We now put ν = µ+ λ0. Eq.(1.8) is equivalent to
−∆φν + |x|2φν + (ν − λ0)φν − φ2σ+1

ν = 0. (6.2)Lemma 6.1. Assume µ ∈ (−λ0, µ
∗). Let d = 1, 2 and σ ≥ 1/2. Let also φν be a solution of

(6.2). For any δ ∈ (0, 2), there exist C = C(δ) > 0 suh that for ν su�iently small,
(i)

∣

∣

∣
φν − C∗ν

1
2σ Φ0

∣

∣

∣

Σ
≤ Cν

2σ+1
2σ , (ii)

∣

∣

∣
|x|2φν − C∗ν

1
2σ |x|2Φ0

∣

∣

∣

L2
≤ Cν(1−

δ
2)

2σ+1
2σ ,

(iii)
∣

∣

∣
∂νφν −

1

2σ
C∗ν

1
2σ

−1Φ0

∣

∣

∣

Σ
≤ Cν

1
2σ .Moreover if σ ≥ 1 and d = 2,

(iv)
∣

∣

∣
φν − C∗ν

1
2σ Φ0

∣

∣

∣

Σ2
≤ Cν

2σ+1
4σ .Here we have put C∗ = |Φ0|

−σ+1
σ

L2σ+2 = (σ + 1)
d
4σ π

d
4 .Proof. The part (i) has already been proved in [10℄, we reall some ingredients used in [10℄whih will be used for the proof of (ii) and (iii). If we deompose φν = aνΦ0 + yν with aν ∈ Rand (Φ0, yν)Σ = 0, then

|φν |Σ ≤ ν
1
2σC∗, |yν |Σ ≤ C(σ)ν

2σ+1
2σ , |aν | ≤ C(σ)ν

1
2σ . (6.3)In order to prove (ii), we also use this deomposition. Let 1/θ + 1/θ′ = 1 so that, 2 ≤ θ(2 − δ)and θ′ ≥ 1. It follows from Hölder inequality and Sobolev embedding,

||x|2yν |2L2 = ||x|2(φν − aνΦ0)|2L2

≤ C|φν − aνΦ0|2−δLθ(2−δ) ||x|4(φν − aνΦ0)
δ|Lθ′

≤ C(δ)|φν − aνΦ0|2−δΣ ≤ C(δ)ν(2−δ) 2σ+1
2σ .The quantity ||x|4(φν −aνΦ0)

δ|Lθ′ is indeed bounded uniformly in ν from Proposition 1 (iv) (v).This shows (ii).Next we prove (iii). In the same way, we deompose ∂νφν = bνΦ0 + zν with bν ∈ R and
(Φ0, zν)Σ = 0. We insert this deomposition into the equation for ∂νφν , i.e.,

−∆∂νφν + |x|2∂νφν + (ν − λ0)∂νφν − (2σ + 1)φ2σ
ν ∂νφν = −φν ,then we have

−∆(bνΦ0 + zν) + |x|2(bνΦ0 + zν) + (ν − λ0)(bνΦ0 + zν)

−(2σ + 1)(aνΦ0 + yν)
2σ(bνΦ0 + zν) = −(aνΦ0 + yν). (6.4)26



Taking the L2 produt with zν , we get
|zν |2Σ + (ν − λ0)|zν |2L2 = −(yν , zν) + (2σ + 1)((aνΦ0 + yν)

2σbνΦ0, zν)

+(2σ + 1)((aνΦ0 + yν)
2σzν , zν). (6.5)Sine (Φ0, zν) = (Φ0, zν)Σ = 0, zν satis�es

((−∆ + |x|2)zν , zν) ≥ λ1|zν |2L2 ,where λ1 is the seond eigenvalue of −∆ + |x|2 and λ1 > λ0 = d ≥ 1. Thus,
|zν |2Σ ≥ (λ1 + 1)|zν |2L2 .If ν is small enough, then ν − λ0 < 0 and so we have

|zν |2Σ − (λ0 − ν)|zν |2L2 ≥ |zν |2Σ − λ0 − ν

λ1 + 1
|zν |2Σ >

1 + ν

λ1 + 1
|zν |2Σ.We also estimate the right hand side of (6.5) and we obtain, putting C0 = 1/(λ1 + 1),

C0|zν |2Σ ≤ |yν |L2 |zν |Σ + C(σ)C
−

σ(2σ+1)
σ+1

∗ |bν ||aν |2σ |zν |Σ + C(σ)C
− σ

σ+1
∗ |bν ||yν |2σL2σ+2 |zν |Σ

+C(σ)C
− 2σ2

σ+1
∗ |aν |2σ |zν |2Σ + C(σ)|yν |2σL2σ+2 |zν |2Σ.Taking ν so small that C0 − C(σ)C

− 2σ2

σ+1
∗ |aν |2σ − C(σ)|yν |2σL2σ+2 < 1/2 (see (6.3)), and using theorder in ν of aν and yν , we obtain

|zν |Σ ≤ Cν
2σ+1
2σ +C(ν + ν2σ+1)|bν |. (6.6)On the other hand, if we take the L2 produt with Φ0 in Eq.(6.4),

(

ν − (2σ + 1)(φ2σ
ν Φ0,Φ0)

)

bν = −aν + (2σ + 1)(φ2σ
ν zν ,Φ0),and it follows, using (6.6) and (6.3) together with (i) of Lemma 6.1, that

2σνbν(1 +O(ν)) = aν +O(ν
2σ+1
2σ

+1).thus
bν =

1

2σ
C∗ν

1
2σ

−1 +O(ν
1
2σ ),whih ompletes the proof of (iii).As for (iv), it su�es to estimate |∂αyν |L2 for all α with |α| = 2, and then to use (ii).

|∂αyν|2L2 = |∂α(φν − aνΦ0)|2L2 ≤ |∂(φν − aνΦ0)|L2 |∂α′

(φν − aνΦ0)|L2 ≤ Cν
2σ+1
2σwith |α′| = 3 and C is uniformly bounded in ν; indeed (iv) of Proposition 1 allows us to have

φν ∈ C3
loc(R

2) if σ ≥ 1 with its norm uniformly bounded in ν for ν su�iently small. We thenuse the exponential deay of |∂α′

φν(x)| for large |x|, whih may be proved if σ ≥ 1 repeating thesame proof of (v) of Proposition 1. �27



6.2. Spetral Analysis. We investigate the spetral properties of the operator JLµ0 de�nedby (1.15). Sine a modi�ation of the proof in [17℄ gives Ker(L−
µ0

) = {0}, and it is easily seenthat Ker(L+
µ0

) = {φµ0}, one an hek, using Eq.(1.17) that
Kerg(JLµ0) = span

{(

∂µφµ0

0

)

,

(

0
φµ0

)}

. (6.7)For the rest of the spetrum, we write the operator JLµ0 as follows;
JLµ0 =

(

0 L+
µ0

−L−
µ0

0

)

= JL−λ0 +

(

0 (λ0 + µ0) − φ2σ
µ0

−(λ0 + µ0) + (2σ + 1)φ2σ
µ0

0

)where we have de�ned JL−λ0 in the introdution.Now we onsider the ase d = 1. It is well known that the operator Ξ = −∆ + |x|2 −
λ0 = − d2

dx2 + x2 − 1 has purely disrete eigenvalues λ̃k = λk − λ0 = 2k (k ∈ N ∪ {0}), andthe orresponding eigenfuntions whih are the Hermite funtions Φk(x) (see e.g. [29℄) form aomplete orthonormal system in L2(R).For later use, we summarize some properties of the Hermite funtions Φk(x). For any k ∈
N ∪ {0}, the relation

Φk+1(x) =
(

− d

dx
+ x
)

Φk(x) (6.8)holds between Φk+1 and Φk. Thus we have
(

Φn,
( d

dx
+ x
)

Φk

)

=
((

− d

dx
+ x
)

Φn,Φk

)

= (Φn+1,Φk) = 0, if n+ 1 6= k,

((

− d

dx
+ x
)

Φk,Φn

)

= (Φk+1,Φn) = 0, if k + 1 6= n.>From these fats it may be veri�ed that
(Φn, xΦk) = 0 if n+ 1 6= k and k + 1 6= n. (6.9)It may also be seen that the spetrum of JL−λ0 onsists only of the disrete eigenvalues

ξ±k (−λ0) = ±iλ̃k, k ∈ N ∪ {0},and the (normalized) eigenfuntion assoiated to ±iλ̃k for k 6= 0 may be hoosen as
~Φ±
k =

1√
2

(

±iΦk

∓Φk

)

.For k = 0,
Kerg(JL−λ0) = Kerg(L−λ0J) = span

{

~Φ−
0 ,
~Φ+

0

}

, with ~Φ−
0 =

(

0
Φ0

)

, ~Φ+
0 =

(

Φ0

0

)

, (6.10)where ΞΦk = λ̃kΦk or equivalently (−∆ + |x|2)Φk = λkΦk (k ∈ N ∪ {0}) as mentioned above.28



Remark 6.1. It may be proved, using a bifuration argument as follows, that the spetrum of
JLµ0 onsists only in pure imaginary disrete, simple eigenvalues (exept 0) for µ0 su�ientlylose to −λ0. Indeed, �x k ∈ N ∪ {0} and onsider for µ0 lose to −λ0, the operators

Π±
k (JLµ0) = − 1

2πi

∫

Γ±

k

(JLµ0 − z)−1dz (6.11)with the ontour
Γ±
k = {z ∈ C, |z − ξ±k (−λ0)| = 1/2}.It follows from Lemma of page 14 in Vol. VI of [25℄ that if

‖Π±
k (JLµ0) − Π±

k (JL−λ0)‖L(L̃2) < 1 (6.12)for µ0 su�iently lose to −λ0, then
dimRanΠ±

k (JLµ0) = dimRanΠ±
k (JL−λ0). (6.13)In order to prove (6.12), we remark that for any z ∈ ρ(JLµ0) ∩ ρ(JL−λ0),

‖(JLµ0 − z)−1 − (JL−λ0 − z)−1‖L(L̃2) ≤
∞
∑

n=1

‖JLµ0 − JL−λ0‖nL(L̃2)
‖(JL−λ0 − z)−1‖n+1

L(L̃2)
, (6.14)and it follows from the spetral theorem that for any z ∈ Γ±

k ,
‖(JL−λ0 − z)−1‖L(L̃2) <

1

dist(z, σ(JL−λ0))
= 2.Using this, the sum of the series in the right hand side of (6.14) onverges for µ0 su�iently loseto −λ0, sine we have for example,

‖JLµ0 − JL−λ0‖L(L̃2)

= sup
|ψ|

L̃2=1,

ψ=ψR+iψI∈L̃
2

{|((λ0 + µ0) − φ2σ
µ0

)ψI |2L2 + |((λ0 + µ0) + (2σ + 1)φ2σ
µ0

)ψR|2L2}1/2

≤ C(σ)(|λ0 + µ0| + |φµ0 |2σL∞) ≤ 1

8
, (6.15)hoosing µ0 lose enough to −λ0. We have used Lemma 6.1 and Σ ⊂ L∞(R) so that |φµ0 |2σL∞tends to 0 as µ0 tends to −λ0. Hene we obtain

‖Π±
k (JLµ0) − Π±

k (JL−λ0)‖L(L̃2) ≤ 1

2π

∫

Γ±

k

‖(JLµ0 − z)−1 − (JL−λ0 − z)−1‖L(L̃2)|dz|

≤ 1

π

∞
∑

n=1

(

1

4

)n

|Γ±
k | =

1

3
< 1,where |Γ±

k | is the length of Γ±
k .As a onsequene, if d = 1, all the eigenvalues of JLµ0 , exept the zero eigenvalue are disrete,simple and on the imaginary axis sine, otherwise, the bifuration ours toward two diretionsdue to the symmetry, but it is a ontradition to (6.13).29



Remark 6.2. In dimension 2, denoting x = (x1, x2), we may write the operator as
−∆ + |x|2 − λ0 =

(

− d2

dx2
1

+ x2
1 − 1

)

⊗ I + I ⊗
(

− d2

dx2
2

+ x2
2 − 1

)

. (6.16)It is known (see for example setions II.4 and VIII.10 of [25℄) that the omplete orthonormalsystem in L2(R2) assoiated to the operator (6.16) is
{Ψj,l(x)}j,l≥0 = {Φj(x1)Φl(x2)}j,l≥0, (6.17)and the m-th eigenvalue of the operator (6.16) is given, for m ∈ N ∪ {0}, by

λ̃j + λ̃l = 2m, with j, l,m ∈ N ∪ {0} and j + l = m.The arguments of Remark 6.1 for the operator JL−λ0 are still valid in the ase d = 2; wean indeed use Lemma 6.1 (iv) and Σ2 ⊂ L∞(R2) for the smallness of |φµ0 |2σL∞ . However, thebifuration of pure imaginary eigenvalues outside the imaginary axis ould our sine the eigen-values are not simple in 2D. To exlude this possibility, let P̄ be the orthogonal projetion on
(Ker(L+

µ0
))⊥={φµ0}⊥. Sine operators L+

µ0
and P̄L−

µ0
P̄ have no negative eigenvalue for µ0 loseto −λ0, it follows from Corollary 1.1 in [13℄ that the bifuration of eigenvalues annot happenoutside the imaginary axis.6.3. Simpli�ed modulation equations. Now the orthogonality onditions (2.5), (2.6), whihhave been used to estimate the exit time τ ε in a onvenient way, are not exatly the orthogonalityonditions to Kerg{JLµ0}. In order to slightly simplify the limit equations, we will now provethat we an hange these orthogonality onditions without hanging the exit time τ ε.Let Pµ0 be the spetral projetion onto Kerg(JLµ0) de�ned by

Pµ0w = (∂µφµ0 , φµ0)
−1(wI , ∂µφµ0)

(

0
φµ0

)

+ (∂µφµ0 , φµ0)
−1(wR, φµ0)

(

∂µφµ0

0

) (6.18)for any w ∈ L2(Rd) with Rew = wR and Imw = wI . Set Qµ0 = I − Pµ0 and reall that η is thesolution of (5.1). Then
Qµ0

(

0
φµ0

)

= 0, d(Qµ0η) = JLµ0(Qµ0η)dt −Qµ0

(

0
|x|2φµ0

)

dW, Pµ0η = h(t)

(

0
φµ0

)

,due to the orthogonality onditions (2.5), (2.6) satis�ed by η. Here, h(t) satis�es the equation
dh = −ydt− L(φµ0)dW,with L(φµ0) = (∂µφµ0 , φµ0)

−1(∂µφµ0 , |x|2φµ0) + z(t) and y(t), z(t) de�ned in (5.2).We put
θ̃ε(t) = θε(t) + εh(t), µ̃ε(t) = µε(t),

εη̃ε(t, x) = εe−iεh(t)ηε(t, x) + e−iεh(t)φµε(t) − φµε(t).Lemma 6.2. Let T > 0 �xed and h(t) be de�ned above. Then we have
lim
ε→0

E

(

sup
t∈[0,τε∧T ]

1

ε

∣

∣

∣
e−iεh(t)φµε(t) − φµε(t) + iεh(t)φµ0

∣

∣

∣

2

L2

)

= 0.30



Proof. Note that h(t) is bounded in L4(Ω;L∞(0, T ;L2(Rd))) for any T > 0. Indeed, ηR isbounded in L4(Ω;L∞(0, T ;L2(Rd))) by Lemma 5.3 (i) and E(supt≤T W (t)4) ≤ CT 2. It followsfrom Taylor formula that
1

ε

∣

∣

∣
e−iεh(t)φµε(t) − φµε(t) + iεh(t)φµ0

∣

∣

∣

=
1

ε

∣

∣

∣
(e−iεh(t) − 1 + iεh(t))φµε(t) + iεh(t)(φµ0 − φµε(t))

∣

∣

∣

≤ 1

ε

(

|e−iεh(t) − 1 + iεh(t)||φµε(t)| + ε|h(t)||φµ0 − φµε(t)|
)

≤ 1

2
εh(t)2 + |h(t)||φµ0 − φµε(t)|,the right hand side tends to zero as ε goes to zero in L2(Ω;L∞(0, τ ε∧T ;L2(Rd))) by (3.3), (4.16)and Lemma 5.1 (ii). �Thus letting

η̃(t, x) = η(t, x) − ih(t)φµ0 ,we see that η̃ε(t, x) onverges to η̃(t, x) as ε → 0, in probability, in L∞(0, T ;L2(Rd)), where
η̃ε(t, x) is de�ned by

uε(t, x) = eiθ̃
ε(t)(φµ̃ε(t) + εη̃ε(t, x)).Note that η̃ satis�es

Pµ0 η̃ = 0, η̃ = (I − Pµ0)η,

dη̃ = JLµ0 η̃dt−Qµ0

(

0
|x|2φµ0

)

dW, (6.19)whih is exatly the equation (2.7). This η̃ε(t, x) satis�es the onlusion of Theorem 2 with thesame exit time τ εα as that for ηε(t, x). The assoiated modulation parameters θ̃ε and µ̃ε satisfy(2.9), (2.10) and (1.18), as follows from the results of Setion 5.6.4. Proof of Theorem 4. Finally we are in position to prove Theorem 4. We restrit hereto the one dimensional ase, sine the ondition σ > 1 is needed. See Remark 6.3 for what anbe said in dimension two. Let us onsider the projetion in 1D, orresponding to µ0 = −λ0, P0onto Ker(JL−λ0) de�ned by
P0w = (wI ,Φ0)

(

0
Φ0

)

+ (wR,Φ0)

(

Φ0

0

)for any w ∈ L2(Rd) with Rew = wR and Imw = wI .Proof of Theorem 4. We obtain for any δ ∈ (0, 2), using Lemma 6.1 and Eq. (6.18), andsetting ν = µ0 + λ0 :
(I − Pµ0)

(

0
|x|2φµ0

)

= ν
1
2σC∗(I − P0)

(

0
|x|2Φ0

)

+ ν
1
σ Yν , (6.20)for some Yν ∈ L̃2(Rd) satisfying |Yν |L̃2 ≤ C where C does not depend on ν.31



Now we ompute the power of eah k-eigenmode of the proess η̃ of (2.7). Noting that
η̃(t) =

∞
∑

k=0

η̃±k (t)~Φ±
k , η̃±k (t) = ((η̃(t), ~Φ±

k )),we wish to ompute the asymptotis as ν goes to zero of E(|η̃±k (t)|2). For this aim, we hangethe time sale by setting
s = ν1/σt. (6.21)Then Eq.(2.7) is written as

dη̃ = ν−
1
σ JLµ0 η̃ds− ν−

1
2σ (I − Pµ0)

(

0
|x|2φµ0

)

dW̃ (s), (6.22)with the new standard Brownian motion W̃ (s) = ν1/2σW (ν−1/σs). By the de�nition of P0,
(I − P0)

(

0
|x|2Φ0

)

=

(

0
|x|2Φ0 − (|x|2Φ0,Φ0)Φ0

)

.Together with (6.20), we have
dη̃ = ν−

1
σ JL−λ0 η̃ds+ ν−

1
σBν η̃ds− C∗

(

0
|x|2Φ0 − |xΦ0|2L2Φ0

)

dW̃ (s) − ν
1
2σ YνdW̃ (s), (6.23)where

Bν =

(

0 ν − φ2σ
µ0

−ν + (2σ + 1)φ2σ
µ0

0

)

.We take the L̃
2 produt of Eq. (6.23) with ~Φ±

k . If k = 0, sine λ̃0 = 0,

dη̃±0 = ν−
1
σ ((Bν η̃, ~Φ

±
0 ))ds − ν

1
2σ ((Yν , ~Φ

±
0 ))dW̃ (s).It� formula for |η̃±0 |2 leads to

d|η̃±0 |2 = 2ν−
1
σ Re

(

¯̃η±0 ((Bν η̃, ~Φ
±
0 ))
)

ds− 2ν
1
2σ Re

(

¯̃η±0 ((Yν , ~Φ
±
0 ))
)

dW̃ (s) + ν
1
σ |((Yν , ~Φ±

0 ))|2ds.(6.24)In the same way, noting that JL−λ0 = L−λ0J , we get for k ≥ 1,

dη̃±k = ∓iλ̃kν−1/ση̃±k (s)ds+ ν−1/σ((Bν η̃, ~Φ
±
k ))ds

−C∗√
2
(|x|2Φ0,∓Φk)dW̃ (s) − ν1/2σ((Yν , ~Φ

±
k ))dW̃ (s).Then, again with the It� formula,

d|η̃±k |2 =
1

2
C2
∗ (|x|2Φ0,Φk)

2ds (6.25)
+
√

2ν−
1
σ {(Im η̃,∓Φk)Re((Bν η̃, ~Φ

±
k )) − (Re η̃,±Φk) Im((Bν η̃, ~Φ

±
k ))}ds

+
√

2C∗ν
1
2σ (|x|2Φ0,∓Φk)Re((Yν , ~Φ

±
k ))ds + ν

1
σ |Re((Yν , ~Φ

±
k ))|2ds

−C∗(Im η̃,∓Φk)(|x|2Φ0,∓Φk)dW̃ (s) +
√

2ν
1
2σ {(Re η̃,±Φk) Im((Yν , ~Φ

±
k ))

−(Im η̃,∓Φk)Re((Yν , ~Φ
±
k ))}dW̃ (s).32



We reall that η̃(0) = 0. Note also that by (6.15) and Lemma 6.1 (i),
‖Bν‖L(L2) ≤ Cνfor some positive onstant C. Hene, using Lemma 5.3 (i),

E

(√
2ν−

1
σ

∫ t

0

∣

∣

∣
(Im η̃,∓Φk)Re((Bν η̃, ~Φ

±
k )) − (Re η̃,±Φk) Im((Bν η̃, ~Φ

±
k ))
∣

∣

∣

)

ds

≤
√

2ν−
1
σ E

(

∫ t

0
‖Bν‖L(L2)|η̃(s)|2L2ds

)

≤ 2Cν1− 1
σ

∫ t

0
E

(

sup
s≤T

|η̃(s)|2L2

)

ds ≤ Cν1− 1
σ t.Integrating Eqs (6.24) and (6.25) on [0, t ∧ T ] and taking the expetation, we obtain

E(|η̃±k (t)|2) =
1

2
C2
∗(|x|2Φ0,∓Φk)

2t+O(νκt), if k ≥ 1,

E(|η̃±0 (t)|2) = O(νκt), (6.26)where κ = min{ 1
2σ , 1 − 1

σ}. On the other hand, noting that for any k ≥ 1

(|x|2Φ0,Φk) =
1

2
(xΦ0,Φk+1) +

1

2
(Φ1, xΦk),it follows from (6.9) that

(|x|2Φ0,Φk) = 0, exept for k = 2, and (|x|2Φ0,Φ2) =
1

2
(xΦ1,Φ2). (6.27)Indeed, by (6.8), if k 6= 0, we get

(x2Φ0,Φk) = −(∂xΦ0, ∂xΦk) = −(xΦ0 − Φ1, xΦk − Φk+1)

= −(x2Φ0,Φk) + (xΦ0,Φk+1) + (Φ1, xΦk).These omputations �nally lead to
E(|η̃±2 (t)|2) =

C2
∗

2
(xΦ1,Φ2)

2t+O(νκ0 t),

E(|η̃±k (t)|2) = O(νκ0 t) if k 6= 2.This is the master equation in the ase d = 1. Note that this does not mean anything if
σ = 1. Reall ν = λ0 + µ0. To omplete the statement in Theorem 4, it su�es to remark that
(xΦ1,Φ2) = −1. �Remark 6.3. In the ase d = 2, the above arguments would work up to Eq.(6.26), setting (seeEq. (6.17))

η̃(t) =
∞
∑

j,l=0

η̃±j,l(t)
~Ψ±
j,l, η̃±j,l(t) = ((η̃(t), ~Ψ±

j,l)),provided that we ould take σ > 1. We ould also ompute the quantity (|x|2Ψ0,0,Ψj,l) for
j + l = m and m ≥ 1. Indeed, by (6.17), and with x = (x1, x2), we have

(|x|2Ψ0,0,Ψj,l) = ((x2
1 + x2

2)Φ0(x1)Φ0(x2),Φl(x1)Φj(x2)) = δ0j(x
2
1Φ0,Φl)x1 + δ0l(x

2
2Φ0,Φj)x233



for j + l = m and m ≥ 1. Then, using (6.27),
(|x|2Ψ0,0,Ψj,l) =

{

1
2(x1Φ1,Φ2) if (j, l) ∈ {(0, 2), (2, 0)}
0, otherwiseAs a onsequene, we would obtain the following master equation (in the new time sale (6.21))in 2D :

E(|η̃±j,l(s)|2) =
C2
∗

8
(x1Φ1,Φ2)

2s+O(νκs), if (j, l) ∈ {(0, 2), (2, 0)},

E(|η̃±j,l(s)|2) = O(νκs) if (j, l) /∈ {(0, 2), (2, 0)}.Aknowledgements. The �rst author was partially supported by the ANR researh projet�Dispersive PDEs" (ANR-07-BLAN-0250) and the seond author was partially supported byJSPS Postdotoral Fellowships for Researh Abroad.7. appendixIn this setion we will prove the estimates in Lemmas 5.1 and 5.3. All the omputations inthis setion applying It� formula may be justi�ed with a similar method to the proof of Lemma4.1. We begin with (i) of Lemma 5.1.Proof of Lemma 5.1 (i). It� formula leads the equations
d|ηεR|2L2 + d|ηεI |2L2 = 4σ(ηεI , φ

2σ
µ0
ηεR)dt + ||x|2φµε |2L2dt + (zε)2|φµε |2L2dt+ 2zε|xφµε |2L2dt

−2aε(ηεR, ∂µφµε)dt + (bε)2|∂µφµε |2L2dt− 2yε(ηεI , φµε)dt

+2(2σ + 1)(ηεI , (φ
2σ
µε − φ2σ

µ0
)ηεR)dt + 2(ηεR, (φ

2σ
µ0

− φ2σ
µε )ηεI)dt

−2εzεbε(ηεI , ∂µφµε)dt − ε(ηεR, |x|4φµε)dt− ε(zε)2(ηεR, φµε)dt

−ε(bε)2(ηεR, ∂2
µφµε)dt − 2εbε(|x|2ηεI , ∂µφµε)dt + 2ε(|x|4φµε , ηεR)dt

+2εzε(|x|2φµε , ηεR)dt + 2ε(zε)2(φµε , ηεR)dt − 2ε(ηεR, h
ε
I)dt+ 2ε(ηεI , h

ε
R)dt

−2bε(ηεR, ∂µφµε)dW − 2(ηεI , |x|2φµε)dW − 2zε(ηεI , φµε)dW.We note that
| − 2ε(ηεR, h

ε
I) + 2ε(ηεI , h

ε
R)| ≤ (ε|ηε|2(|φµε |2σ−1 + |εηε|2σ−1), |ηε|)

≤ |ηε|2L2 |εηε|L∞(|φµε |2σ−1
L∞ + |εηε|2σ−1

L∞ )

≤ C|ηε|2L2where C depends only on α, σ, µ0 and moreover on N if d = 2 for t ≤ τ̃ ε ∧ T . It follows fromEqs. (4.13) and (4.14) that a.s. for t ≤ τ̃ ε ∧ T , putting τ = t ∧ τ̃ ε,
|ηεR(t)|2L2 + |ηεI(t)|2L2 ≤ C

∫ τ

0
(1 + |ηεR(s)|2L2 + |ηεI(s)|2L2)ds+

∣

∣

∣

∫ τ

0
M(s)dW (s)

∣

∣

∣with
|M(s)| ≤ C ′(1 + |ηεR(s)|L2 + |ηεI(s)|L2), a.s. for s ≤ τ.34



Indeed we may use Proposition 1 (i), (iv), and (v). Taking the expetation of the supremum intime and using a martingale inequality, we get
E

(

sup
t≤τ̃ε∧T

|ηε(t)|2L2

)

≤ CE

(

∫ τ̃ε∧T

0
sup

s≤τ̃ε∧T
(1 + |ηε(s)|2L2)

)

+ C ′
E

(

∫ τ̃ε∧T

0
(1 + |ηε(t)|2L2)dt

)1/2

≤ CE

(

∫ T

0
sup

s≤τ̃ε∧T
(1 + |ηε(s)|2L2)

)

+ C ′T 1/2
E

(

sup
t≤τ̃ε∧T

(1 + |ηε(t)|2L2)
)1/2from whih, by Gronwall inequality,

E( sup
t≤τ̃ε∧T

|ηε(t)|2L2) ≤ C1(T )follows. �Proof of Lemma 5.1 (ii). We apply Ito formula and we have
d|ηε(t)|4L2 = 2(|ηε(t)|2L2 , d|ηε(t)|2L2) + |2bε(ηεR, ∂µφµε) + 2(ηεI , |x|2φµε) + 2zε(ηεI , φµε)|2dt. (7.1)We use the previous omputations :

|ηε(t)|4L2 ≤ C

∫ τ

0
(1 + |ηε(t)|4L2)dt+

∣

∣

∣

∫ τ

0
M ′(s)dW (s)

∣

∣

∣a.s. for t ≤ τ , with
|M ′(s)| ≤ C ′(1 + |ηε(s)|3L2), a.s. for s ≤ τ. (7.2)Then, integrating Eq. (7.1), taking the expetation and using Gronwall Lemma, we have

sup
t≤T

E

(

1l[0,τ̃ε)(t)|ηε(t)|4L2

)

≤ C(T ).Hene,
E

(

sup
t≤τ̃ε∧T

|ηε(t)|4L2

)

≤ C + C ′
E

(

sup
t≤τ̃ε∧T

|
∫ τ

0
M ′(s)dW (s)|

)

,and by (7.2) and the martingale inequality given by Theorem 3.14 in [5℄, we have
E

(

sup
t≤τ̃ε∧T

|
∫ t∧τ

0
M ′(s)dW (s)|

)

≤ 3E

(

(

∫ T∧τ̃ε

0
(1 + |ηε(s)|6)ds)1/2

)

≤ 3T 1/2
E

(

sup
t≤τ̃ε∧T

(1 + |ηε(t)|3L2)
)

≤ 1

2
E

(

sup
t≤τ̃ε∧T

|ηε(t)|4L2

)

+ C(T ),where we have used Young inequality in the last inequality. Finally we obtain
E

(

sup
t≤τ̃ε∧T

|ηε(t)|4L2

)

≤ C(α, T ).
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Proof of Lemma 5.2. It� formula to (L−
µ0
ηεR, η

ε
R) + (L+

µ0
ηεI , η

ε
I) results in, taking aount ofsome ompensations,

d((L−
µ0
ηεR, η

ε
R) + (L+

µ0
ηεI , η

ε
I))

= −4σ(µε − µ0)(φ
2σ
µ0
ηεR, η

ε
I)dt+ 2(L−

µ0
ηεR, (φ

2σ
µ0

− φ2σ
µε )ηεI)dt

−2(2σ + 1)(L+
µ0
ηεI , (φ

2σ
µε − φ2σ

µ0
)ηεR)dt − 2aε(L−

µ0
ηεR, ∂µφµε)dt− 2yε(ηεI , L

+
µ0
φµε)dt

+(bε)2(L−
µ0

(∂µφµε), ∂µφµε)dt + (L+
µ0

(|x|2φµε), |x|2φµε)dt + 2zε(L+
µ0

(|x|2φµε), φµε)dt

+(zε)2(L+
µ0

(φµε), φµε)dt − 4σεyε(ηεR, η
ε
I)dt − ε(L−

µ0
ηεR, |x|4φµε)dt + 4σεzε(φ2σ

µ0
ηεR, |x|2φµε)dt

+2σε(zε)2(φ2σ
µ0
ηεR, φµε)dt+ ε(zε)2(ηεR, L

+
µ0

(φµε))dt − ε(bε)2(ηεR, L
−
µ0

(∂2
µφµε))dt

−2ε(L−
µ0
ηεR, h

ε
I)dt + 2ε(L+

µ0
ηεI , h

ε
R)dt− 2εbε(L−

µ0
(∂µφµε), |x|2ηεI)dt − 2εbεzε(L−

µ0
(∂µφµε), ηεI)dt

+2ε(|x|2L+
µ0

(|x|2φµε), ηεR)dt+ 2εzε(|x|2L+
µ0

(φµε), ηεR)dt + 2σε2(|x|4φ2σ
µ0
ηεR, η

ε
R)dt

−(6 − 2d)ε2|xηεR|2L2dt + 4σε2zε(φ2σ
µ0
ηεR, |x|2ηεR)dt+ 2σε2(zε)2(φ2σ

µ0
ηεR, η

ε
R)dt

−2σε2(|x|4φ2σ
µ0
ηεI , η

ε
I)dt + (6 − 2d)ε2|xηεI |2L2dt− 4σε2zε(|x|2φ2σ

µ0
ηεI , η

ε
I)dt

−2σε2(zε)2(φ2σ
µ0
ηεI , η

ε
I)dt − 2bε(ηεR, L

−
µ0

(∂µφµε))dW − 2(ηεI , L
+
µ0

(|x|2φµε))dW

−2zε(ηεI , L
+
µ0
φµε)dW − 8ε(ηεR, x · ∇ηεI)dW − 4dε(ηεR, η

ε
I)dW

+4σε(φ2σ
µ0
ηεR, η

ε
I)dW − 4σεzε(φ2σ

µ0
ηεR, η

ε
I)dW (7.3)We set

D3(t) = −4σ(µε − µ0)(φ
2σ
µ0
ηεR, η

ε
I) − 4σεyε(ηεR, η

ε
I)

−2aε(L−
µ0
ηεR, ∂µφµε) − 2yε(ηεI , L

+
µ0
φµε)

D4(t) = −2ε(L−
µ0
ηεR, h

ε
I) + 2ε(L+

µ0
ηεI , h

ε
R)

D5(t) = the rest of drift terms
M2(t) = martingale partsand we have a.s., for t ≤ τ̃ ε ∧ T, putting τ = t ∧ τ̃ ε,

(L−
µ0
ηεR(t), ηεR(t)) + (L+

µ0
ηεI(t), η

ε
I(t)) =

∫ τ

0
(D3(s) +D4(s) +D5(s))ds +

∫ τ

0
M2(s)dW (s).Sine |εηε(s, ·)|Σ ≤ C(α, µ0) for s ≤ τ ε ∧ T,

E

(

sup
t≤τ̃ε∧T

∫ t

0
|D3(s)|ds

)

≤ C(σ, µ0, α)
(

E

(

∫ T

0
sup

s≤τ̃ε∧T
|ηε(s)|2Σ

)

+ T
)

E

(

sup
t≤τε∧T

∫ t

0
|D5(s)|ds

)

≤ C(σ, µ0, α)T.A use of martingale inequality leads to
E

(

sup
t≤τ̃ε∧T

∣

∣

∣

∫ t

0
M2(s)dW (s)

∣

∣

∣

)

≤ 24εT 1/2
E

(

sup
t≤τ̃ε∧T

|ηε(t)|2Σ
)

+C(µ0, α, T )E
(

sup
t≤τ̃ε∧T

|ηε(t)|2L2

)

+ C(T, µ0).36



Therefore, if we get
E

(

sup
t≤τ̃ε∧T

∫ t

0
|D4(s)|ds

)

≤ C(σ, µ0, α,N)E
(

∫ T

0
sup

s≤τ̃ε∧T
|ηε(s)|2Σ

)

, (7.4)noting that for some ν > 0

(L−
µ0
ηεR, η

ε
R) + (L+

µ0
ηεI , η

ε
I) ≥ ν(|ηεR|2Σ + |ηεI |2Σ),the estimate

E

(

sup
t≤τ̃ε∧T

|ηε(t)|2Σ
)

≤ C(α, µ0, T,N)will hold, similarly to the proof of Lemma 5.1 (i), hoosing ε small enough. Then, using againIt� formula for |ηε(t)|4Σ, sine
d|ηε|2Σ = { the right hand side of (7.3)} + (1 − µ0)d|ηε|2L2 + 2(2σ + 1)(φ2σ

µ0
ηεR, dη

ε
R)dt

+
(

φ2σ
µ0

(−bε∂µφµε + ε|x|2ηεI + εzεηεI),−bε∂µφµε + ε|x|2ηεI + εzεηεI

)

dt + 2(φ2σ
µ0
ηεI , dη

ε
I)dt

+
(

φ2σ
µ0

(|x|2φµε + zεφµε + ε|x|2ηεR + εzεηεR), |x|2φµε + zεφµε + ε|x|2ηεR + εzεηεR

)

dt,we may write, for t ≤ τ̃ ε ∧ T = τ ,
|ηε(t)|4Σ ≤ C

∫ τ∧t

0
(1 + |ηε(s)|4Σ)ds+

∣

∣

∣

∫ τ∧t

0
A(s)dW (s)

∣

∣

∣with
|A(s)| ≤ C ′(1 + |ηε|2L2)|ηε|2Σ + εC ′′|ηε|4Σ, a.s. for s ≤ τ.We then onlude using Lemma 5.1 (ii), and ε small enough.We now study in details D4(t) = −2ε(L−

µ0
ηεR, h

ε
I) + 2ε(L+

µ0
ηεI , h

ε
R); this is divided into

D4(t) = −2ε(∇ηεR,∇hεI) + 2ε(∇ηεI ,∇hεR) − 2ε(|x|2ηεR, hεI) + 2ε(|x|2ηεI , hεR)

−2εµ0(η
ε
R, h

ε
I) + 2εµ0(η

ε
I , h

ε
R) + 2ε(2σ + 1)(φ2σ

µ0
ηεR, h

ε
I) − 2ε(φ2σ

µ0
ηεI , h

ε
R).In order to estimate these terms in d = 2, we need the stopping time τ̄ εN whih allows us to makeuse of the Sobolev embedding Σ2 ⊂ L∞(R2). The ase d = 1 is easier, so we give here a prooffor d = 2. Using |εηε(s, ·)|Σ ≤ C(µ0, α) for t ≤ τ ε ∧ T, and

|εhε|L2 ≤ C|εηε|2σL4σ+4 |ηε|L2σ+2 ≤ C(α, µ0, σ)|ηε|Σ, t ≤ τ ε ∧ T,we have
| − 2εµ0(η

ε
R, h

ε
I) + 2εµ0(η

ε
I , h

ε
R) + 2ε(2σ + 1)(φ2σ

µ0
ηεR, h

ε
I) − 2ε(φ2σ

µ0
ηεI , h

ε
R)|

≤ C(µ0, σ)|ηε|L2 |εhε|L2 ≤ C(µ0, σ, α)|ηε|L2 |ηε|Σ, t ≤ τ ε ∧ T.In the same way, we obtain also
| − 2ε(|x|2ηεR, hεI) + 2ε(|x|2ηεI , hεR)| ≤ C(µ0, α, σ)|ηε|2Σ, t ≤ τ ε.37



We perform the alulations of |2ε(∇ηεI ,∇hεR)| sine the other term is treated similarly. Wedevelop here the derivative of hεR:
∇hεR =

2σ

ε2

∫ 1

0
(1 − s)(σ − 1)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×
{

2(φµε + sεηεR)(∇φµε + sε∇ηεR) + 2s2ε2ηεI∇ηεI
}

×
{

2((φµε + sεηεR)εηεR + s(εηεI)
2)εηεR + ((εηεR)2 + (εηεI)

2)(φµε + sεηεR)
}

ds

+
2σ

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−1

×
{

2
(

(φµε + sεηεR)εηεR + s(εηεI)
2
)

ε∇ηεR

+2
(

(∇φµε + sε∇ηεR)εηεR + (φµε + sεηεR)ε∇ηεR + 2sε2ηεI∇ηεI
)

εηεR

+((εηεR)2 + (εηεI)
2)(sε∇ηεR + ∇φµε) + (2ε2ηεR∇ηεR + 2ε2ηεI∇ηεI)(φµε + sεηεR)

}

ds

+
4σ(σ − 1)

ε2

∫ 1

0
(1 − s)(σ − 2)[(φµε + sεηεR)2 + (sεηεI)

2]σ−3

×
{

2(φµε + sεηεR)(∇φµε + sε∇ηεR) + 2s2ε2ηεI∇ηεI
}

×
(

(φµε + sεηεR)εηεR + s(εηεI)
2
)2

(φµε + sεηεR)ds

+
4σ(σ − 1)

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×
{(

(φµε + sεηεR)εηεR + s(εηεI)
2
)2

(∇φµε + sε∇ηεR) + 2((φµε + sεηεR)εηεR + s(εηεI)
2)

((φµε + sεηεR)ε∇ηεR + (∇φµε + sε∇ηεR)εηεR + 2sε2ηεI∇ηεI)(φµε + sεηεR)
}

ds.

We estimate the term, as an example, 2σ

ε2
|(∇ηεI , AεηεR)| where

A =

∫ 1

0
(1 − s)(σ − 1)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×
{

2(φµε + sεηεR)(∇φµε + sε∇ηεR) + 2s2ε2ηεI∇ηεI
}

×2((φµε + sεηεR)εηεR + 2s(εηεI)
2)ds.38



It is majorized for t ≤ τ ε ∧ τ̄ εN ∧ T , assuming σ ≥ 1, as follows;
2σ

ε2
|(∇ηεI , AεηεR)| ≤ C(|φµε |L∞ + |∇φµε |L∞)|φµε |2(σ−1)

L∞ |∇ηε|L2 |ηε|L2

+C(|φµε |L∞ + |∇φµε |L∞)

∫

Rd

|∇ηε||εηε|2(σ−1)|ηε|

+
C

ε
|φµε |2(σ−1)

L∞

∫

Rd

|∇ηε||εηε||ε∇ηε| + C

ε

∫

Rd

|∇ηε||εηε|2σ−1|ε∇ηε|

+
C

ε
|φµε |2(σ−1)

L∞

∫

Rd

|∇ηε||εηε|2 +
C

ε

∫

Rd

|∇ηε||εηε|2σ

≤ C(µ0, α,N)(|∇ηε|L2 |ηε|L2 + |∇ηε|2L2),where in the last inequality we have used
|εηε|L∞ ≤ C|εηε|Σ2 ≤ N, t ≤ τ ε ∧ τ̄ εN ∧ T.We remark that in ase of d = 1 we an simply bene�t from
|εηε|L∞ ≤ C|εηε|Σ ≤ C(µ0, α), t ≤ τ ε ∧ T.Other terms are also estimated as above and then we may prove (7.4) where we replae τ εwith τ ε ∧ τ̄ εN in d = 2. �Proof of Lemma 5.3 (i). This estimate may be proved similarly to the proof of Lemma 5.1 (i),it is su�ient to mention the following; we have, realling that η satis�es Eq. (5.1),

d(|ηR|2L2 + |ηI |2L2) = 4σ(ηR, φ
2σ
µ0
ηI)dt − 2(ηI , |x|2φµ0)dW + ||x|2φµ0 |2L2dt−

|xφµ0 |4L2

|φµ0 |2L2

dtby It� formula. �Proof of Lemma 5.3 (ii). We apply It� formula to (L−
µ0
ηR, ηR) + (L+

µ0
ηI , ηI), then we have

d((L−
µ0
ηR, ηR) + (L+

µ0
ηI , ηI)) = (L+

µ0
(|x|2φµ0), |x|2φµ0)dt − 2(ηI , L

+
µ0

(|x|2φµ0))dW.Therefore,
E

(

sup
t≤T

((L−
µ0
ηR, ηR) + (L+

µ0
ηI , ηI))

)

≤ CT 1/2
(

E(sup
t≤T

|ηI(t)|2L2)
)1/2

+ C ′T

≤ ν

2
E(sup

t≤T
|ηI(t)|2L2) + CTwhere ν is given by

(L−
µ0
ηR, ηR) + (L+

µ0
ηI , ηI) ≥ ν(|ηR|2Σ + |ηI |2Σ),whih holds sine ηR and ηI satisfy (ηR, φµ0) = 0 and (ηI , φµ0) = 0. Aordingly, we obtain

E

(

sup
t≤T

(|ηR(t)|2Σ + |ηI(t)|2Σ)
)

≤ CT.Note that this onstant C depends only on µ0, ν. Hene the right hand side is bounded linearlyin T whih shows (2.8). �39



Proof of Lemma 5.3 (iii). It� formula for |(1 + |x|4)η|2L2 implies
d|(1 + |x|4)ηR|2L2 = 2((1 + |x|4)ηR, L+

µ0
ηI)dt,

d|(1 + |x|4)ηI |2L2 = −2((1 + |x|4)ηI , L−
µ0
ηR)dt+ 2

(L−
µ0
ηR, φµ0)

|φµ0 |2L2

(φµ0 , (1 + |x|4)ηI)dt

−2((1 + |x|4)ηI , |x|2φµ0)dW + 2
((1 + |x|4)ηI , φµ0)

|φµ0 |2L2 |xφµ0 |2L2

dW

+
∣

∣

∣
(1 + |x|4)1/2(−|x|2φµ0 +

|xφµ0 |2L2φµ0

|φµ0 |2L2

)
∣

∣

∣

2

L2
dt.We here note that

((1 + |x|4)ηR, L+
µ0
ηI) − ((1 + |x|4)ηI , L−

µ0
ηR)

= −4(2 + d)(|x|2ηR, ηI) − 8(|x|2x · ∇ηR, ηI) + 2σ((1 + |x|4)ηI , φ2σ
µ0
ηR).Hene,

d|(1 + |x|4)η|2L2 = D(t)dt +M(t)dW (t)with
|D(t)| ≤ C|(1 + |x|4)η|2L2 + C ′(1 + |η|2Σ)and

|M(t)| ≤ C|(1 + |x|4)ηI |L2 + C ′.Similarly as above, Gronwall lemma, a martingale inequality and the estimates proved in Lemma5.3 (ii) allow to onlude
E(sup

t≤T
|(1 + |x|4)η(t)|2L2) ≤ C(T ).
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