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Abstract

Crack propagation in an isotropic 2d brittle material is widely
viewed as the interplay between two separate criteria. Gri�th's cap
on the energy release rate along the crack path decides when the crack
propagates, while the Principle of Local Symmetry (PSL) decides how,
that is, in which direction, that crack propagates. The PSL, which
essentially predicts mode I propagation, cannot possibly hold in an
anisotropic setting. Further it disagrees with its competitor, the prin-
ciple of maximal energy release, according to which the direction of
propagation should coincide with that of maximal energy release. Also,
continuity of the time propagation is always implicitly assumed.

In the spirit of the rapidly growing variational theory of fracture,
we revisit crack path in the light of an often used tool in physics, i.e.,

energetic metastability of the current state among suitable competing
crack states. In so doing, we do not need to appeal to either isotropy,
or continuity in time. Here, we illustrate the impact of metastabil-
ity in a 2d setting. In a 2d isotropic setting, it recovers the PSL for
smooth crack paths. In the anisotropic case, it gives rise to a new
criterion. But, of more immediate concern to the community, it also
demonstrates that 2d crack kinking in an isotropic setting is incom-
patible with continuity in time of the propagation. Consequently, if
viewing time continuity as non-negotiable, our work implies that the
classical view of crack kinking along a single crack branch is not correct
and that a change in crack direction necessarily involves more subtle
geometries or evolutions.
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1 Introduction

Two-dimensional classical brittle fracture claims that, thanks to Gri�th's
energetic criterion [8] referred to henceforth as Gri�th's Criterion, a priori
knowledge of the crack path is all that is needed for an accurate report of
the trajectory of the crack tip along that path. The criterion amounts to a
balance between the release rate of the potential energy � that is the elastic
energy minus the work of the external loads � and the rate of energy spent to
create additional crack length. In an isotropic setting that rate is assumed
constant and equal to Gc, the bond breaking energy for two atoms in the
underlying lattice. So mechanical wisdom has it that knowledge of the how
will entail knowledge of the when.

Consensus is breached when addressing how a path is selected by the
crack. In particular, competing criteria have been proposed for the kinking
of a straight crack. Still in an isotropic setting, a well regarded criterion is the
Principle of Local Symmetry [7] which states that the crack always propagates
in mode I, that is with in-plane tractions that remain perpendicular to the
crack in a small neighborhood of the crack tip [2]. A possible alternative is
the Gmax-Criterion which states that the crack will kink along a direction
that maximizes the release rate of its potential energy among all kinking
angles. It was shown [3] that the two criteria generically yield di�erent
kinking angles. There is in truth scant evidence that would support one
criterion over another, and even less so in anti-plane shear because the crack
is in mode III, so that the notion of mode I, or mode II propagation is
rendered meaningless.

We propose in this Letter to pair Gri�th's Criterion with the following
least action principle, referred to henceforth as the Stability Criterion : At
each time, the total energy, i.e., the sum of potential and surface energies,
is evaluated along all possible small variations of the crack from its present
state and stability of the latter is declared when the total energy is smallest
at that state. Similar (meta)-stability principles are common occurrence
in solid mechanics, a striking example being �nite elasticity. In all such
settings, such principles can never be justi�ed through a mere investigation
of mechanical balance which produces at best stationarity principles. But,
if meta-stability implies stationarity, the converse is generically false in any
non-convex setting.

Rather than provide a detailed account of the mathematical intricacies
associated with (meta)-stability [4], we propose in this Letter to derive a few
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striking results about kinking. Those can be summed up as follows:

• A new kinking crietrion criterion is obtained in an anisotropic setting
(Proposition 2);

• In an isotropic setting, the principle of local symmetry strictly overesti-
mates the time at which a pre-crack starts extending (Equation (12));

• In an isotropic setting, a crack cannot kink while propagating continu-
ously in time (Proposition 3).

Thus, our results essentially settle a longstanding debate between propo-
nents of various kinking criteria in isotropic 2d brittle fracture. The negative
answer they provide demonstrate that, modulo the acceptance of metasta-
bility, the current vision of crack kinking should be completely overhauled.
This stands in sharp contrast to a host of papers that pre-assume the valid-
ity of the Principle of Local Symmetry, e.g. [6, 1], or else derive it � and its
anisotropic analogue � from a mere energetic stationarity principle involving
both inner and outer variations; se e.g. [12, 9]. The arguments presented be-
low can be recast as mathematical propositions in the framework developed
in [5].

2 The Stability Criterion

Consider a 2d structure made of a linearly elastic, maybe anisotropic mate-
rial and subject to a time-dependent load. A crack is propagating through
the structure. The evolution is assumed to be quasi-static: at each time t,
the structure is in elastic equilibrium with the load at t, and this for any ad-
missible crack state Γ at t. The potential energy is denoted by P(t, Γ), while,
following Gri�th, the surface energy for the crack state Γ, denoted by S(Γ),
is de�ned as follows. For a homogeneous, isotropic material, it is propor-
tional to the crack length, i.e., S(Γ) = Gc length(Γ), where Gc, the fracture
toughness, is a material characteristic. In the anisotropic case, toughness is
orientation-dependent and, if θ(s) is the angle of the tangent to Γ with a set
direction at the point with arclength s, the surface energy becomes

S(Γ) =

∫ length(Γ)

0

Gc(θ(s)) ds. (1)
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The total energy at t for a crack state Γ is

E(t, Γ) = P(t, Γ) + S(Γ).

At t, the actual crack state Γ(t) has a tip at the interior point x, whereas

α

Σh 1
x

Γ(t)

θ
−(t)

Figure 1: An admissible virtual crack that tests the meta-stability of the actual
crack state Γ(t) at t

an admissible virtual crack is obtained by adding at the tip x of Γ(t) a line
segment Σh of length h in a direction with angle α with the tangent to Γ(t)
at x, cf. Fig. 1. Upon computing the various energies associated with those
two di�erent crack states, the Stability Criterion demands that the actual
total energy be smaller than, or equal to that for the virtual state Γ(t)∪Σh.
This should hold for any su�ciently small h and for any kinking direction α.
So, for h small enough and for any α,

E(t, Γ(t)) ≤ E(t, Γ(t) ∪ Σh). (2)

As already mentioned in the introduction, meta-(stability) is classical
in solid mechanics for many systems with an internal variable [11]. In the
setting of fracture that internal variable is the crack set and the de�nition of
(meta)-stability entails a decision on the class of admissible test cracks. In
this paper, we only consider �nite unions of connected small line segments
as admissible variations and will eschew consideration of a larger class of
variations [5]. We should emphasize that, because fracture is classically seen
as an irreversible process (at least at the structural level), we are only at
liberty to increase the crack set and will refrain to test meta-stability with
smaller cracks.

The physics underlying meta-stability may be roughly viewed as follows:
if an admissible crack path can be found between the actual crack state and
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a nearby state of smaller energy, then any perturbation of the actual state
should dynamically evolve the crack to the lower energy state.

3 A few hints at how cracks propagate

We proceed to derive a few necessary conditions for propagation in the light
of the Stability Criterion. The (virtual) energy release rate G(t, α) associated
with the virtual test crack Γ(t) ∪ Σh at t is given by

G(t, α) := lim
h↓0

1

h
(P(t, Γ(t))− P(t, Γ(t) ∪ Σh)) .

As such, it depends upon α, t, but also upon Γ(t). Similarly, the (virtual)
surface energy creation rate is given by

Gc(α + θ−(t)) = lim
h↓0

1

h
(S(Γ(t) ∪ Σh)− S(Γ(t)))

where θ−(t) is the angle of the tangent to the crack Γ(t) with the �xed
direction 1 at its tip x.

Dividing (2) by h and letting h tend to 0 yields the following property

P1 The crack path Γ(t) must be such that, at each t, all virtual kinks produce
an energy release rate which remains smaller than the surface energy creation

rate, that is

G(t, α) ≤ Gc(θ
−(t) + α), ∀α. (3)

x

θ
−(t)

θ
+(t)

Figure 2: The crack propagates at t from the tip x in the direction θ+(t). If
θ+(t) 6= θ−(t), kinking occurs, whereas, if θ+(t) = θ−(t), there is no kinking.
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Assume now that the time t is the actual propagation time, that is the
time at which Γ(t) is going to extend from x, continuously as a function of

time, in a direction θ+(t) that may coincide, or di�er from θ−(t), cf. Fig. 2.
Gri�th's Criterion 1 implies that the (real) energy release rate must be equal
to the (real) surface energy creation rate, that is

G(t, θ+(t)− θ−(t)) = Gc(θ
+(t)). (4)

The reader is reminded that Gri�th's Criterion (4) becomes meaningless if
the crack propagation near x ceases to be smooth in time. Indeed, if the crack
tip was to jump from x to y at t, it would become impossible to express the
balance of energy in terms of rates and one should then generalize energy
balance to a setting that accommodates �nite increments in crack length [4].

Recalling Stability (3) and Gri�th (4), we conclude that

P2 At each continuous propagation time t, the crack orientation θ+(t) must

be such that

1 =
G(t, θ+(t)− θ−(t))

Gc(θ+(t))
= max

α

G(t, α)

Gc(θ−(t) + α)
.

The above result, which applies to any kind of anisotropy, seemingly
settles the issue of how and when the crack should propagate. If applied
to an isotropic setting for which Gc is a constant, it does seem to favor the
G-max criterion at the expense of the Principle of Local Symmetry. But
such is not the case, as will be demonstrated below. To pursue the analysis
further, we recall Irwin's formula [10] which relates the energy release upon
kinking by an angle α at time t to the stress intensity factors, namely, in our
notation,

G(t, α) = C
{
K1

2(t, α) + K2
2(t, α)

}
,

where C is a constant that only depends upon the elasticity of the material
and upon the type of setting (plane strain, or plane stress) for the speci�c
problem under consideration. The coe�cients K1(t, α) and K2(t, α) are the
coe�cients of the singularity at the crack tip after kinking. We also recall [3]
that K1(t, α) and K2(t, α) are related to their pre-kinking analogues K1(t, 0)
and K2(t, 0) through

Ki(t, α) = Fij(α)Kj(t, 0),

1Introduced here independently of the Stability Criterion, Gri�th's Criterion may be
deduced from that Stability Criterion, together with a general principle of energy conser-
vation [4].
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where the coe�cients Fij(α) are universal constants that only depend upon
the kinking angle α. An analytic expression for the matrix F (α) is lacking
at present, although asymptotic expansions around α = 0 have been derived
as well as numerical plots for all values of α[3]. In particular, it is known [3]
that

F′
11(0) = 0, F′

12(0) = −3/2,

F′
21(0) = 1/2, F′

22(0) = 0,
(5)

and also that

F2
12(α) + F2

22(α) = 1 + (3/2− 8/π2)α2 + O(α4). (6)

Consider at �rst a crack that propagates continuously in both space and
time in a homogeneous, isotropic material. At the propagation time t, α = 0
and thus, according to Property P2, α = 0 maximizes G(t, α) among all α's.
Because of Irwin's formula, this means in particular that

K1(t, 0)K1
′(t, 0) + K2(t, 0)K2

′(t, 0) = 0.

In view of (5), this is not possible unless K1(t, 0)K2(t, 0) = 0, while, if
K1(t, 0) = 0, we should have, by maximality, that F2

12(α)+F2
22(α) ≤ 1, for all

α's, which is not the case in view of (6). Thus, we must have K2(t, 0) = 0.
In other words, the Principle of Local Symmetry holds in such a setting and
we conclude that

P3 Assuming the validity of the Gri�th and Stability Criteria, a crack can-

not propagate continuously in space and time in a homogeneous, isotropic

material unless it propagates in mode I.

In this setting, the Principle of Local Symmetry derives from the Stability
Criterion. But note that the Stability Criterion has a much longer reach
than the Principle of Local Symmetry. It could in principle be applied in the
anisotropic case and serve to derive an anisotropic equivalent of the Principle
of Local Symmetry, although, in all fairness, this amounts to little more than
wishful thinking in the absence of a more appropriate knowledge of the matrix
F(α).

Consider now a crack that propagates (in a homogeneous, isotropic ma-
terial) continuously in time, while kinking in space at the point x at time
t. Since, after kinking, propagation resumes continuously in both space and
time, Property P3 implies Mode I propagation after kinking, and, by passing
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to the limit in time down to time t, we conclude, thanks to the continuity
of the stress intensity factors as a function of the kinked crack length, that
K2(t, [[θ]]) = 0. But, in view of P2, [[θ]] must also maximize G(t, α) among all
α's. In other words, the kinking angle must satisfy both the Gmax-Criterion
and the K2 = 0-Criterion. The numerical plots for the Fij(α)'s strongly indi-
cate that only [[θ]] = 0 can satisfy both and that the corresponding loading
mode must be Mode I.

Speci�cally, the following is easily derived

P4 In a homogeneous, isotropic elastic material, and, provided that

F21(α)F ′
12(α) 6= F22(α)F ′

11(α),∀α, (7)

and also that

(F11(α))2 + (F21(α))2 < 1, α 6= 0, (8)

then kinking never occurs with a propagation which is continuous in time.

As already stated, only numerical evidence presently corroborates the
validity of (7), (8), for want of explicit analytical expressions for the matrix
F(α).

The argument that led to the negative Property P4 is quite di�erent from
the classical argument put forth by the proponents of the Principle of Local
Symmetry. Indeed their starting assumption is not only that

[[θ]] = 0 ⇐⇒ K2(t, 0) = 0,

but also implicitly that propagation occurs continuously in time. Then, they
argue rightfully that, if the crack kinks by an angle [[θ]] at a given point,
and since kinking essentially pre-assumes the local spatial smoothness of
the crack path after the kink, then K2(t

′, 0) = 0 for t′ near and slightly
larger than t. Then continuity of the stress intensity factors implies that
K2(t, [[θ]]) = 0, hence the Principle of Local Symmetry K2 = 0. In short, the
classical argument goes as follows:

Symmetry + Continuity in time⇒ K2 = 0.

For us, the only principle is the Stability Criterion and we obtain that

Stability + Continuity in time⇒ K2 = 0 + Gmax.
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The continuity in time of the propagation plays an essential role: the
crack tip has to pass at some time through every nearby point y of the
kinking point x on the kinked trajectory and equilibrium has to be satis�ed
at that time (or those times if it lingers at a given point). Hence the validity
of the limit process y → x. This is precisely what permits one to assert the
validity of the condition K2(t, 0) = 0 at x. Otherwise, we would only have
that condition at some point y, maybe close to x, where the crack jumps
to at time t, and K2(t, 0) would only be 0 at y, which yields no information
whatsoever on [[θ]] at x.

The knowledge that

K2 = 0 + Gmax ⇒ No kinking,

leads to the rather arbitrary rejection of the Gmax-Criterion. However, adop-
tion of the Stability criterion leads either to a rejection of the continuity in
time of the evolution during kinking, or else to the rejection of the Stability
Criterion. The reader is certainly at liberty to reject the latter, but, in doing
so, she will have to re�ect upon the arbitrariness of accepting at faith value
identical meta-stability criteria in many other �elds of physics and mechan-
ics. Note also that the criterion also leads to the universally acknowledged
Mode I propagation in the case of a spatially smooth crack path as shown
above.

4 Revisiting the when

The negative Property P4 renders obsolete the K2 = 0 versus Gmax con�ict
and points to a rethinking of kinking in global terms, that is without resort-
ing to the local notion of energy release rates, which become meaningless
if a crack jumps at a given time. If resolutely opposed to the notion of a
crack jump, one has to abandon the simple picture of a crack trajectory as a
piecewise smooth curve in 2d.

Consider a homogeneous, isotropic structure with an initial crack Γ un-
der proportional loading (the load increases proportionally to time while its
spatial variation remains �xed). In that case, the potential energy depends
quadratically upon t. Also assume that Γ is not in pure Mode I to start with.
Call ti the time at which the crack starts extending, and apply the Stability
Criterion with test cracks of the form Γ ∪ Σh where Σh is an add-crack of
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length h added at the tip x of Γ. If Σh is, as before, a line-segment, then P1
implies that

t2i ≤
Gc

maxα G(1, α)
. (9)

The proponents of the Principle of Local Symmetry usually infer, with the
additional help of Gri�th's Criterion, the propagation time Ti given by

T 2
i =

Gc

G(1, [[θ]])
, (10)

where [[θ]] is the kinking angle predicted by the K2=0 -Criterion , i.e., such
that K2(1, [[θ]]) = 0. But, since we have assumed that the initial crack is
not in pure Mode I, so that, because of the incompatibility between the
Gmax-Criterion and the K2 =0 -Criterion, G(1, [[θ]]) < maxα G(1, α), then

Ti > ti.

Thus, Ti given by (10) is too large and the crack should have already propa-
gated at the kinking time!

Is the propagation time then equal to ti? The answer depends on the
type of �kink" one allows. For line-segment only add-cracks, the answer is
positive, and then we are left with a jump as only possible outcome of a
kink, as demonstrated above. More complex geometries of Σh produce a
di�erent result. Assume for example that Σh is a union of two line segments
of respective length ηh and (1 − η)h, and respective orientation α1 and α2;
see Fig. 3. Consider a unit load, and de�ne the energy release rate for this

Γ

α1α2

Σh

Figure 3: Testing stability with a kinked add-crack
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type of add-crack � a kinked add-crack � to be

G(η, α1, α2) := lim
h↓0

1

h
(P(1, Γ)− P(1, Γ ∪ Σh)) . (11)

Stability implies a new bound for ti, namely,

t2i ≤
Gc

max
(η,α1,α2)

G(η, α1, α2)
, (12)

which is lower than, or equal to that in (9) since taking α2 = 0 would have
us recover (9). It can be shown [5] that it is actually strictly lower than the
bound given by (9). The proof uses once more the incompatibility between
the Gmax and K2 =0 criteria.

This also demonstrates [5] that the energy release rate due to a line-
segment add-crack cannot equal Gc at the time of kinking.

All of this contributes to our opinion that the actual propagation time is
strictly less than ti. Of course, the perspicacious reader will object that the
kinked add-crack is not realistic because the geometric shape of Σh changes
with h. Maybe so, but this has the arguable merit to demonstrate that
the questions of when and how a crack propagates should be simultaneously
investigated and that Gri�th's Criterion is not su�cient for such a task.
We portend that the Stability Criterion is a good candidate for �lling in the
conceptual gap. In any case, kinking remains a mystery.
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