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Abstract. We study the asymptotic behavior of the solution of a model equation for Bose-
Einstein condensation, in the case where the trapping potential varies randomly in time. The
model is the so called Gross-Pitaevskii equation, with a quadratic potential with white noise
fluctuations in time whose amplitude € tends to zero. The initial condition of the solution is a
standing wave solution of the unperturbed equation. We prove that up to times of the order
of €72, the solution decomposes into the sum of a randomly modulated standing wave and a
small remainder, and we derive the equations for the modulation parameters. In addition, we
show that the first order of the remainder, as € goes to zero, converges to a (Gaussian process,
whose expected mode amplitudes concentrate on the third eigenmode generated by the Hermite
functions, on a certain time scale.

1. INTRODUCTION

The first experimental realizations of Bose-Einstein condensation in weakly interacting gases
sparked off many theoretical and experimental studies on coherent atomic matter. The Schrodinger
equation with cubic nonlinearity and a harmonic potential has been widely used as a model
equation (see for example [24]). However, magnetic trapping imposes limitations on the study
of Bose-Einstein condensates, because only the weak-field seeking atomic states are confined,
which may cause a chain of drawbacks (see [28]). Such problems are avoided if Bose-Einstein
condensation is achieved in an optical trap based on the optical dipole force which confines
atoms in all hyperfine states. The authors in [28] succeeded to obtain condensation in all-optical
far-off-resonance laser trap. The use of optical traps may bring other advantages such as ob-
taining different geometrical configurations or creating more dense condensates. On the other
hand, in real situation, one should take into account stochasticity in the dynamical behavior of
the condensate, for the reason that some fluctuations of the laser intensity are observed in the
experiments. Those fluctuations may be regarded as fluctuations of the harmonic trap potential
in the mean field approximation (see [1]). In this case, one may be led to consider the following
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nonlinear Schrodinger equation (radially symmetric 2D Gross-Pitaevskii equation) perturbed by
a random quadratic potential:

i—u = 5" + (1 + £(t))ru — Mulu — iyu, (1.1)

where A = £1 and £ is a white noise in time with correlation function E(£(¢)E(s)) = do(t — s).
Here, 0y denotes the Dirac measure at the origin, v > 0 and € > 0. The product arising in the
right hand side is interpreted in the Stratonovich sense, since the noise here naturally arises as
the limit of processes with nonzero correlation length. We moreover assume that the noise is
real valued. The term e£(t) represents the deviations of the laser intensity F(t) around its mean
value (see [1]). Also, in this model, the sign of A is related to the sign of the atomic scattering
length, which may be positive or negative. A similar model was used in [12] in dimension three,
except that the fluctuations there were not assumed to be delta-correlated. Related equations
may also be found in the context of optic fibers. In [2] e.g., equation (1.1) without the harmonic
potential term, and simply with a multiplicative noise was considered as a model for optical
soliton propagation in fibers with random inhomogeneities. In [1], the qualitative properties of
solutions of (1.1) is studied by using the “moments method" which consists in finding (finite
dimensional) evolution equations satisfied by a few integral quantities of the solutions, like e.g.,
energy, momentum, and so on. A closed system of equations is found in the case where there is
no damping. The solutions of this system of stochastic differential equations are then formally
approximated in the limit where the noise tends to zero.

Our aim in this paper is, as a sequel to the mathematical study in [8], to investigate the
influence of random perturbations on the propagation of deterministic standing waves. The
method we will use, so called collective coordinate approach, consists in writing that the main
part of the solution is given by a modulated soliton and in finding then the modulation equations
for the soliton parameters. Such ideas to analyze the asymptotic behavior have been used by
many authors in the physics literature, as well as in the study of mathematical problems (see for
example, Weinstein [30], Jonsson et al [15, 16]). The modulation theory, in general, provides an
approximate and constructive answer to questions concerning the location of the standing wave
and the behavior of its phase for ¢ > 0.

In order to state precisely the problem and our results, we consider a probability space (Q, F, P)
endowed with a standard filtration (F;)¢>0 and a standard real valued Brownian motion W (t)

on RT associated with the filtration (Fi)t>0. We set 5 = dd—VtV and then consider the stochastic
nonlinear Schrodinger equation:

idu 4 (Au — |z*u 4+ Mu|*u + iyu)dt = e|z[*u o dW, (1.2)

where o stands for a Stratonovich product in the right hand side of (1.2), 0 >0, > 0,7 >0
and A = +1. We will use the equivalent It6 equation which may be written as

idu + (Au — |z*u + %.62|x\4u + Mul*7u + iyu)dt = |z P udW. (1.3)

Moreover, we do not restrict ourselves to dimension two here, and consider that in Eq. (1.2) or

(1.3),z€RY d=1or 2.



Let us give some notations. For p > 1, LP(R?) is the Lebesgue space of complex valued, p-th
summable functions, and the inner product in the Hilbert space L?(R9) is denoted by (-,-), i.e.,

(u,v) = /Rd w(z)v(x)de, for wu,ve L*(RY).

Moreover (u,v) = Re(u,v). The norm in LP(R?) is denoted by |- [rr. With the aim of studying
the spectrum of linearized operator we will consider the space L?(R?) of R?-valued functions of
L?(R%) x L?(R%), and L2(R?) = L2(R%) +iLL%(R%), which is identified with the space of C?-valued,

square integrable functions. H:Q(Rd) is endowed with inner product

(U, V) = (o, 00) + (u,02), U gy = (U U)),

U= (Z;) . V= (2) e L2(RY).

Operator norms will be denoted by || - [[z(x) or || - [|z(x,y), if X and Y are Banach spaces where
the operators are defined.

where

We define for s € R the space H*(R?) of tempered distributions v € S'(R%) whose Fourier
transform ¢ satisfies (14 |€|2)%/20 € L2(R?%). The norm in H*(R%) is denoted by |-|z7s. We denote
the weighted space {v € HY(R?); |z|v € L?(R?)} by ¥ and its norm by |- |5, = (|31 +|z-[2,)Y/2.

We define the energy

1 1 A
H(u) = 5|Vulfz + glouls — == lul/5%, (1.4)
which is a conserved quantity of the deterministic equation without damping, i.e., (1.2) with
e =0 and v = 0. We will consider solutions in the space X, which is the natural space where
H is well defined, thanks to the embedding ¥ ¢ H'(RY) c L?°*+%(R%), for o < d%dQ ifd>3or
o< +xifd=1,2.

In the case where ¢ = 0 and v = 0, it is known that in the energy space X, equation (1.2) is
locally well posed for A = +1, 0 < d2:12 ifd>3oroc<+o00ifd=1,2 and globally well posed if
either A\ = —1 or A =1 and o < 2/d (see |21]). Also, blow up phenomena appear for A = 1 and
o > 2/d under certain condition on the initial data, for example, a data with negative energy
(see [3]). We generalized in [8] these deterministic results to equation (1.2) and we also studied

the local existence of solutions in dimensions d = 1 or 2.

Theorem 1. ([8]) Assume 0 > 0, v > 0 and A\ = 1. Assume ug € X if d = 1, or ug € X2
and 1/2 < o < 1 if d = 2. Then there exist a stopping time 7*(up,w) and a unique solution
u(t) adapted to (Fi)e>0 of (1.2) with u(0) = ug, which is almost surely in C([0,7];X) for any
T < 7(ug). Moreover, we have almost surely,

7*(up,w) = +00 or limsup |u(t)|y = +oo.
t /7 (ug,w)
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Here, for m e N, m > 1,
Y™ = H™ N {ue L*(RY) ; (1+]z>)™?ue L2 (R} C .

The dual space of ™ in the L? sense, which we denote by ¥, is

m/2 € LQ(Rd)} )

—m —m ! U
M =—H +{u€8 (Rd) : 7(1+‘$|2)

and the norm in ¥7™ is given by

[u|s;—m = inf{|u1|H—m + ‘( 02 DU =g +U2} for weX™™.

1+ [z[2)m/2] 2

The X2 regularity for the initial data in the case d = 2 is required for the energy equality, and
in order to get pathwise continuous solutions with values in ¥ : the solution given by Theorem
1 is a strong solution in the probabilistic sense. >From now on, we fix A = 1 and v = 0, so that
we consider the equation

idu + (Au — |z*u + %EQ\$|4U + [u|*7u)dt = e|z|*udW. (1.5)

We now go back to the deterministic case and consider the two parameter family of standing
wave solutions

ei(“He)gZ)u(a?) (1.6)
of equation (1.2) with e =0 and 0, u € R, i.e.,

i+ Au — |z)?u + [uu=0, zeRI t>0. (1.7)

The standing wave solution satisfies (1.7) if and only if ¢, satisfies the following semilinear elliptic
equation:

—Ap+ |26+ po — @79 =0, z€R™ (1.8)
The existence of the standing wave solutions is proved, with the help of the compact embedding
¥ C L?, for any pu > —\g where

Xo = inf{|Vv[2s + |2v]3s; v € X, |v|p2 = 1} =d. (1.9)

The inverse scattering method gives some qualitative properties (e.g. asymptotic stability) for
this type of solitary waves for completely integrable systems. However integrability is restricted
to 1D cubic nonlinear Schréodinger equation without any potential term and does not apply to
(1.7). Stability properties of such solutions in non-integrable case have also been the object of
several studies, beginning with Cazenave and Lions [4], Weinstein [31], and Grillakis Shatah and
Strauss [14]|. For the specific equation (1.8) with a harmonic potential, there have been some
studies on the orbital stability; see for example, Rose and Weinstein [26], the second author and
Ohta [10]. Note that together with the energy (1.4), another conserved quantity for equation
(1.7) is given by

Q(w) = 3lul3 (1.10)
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namely, we have Q(u(t)) = Q(u(0)) for any solution v € C([0,T]; %) of (1.7), and Eq.(1.8) can
be written as H'(¢,) + pQ'(¢u) = 0. The proof of orbital stability is based on the use of the
functional

Sy(u) = H(u) + pQ(u), ue€X, (1.11)

as a Lyapunov functional. In order to show the positivity of the second derivative of this Lya-
punov functional, the positivity of the following linearized operator

- _ 2 20
L, =-A+|z]>+p— (20 +1)¢, (1.12)

is essential. It appears that SZ(QS“) is positive when restricted to the subspace of ¥ of functions
orthogonal in L? to both ¢, and i¢, provided p is sufficiently close to —Ag and o > 0, or > 0 is
sufficiently large and o < 2/d. This implies that the set {ewqbu, 0 € R} is a set of local minimizers
of S, restricted to the manifold {u € X, Q(u) = Q(¢,)}-

Another condition which gives the positivity of SZ((;S“),

Oulpuliz >0 (1.13)

is often used (see, e.g., [14, 26]). The scaling invariance of the equation for the standing waves
allows, in general, to check whether (1.13) is satisfied for general p; however we cannot expect this
scaling property here due to the harmonic potential. Thus it is natural to consider frequencies
u which are close to —\p and make use of the properties of spectrum and solutions of linear
problems that are already known. Recall that the linear eigenvalue problem

—Au+ |z]Pu= I, AER

consists only of discrete eigenvalues A\ (k € NU{0}) and the associated eigenfunctions are the
Hermite functions (see [29]). Thus the bifurcation argument near p = —J\g is effective, which is
also another method to ensure the existence of bound state solutions of (1.8) (see Kurth [19]).
We will consider only the ground state ¢, of (1.8) in this paper. Namely ¢, is the unique
positive radial solution of (1.8) (see Li and Ni [20] for the radial symmetry, Kabeya and Tanaka
[17] for the uniqueness). For (1.7), it was verified in [10] that there exists p* such that for any
p € (=Xo, 1) the positivity of Sj(¢,) holds under the above suitable orthogonality conditions
for any o > 0. We summarize here the properties of ¢, that we will use later.

Proposition 1. Letd =1 o0r2, 0 <o < +oo and u > —Xg. Let ¢, be the unique positive
radial solution of (1.8).

(i) p— ¢, is a Ct mapping from (=g, +00) to X2 (and £t if o > 1/2 ), moreover it is a
C? mapping if o > 1/2.

(ii) There is a ps > —Ag such that for any p € (=g, ) there exist v = v(p) > 0, for any
v € ¥ satisfying Re(v, ¢,) = Re(v,i¢,) =0, we have

(Sg(qb“)v,w > vlvlt. (1.14)

(iii) (P, Oudy) is strictly positive for p € (—Ao, 1*).

(iv) ¢, € ﬂ2§q<oo W2an C2.

(v) For any py > 0, there are positive constants Co,Cy, depending on py, such that for all
€ (=Ao, 1), the inequality |p,(z)| < Coe~C11#1* holds, for all x € RY.
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We will give a few references concerning the proof of this proposition in Section 6.

The linearization problem around ei“tgbu in (1.7) is precisely written as

dy . _
i JLyy in X L
where
J— - Re u . 0 1 Re u
T Imu -1 0 Im u
L 0
L, = Sﬁ(qﬁu) = ( 0“ LZ > , (1.15)
+ _ 2 20
Ly =-A+z]"+p—a,7, (1.16)

L, is already defined in (1.12) above. Note that the operator L:[ is nonnegative since ¢, is a

positive solution of Eq.(1.8). Note also that

L, =0
(1.17)
L;8u¢u = _¢u§

more precisely, J£,, has a two dimensional generalized null-space spanned by

() ()

and the rest of spectrum is purely discrete on the imaginary axis for the frequencies wu close to
—Xg. We will study this linearized problem in details in Section 6 below, regarding J£, as a
perturbed operator from JL_),, where

0 1\/= 0 0 =
JE—A0_<—1 0> <0 E>_<—E 0>

and Z = —A +z|?> — A\g. This kind of analysis was used in Pelinovsky and Kevrekidis [23] where
the spectrum of linearized operators around the standing wave solution are investigated using,
similarly, a bifurcation analysis and a regular perturbation method.

Concerning results related to the asymptotic behavior of solutions of (1.7) starting from the
standing wave solution (1.6), Jonsson, Frohlich, Gustafson and Sigal [15, 16] analysed the mod-
ulation equation, assuming that the effect of the harmonic potential term is sufficiently small.

Our purpose here is to investigate the influence of random perturbations of the form given in
equation (1.5) on the phase and the frequency of standing wave solutions (1.6). We consider the
solution u®(t, ) of equation (1.5), given by Theorem 1, and with u®(0,2) = ¢,,(x) where pg is
fixed such as ug € (—\g, #*). We may expect that, if € is small, the main part of the solution is a
standing wave, randomly modulated in its phase 8 and frequency p. We will briefly comment in
Section 3 that this is true for time less than =2, following the proof of the same kind of result by
the first author and Debussche in 6] for the Korteweg-de Vries equation with an additive noise.
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Next, we study more precisely the behavior at order one in ¢ of the remaining term in the
preceding decomposition as € goes to zero. The preceding decomposition says that the solution
uf(t,x) is written as

us(t? 33) = eiGE(t) (¢u5(t) ('T) + 5776(@ .Z'))
where 6°(t) and p(t) are the modulation parameters; these are semi-martingale processes defined
up to times of the order of 2. That means that the shape of the standing wave is preserved
over this time scale. We will show that the process 1° converges as € goes to zero, in probability,
to a Gaussian process 1. Moreover, 6°(t) and p®(t) can be developed up to order one in &, and

we get
dus(t) = o(e), (o6 0u600)
Z|"Puy, O
dest — dt— HOo Ko
) = bt = e Oy

This shows in particular that at first order the noise does not act on the frequency of the standing
wave, but only on its phase.

(1.18)

dW +o(e).

Finally we investigate the behavior of the process n as t goes to 400, in the case ¢ > 1.
We study in Section 6 the distribution of the mode powers of 7, i.e., E(|nx(¢)|?) for each k €
N U {0}, when the frequency pg is sufficiently close to —Xg. Here, 7 is the component of n
on the k-th eigenfunction of —A + |z|? (recall that the family of those eigenfunctions forms a
complete orthonormal system in L?(R?)). Specifically, on a time scale of order of (ug + )\0)_1/”,
one can expect the power to be concentrated mainly in the third mode. This observation is
actually inspired by Papanicolaou [22], Kirr and Weinstein [18]. The authors in [22, 18] treated a
system perturbed by a multiplicative random potential with a small parameter s describing the
amplitude of the random potential. In the limit t — +o00, K — 0, kK?t = constant (at least in their
case), the mode powers satisfy a system of coupled equations which are called master equations.
In this context, the question of how the mode powers evolve with ¢ is of fundamental interest.
We also derive our reduced master equation which explains the mode-power concentration.

The paper is organized as follows: in Section 2, we state precisely our results. In Section 3,
we justify the existence of the modulation parameters and we give an estimate on the time up to
which the modulation procedure is available. In Section 4 we give the equations of the modulation
parameters. Section 5 is devoted to estimates on the remainder term whose most technical parts
are postponed to Section 7. Using these estimates, we will also show the convergence as € goes
to zero. Section 6 is devoted to analyze the drift part of the limit equation where we will use a
bifurcation and a perturbation method from the linear eigenvalue problem for pg close to —Ag.
The mode-power concentration will also be proved in Section 6, deriving the master equation. To
lighten notations, we denote sometimes in what follows by C(«,---) a constant which depends
on « and so on.

2. MAIN RESULTS

We fix pg € (—Ag, #*) and consider for € > 0 the solution u®(¢,z) of equation (1.5) given by
Theorem 1 with initial data u®(0,2) = ¢, ().
The first theorem says that we can decompose u® as the sum of a modulated standing wave
and a remainder with small 3 norm, for ¢ less than some stopping time 7¢, and that this 7 goes
7



to infinity in probability as € goes to zero. We will see then that the remaining part is of order
one with respect to . The proof of the theorem is rather similar to those in |6, 7|, but for the
sake of completeness we repeat it in the next section. We remark that the proof of theorems 2
and 3 will be completed in subsection 6.3 (see Remark 2.1 below). This decomposition is in the
form

u (t,x) = €O (g, (x) + enf (1, 7)) (2.1)
for some semi-martingale processes 6°(t), u°(t) with values in R, and n° with value in 3. We note
that the expression of the main part of the solution is not unique, neither are the modulation
parameters. They depend on the choice of some specific conditions on the remaining part. For
instance, in order to obtain the simple equation (1.18) for 6%, the spectral projection of the
remaining part of the solution on the generalized nullspace of JL,, must be zero, at least at
order one in €. However, in order to estimate the exit time, it is more convenient to use the
orthogonality of the remaining part to the nullspace of L, since it ensures the positivity of
S0 (due)- This is why we do not state precisely the orthogonality conditions in the following
Theorem 2 (see Remark 2.1 below).

Theorem 2. Assumed=1and1/2 <o, ord=2and1/2 <o <1. Let ug € (—Xo, 1*) be fized.
For e > 0, let u*(t,x), as defined above, be the solution of (1.5) with u(0,x) = ¢,,(x). Then
there exists ag > 0 such that, for each o, 0 < a < ay, there is a stopping time 75, € (0,7 (¢, ))
a.s., and there are semi-martingale processes fi(t) and 6°(t), defined a.s. for t < 75, with values

in R, so that if we set enf(t,x) = e‘iéa(t)us(t,a?) — Gy (), then, a.s. fort <75,
7 () — a0l < a 2.2
and
len®(t)|y < a. (2.3)
In addition, there is a constant C = C(«, po) > 0, such that for any T > 0 and any o < «p,
there is an €y > 0, such that for each € < &g,

P(rS < T) < exp ( - 52%) (2.4)
Remark 2.1. For the proof of the estimate (2.4), the following orthogonality conditions will be
used :
Re(n®, ¢u,) =0, as., t<7°, (2.5)
and
Re(n®,i¢,,) =0, as., t<7° (2.6)

where 7° is the same stopping time as in Theorem 1. Hence, we first use these conditions on
the remaining part in Section 3, in order to define 7®, and in Section 6 we make a change of the
modulation parameters which allows to get a new decomposition (with the same stopping time
7¢), satisfying at order one in € the simple equation Eq. (1.18).

Remark 2.2. Attention is given to the upper bound (2.4) where the product 2T appears.

From the theorem, we can expect, with high probability, that the solution of (1.2) stays in a

neighborhood of the randomly modulated standing wave at least for times small compared to

2. Whether this time scale of £~2 is optimal or not still leaves a room for discussion in our

case. In [9], the authors considered the same exit problem for Korteweg-de Vries equation with

an additive noise. An exponential lower bound of the same order in the parameters T and ¢ as
8



the upper bound is proved in |9], which ensures that the typical time scale on which the solution
remains in the neighborhood of the modulated soliton is indeed £~2. The proof of such a lower
bound requires the use of a Large Deviation Principle together with the resolution of a control
problem, which allows to get an upper bound on the rate function. The proof of the LDP is
far from obvious in our case since we cannot solve equation (1.5) by a contraction argument;
moreover the control problem is a control problem by a potential; as far as we know, the nonlinear
controllability problems by a time dependent potential is an open problem.

Next the following result is concerned with the analysis of the behavior of n®, and of the
modulation parameters as € goes to zero.

Theorem 3. Assume d=1and 1 <o, ord=2 and o = 1. Let ug € (—Xo, u*) be fized and 7,
0%, i1, for € > 0 be given by Theorem 2, with o < oy fized. Then, for any T > 0, the process
(7 (t))eejo,rars) converges in probability, as € goes to zero, to a process 7 satisfying

~ ~ 0
dij = JLyydt — (I — Py) <|x‘2¢ ) dw, (2.7)
Ho

with 7(0) = 0, where P, is the spectral projection onto the generalized null space of JL,,. The
convergence holds in C([0,75 AT, L?).
The above process 7 satisfies for any T > 0 the estimate

E (sup |ﬁ(t>\%) <CT (2.8)
t<T

for some constant C > 0.
Moreover the modulation parameters may be written, for t < 15, as

dO° = [fdt + ejfdt + ez°dW, (2.9)

and B
di® = eadt + eb*dW (2.10)
for some adapted processes y°, a°, Z°, b with values in R satisfying: as € goes to zero, a°,

b, §¢ converge to 0 in probability in C([0,T]), while 25 converges in probability in C([0,T)]) to
_(au¢uov ¢uo)_1(au¢uo7 |x\2¢)u0).

At last, we derive the following theorem concerning the asymptotic behaviour of 7(¢, ) for large
t > 0. As mentioned in the introduction, the operator JL,, may be regarded as a perturbation
from JL_),. Let us write the equation as

- - 0
dn = (JL_x, + Byy)ndt — (I — Py,) <‘$|2¢u ) dw,
0
and consider this equation as perturbation of the system
dn = JL_y,ndt (2.11)

by the small bounded operator B,,, plus an additive noise with small amplitude as ug tends to

—Xo- The system (2.11) can be studied by decomposing the initial state on the complete system

of eigenstates of JL£_),. When (2.11) is perturbed, then the system of ODE’s becomes an infinite

coupled system of equations, and the behavior of its solutions may be rather complex. We get
9



the following result on the evolution of the average power in the k-th mode of n. This result is
restricted to the one dimensional case, because it requires the condition o > 1 (see Remark 2.4)
below.

Let us denote by S\k = A — Ag the eigenvalues of the operator —A + \33|2 — Ag in 1D, and let

1

_ —|z|2/2
Bule) = gy e

be the corresponding eigenfunction for £ € NU {0}, Hi(z) being the Hermite polynomials. We
will see that JL_), has purely discrete eigenvalues denoted by §ki = +i)\; whose associated
eigenfunctions may be choosen as

zr (LD = (Po z=+_ (0 _
(I)k_<q:q>k yfork>1, & = 0/ and @5 = ‘I)o for k= 0.
We then define n;" = ((n, éf)) for k e NU {0} in 1D.

Theorem 4. Assume d =1 and o > 1. Then the process 7 defined by (2.7) and 7(0) = 0 verifies,
as po tends to —\o, for all t € [0,T],

BT = L0+ 1% (i + 30)7 + (o + 20)10),

E(‘ﬁf(t”% = O((o + X)) for k # 2.
with kK = min{l — 1/0,1/20}.

Remark 2.3. Theorem 4 says that on a time scale of order (ug + )\0)’1/", one can expect
that the power distribution of 7 concentrates in the @Qi—mode in 1D. However the total energy,

E(|7(t)|32), is not conserved in (2.7), our result is different from the energy diffusion discussed
in [18].

Remark 2.4. The spatial dimension d is limited to d = 1. This is only because we do not
have any result on the local existence of solutions for ¢ > 1, with an existence time that only
depends on the energy norm, in higher dimension. The problem is related to the lack of dispersive
estimate for the linear part of (1.2) (see [8]). However, with such a result in hand, a result similar
to Theorem 4 would be valid in 2D (see Remark 6.3 in Section 6).

3. MODULATION AND ESTIMATES ON THE EXIT TIME

In this section, we give a proof of the existence of modulation parameters and the estimate on
the exit time (2.4). The arguments are similar to those in [7] but we repeat them for the sake of
completeness. The following lemma gives the evolution of the charge ) and of the energy H by
(1.5). For the proof, refer to Theorem 3 (i) in [8].

Lemma 3.1. Assumed=1and 0 <o, ord=2 and 1/2 <o <1. Let py € (—Xo, ") be fized.
Let u® be the solution of (1.5) given by Theorem 1, with u®(0,x) = ¢,,. Then for any stopping
time 7 < T (¢p,) we have

‘UE(T)‘L2 = ‘¢uo|L27 a.s., (31)
10



Hu(1)) = H(pp,) —251m/0 9 Vus'xﬂsdade(s)—i—QsQ/o |zus|32ds,  a.s. (3.2)

We give a proof of existence of the modulation parameters using the implicit function theorem
under the orthogonality conditions (2.5) and (2.6). We will change parameters in subsection 6.3.

Proof of Theorem 2. Let By, (2a)) = {v € I, |v — ¢l < 2a} for @ with 0 < @ < pio/4. Let
also for some § > 0,

Us,, (6) ={v € Z’égufg v —ePule < 0}
We then consider a C? mapping
T : (po — 2, po + 20) x (=2, 2a) X By, (2a) — RxR

(,uvevu) = (1'171'2)
defined by
Ta(p,.0) = Re | (7 6,)0ds
Rd
and

Ty, O, u) =Tm | (€70 = ) by o
Rd

We then obtain, using Proposition 1 (i) and (iii),
I(HO) 07 ¢,uo) = 07 891-1 (,U’Oa 07 ¢,uo) = aMIQ(,U’(h 07 ¢Mo) = 07

1
3H1'1(M0’ 0, ¢,u0) = _iau‘gbﬂ‘%?

09T (10, 0, Ppy) = |dpo|22 > 0.

Here we apply the implicit function theorem and, for a < o where «y is sufficiently small, there
exists a C% mapping (u(u),0(u)) defined for u € By, (2a), such that

Th(p(w), 0(u), u) = Ta(pu(u), 0(u), u) = 0.

We apply this with u = u®(t), we get the existence of p®(t) = p(u®(t)) and 6°(t) = 6(us(t))
such that the orthogonality conditions (2.5) and (2.6) hold with en®(t) = e~ Mys(t) — Bue (1) -
Since uf(t) is a X-valued process, it follows that u®(t) is a semi-martingale process in ¥4, Noting
that Z is a C? functional of u on ™% (see Proposition 1 (i)), the processes p® and #° are given
locally by a deterministic C? function of ¢ € ¥. Then the It6 formula shows that ;€ and 6°
are semi-martingale processes. Moreover, since it is clear that Z(uc(t),0, e~ ®ys(t)) = 0, the
existence of u® and 6% holds as long as

<0,
)

(1) = ol <, and (e OuE(E) — |5 < .
We now define two stopping times

e inf{t > 0, [15(0) —pol 2, or e T Ou(t) — g5 > a,

5= inf{t > 0, [u5(t) — pol > B, or e Ou(t) - gl > B).
11



The inequality |¢., — ¢uc1)ls < Ca holds as long as [u°(t) — po| < a < ap, with a constant
depending only on «g and pg. Indeed, we have

Pty — Puols < [1°() — pol Sup 10u(ps (1)) |2 < Clao, o) |p°(t) — pol- (3.3)
<T'Ate
It then follows that
T(i < 7V_(EC’—i—l)oz < 7—(ECJrl)Qoz

Taking ag sufficiently small again, the processes 6°(t) and p(t) are defined for all t < 75, and
satisfy (2.2) and (2.3) for all ¢t < 75, o < o under the orthogonality conditions (2.5) and (2.6).

It remains to prove (2.4). We give a proof in a similar way to the method in [6, 9]. We may
write a.s. for t <75, a < ayp,

Sio (¢ Ul (8, ) = Spup (D))

= (S (D= (1)) €17 (1)) + (S (Das (1) e (8), €7 (1)) + 0| () [3,).
Note that o(|en®(¢)|%) is uniform in w, € and ¢, since S0 (Do) and Sy (¢y,) depend continuously
on pg, and since |pf(t) — po| < o and e~ )u (t,) = Pusny|s = len°(t, )]s < aforall t < 75

We then assume aq small enough so that the last term is less than ¥len®(¢)| for all t < 7&.
Since, by Proposition 1, for any pg € (— Ao, fi«),

(Spto (Puo)en® en®) > vlen[3,
holds a.s. for ¢t < 75, and by the following inequality with o > 1/2,

032 () — Dol < Iu°(t) — Mol sup 10(672 1)) ]s: < Cla, o)1 (t) — piol, (3.4)

we get

1970 (D) = Spo (Do)l o(mim-1) < Clus(t) — ol
It thus follows

Spo (™" Ous (t,2)) = Spug (D= (1)
> (S (B ), €17 () + v]en [ — Clus(t) — pollen” [ — %lﬂf(t)@-
On the other hand, since S}, (¢,,) = 0, using again (3.3) and (3.4), we get a.s. for t <7,
(S0 (D) €n°(£)) = (S (Bus (1)) — Spo (B0 €n° (1)),
{S)io (Puz ) e ()] < Clu(t) — pollen®(#)|2 < %lﬂf(t)\% +Cluf(t) = pol*.
Finally, for all o < ag, and for all ¢ < 75, we obtain a.s.
Sl O (1) ~ Syo6,6)) = Llen (O — Clu(t) — poP (3.5)

for a constant C' depending only on «ag, po and v.
Here we estimate |u®(t) — uo|?. Let t > 0, we denote the stopping time by 7 = 75 A t. >From

(3.1) and (9%, ¢py) =0
W (7)|72 = [Bolie = Gpe () + )3z

= ‘¢u5(7)|%2 + |€775|%2 + 2(¢u5(7) - %075775)-
12
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Using this equality and (iii) of Proposition 1, we have for some constants C' > 0 and ¢ > 0,
O|u=(t) = pol < e (n)l72 — ol
< enfl7a + 200 Bue (r) — Duolr2
< lenfliz + aC(po)lu®(t) — pol-
Choosing then «q sufficiently small, we get
|1 (t) = pol < Clew, po)len® |72 (3.6)
On the other hand, using S, (¢,,) = 0 and (3.3),
S0 (Dus (1)) = Suo (Do) < Claxo, o)l (t) — pol*;
using the above inequality, together with (3.6), and inserting these in (3.5), we obtain
Sl DR < Sy (47 (1,)) = Sy (@) + Clao, po) e

Again we choose «ag sufficiently small, then make use of (3.2) to get, for any 7 < 75
v
1—6\5778(7)% < S (W (7, 2)) = S (Puo) = H(u™(7,2)) = H(Ppo)
T T
= —2€Im/ Vus(s,z) - zu(s, z)dxdW (s) —1—252/ |zus (s, )|32ds. (3.7)
0 JRd 0

Let us now fix T' > 0. We may write setting 7 =7, AT,
P(re <T) <P(|p"(7) = kol = @) + P(len”(7)]s = ).

Note that if [u(7) — po| > « then |p®(7) — po| = @ and |en®(7)|s < @, in particular, |en®(7)|2 <
«. On the other hand, it follows from (3.6) that a < C(ag, to)a® which is impossible for «
sufficiently small. Then |u®(7) — uo| < a and

P(re <T) < Plen®(7)]2 2 «).
Now we will estimate ]P’(‘E?f (T)|s > a) as in [9]. Here we remark that there exists a constant

C(aw, o) > 0 such that |us(s,-)|% < C for any s € [0,7]. Taking e sufficiently small, depending
on C, o, T, and v we obtain using (3.7):

4 T _
]P)(|€775(7')‘E Za> < P(%E‘/O y Vus(s,x) - xuf(s,z)dzdW (s)| > %)
64 tAT _ o
< P({—e sup ‘/ Vu®(s,z) - zué (s, z)dz | dW(s)| > = ).
(Tem [ (L7 witnde)aw )| > 5)

We conclude thanks to the classical exponential tail estimates for 1D stochastic integrals, once
we have noticed that for any ¢ € [0, 7],

2
‘/ Vus-aju_a(t,x)dw‘ < sup [uf(t)[5 < Clao, o), as.
Rd tel0,7]

0

Remark 3.1. The stopping time 7 here is the first time for which the solution quits a neigh-
borhood of the modulated standing wave, but we do not know whether it also corresponds to
the exit time of a tubular neighborhood Uy, (6).
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We summarize the conclusion of this section; the solution u®(t,x) of Eq.(1.5) with v*(0,z) =
Guo(x) may be written, for any ¢ < 75 AT, as the form (2.1) under the conditions (2.5) and (2.6),
where 0°(t) and p°(t) are semi-martingale processes and 75 is a stopping time satisfying (2.4)
with (2.2) and (2.3).

4. MODULATION EQUATIONS

In this section we derive the system of equations coupling the modulation parameters p°, 6¢,
to the remaining term n°. We fix « so that the conclusion of Section 3 holds and we write 7¢ for
75 from now on. Since p and #° are semi-martingale processes, adapted to the filtration (F;):>0
generated by (W (t)):>0, we may thus write a priori the equations for £ and 6° in the form

{ d6° = pedt + eyfdt + e25dW,

dp = ea®dt + eb*dW, (4.1)

where a® and g are real valued adapted processes with paths in L'(0,7°) a.s., 2 and b are real
valued predictable processes, with paths in L2(0,7°) a.s.

Lemma 4.1. Let n° = ng +in7, where n, = Ren® and n7 = Imn®. With the above notations,
ng and 1 satisfy the equations

5 € o\, € €. € €
dT]R = ,U«Onldt —a H¢N5dt + (H - ,Uz(])T/Idt + ( NO Za )n[dt + gy 771dt — §|x‘4¢uadt
€/ e\2 €112 € 1eN292 € 52 4, ¢
—5(2 ) (b“fdt —EZ |.’I," QbHEdt — §(b ) a“¢“6dt — Ehjdt — 5‘3’)| 7’]Rdt
2
228 | P n5dt — %(zf)%%dt — b0, ¢ dW + elz|*nfdW + ez"n7dW, (4.2)
dnf = —Lpyladt =y $uedt — (u° = po)nfdt + (20 + 1)(¢2 — &7 njdt

2 2
—ey ngdt + chfzdt — %|x\47ﬁdt — 22|z Pn5dt — 5( 2°)2n5dt

—|2[*PuedW — 25 ¢ dW — e|x|*nHdW — ez*nGHdW, (4.3)
where h, and hS are defined by

13 . 13 82 £ |20 ()
e2h% +ie’hs = /0 (1-— s)8 5 <|¢“s + sen®|* (¢ + sem ))ds.

Proof. First we formally derive Egs. (4.2) and (4.3). Using the fact that u® satisfies Eq.(1.5)
and 0° satisfies equation (4.1), It6 formula gives

- ne 16° ’
(e Oys(t)) = 0 (iAuE — eyt~ %'x‘%

2
o Pu — %(z5)2u5>dt (4.4)

Fiuf| 2T uf — iptuf — ieytut — ez
ie 70D (e25uf + e|z|?uf)dW.
We use Ito formula for ¢,-(;) and we get

2
d(gf)us(t)) =ca 8N¢)H dt + ( ) gf)u dt + eb® H(bu (t (4.5)



Next, we use the following properties

Lyenh = Lnk + (15 — po)nk — (20 + 1)(¢22 — 20 )0z,

Lt = L ng + (1 — po)ni — (822 — 620 )n5,

(77%7 ¢Mo) = 07 (77?7 ¢uo) =0.
Also, we write for o > 1/2,
|Gpe + enf 1 (pue +n°) = 22T + £(20 + 17022 + iensd’? + e*h + ie?hj.

Using these facts, (1.8) and (4.5), replacing e~"" (D (t) by Guery +en°(t,r) in (4.4), and iden-
tifying the real and imaginary parts, we deduce the equations (4.2) and (4.3).

Here, we briefly explain how to justify the above computations; let P, be the projection
onto the finite-dimensional space R™ spanned by the eigenfunctions ®;(z) of —A + |z|? for
k=0,1,--- ,n7. We use a sequence of approximations indexed by n = (n1,n3) € N2. We mean,

by n goes to oo, that first ny goes to oo and then ns goes to co. We consider the solutions
us™ =30 (U, B )Py, of the following equation.

2
du®" = (iAuE’" — |z Pus" 4 %Pm@ig (z)|2[*u®" + i Py gny (usn)) dt — ie Py, O, (2)|2|us"dW,
(4.6)
where O(z) is a smooth function such that

1, |x| <1/2, || s[%7s, |s| < na,
() :{ 0, }xI > 1/ and - Op,(2) :@(n_Q)‘ Also,  gny () :{ lz%“’s, IsI > o,

Since this finite system involves only globally Lipschitz functions, we see that (4.6) has a
unique solution u®™ with paths a.s. in C(RT,X™) with «="(0) = ¢, and m > 1. Moreover it
can be proved similarly to [8] that u=™ converges to the solution u® of (1.5), in probability, in
C([0,75 AT], %) as n goes to co. Indeed, this convergence holds in C([0,7*(¢,,)), %) and it is
clear that 75 < 7%(¢,,) almost surely. All the arguments in Section 3 are valid uniformly in n if
n > no(ag) for some ng > 0. Hence, for fixed n, we apply the above arguments to u®™ instead

of u® and take the limit as n goes to infinity. g

As in [6, 7], we now take the L? inner product of Eqgs.(4.2) and (4.3) with ¢,, and make
use of the orthogonality conditions (2.5) and (2.6), we obtain the equations for the modulation
parameters y°, 2°, a® and b° from the identification of drift parts and that of martingale parts.

Let Zs(t):@ég) . ys(t)=<f;8>~ (4.7)

Lemma 4.2. Under the assumptions of Theorem 2, the modulation parameters satisfy the system
of the equations, for any t < 7¢,

A2 (1) = FE(), (4.8)
and
AE@YE(t) = G (1), (4.9)
where Z° and Y¢ are defined above, A® is defined by
€ _ ((buaa(buo) 0 )
A = .
(t) < 0 15 (aﬂgﬁ/ﬁ? ¢Ho) (4 10)



and F* and G® are given as follows;

€ _ _(|x‘2¢ 57¢ o) _E(‘$|277€ 7¢ 0)
reo = (T S ) 1

and ®
G5 (t
Gt = -k > 4.12
(Gm (4.12)
with
Gi(t) = 20(nk, o) + (20 + V(622 — o0 )k Duo) + (s Do)
1
—552(Iw\47ﬁw¢uo) — e22(|2*n7, duo)
and

Gg(t) = ((¢i§ - Cbig)qbuoﬂﬁ) - %(\33|4¢u67 ¢,uo) - 5Z6(|x‘2¢u5’ Cbuo) - %(Z6)2(¢u5’ Cbuo)

2
—g(bE)Q(anb“s,Qﬁ“O) - 6( ??qbuo) - %(‘ﬂ%ﬁ%%o) - 6225(|x‘27ﬁ%7¢u0)'

We deduce from the modulation equations obtained in Lemma 4.2 the following estimates for
the modulation parameters.

Corollary 4.3. Under the assumptions of Theorem 2, there is a cy > 0 such that for any o < aq,
there is a constant C'(po, ) with

|25()] +[6°(t)| < C(po, ), forall t<7° &<ep. (4.13)
Moreover, there are constants Cy and Cs depending only on « and pg such that
la®(t)] + ly° ()] < Cin°(t)|2 +eCoy  a.s. forall t<7° € <eg. (4.14)

In order to prove Corollary 4.3, we recall how h%, and h express in terms of ¢, and en® :

B, = 25_‘27 01(1 — 8)[(ue + senf)? + (senf)?
) {2((0ye + seni)enis + sleni)2eny + (n7)? + (n5)*) (e + senfy) fds
+%2—1) /01(1 — 9)[(ppe + senz)? + (senf)?)7 2
< {(pus + senf)enf + s(enf)? Y2 (dpe + senf)ds,
TR Olu — )[(dye + seny)? + (senp)2!
< 2((0ye + seri)eni + s(en))en + (nf)? + (en))sen }ds
Ldolo 1) /01(1 — 8)[(pue + sem)? + (senf)?)o

<{(¢us + seng)enky + s(enf)* Y senfids.

9

g2
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Proof. We may write almost surely for ¢ < 7€ that A%(t) = Ag+ O(|u® — ol + |en|s), where

_ ‘@Z) 0‘22 O )
AO‘( 0" (Ot o)

and O(|u® — ol + |en®|x) holds uniformly in €, t and w as long as ¢t < 7°. Hence, choosing o < ay
smaller if necessary (depending only on pyg), it follows that setting

(1) = Ag + gy (D) (A%(1) — Ao),
the matrix fla(t) is invertible, for all ¢, and for a.e. w € €,
(A=) Ml z@2) < Cluo, ).
Then Eq. (4.8) may be solved as Z5(t) = (A%(t)) "1 Fe(t) for t < 7¢, which implies, using (3.3),

|25 + |67 ()] < Clpo, @) [F*(1)] < Cho, a)(|buo 3 + 167 — pol* + len® ),

for any t < 7°.
We now prove the estimates for the drift part. Thanks to the Sobolev embedding ¥ C L4 if
d=1,2, we have

1

|(€hR, Guo)| + [(ehT, duo)l < € ; (1= $)((U0* + len* 7Y ([l + [nf]), duo )ds
< Ollbpel % + 7% ) I0° | 121G o0
< Cla, po)ln®| 2. (4.15)

The estimates (4.15), (3.4) and (4.13) lead to

IGI(0)] +|G5(t)] < Ciln°(t)|r2 +eC2, as. forall ¢ <77,

where € and C5 depend only on pg and a. Lastly applying the same argument with (A%(¢))~!
as above, (4.14) follows, with possibly different constants. O

We state the following corollary which will be useful to prove Lemmas 5.1, 5.2 and 5.4 below.

Corollary 4.4. Under the assumptions of Theorem 2, there exist some constants Cy and C)
such that

TNAT®
| (t) — pol < E(Cl /0 [n°(s)|2ds + TCé), a.s. forall t<TAT". (4.16)

Proof. This corollary follows immediately from Corollary 4.3 and

tATE tATE
pENTS) — o = 5/ a®(s)ds + 6/ b°(s)dW.
0 0
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5. ESTIMATES ON THE REMAINDER TERM AND CONVERGENCE

Let n = nr + in; with np = Ren and iy = Imn. Consider the equation

0 0 0
dn = JL,,dt —y (gbm)) dt — (|$‘2¢uo> aw — z <¢“O> dw, (5.1)

where we set for all ¢ > 0,

ytt) = T o) )

|Dpol72

2

_|x¢u0|2L2. (5.2)

|¢,uo 2

Note that JL_), is skew-adjoint and generates a Cp unitary group by Stone’s theorem. Other
terms are linear, or deterministic and bounded in ¥, thus, equation (5.1) with 7(0) = 0 has
a unique adapted solution n € C(RT,X), a.s. Moreover, it is easy to check that 7 satisfies
(MR, Guy) = 0 and (1, ¢y, ) = 0. In this section we will show that 7° converges to 7 in probability
in C([0,75 AT, L?) for any T > 0 as € goes to 0. First we list some estimates to prove that
convergence. For the proof of these estimates, see Section 7. We note that n®, y°, 2%, a%, b° given
by Section 3 and (4.1) are a priori defined only for t < 7. We define them for ¢t € R™ by simply
setting n®(t) = n°(7¢) for t > 7° and the same for the others.

Lemma 5.1. Let T > 0 fized. Under the assumption of Theorem 2, there exist constants C1 and
Cy depending only on T, a, uo, ( and N if d =2 ) such that

(i) E( sup |n5(t)\%2> <Ci, and (i) E( sup \na(t)ﬁg) < Oy,
t<FEAT t<FEAT
where 7° =7 if d =1, or 7° = 1S ATy if d = 2, with
Ty = inf{t <7 AT, |en’|g2 > N},  for any N > 0.

Lemma 5.2. Let T > 0 fized. Under the assumption of Theorem 3, there exists a constant Cs
depending only on T, «, pg, (and N if d = 2) such that

E(Sw\f®§><@,

t<FEAT

where 7¢ is defined in Lemma 5.1.

Lemma 5.3. Let T > 0 fized. Under the assumption of Theorem 2, there exist Cy, C5 and Cg
depending only on T, o, pg such that

(i) E <Sup|?7(t)liz> <0y (i) E <Sup\77(t)\22> < Cs,
t<T t<T
and

mnEGgm+m%mm>s%

We remark that the assumption o > 1 is needed only for Lemma 5.2. Using these lemmas we
obtain the following convergence.
18



Lemma 5.4. Let T > 0 and N > 0 be fived. Under the assumptions of Theorem 3, n° converges
ton, as e tends to 0, in L2(Q; C([0,7 AT, L?)).

The convergence in probability in the time interval [0,7¢ A T'] follows from Lemma 5.4 :

Corollary 5.5. Let T' > 0 be fizred. Under the assumptions of Theorem 3, n° converges to 7, as
e tends to 0, in probability, in C([0,7¢ A T), L?).

First, we admit Lemma 5.4 and we prove Corollary 5.5.

Proof of Corollary 5.5. In the 1D case, the conclusion follows directly from Lemma 5.4. In
2D, we prove that for any >0, 6 > 0

P( sup [ renzyn” = Loryilze > 8) < 6. (5.3)
te[0,7

provided that e is sufficiently small. We note that

]P’( sup \]I[OTEATW — Lo,y e >5> < P( sup [Ljg renr)(n° —n)|z2 >5)
tE[O tE[O,T}

+ P(rEAT <T).

It follows from (2.4) that for any § > 0 there exists g > 0, P(7° AT < T) < 3/3 for any ¢ < &.
On the other hand,

P( sup |]1[OTEAT}(77 —n)|r2 >5> < P( sup Lo 7z area)(n° — m)lr2 >5)
te[0, T te[0,T]

+ PExATEAT <T). (5.4)

Concerning the second term, we first show that for any 8 > 0 there exist Ny and gy such that
for any € < g,
P sup [enfls > No) < /3
te[0,75 AT

Remarking en® (t, z) = e~ Oy (t, x) — Gue (1), it suffices to mention the estimate

E(supte[TaAT](l + log(1 + |us(t) %2))) _ C(T, o, @) _ 3

P “(t)se > N) <
( sup |u(t)]s2 > )— 1+ log(1+ N?) ~ 1+log(1+N2) ~ 3

te[0,75 AT

for sufficiently large N; this follows simply from the bound (2.10) of Lemma 2.7 in [8]. It shows

Py, AT AT <T) < IP’( sup |en®|s2 > No) < B/3.
t€[0,7 AT

Now, using Lemma 5.4, we have for any § > 0,

B
P( sup |]107'N /\TE/\T}(W - 77)|L2 > 5) §
t€[0,T
provided ¢ is sufficiently small, and we get (5.3) by simply fixing N = Ny in (5.4). O

Next, we prove Lemma 5.4.
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Proof of Lemma 5.4. Let v =n® — 7, and also let the imaginary part and real part of v® be
vh = N{ — MR, V7 = N7 — 1 respectively. Then, v and 0§ satisfy for ¢ < 75 AT

dv, = L ofdt — a®Oudpedt + (15 — po)nidt + (¢ — ¢20)n5 dt——\z| e dt

—e2%|2*pedt + eyFnidt — ehjdt — §(ba)285¢ua dt — 5(7; )2 dt
2 2
—%|x\4n§dt — 2% |z PSdt — %(zs)%dt — B AW + |z 5 dW + ez n5d W,

dv; = =L, vgpdt — Y duedt + ydpudt — (1 — po)nmdt + (20 + 1)(¢7 — o0 )nzdt

2 2
g
+ehfpdt — ey nipdt — —\$|4 n7dt — 5225|x\27ﬁdt — E(zs)andt — |{E‘2(¢ua — ¢uo)dW

— 2B dW + 2¢,,, AW — el [*nHdW — ez*nHdW.

Now we apply Ito formula to L? norms of |v%\%2 and |vﬂ%2, then we obtain, after some
compensations, for any 7 = 7 A t,

i) + o) = [ "(Dy(s) + Da(s) + Ds(s))ds + / "My(s)aW(s),  (5.5)
0 0

Di(t) = do(vi,dhovh) — 2007, ¥ e yqﬁuo) (v, [z dpe)
—2e2° (v, [2dpe ) — e(b7)* (v, Dndppe) — £(2°)? (VR Bpas),

Dy(t) = |l (dus — buo)lie + 227 ([2* (G — Duo)s bue) — 22(|21* (D — Duo)s Buo)
—2(p° — po) (e, m7) + 21 — o) (01, mz) — 2((d50 — 622 )05, MR)
—2(20 + 1) (01, (932 — b2 ) + 4o (n7, (622 — D0 ))
—|—(b5)2|8“¢”a|%2 + ‘ngbﬂa - quuo‘%? — 2ey* (R, Mp) + 2ey° (01, M%)
—2eb° (|2*nF, Opdpe ) — 262765 (05, Opdbpee ) + 22(|2* (Bps — Bpuo)s |2*1R)
+ez®(|21* (s — bpuo)> k) + 2627 (|20, due) — 2e2(|2 0k o) + 26(2°)% (dpe, )
—2e2° (1, Guo) + 26725 (R, 2 nR) + €2 (|2 g, lx|nk) + & (|=[*n1, lx|n7)
+e2(2°)* (nr, M) + €2 (2°) (nr, nf) + 26227 (nr, |z *ng),

Ds(t) = —e(hy,vR) +e(hf,v]) — 2a°(vVR, Oudpe),

Mi(t) = —2e(ng, |z[*nf) + 2e(n1, |2n%) — 2e2° (g, n7)
+2e2° (1, nR) — 2b° (VR, Oudue ) — 2007, [2* (dpe — o)) — 2(07, 2°pe — 2¢pg)-

Once we have obtained that, for ¢ sufficiently small,

T
E( sup [o5(t)f3: + [0F(1) 3 ) SC’(T)/ E( sup_[or(®)3s + 07 ()3 )dt +C'T,  (5.6)
0

t<TNTE 90 t<TATE



where C’ may depend on N, we will conclude by Gronwall’s lemma, that
E( sup  [v5 ()2 + |v;(t)@2) < eC'T? exp(CT),
t<TAFE

ie.,

E( sup |n6(t)—n(t)|§2) 0, as - 0.
t<TNTE

We first consider the drift part D;. Remarking Proposition 1 (i), (v) and (4.13), we have the
estimate for t < 78 AT,
D1(t)] < Cl*(1)[72 +eC",

where the constants depend only on pp, o and « except the term —2(v§,y*due — yodu,). Let us
explain how to majorize this term. Noting that

1 £
(¢u5(t)7¢ﬂo) 2 §‘¢)}Lo|%27 t S AN T (57)

and using (4.13), (3.3) and (3.4)

(Lo VR Ppo)

1 1
c _ _ _ o TRy THO/ L— £ i
‘y (t) y(t)‘ |¢“0 %2 + ( po TR ¢HO) ( |¢“0 %2 (¢u57¢u0))

1 g2
9 1 2(; 420\, & Do) —
+( o+ )(¢u€’¢uo)((¢p MO)T/R ¢M ) 2(¢p57¢u0)
£22°

_W(u‘%ﬁa@m) < C(aaMO)(hﬁ%‘m + |pf — ,UOH77§%|L2 + 52‘77ﬂL2),
e Pro

("0, S )

Then, we have

‘(v?7y€¢u€ - y¢uo)| |(v§7y5(¢us - ¢/Lo))| + ‘(ys - y)(v?, @Z)/Lo)‘
C(a, po)|p® — pollvilz2(In°[r2 + &) + Clas po)ly° — yllv7lze
C(a, po)([v7lr2lvRlze + [1° = pol|vil L2 [n®] L2

+evil 2 nl e + elu® — pol 07| 2)

IAIA A

and it suffices to estimate, putting 7 =75 A T,

T
E / sup((1€ — uoll v e 7 | 2)dt.
0

t<t

Note that
T
B (sup e ol 2l 2
0 t<t
T N\ 1/4 4\ /4 5 \1/2
< [ E(suplu = polt) "B (sup r1Ee) B (sup i) (5.8)
0 t<t t<t t<t

T
< eC(T) + C'(T) / E ( sup o 3. ),
0 <791



where we have used (4.16), Lemma 5.1 (ii) in the second inequality. Note that we have actually
from (4.16), by Holder inequality,

T 1/4
| (t) — pol < 501T3/4</ sup |n5(5)\%2d8> +eTCs,.

0 s<rt

Therefore,

1/4 T 1/4
E(igp |us () — /,LO\4> <eCT* (E/ sup |n5(s)\i2ds> +eCT.

0 s<rt

The terms in Dy are estimated as

E(/OT sup [Da(1)|dt) < (). (5.9)

t<7eENT
We study some representative terms in Dy in what follows. The first term is estimated as, using
Proposition 1 (i) (v),

2 |* (e (1) — buo) |72 < Clev, )| (t) — uol2t<sg12T |22 0udpe |72 < Clev, o)1= (t) — pol?-

Then using (4.16) together with Lemma 5.1 (i), we get

T
B( [ sw (1RG0 — du)lfa)it) < Clonpo.T).

t<FEAT
This argument is also valid for the 2nd and the 3rd terms. Concerning the 4th and 5th terms,
putting 7 =7 AT,

‘ /OT ( —2(p° — po)(r>mp) + 2(p° — Mo)(m,ni))dt‘

T
< [ supllue = ol nlgz o),
0 t<7r
which is estimated as (5.8).

For the 6th term, we estimate simply using (3.4) and Proposition 1 (i),

/0 = 2((62 — 8225 m)ldt < Clax, o) /0 1 (8) — ol (8) 2 i () ol

and then we may continue the computation as (5.8) above. The 7th and 8th terms are similarly
estimated.

The 9th term is estimated as follows, writing b° in details. First we note
1
(Oudus, buy) > 5(8“¢u0, buo) >0, fort <7°AT, (5.10)

by Proposition 1 (i), taking a smaller if necessary. Then, using Lemma 4.2,

(bs)Z‘a (b |2 _52(77?|37‘2¢uo)2|8 ¢) |2 <€20( Oé)‘ 5|2
nelLe = (Oudbus, duo)? pPuslr2 = Ho> @)1 L2-

The use of Lemma 5.1 (i) leads to (5.9).
22



To estimate the 10th term we remark that

2°(t) — 2(t)] < Celnglrz + Clp® — pol (5.11)

holds. Indeed, we can check this easily developing z° in details (see Lemma 4.2 and Eq. (5.2))

(777%’ |x‘2¢uo) + (‘$|2¢M07¢M0) B (|x‘2¢u57¢uo)
(¢#57¢M0) |¢uo %2 (Cbufv Cbuo)
RUATRN,
(¢u57¢uo)
_(‘x|2(¢u€ - ¢“0),¢u0) + (Cbuf - ¢uoa¢,uo)
(¢;ﬁ;¢uo) |¢uo %2 (¢u57¢uo)

Recalling (5.7), then, using (4.13) and (3.3),

25(t) —2(t) = —¢

(2] Ggs Suo )

IN

/0 | — 260 Ladt / 12 (e — o) 2t + 2 / (25— 2)o [2adt

¢ [ = ot + C= [l
0 0

IA

and
T
/ E(sup |25 — quuo|%2)dt < =C(T),
0 t<t

from (4.16) and Lemma 5.1 (i).

All the other terms are similarly majorized; Lemma 5.3 (iii) is required for the 21st, 22nd,
23rd and 26th terms; the verification is left to the reader.

We estimate the terms of D3. Lemma 5.2 is needed here, together with the regularity o > 1
of the nonlinearity. We first note that

tATE tATE
‘—s/ (h5,v)ds + 5/ (R, 5)ds
0 0

tATE
< / NP1y 70 + e P70, o s

AT 5
< eClamo) / 7 210" 2ds
0

tATE

tATE
< Clpe@( [ Srtbds [ i), (512)

where we have used the Sobolev embedding ¥ C L4°*+%(R%) with d = 1 or 2, in the second

inequality. Then, an application of Lemma 5.2 implies (5.6) for the terms of D3, with a constant

C’ that may depend on N. In order to estimate —a®(v%, Ou¢ue ), we look at a° in details. From
23



Lemma 4.2,

—2a%(vR, Opdpe)

2(v%,0 < 1 e g o I
‘% x| = gl Sues Buo) = 27 (21 Spe duuo) = (932 = B o M)

1
2 (), Bpa) — 52 s 2l ) — 22 0, |22 010) — S (8B D) — <15 )|

Except the terms —e(h7, ¢,,,) and —((qbig— i‘g)qbuo,nf), we see easily that all the terms inside the
bracket are bounded by eC'(a, po), using (4.13) and noting |en®(t)|r2 < C(a, ug) for t < 7 AT.
On the other hand, by (3.4) and (5.12) we get

(037 = Gpa)Duos 17| < Clev, po) |1 = pol 1] 25 [e(hT, dpo)| < €Clev, po) 0[5

Recalling (5.10), we have

| = 2a° (v, Opdpe )| < C(Oé7M0){€\v%|L2 +eln [Blofl e + |k — uo\l?ﬁlmlv%\m}

which is estimated similarly as above.

Next, we consider the martingale part M;. We give a proof for the terms, as representative
ones, —2(v5, |22 (due — duo)), and (v5, 2°¢ue — 2,,). In a same way we can deal with the other
terms of M. First we mention that it is possible to estimate

| = 2007, |2[* (e — Puo))| < Clofl 2|2} (Bpe — duo)lr2 < Clut(t) — pol[vf] 2,
using (3.3), but with 32 instead of . With this observation, we have, putting 7 = 7 A T,

tAT

B(supl [ @R laPoye — u)awl) < CE(( [ 10falue - pops) )

t<rt 0

< TV (sup [vf] 2 — ol
t<t

< comE(sup il | I O)gads) +1))

< 5C(T)E<sup |vﬂ%2> +eC(T),
t<t

where we have used a martingale inequality in the first inequality, (4.16) in the third one, and
Cauchy-Schwarz inequality together with Lemma 5.1 (i) in the last inequality.

Next we write (v}, 2°¢us — 2¢,,) as follows.

/ (05, 22 Gpe — 2pg)dW = / (65, 2 (B — By))AW + / (2% = 2) (U5, o)WV
0 0 24 0



Only the second term requires an explanation, since the first term may be estimated as above.
We recall the estimate (5.11), and we obtain

[ = oman]) < cr(( [l - Puitalonlis) )

=CTE( sup ] 2v3] 2
t<rt

E(sup
t<t

IN

+0T1/2E(§gp 15(8) = polloFlz2 )

Then this right hand side is clearly majorized as previously (see (5.8)). Proceeding in the same
way with the other terms, we get

tAT
E(sup Ml(s)dW(s)D < 6C(T)E<sup |v5|%2) +eC’(T)
t<t 0 t<t
and (5.6) holds, assuming that e is small enough so that eC(T") < 1/2. O

6. THE LIMIT EQUATION

In the previous sections we have seen that a remaining term 7)° satisfying the orthogonality
conditions (2.5) and (2.6) converges to a process n(t) defined by (5.1) as € goes to zero, in
probability, in C([0,7° A T], L?). Also, the modulation parameters verify, at order one in ¢, the

system
{ duf = o(e), (6.1)
dO® = podt + ey(t)dt + ez(t)dW + o(e), '
where y(t) and z(t) are defined by (5.2).
In this section we study the statistical properties of this process n(t), in particular, as men-
tioned in the introduction, we are interested in the quantities

E(jnE(H)*), ke {0}UN, ifd=1.
For this purpose, we proceed in the following way.
e Investigate the properties of ¢,, when pq is close to —Ag
e Analyze the spectral properties of the operator JL,,
e Simplify the coupling terms in Eq.(6.1)

At the end of this section, we will give a proof of Theorem 4, deriving the master equation in
our case.

6.1. Properties of ¢,,. First, we give some arguments and references concerning the proof of
Proposition 1. Concerning (i), we refer to Theorem 18 of Shatah and Strauss [27], for the fact
that u — ¢, is C! (or C?) with values in X. To obtain the same result with X2 (or £) instead
of 3, it suffices to differentiate Eq.(1.8) with respect to y, noting that ¢, is real valued, and then
to use a bootstrap argument, inverting the operator —A + |x|? + 1. See [10] for the proof of (ii)
which implies (iii); indeed, assume (9,¢,,¢,) — 0 and (ii). Then we have

0= _(¢u78u¢u) = <L;(8u¢u)vau¢u> 2 V‘a;@u% >0
25



which is a contradiction. Suppose that there exists p11 € (—Xo, *) such that (0,0, ¢u,) < 0.

Then 9(u, z) = |@“1‘;2 ¢u(x) satisfies (O, ¢, ) = 0 and
m

(S//(¢Hl)auwul?8uwul> S (auqb,uquul) < 07

which also contradicts to (ii). The statement of (iv) and (v) has been shown in [11].
We now put v = pu+ A\g. Eq.(1.8) is equivalent to
—A¢y + |2’y + (v — o)y — 27T = 0. (6.2)

Lemma 6.1. Assume p € (—Xo,u*). Let d = 1,2 and o > 1/2. Let also ¢, be a solution of
(6.2). For any 6 € (0,2), there exist C' = C(0) > 0 such that for v sufficiently small,

(i)
(iii)

b= CorBrdo| <OV, (i) |laP6, — CovsslaPdo| |, < Ovl2)5,

1
By by — —C*u%*%‘ < Cuyo.
20 v

Moreover if 0 > 1 and d = 2,

2041

1
¢y, — Cyv2e Py - <Cv 4.

(iv)

ey

_o+1
Here we have put Cy = |®g|;2,7> = (0 + 1)%71 )

Proof. The part (i) has already been proved in [10], we recall some ingredients used in [10]
which will be used for the proof of (ii) and (iii). If we decompose ¢, = a, Py + vy, with a,, € R
and (®g,y,)x = 0, then

1 2041 1
Guls <v3Cer Juls < ClOW'S, o] < Clawi. (6.3)
In order to prove (ii), we also use this decomposition. Let 1/6 + 1/6’ = 1 so that, 2 < §(2 — 9)
and 0’ > 1. Tt follows from Hélder inequality and Sobolev embedding,

Hx|2yu‘%2 = Hx|2(¢u - GV@O)&?
< C|¢I/ - al/(I)O‘ig(éz—é) H$|4(¢V - al/(I)O)5|L9’

20+1

< C(0)|py — a, |50 < C(O)WE9 %,

The quantity ||z]|*(¢, —a,®0)°| ¢ is indeed bounded uniformly in v from Proposition 1 (iv) (v).
This shows (ii).

Next we prove (iii). In the same way, we decompose 0d,¢, = b, Py + 2, with b, € R and
(®o, 2z,)s = 0. We insert this decomposition into the equation for d,¢,, i.e.,

_Aay¢y + ‘$|28y¢)y + (V — )\O)a,/qbu — (20- + 1)¢)30'8V¢V — _¢V7
then we have

—A(b,®g + 2,) + x> (0, Do + 2,) + (v — Xo) (b, Do + 2,)

—(20 + 1)(ay,®o + 1,)% (b, P + 2,) = —(a, Do + y,). (6.4)
26



Taking the L? product with z,, we get
|2l + (v = Mo)lavlLe = —(vv, 20) + (20 + 1)((a0 o + 1) * by B0, 2)
+(20 + 1) ((au®o + 4,)* 2, 2)). (6.5)
Since (®o, z,) = (Po, 2,)x = 0, 2, satisfies
((_A + |x\2)z,,,z,,) > >\1|Zy|%2,
where )\; is the second eigenvalue of —A + |z|? and A\; > \g = d > 1. Thus,
l2[% > (A1 + 1)z 72
If v is small enough, then v — A\g < 0 and so we have

Ao —V 14+v
als = o —vladie 2 ol = S 1w > 555

We also estimate the right hand side of (6.5) and we obtain, putting Cp = 1/(A; + 1)

‘ZV%

_o(20+41) o
Colols < lwwlelals +C@)C 7 [bullav*|zuls + C(0)Cu 7 by llyu [ [%oral2u]s
_20%
+C(0)Cx T Maw 2[5 + C(0)lywl o2 203
_ 202
Taking v so small that Cy — C(0)Cy “™'|ay|*” — C(0)|yy|3%s42 < 1/2 (see (6.3)), and using the
order in v of a, and v, we obtain

zls < Ov5 + Clv+ 2 )b, . (6.6)
On the other hand, if we take the L? product with ®q in Eq.(6.4),

(v = 20 +1)(62700,®0) )b = —a, + (20 + 1)(62" 2, Do),

and it follows, using (6.6) and (6.3) together with (i) of Lemma 6.1, that

200b, (1 + O(v)) = a, + O(v 2 ).
thus
1
b, = —Cw2 L+ O(ve),
20

which completes the proof of (iii).
As for (iv), it suffices to estimate |0%y, |72 for all o with |a| = 2, and then to use (ii).

2041

0%yu|22 = [0%(dy — a,®o)|22 < |0(dy — ay®0)|12]0% (¢ — ayPo)| 2 < Cv 2

with |o/| = 3 and C' is uniformly bounded in v; indeed (iv) of Proposition 1 allows us to have
¢ € C2 (R?) if ¢ > 1 with its norm uniformly bounded in v for v sufficiently small. We then
use the exponential decay of [0% ¢, (z)| for large |z|, which may be proved if ¢ > 1 repeating the
same proof of (v) of Proposition 1. O
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6.2. Spectral Analysis. We investigate the spectral properties of the operator JL,, defined
by (1.15). Since a modification of the proof in [17] gives Ker(L, ) = {0}, and it is easily seen
that Ker(L} ) = {¢y,}, one can check, using Eq.(1.17) that

Ker?(JL,,,) = span { <‘9“§”0> , < ¢io> } . (6.7)

For the rest of the spectrum, we write the operator JL£,, as follows;

0 LT 0 ()\0 _|_'u0) _ 2a>
JL,, = _ RO ) = JL y, + Ko
#o <_Luo 0 > Ao <—()\0 + o) + (20 + 1) i‘g 0
where we have defined J£_), in the introduction.
Now we consider the case d = 1. It is well known that the operator & = —A + |z|? —
Ao = —% + 22 — 1 has purely discrete eigenvalues A\, = A\, — Ao = 2k (k € NU {0}), and

the corresponding eigenfunctions which are the Hermite functions ®(x) (see e.g. [29]) form a
complete orthonormal system in L%(R).

For later use, we summarize some properties of the Hermite functions ®(x). For any k €
N U {0}, the relation

d

i) = (= — +2)Bu(a) (6.8)

holds between ®4,; and ®;. Thus we have

(q)n, (% +$)<I>k> - ((— % —l—x)‘bn,@k) — (Ppyr, ®p) =0, if n+1#£E,

d
(( dx +$)‘I)kaq>") = (Pp41, ) =0, if k+1#n.
x
>From these facts it may be verified that

(Pp,2P) =0 if n+1#k and k+1#n. (6.9)

It may also be seen that the spectrum of JL_), consists only of the discrete eigenvalues
&5 (=No) = £id, ke NU{0},

and the (normalized) eigenfunction associated to £i); for k # 0 may be choosen as
Ft — L +1P,, '
V2 \ F0

Ker?(JL_),) = Ker?(L_),J) = span {55,53}, with fl:;a = <£0> , 53 = <(I())O> ,  (6.10)

For k=0,

where 2®), = A\, ®, or equivalently (—A + |2]?)®) = M\ @) (K € NU{0}) as mentioned above.
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Remark 6.1. It may be proved, using a bifurcation argument as follows, that the spectrum of
JL,, consists only in pure imaginary discrete, simple eigenvalues (except 0) for ug sufficiently
close to —Ag. Indeed, fix k € NU {0} and consider for pg close to —\g, the operators

1

_2_ .
Ui Fk

L5 (JL,,) = (JLpuy — 2) "tz (6.11)

with the contour
Ty = {2 €C =& (-20)| = 1/2}.
It follows from Lemma of page 14 in Vol. VI of [25] that if
TG (T L1ao) = T (TL 3ol o2y < 1 (6.12)
for pg sufficiently close to —\g, then
dimRanIlf (JL,,) = dimRanIL (JL_y,). (6.13)
In order to prove (6.12), we remark that for any z € p(JL,,) N p(JL_),)

[e%S)
1(7L00 =27 = (TLona =) Mgy € D 1L = TLrallpgay ITL oy = 2) M (6.14)
n=1

and it follows from the spectral theorem that for any z € Ff,
1
< =
dist(z,0(JL_),))
Using this, the sum of the series in the right hand side of (6.14) converges for g sufficiently close
to — Mg, since we have for example,

||JL,U«O - J'C—Xo Hﬁ(]]:Q)

= sup {I((Xo + o) — o2)01l72 + (Mo + o) + (20 + 1) Z§)¢R|i2}1/2
[Y]z2=1,
Y=t p+ithreL?

=2

1T£230 = 2 ey

< C0) (Mo + ol + [ 22) < = (6.15)

87
choosing po close enough to —Ag. We have used Lemma 6.1 and ¥ C L®(R) so that |d,,|7%
tends to 0 as po tends to —Ag. Hence we obtain

1

2T Ff

I /1\" o, 1
2> (5) =g <
n=1

I (TL) — T (Tl pie) < 1Ly = 2) ™" = (TLorg = 2) M o |d2]

IN

where || is the length of T'{.

As a consequence, if d = 1, all the eigenvalues of JL,,, except the zero eigenvalue are discrete,
simple and on the imaginary axis since, otherwise, the bifurcation occurs toward two directions
due to the symmetry, but it is a contradiction to (6.13).
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Remark 6.2. In dimension 2, denoting x = (z1, z2), we may write the operator as

—A+|x\2—>\0:< dd2+z1 1)®I+I®( +x2 1) (6.16)

dx 2
It is known (see for example sections 11.4 and VIIL.10 of [25]) that the complete orthonormal
system in L?(R?) associated to the operator (6.16) is

{50(2)}jiz0 = {@j(21)Pi(22) }1>0, (6.17)

and the m-th eigenvalue of the operator (6.16) is given, for m € NU {0}, by
5\]-—{—5\1 =2m, with j,{,m e NU{0} and j+1l=m
The arguments of Remark 6.1 for the operator JL_), are still valid in the case d = 2; we
can indeed use Lemma 6.1 (iv) and £? C L*®(R?) for the smallness of |¢,,|3%. However, the
bifurcation of pure imaginary eigenvalues outside the imaginary axis could occur since the eigen-
values are not simple in 2D. To exclude this possibility, let P be the orthogonal projection on
(Ker(L:[O))J-*{gbuo }+. Since operators L}, and PL, P have no negative eigenvalue for pg close

to —\g, it follows from Corollary 1.1 in [13] that the bifurcation of eigenvalues cannot happen
outside the imaginary axis.

6.3. Simplified modulation equations. Now the orthogonality conditions (2.5), (2.6), which
have been used to estimate the exit time 7° in a convenient way, are not exactly the orthogonality
conditions to Ker9{JL,,}. In order to slightly simplify the limit equations, we will now prove
that we can change these orthogonality conditions without changing the exit time 7°.

Let P,, be the spectral projection onto Kerd(JL,,) defined by

PHOw == (au¢uo7 qb,uo)_l(wbauqbuo) <¢20> + (a,uqbuov ¢uo)_1(wRa ¢uo) <8H§MO> (6.18)

for any w € L?(R?) with Rew = wg and Imw = wy. Set Quo = I — P,, and recall that 7 is the
solution of (5.1). Then

Quo <¢20> =0, d(Quen) = J Ly (Quom)dt — Qg (|$‘20¢u0> dW, By = h(?) <¢20> )
due to the orthogonality conditions (2.5), (2.6) satisfied by 7. Here, h(t) satisfies the equation
dh = —ydt — L(3,,)dW,
with L(duy) = (0u®uos Puo) ™ (Oudpgs 1> duy) + 2(t) and y(t), 2(t) defined in (5.2).
We put

0=(t) = 6°(t) +eh(t), pE(t) = po(D),
ene(t,r) = Ee_ish(t) “(t,z) +e —ieh( t)gi)u — Puer)
Lemma 6.2. Let T > 0 fized and h(t) be defined above. Then we have

2
)
L2

1 .
lim E sup —‘e*wh(t)qb () — Pus(r) +ieh(t)o
=0 (te[o,rf/\T] € w0 ul ()00
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Proof.  Note that h(t) is bounded in L*(Q; L°°(0, T; L?(R%))) for any T > 0. Indeed, 7y is
bounded in L*(€; L>(0,T; L*(RY))) by Lemma 5.3 (i) and E(sup,cp W (t)*) < CT?. Tt follows
from Taylor formula that

1 —1iE :
—‘e M0 e ) = By 1) + 1R () B

1), -, . )

= =|(MO — 1+ ieh() By ) + ih (D) (Buo — Do)
1/, . )

< < (1670 — 1+ ieh(®)l|6e )| + IO |60 — Speco])

1
< §5h(t)2 + RO duo — Doy

the right hand side tends to zero as € goes to zero in L2(Q; L>=(0,75 AT; L2(R%))) by (3.3), (4.16)

Y

and Lemma 5.1 (ii). O

Thus letting
i(t, ) = n(t, z) — ih(t)gu,,

we see that (¢, z) converges to 7j(t,x) as € — 0, in probability, in L°°(0,7; L?(R%)), where
7°(t, z) is defined by

w () = 7O (e + i (1,2).
Note that 7 satisfies
PMOﬁ:O, ﬁ:(I—Puo)%
- - 0
dij = TLyiidt — Quq <\z|2¢ ) aw, (6.19)
Ho

which is exactly the equation (2.7). This 7°(¢, z) satisfies the conclusion of Theorem 2 with the

same exit time 75 as that for 7°(¢,z). The associated modulation parameters 6¢ and [ satisfy
(2.9), (2.10) and (1.18), as follows from the results of Section 5.

6.4. Proof of Theorem 4. Finally we are in position to prove Theorem 4. We restrict here
to the one dimensional case, since the condition o > 1 is needed. See Remark 6.3 for what can
be said in dimension two. Let us consider the projection in 1D, corresponding to g = —XAg, Fo
onto Ker(JL_),) defined by

Pyw = (wr, ®o) <<1?0) + (wr, o) <q60)

for any w € L?}(R?) with Rew = wg and Imw = wy.
Proof of Theorem J.  We obtain for any § € (0,2), using Lemma 6.1 and Eq. (6.18), and
setting v = o + Ao :
1=pro)( 2 we(I=p)( 2 V+uov (6.20)
— = V20, — Vo 5 .
Ko |x‘2¢uo 0 ‘$|2<I>0 v

for some Y, € ]I;Q(Rd) satisfying |Y,[;» < C where C' does not depend on v.
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Now we compute the power of each k-eigenmode of the process 77 of (2.7). Noting that
e¢]
=S UREOFE G = (), ).
k=0

we wish to compute the asymptotics as v goes to zero of E(|ﬁ,f(t)|2) For this aim, we change
the time scale by setting

s = v/, (6.21)
Then Eq.(2.7) is written as

dij = v 7 JLfids — v 2 (I — Py,) dW (s), (6.22)
g |z[? <buo

with the new standard Brownian motion W (s) = v¥/27W (v~1/75). By the definition of P,

0 0
I-P - ,
1= (o) = (oo - (ePon 20)
Together with (6.20), we have

0

~ _1 ~ _1 ~
d’r]:l/ aJ[,_)\O?’]dS—|—V UBV’I’]dS—C* <‘$|2¢0 _ ‘$¢0|22@0
L

> AW (s) — ves Y, dW (s), (6.23)

where
0 v — 20
— Ko
By <—u+(2a+1) e 0 )
We take the L2 product of Eq. (6.23) with <I_5i. If k=0, since \g = 0,

diiy = v~ 7 ((Byi, 85))ds — v (Y, BF)dW (s).

It6 formula for \770 2 leads to

~ 1 = ~ 2 1 = g 4 1 g
dlifs P = 2077 Re (75 ((Buil, 85)) ) ds — 202 Re (i (Ve BF)) ) dW (s) + v7| (¥, 8F)) ds.

(6.24)
In the same way, noting that JL_), = L_),J, we get for k£ > 1,
diif = FiNw YoE(s)ds + vV (B, 8F))ds
C, - -
—E(W@O, FO)AW (s) — /27 ((V,, BF))dW (s).
Then, again with the Itd formula,
3 1

diff)? = 503(@\2@0, ®;)%ds (6.25)

+V2v ™7 {(Im ), ) Re((B, 7, B5)) — (Re ), £0;) Im((B, 7, B)) hds

V20,5 (|a @0, TOk) Re((Yy, BF))ds + v7 | Re((Yy, B1))|2ds

—C(Im 77, F®) (|2 * o, FOx)AW (5) + V203 { (Re j, £0y,) Im((Y,,, B5))
(Imna:F‘I)k)Re((Ym‘I)i))}dW( ).



We recall that 7(0) = 0. Note also that by (6.15) and Lemma 6.1 (i),
IBullzaey < Cv

for some positive constant C. Hence, using Lemma 5.3 (i),
t
E(\/ﬁu—%/ |(tm 7, @) Re((B, 7, 7)) — (Rei, 04 Im((By77, &5)) ) ds
0

t t
< \/iu_%E(/ ||BV\|£(L2)|ﬁ(s)\%2ds> < 2Cu1_%/ E(sup|ﬁ(s)\%2>ds < Cviet.
0

0 s<T

Integrating Eqs (6.24) and (6.25) on [0,¢ A T] and taking the expectation, we obtain

1
E(|f; (£)*) = 5C2(|2l*®o, ¥04)*t + O™ D), if k> 1,
E(|iiy (£)[*) = O("t), (6.26)
where Kk = min{%, 1-— %} On the other hand, noting that for any k > 1
1 1
(Je* @0, @1) = 5 (@0, Peyr) + 5 (P1, 2p),
it follows from (6.9) that
1
(|z|*®g, ®r) = 0, except for k=2, and (|z[*®q, P2) = 5(33@1,@2). (6.27)

Indeed, by (6.8), if k # 0, we get
(332(1)0, (I’k) = —(6:,3(1)0, arq)k) = —(.1‘(190 — <I>1,33<I>k — (I)kJrl)
— (2B, By) + (2Pg, Ppy1) + (B1, 2Dy).

These computations finally lead to

_ c: .
E(liy (t)*) = 7(9«“‘1’17‘1)2)% +0(vg1),

E(|;; (1)*) = O(t) if k # 2.

This is the master equation in the case d = 1. Note that this does not mean anything if
o =1. Recall v = Ay + pg. To complete the statement in Theorem 4, it suffices to remark that
(33(1)1,(1’2) = —1. O

Remark 6.3. In the case d = 2, the above arguments would work up to Eq.(6.26), setting (see
Eq. (6.17))

At) =Y a0V, ) = (1), TF)),
4,1=0

provided that we could take o > 1. We could also compute the quantity (|z|*¥¢0,¥;,) for
j+1=mand m > 1. Indeed, by (6.17), and with = (x1,x2), we have

(|l Wo,0, W) = ((aF + 23)Po(21)Po(x2), Bi(21)Pj(22)) = doj (2] Po, D)y + So1(25P0, Pj)ay
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for j+1=m and m > 1. Then, using (6.27),

1 . .
2 N 5(.@1(1)1,‘1)2) if (.]J) € {(07 2)7 (270)}
(|2[*P0.0, ¥5) _{ 0, otherwise

As a consequence, we would obtain the following master equation (in the new time scale (6.21))
in 2D :
N2 C_f 2 Ko\ g (s
E(|nj7l(8)| ) ] (xlq)l?q)?) s+ O(V 8)7 if (]?l) S {(0? 2)? (2?0)}7

E(l(s)[*) = O("s) it (5,1) ¢ {(0,2), (2,0)}.
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7. APPENDIX

In this section we will prove the estimates in Lemmas 5.1 and 5.3. All the computations in
this section applying Itd formula may be justified with a similar method to the proof of Lemma
4.1. We begin with (i) of Lemma 5.1.

Proof of Lemma 5.1 (i). 1t6 formula leads the equations
dngl7e +dnilt: = Ao(nf, ¢panf)dt + |2 Gue [F2dt + (2°)?|@pe F2dt + 225w ye|odt
—2a°(ng, Oudpe)dt + (b6)2‘8u¢u5‘%2dt — 2y°(n7, Ppe)dt
+2(20 + 1)(11f, (637 — @70 )n)dt + 2(n, (da — 6,2 )nf)dt
—2e2°0° (15, Opbpe )dt — (N, 2] dpe )dt — £(2°)2 (0, dpue )dt
(62 (s 02 )t — 2267l Dy )t + 22l e i)l
222 (o2 e )t + 26(2°)? (B i)t — 2, B et + 220, )t
=26 (12, Dby JAW — 2(nf, |2[* e )AW — 225 (1), e ) AW.
We note that
< (el Pue P71+ len 70, 0]
< 0 [Relen e (|6 75 + lenfl 75
< Clnfl3

| = 2e(ng, h7) + 2e(n7, hi)|

where C depends only on «, o, po and moreover on N if d = 2 for t < 75 AT. It follows from
Eqs. (4.13) and (4.14) that a.s. for t < 7¢ AT, putting 7 =t A 7,

Wl + @ < C [t o)+ nis)Eds + | [ M(s)aw (o)

with

M(5)] < C'(1+ iz (5)] 12 + I (s)]2), as. fors < 7.
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Indeed we may use Proposition 1 (i), (iv), and (v). Taking the expectation of the supremum in
time and using a martingale inequality, we get

5 sw o) < B[ ap arir@R) or( [ asroma)”

t<FEAT s<FEAT

CE(/OT sup (1+[nf(s)[72)) +C'T'?E(_ sup (1+\775(t)|%2))1/2

s<FEAT t<FEAT

IN

from which, by Gronwall inequality,

E( sup |n°(t)[7.) < C1(T)

t<TENT
follows. O

Proof of Lemma 5.1 (i1). We apply Ito formula and we have

dln® (t)[72 = 2107 ()72, dln® (8)[F2) + [26° (1, Oudbpee) + 200, [ Dy ) + 22°(n, Bpee) Pt (7.1)

We use the previous computations :

ol <0 [ @i | [ ar@ave)

a.s. for ¢t < 7, with
|M'(s)| < C"(1+ |n°(s)[32), a.s. fors<T. (7.2)

Then, integrating Eq. (7.1), taking the expectation and using Gronwall Lemma, we have
sup E (1 7+ (D (D)2 ) < C(T).
t<T

Hence,

-
E( sup \nf(t)ﬁg) <C+ C’E( sup |/ M’(s)dW(s)\),
t<FEAT t<7enT Jo
and by (7.2) and the martingale inequality given by Theorem 3.14 in [5]|, we have

tAT

E(tgs%gIA)T‘ ; M'(s)dW(s)|> < 3E((/0TME(1 + ‘775(5)‘6)d8)1/2)

<3T'E( sup (1+ [ (1)l12))
t<7ENT

1
< SE( sup_ |F@)lL) +C(),
2 \i<senr

where we have used Young inequality in the last inequality. Finally we obtain

E( sup |n5(t)\%2) < Cla,T).
t<FENT
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Proof of Lemma 5.2. 1to formula to (L, n%,n3) + (Lffovﬁ,n?) results in, taking account of
some compensations,

A((Lpy s ) + (Liynfm7))

= —do(p° — po)( uonRﬂh)dt‘FQ( ponRv( ¢2U)771)dt

—2(20 + 1)(L} 7, (6322 — ¢20 )nf)dt — 2a° (LHOnR’ Oupe )dt — 2y (nf, Lt e )dt
+(0°) (L (Ou e ), e Yt + (L (|2 bue ), [ dpe )t + 225 (L (|2 dpie ), due )it

+(2°) (L} (fpe ), bpee )t — doey® (np, m7)dt — (Lo ng, 2| dpe )dt + 4022 (820, |2 dpe ) dt
+20¢(2%) 2 (Gpa i, Se )t + £(2°)? (N, Lt (6pe))dt — e(b%)? (nfg, Ly (0irppe ) )it

—2e(L, g, h7)dt + 2e(L} nf, h)dt — 2¢b°(Ly, (0upe ), |0 )dt — 2eb°2° (L, (Oubpee ), 7 )dt
+2e(|z* Ly} (|2 due ), mi)dt + 2625 (|22 L (Bpe ), ) dt + 20> (|z|* %Onaan}z)dt
—(6—2d)e Q\an\deH‘lOEQZE( Ry [ PnR)dt + 20€% (2°)? (G0 R, nR)dt

—20¢(|z|* ¢ponG, nf)dt + (6 — 2d)e* [xnf|7»dt — doe”2"(|z|? %0?71,771)

—20¢(2°)* (¢ mi, n7)dt — 26 (1, Ly (Quye)) AW — 20, Lk (] ¢y ) ) AW
—22°(n7, L e )AW — 8e(ng, - Vg)dW — 4de(ng, n7)dW
+doe (@i, 17)AW — doez® (g%, ng) AW (7.3)
We set
Ds(t) = —4o(u® — po)( @i n7) — 4oey (17, n7)
—2a% (Lo, Oube ) — 2% (07, Lyjy dpe )
Dy(t) = —2e(L, ng,h7) + 2e(Lf 17, hi)
Ds(t) = the rest of drift terms
Ms(t) = martingale parts

and we have a.s., for t < 7¢ AT, putting 7 =t A 7°,

(L (1), mg (1)) + (Lyigni (8),n7 () = /OT(Ds(S) + Da(s) + Ds(s))ds + /OT Ma(s)dW (s).

Since |en®(s,)|x < C(aypo) for s <76 AT,

T
[ 1Ds(6)1ds) < Clopo)(B( [ s IR +7)
t<7’5/\T 0 s<7ENT

E( sup /\Dg)(s)\ds) < C(o, po,a)T.

t<TeANT JO
A use of martingale inequality leads to

sup /M2 )dW (s D < 245T1/2E< sup |n5(t)\22)
t<7—5/\T t<FEAT

+C (a0 o, TE( sup_ | (#)35 ) + (T, o).
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Therefore, if we get
t T
E( sup / [Da(s)lds ) < C(o o, a, NJE( / sup_ [ (s) %), (7.4)
t<7eAT Jo 0 s<FEAT
noting that for some v > 0
(Lyns i) + (L ) = v(Ingl% + 05 15),
the estimate

E( sup | (®)) < Clawpo, T.N)
t<7ENT

will hold, similarly to the proof of Lemma 5.1 (i), choosing ¢ small enough. Then, using again
It6 formula for |n°(t)|5, since

dinl3 = { the right hand side of (7.3)} + (1 — po)d|n°|72 + 2(20 + 1)( i‘;n%, dng)dt
(020 (07 0uye + el + £207), 0By bye + elarlnf + £2707 ) dt + 2925, dyf )t
+( ig(|x‘2¢u5 + Zs¢u5 + 5|x‘27ﬁ% +e2°nR), ‘$|2¢u5 + Zs¢u5 + €‘$|27ﬁ% + 52577?%) dt,

we may write, for t < 7EAT =7,

TNt TNt
<o [ as s+ | [ aware)
0 0
with
[A(s)] < C'(L+ [ [2) 03, + eC"[f [, as. for s <.

We then conclude using Lemma 5.1 (ii), and & small enough.
We now study in details Dy(t) = —2¢(L,, 0%, h7) + 2¢(L,f 17, hg); this is divided into

Dalt) = —2e(Vify, VAS) + 25(Vng, Vi) — 2 (P, 1) + 2 (fo 5, )
2o, h7) + 220 (5. 1) + 2220 + 1) (B2, 15) — 2582505, H)-

In order to estimate these terms in d = 2, we need the stopping time 75, which allows us to make
use of the Sobolev embedding ¥? ¢ L*>(R?). The case d = 1 is easier, so we give here a proof
for d = 2. Using [en®(s,-)|x < C(po,«) for t <7 AT, and

|eh®|r2 < Clen® |91 lnf| p2e42 < Clo, po, 0) |, t <75 AT,
we have

| — 2ep0(nf h5) + 2ep0 (1, W) + 26(20 + 1)(&2 5, ) — 22(8205. 5)|
< C o, 0)|F|p21ehe |2 < Cluo, 0, )2 lnfls, ¢ < 7 AT

In the same way, we obtain also

| = 2e(ja*nf, h3) + 2e(|z*nf, h)| < Clpo, o) lnf[%, ¢ <75
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We perform the calculations of [2¢(Vn7, Vh)| since the other term is treated similarly. We
develop here the derivative of h%:

2 1
Vi = % [ (=8 = 1){(0 + seni? + (sen)

1 {2ye + 52m7) (Vo + 5£V) + 257705 Vo }

x{2((0pe + semp)enis + s(eni)Pen + (n5)? + (e07)*) (e + seny) s
2_0_ 1
62 0

x{2( (0 + seni)eni + s(enf)? ) eV

+2 ((ngua + seVng)eng + (dus + senk)eVng + 285277§V77§) eng

+ (1= 8)[(dus + senf)” + (sen)’] 7

+((enf)? + (en7)*)(se Vg + Véue) + (26207 Vn%: + 2205 Vn5) (dus + sen%)}ds

o\0 — !
dhre /0 (1= 5)(0 = 2)[(dpe + senf)” + (senf)*)” "

% {200 + 5m7) (Ve + 5eVnf) + 252 n; Vs |

g2

2
% (6 + semi)enfs + s(eni)?) (B + senz)ds
4o(c —1) [*
e b 0= 90 + seri? + (s 172
2
1{ ((Bus + semi)en + 5(en)?) (Ve + 55Vng) + 2((dye + semi)eniy + s(enf)?)

(e + 5en5)eVns + (Ve + seVn5)ens + 25e2n7Vn5) (e + ss?ﬁg)}d&

. 20
We estimate the term, as an example, — |(Vn7, Aeng)| where
€

1
A = / (1= 8)(0 — D{(ye + serfip)? + (sen)?)2
0

1 {20 + 5217) (Vo + s2Vng) + 25%n; Vg |

X2((¢us + senk)eny + 25(5n§)2)ds.
38



It is majorized for t < 7 A T3, AT, assuming o > 1, as follows;

20 2(c—1

SV Aeti)| < Ol + Vel )l e [ [ 2

+C(|pe Lo + \Veﬁuele)/Rd Ve |[en® 21 e
C g— £ £ £ C £ g|120— £
+= | 72 / V0o ||eViF| + = / Vo len® 27 e Vi
& Rd 13 Rd

+ 10 [ virllent P S [ 1ol
< Clpo, o, N)(IV0F |2 [0 12 + [V [72),
where in the last inequality we have used
len®|pee < Clen®lse < N, t <71 ATHAT.
We remark that in case of d =1 we can simply benefit from
len®|pee < Clen®ly < C(po, ), t<7°AT.

Other terms are also estimated as above and then we may prove (7.4) where we replace 7°

with 78 A 75 in d = 2. O

Proof of Lemma 5.3 (i). This estimate may be proved similarly to the proof of Lemma 5.1 (i),
it is sufficient to mention the following; we have, recalling that n satisfies Eq. (5.1),

EZN
d(Inrl7> + In1]72) = 40 (g, dronr)dt — 2(n1, |22 dpuo ) AW + ||2|* By |7 2dt — R HOLE gt
Holr2

by It6 formula. O

Proof of Lemma 5.3 (ii). We apply Ito formula to (L, nr,nr) + (Ljom,m), then we have

d((Lyynrsnr) + (Lifynr,nn)) = (L, (2P Go), 217 b )t — 21, Lk, (1] 6 ) ) AW.

Therefore,

_ 1/2
E(sup(Luynrs ) + (L)) < CTY2(E(sup lnr()32))  + C'T
t<T t<T

IN

1%
FEGup [ (1)[72) + CT
t<T

where v is given by
(Lnrsnr) + (Lfnrnr) = v(ingl: + %),
which holds since ng and 7y satisfy (nr, ¢u,) = 0 and (11, ¢,,) = 0. Accordingly, we obtain

E(sup(nr()f + ni()}E)) < CT.
t<T

Note that this constant C' depends only on pg, v. Hence the right hand side is bounded linearly
in T" which shows (2.8). O
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Proof of Lemma 5.3 (1ii). 1to formula for |(1 + [z|*)n|3, implies
di(1+|alirlze = 20+ |2)nm, Linn)dt,

(LR Puo)

O (g (1 + |2y )dt
|Duo 12

(L |2[)nr, Spo)
|Puo %2|x¢uo %2
M) 2 dt

M)Ho %2 L

dl(L+ e Ynrlt: = =21+ |2z, Lgnr)dt + 2

—2((1+ [2f*)nr, [P By )W +2 dw

| (L [ (=P +

We here note that
(1 + [&[Mnr, L nr) = (L + |=[*)nr, Ly nr)
= —42 + d)(|zPnr, 1) — 8(|=*x - Vg, nr) + 20 (1 + 2" )01, drong).

Hence,

d|(1+ [a[Y)nlZ. = D(t)dt + M(t)dW (t)
with

ID(®)| < Cl(1+ [2[)nl72 + C'(1 + [n[3)
and

M ()] < Cl(1+ |2l 2 + C".
Similarly as above, Gronwall lemma, a martingale inequality and the estimates proved in Lemma
5.3 (ii) allow to conclude

E(sup |(1 + |z[*)n(t)[7.) < C(T).
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