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Abstra
tThis paper deals with the numeri
al simulations ofthe Vlasov-Poisson equation using a phase spa
e grid inthe quasi-neutral regime. In this limit, expli
it numeri
als
hemes su�er from numeri
al 
onstraints related to thesmall Debye length and large plasma frequen
y. Here,we propose a semi-Lagrangian s
heme for the Vlasov-Poisson model in the quasi-neutral limit. The main in-gredient relies on a reformulation of the Poisson equationderived in [4℄ whi
h enables asymptoti
ally stable sim-ulations. This s
heme has a 
omparable numeri
al 
ostper time step to that of an expli
it s
heme. Moreover,
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it is not 
onstrained by a restri
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7 Con
lusion 448 Appendix: Details for the 
omputation of the
omplex integrals 451 Introdu
tionFor many years, the modeling and numeri
al simulation of plas-mas has been an a
tive �eld of resear
h. The des
ription of theplasma is usually performed in two ways. On the one hand,�uid models whi
h need that the system is 
lose to a thermo-dynami
al equilibrium to be valid. On the other side, kineti
models 
onsider a phase spa
e repartition of the parti
les, butnumeri
al simulations are larger than �uid ones. Indeed, thehigh dimensionality of the kineti
 models (6 dimensions plusthe time) makes the simulations di�
ult to handle. However,when 
ollisionless problems are studied, the use of kineti
 mod-els is ne
essary sin
e �uid models 
annot a

urately des
ribe thephysi
s.In addition, kineti
 simulations are 
omplex due to the largevariety of s
ales involved in the system. Among them, there aretwo important physi
al length and time s
ales: the Debye lengthand the ele
tron plasma period. The Debye length measures thetypi
al length of 
harge unbalan
es whereas the ele
tron plasmaperiod 
hara
terizes the motion of the os
illations due to theele
trostati
 restoring for
es when 
harge unbalan
es o

ur.We are interested in this paper in the so-
alled quasi-neutrallimit where both parameters are small 
ompared with ma
ro-s
opi
 lengths of interest. From a numeri
al point of view, a
lassi
al expli
it s
heme has to solve these mi
ro-parameters inorder to remain stable, whi
h requires a very small time stepand phase spa
e 
ells. But on the other side, simulations haveto be performed on ma
ros
opi
 lengths, whi
h makes kineti
simulations 
hallenging.Many asymptoti
 models have been derived to des
ribe su
h3



regimes, but in situations where both quasi-neutral and nonquasi-neutral regimes 
oexist, these models are not valid. Hen
e,hybrid approa
hes 
an be adopted (see [18, 21, 25℄). However,a spe
i�
 development is ne
essary to 
onne
t the models, andthe interfa
e has to be 
arefully des
ribed through an asymp-toti
 analysis (see [10, 16℄) or thanks to physi
al 
onsiderations.Finally, these two points are quite di�
ult to handle numeri-
ally. Hen
e, it seems important to develop numeri
al methodswhi
h 
an handle the two regimes simultaneously.The main goal of this work is to present Vlasov-type sim-ulations (i.e. using a grid of the phase spa
e) whi
h are validin both the quasi-neutral and the non-quasi-neutral regime. Tothat purpose, following the strategy introdu
ed in [4, 5, 8℄, anew numeri
al s
heme is introdu
ed, the stability analysis ofwhi
h shows that its stability domain is independent of the De-bye length. The present approa
h allows stable simulations evenwhen the mesh does not resolve the Debye length and the plasmaperiod.As in [8℄, the Vlasov-Poisson model is studied with arbitrar-ily small values of the Debye length (whi
h 
orresponds to thequasi-neutral regime). The Poisson equation is re-written in anequivalent form: the so-
alled Reformulated Poisson Equation(RPE). It has been �rst introdu
ed in [4, 5℄ within the 
ontextof the �uid Euler-Poisson system, and the extension to the ki-neti
 framework has been performed in [8℄. The RPE enablesto over
ome the drasti
 redu
tion of time and spa
e steps and isnot more di�
ult or 
ostly to solve numeri
ally. Its goal is thesimulation of the Vlasov-Poisson equation over time and lengths
ales whi
h are arbitrarily small or large 
ompared with theplasma period and Debye length. With time and spa
e stepswhi
h resolve the plasma period and Debye length, it produ
es
omparable results to the standard semi-Lagrangianmethod butunlike the latter it still produ
es stable results if the time andspa
e steps do not resolve them (under-resolved situations). Of
ourse, in su
h under-resolved situations, the plasma os
illations4



and wave-lengths are �ltered out and 
annot be a

urately a
-
ounted for. However, this �ltering out of the small s
ales stru
-tures is pre
isely what allows the method to highlight the larges
ales stru
tures and makes it valuable for the simulation of thelarge s
ale dynami
s of the plasma.This work is based on the same model as [8℄ sin
e the Vlasovequation is 
oupled with the RPE, but a semi-Lagrangian Vlasovsolver is used in pla
e of a Parti
le In Cell (PIC) solver. Su
hsolvers are very often used for kineti
 simulations (see [1, 19℄)with the advantage that the 
omputational 
ost of these meth-ods remains a

eptable, even in high dimensions. However, theinherent numeri
al noise be
omes too signi�
ant for some appli-
ations. Hen
e, methods dis
retizing the Vlasov equation on aphase spa
e grid have been proposed (see [14, 13, 27℄). UnlikePIC methods, the distribution fun
tion is well resolved every-where, even in zones where few plasma parti
les are present.The semi-Lagrangian method 
an be viewed as an intermedi-ate method between PIC methods and Eulerian methods. Themesh of the phase spa
e is kept �xed in time (Eulerian method),and the Vlasov equation is integrated along the traje
tories us-ing the invarian
e of the distribution fun
tion along the 
hara
-teristi
 
urves (Lagrangian method). Interpolation is performedto evaluate the new value of the distribution fun
tion on the gridnodes. In parti
ular, one of the advantages of su
h a methodis to have a good des
ription of the phase spa
e (also in re-gions where the density is low), and unlike PIC methods, it isnoiseless.The main parti
ularity of this work 
onsists in the time inte-gration of the traje
tories and its 
oupling with the �eld solver.As in [8℄, the parti
le traje
tories are 
omputed using a semi-impli
it symple
ti
 integrator: the 
hara
teristi
s in velo
ity areintegrated using an impli
it ele
tri
 potential evaluated at anexpli
it position. Semi-impli
it time dis
retization of the 
har-a
teristi
s has already been employed in [3, 20, 22, 23℄, but theuse of the Reformulated Poisson Equation makes the approa
h5



di�erent. This equation enables to predi
t a stable ele
tri
 �eldeven for small values of the Debye length λ. Moreover, thepresent approa
h does not su�er from unphysi
al de
ay of 
on-served quantities su
h as the total energy, whi
h 
an preventthe asymptoti
 preserving property of the numeri
al s
heme.Besides, as mentioned in [4, 5, 8℄, the 
oupling with the RPEtogether with the new time integration has the same 
ompu-tational 
ost per time step as the standard resolution of theVlasov-Poisson equation.Moreover, a stability analysis of the model is performed inthe linear framework, proving that the numeri
al s
heme is sta-ble for small values of the Debye length λ, even if the time stepdoes not resolve it. Su
h a study has been performed for theEuler-Poisson 
ontext in [9℄. However, the strategy is di�erentin the Vlasov 
ase. Indeed, starting from the semi-dis
retizedlinearized version of the Vlasov equation 
oupled with the RPE,we derive a semi-dis
retized dispersion relation. The roots ofthis dispersion relation provide an indi
ation on the stabilityof the numeri
al s
heme. Indeed, when the imaginary part ofthe root is negative, then the numeri
al s
heme is stable. As a
omparison, we also derive a dispersion relation for the 
lassi
alnumeri
al s
heme whi
h does not enjoy su
h a property whenthe time step is bigger than the Debye length. This study em-phasizes the Asymptoti
 Preserving property sin
e the damping
oe�
ient obtained by solving the dispersion relation presentsthe 
orre
t behavior as λ goes to zero. These results are 
on-�rmed by the numeri
al results. In non-linear situations, themethod gives extremely satisfa
tory results when λ = 1 (re-solved situation). On the other hand, when λ ≪ 1 and ∆t,
∆x do not resolve the s
ales asso
iated with λ (under-resolvedsituation), the method provides a stable solution in whi
h theplasma os
illations and wave-lengths are �ltered out, while 
las-si
al methods are simply unstable.The paper is organized as follows. In the next part, wedes
ribe the Vlasov-Poisson model and introdu
e the Reformu-6



lated Poisson Equation. Then, we re
all the main steps of thesemi-Lagrangian method. Next, the asymptoti
ally stable nu-meri
al s
heme is presented with a 
lassi
al s
heme. A stabilityanalysis is then performed on these two numeri
al s
hemes bysolving the asso
iated dispersion relation. Finally, some numeri-
al results in linear and nonlinear regimes illustrate the e�
ien
yof the new method 
ompared to the 
lassi
al one.2 The Vlasov-Poisson model and its quasi-neutral limitIn this se
tion, we present the Vlasov-Poisson system and itsquasi-neutral limit. As in [4℄, we show that the Poisson equation
an be reformulated into an ellipti
 equation whi
h does notdegenerate in the quasi-neutral limit and, at the limit, providesan equation for the quasi-neutral potential.2.1 The Vlasov-Poisson system and its prop-ertiesIn this paper, we restri
t ourselves to the one-dimensional Vlasov-Poisson system, even if this work straightforwardly extends tothe multi-dimensional 
ase.Here, we 
onsider only one spe
ies of parti
les, the ele
trons,and we assume that the ions form a uniform neutralizing ba
k-ground. Under these assuptions, the time evolution of the ele
-tron distribution fun
tion f(t, x, v) in phase spa
e (x, v) ∈ IR×IR(with t the time, x the spatial dire
tion and v the velo
ity) isgiven by the dimensionless Vlasov equation
∂tf + v∂xf + ∂xφ∂vf = 0, (2.1)where the ele
tri
 potential φ(t, x) is 
oupled to f through the7



Poisson equation
λ2∂xxφ(t, x) = ρ(t, x) − 1, with ρ(t, x) =

∫
f(t, x, v)dv.(2.2)In this one-dimensional 
ontext, this Poisson equation (2.2) isequivalent to the Ampère equation

∂tE =
j

λ2
, j(t, x) =

∫

IR

vf(t, x, v)dv, (2.3)where E = −∂xφ is the ele
tri
 �eld.Here the density ρ has been normalized to the ion ba
kgrounddensity and the ele
tron mass to unity. The dimensionless pa-rameter λ is the ratio of the Debye length to the length unit,or equivalently the ratio of the plasma period to the time unit.Here, velo
ities are normalized to ioni
 thermi
 velo
ity andspa
e to a 
hara
teristi
 length of the problem.In the sequel, we brie�y re
all some 
lassi
al estimates onthe Vlasov-Poisson system (2.1)-(2.2). First of all, mass andmomentum are preserved with time,
d

dt

∫

IR×IR

f(t, x, v)

(
1
v

)
dxdv = 0, t ∈ IR+.Next, multiplying the Vlasov equation (2.1) by |v|2 and per-forming an integration by parts, we �nd the 
onservation of thetotal energy Et for the (2.1)-(2.2) system

dEt

dt
=

d

dt
(Ek(t) + Ep(t)) = 0, t ∈ IR+,where Ek denotes the kineti
 energy and Ep the potential energy

Ek(t) =

∫

IR×IR

f(t, x, v)
|v|2
2

dxdv, Ep(t) =
λ2

2

∫

IR

|∂xφ(t, x)|2dx.On the other hand, we 
an de�ne the 
hara
teristi
 
urves ofthe Vlasov-Poisson equation (2.1)-(2.2) as the solutions of the8



following �rst order di�erential system





dX

dt
(t; s, x, v) = V (t; s, x, v),

dV

dt
(t; s, x, v) = ∂xφ(t, X(t; s, x, v)),

(2.4)with the initial 
onditions
X(s; s, x, v) = x, V (s; s, x, v) = v.We denote by (X(t; s, x, v), V (t; s, x, v)) the position in phasespa
e at the time t, of a parti
le whi
h was in (x, v) at time s.Let say that t → (X(t; s, x, v), V (t; s, x, v)) is the 
hara
teris-ti
 
urves solution of (2.4). Then, the solution of the Vlasov-Poisson equation (2.1)-(2.2) is given for all t ≥ 0 by

f(t, x, v) = f(s, X(s; t, x, v), V (s; t, x, v)) (2.5)
= f0(X(0; t, x, v), V (0; t, x, v)), (x, v) ∈ IR × IR,(2.6)where f0 is a given initial 
ondition of the Vlasov-Poisson equa-tion. This equality means that the distribution fun
tion f is
onstant along the 
hara
teristi
 
urves whi
h is the basis ofthe semi-Lagrangian method we re
all in a next se
tion.2.2 The quasi-neutral modelThe quasi-neutral limit of the Vlasov-Poisson system (λ → 0)has been studied rigorously in a series of papers (for examplesee [2℄).Formally, passing to the limit λ → 0 in (2.1)-(2.2) merelyamounts to repla
ing the equation (2.2) by the quasi-neutrality
onstraint ρ = 1. The Poisson equation is then lost, while theele
trostati
 potential be
omes the Lagrange multiplier of thequasi-neutrality 
onstraint. This is exa
tly the same in the in-
ompressible Euler equations in whi
h the pressure is a Lagrangemultiplier for the divergen
e-free 
onstraint.9



Assuming that the quasineutrality 
onstraint is satis�ed ini-tially, integrating (2.1) with respe
t to the velo
ity variable leadsto the divergen
e-free 
onstraint for the s
aled ele
tri
 
urrent
∂x

∫
vf dv = 0. (2.7)Then, using (2.7) and after some 
omputations that will be de-tailed in the next se
tion, we obtain the following ellipti
 equa-tion for the quasi-neutral potential φ

∂2
xφ = ∂2

xS, (2.8)where S is the se
ond moment of the distribution fun
tion f ,
S(t, x) =

∫
v2f(t, x, v) dv.In summary, the quasi-neutral model 
onsists in the followingsystem

∂f

∂t
+ v∂xf + ∂xφ∂vf = 0, (2.9)

∂2
xφ = ∂2

xS. (2.10)We �rst note that the Vlasov-Poisson system (2.1)-(2.2) and(2.9)-(2.10) di�er by the ellipti
 equations for the potential φnamely the Poisson equation (2.2) for the former and the quasi-neutral limit (2.10) for the latter.A major di�
ulty is to �nd a dire
t way to obtain the equa-tion (2.10) from the quasi-neutral limit of (2.2). In [4, 5℄, inorder to unify these two di�erent equations, a new reformula-tion of the Poisson equation has been derived.2.3 The reformulated Poisson equationThis present part re
alls the main steps of the derivation of theReformulated Poisson Equation (see [4, 5, 8℄).By taking the two �rst moments of the Vlasov equation, weget the 
ontinuity equation
∂tρ + ∂xj = 0, (2.11)10



and the equation evolving the 
urrent density j

∂tj + ∂xS − ρ∂xφ = 0, (2.12)where ρ =
∫

f(v)dv, j =
∫

vf(v)dv and S =
∫

v2f(v)dv. Inorder to eliminate the 
urrent j, we make the di�eren
e betweenthe time derivative of (2.11) and the divergen
e of (2.12). Itfollows
∂ttρ − ∂xxS + ∂x(ρ∂xφ) = 0. (2.13)Now, using the Poisson (2.2) to repla
e ρ in the �rst term of(2.13) gives the Reformulated Poisson Equation

−∂x

[
(λ2∂tt + ρ)∂xφ

]
= −∂xxS (2.14)whi
h is equivalent to the original one if initially the Poissonequation (2.2) and its time derivative are satis�ed.In the quasi-neutral limit (λ → 0), the reformulated equation(2.14) formally 
onverges toward the quasi-neutral potential el-lipti
 equation (2.10). It does not degenerate into an algebrai
equation like the Poisson equation (2.2) does. Then the refor-mulated system

∂f

∂t
+ v∂xf + ∂xφ∂vf = 0, (2.15)

−∂x

[
(λ2∂tt + ρ)∂xφ

]
= −∂xxS (2.16)seems to be an appropriate framework to deal with problemswhi
h are partly or totally in the quasi-neutral regime.In the next se
tion, we show how we 
an use this refor-mulated system to derive an asymptoti
 time strategy for theVlasov-Poisson problem.3 An asymptoti
 preserving s
heme forthe Vlasov-Poisson modelIn this part, we des
ribe a numeri
al s
heme used to solve theVlasov-Poisson system. In a previous work of P. Degond et. al11



[8℄, a PIC method was used to solve the Vlasov-Poisson equa-tion. Although they 
ould deal with unresolved Debye lengthand plasma ele
tron period and get stable simulations, they ob-served an unphysi
al strong de
ay of the total energy whi
h
ould not permit to verify if the PIC method enjoys the asymp-toti
 preserving property. In this work, we propose to use asemi-Lagrangian method to over
ome this la
k of energy 
on-servation.3.1 The semi-Lagrangian methodIn this se
tion, we will re
all the prin
iples of the semi-Lagrangianmethod for the Vlasov-Poisson equation (see [27℄ for more de-tails) in two dimensions of the phase spa
e.First of all, we introdu
e the �nite set of mesh points (xi, vj), i =
0, ..., Nx and j = 0, ..., Nv to dis
retize the phase spa
e 
ompu-tational domain. Then, given the value of the distribution fun
-tion f at the mesh points at any given time step tn, we obtainthe new value at mesh points (xi, vj) at tn+1 using

f(tn + ∆t, xi, vj) = f(tn, Xn, V n),where the notations (Xn, V n) = X(tn; tn +∆t, xi, vj), V (tn; tn +
∆t, xi, vj) are used for the solutions of (2.4), and ∆t stands forthe time step. For ea
h mesh point (xi, vj), the distributionfun
tion f is then 
omputed at tn+1 by the two following steps

1. Find the starting point of the 
hara
teristi
 ending at
(xi, vj), whi
h is Xn and V n.

2. Compute f(tn, Xn, V n) by interpolation, f being knownonly at mesh points at time tn.Now, for the general 
ase, in order to deal with step 1, weneed to introdu
e a time dis
retization of (2.4). A lot of numer-i
al methods exist for the resolution of the 
hara
teristi
 
urves,12



given by the following ordinary di�erential equations
dX

dt
= V, (3.1)

dV

dt
= ∂xφ(t, X). (3.2)Here, we want to use a robust and stable s
heme whi
h 
an takeinto a

ount the spatial and time os
illations of the ele
tri
 po-tential φ when the parameter λ tends towards 0. To rea
h thisgoal, the �rst di�
ulty is related to the time dis
retization of φin the right hand side of (3.2). In the 
ontext where the plasmais at equilibrium, it refers to a sour
e term in the momentum
onservation's law of the Euler equations. In the work of S.Fabre (see [12℄), it is proven that a ne
essary 
ondition for sta-bility for the Euler-Poisson system is the use of an impli
it timedis
retization of the adve
tion term ∂xφ. We therefore do thesame for the time dis
retization of φ in (3.2).The se
ond di�
ulty is related to the time dis
retization of(3.1) 
oupled to the spa
e dis
retization of the right hand side of(3.2). In order to preserve the total mass quantity for all timeand to preserve the areas of the transformation (Xn, V n) →

(Xn+1, V n+1), we have to use the well known Euler symple
ti
s
hemes for (3.1)-(3.2) (see [17℄ for more details).Then, we have two possible alternatives to dis
retize (3.1)-(3.2). The �rst one we 
all (EI) is (E for expli
it in spa
e and Ifor implitit in velo
ity)
Xn+1 − Xn

∆t
= V n, (3.3)

V n+1 − V n

∆t
= ∂xφ

n+1(Xn+1), (3.4)
13



and the se
ond one (IE) writes
Xn+1 − Xn

∆t
= V n+1, (3.5)

V n+1 − V n

∆t
= ∂xφ

n+1(Xn). (3.6)But some basi
 
omputations on the (EI) s
heme lead to
Xn+1 − 2Xn + Xn−1

∆t2
= ∂xφ

n(Xn), (3.7)whereas the same ones for the (IE) s
heme give
Xn+1 − 2Xn + Xn−1

∆t2
= ∂xφ

n+1(Xn). (3.8)The two s
hemes (3.7) and (3.8) 
orrespond to an expli
it andan impli
it time dis
retization of the equation des
ribing themotion of ele
trons
d2X

dt2
= ∂xφ(t, X).In order to get stable numeri
al results with respe
t to the timestep ∆t and the parameter λ and sin
e we deal with strongos
illations in spa
e and in time of the ele
tri
 potentiel φ, wehave to 
hoose the symple
ti
 s
heme (IE) to solve (3.1)-(3.2).Therefore the starting point of the 
hara
teristi
 
urves end-ing at (Xn+1, V n+1) is 
omputed thanks to the following numer-i
al s
heme

Xn = Xn+1 − ∆t V n+1, (3.9)
V n = V n+1 − ∆t ∂xφ

n+1(Xn). (3.10)The se
ond step of the semi-Lagrangian method deals withthe interpolation of fn(Xn, V n) by using the values of fn on themesh points. This is done by using lo
al 
ubi
 B-splines. Formore details on this step, we refer the reader to [7℄.14



3.2 The 
lassi
al time dis
retization for theVlasov-Poisson modelIn this subse
tion, the Ampère equation will be used to predi
tthe ele
tri
 �eld at time tn+1 (En+1 = −∂xφ
n+1) in (3.10). In-deed, we use the fa
t that in one dimension of spa
e, the Poissonequation (2.2) and the Ampère equation (2.3) are equivalent(note that the methodology 
an be extended to multidimen-sional problems using the 
ontinuity equation, see [6℄ for exam-ple). In the rest of the paper, the use of the Ampère equation inorder to predi
t the ele
tri
 �eld at time tn+1 will be referred tothe �
lassi
al time dis
retization�. Its time dis
retization writes

En+1
i = En

i +
∆t

λ2
jn
i , (3.11)where ∆t is the time step, En

i is the ele
tri
 �eld evaluated at
t = tn in x = xi. Finally, jn

i denotes the 
urrent evaluated attime tn in xi, and is given by
jn
i =

Nv∑

j=0

f(tn, xi, vj)vj∆v, (3.12)with ∆v the velo
ity step.Hen
e the 
lassi
al numeri
al s
heme 
an be de
omposedinto the following steps.Let us suppose that f(tn, xi, vj), (∂xφ
n)i are known on themesh pointsStep 1. Computation of a predi
tion of En+1

i , 
alled Ẽn+1
i ,by solving the Ampère equation

Ẽn+1
i = En

i +
∆t

λ2
jn
i ,where jn

i is 
omputed via (3.12).Step 2. Resolution of (2.4)15



• Ba
kward adve
tion of ∆t in the spatial dire
tion
Xn = Xn+1 − ∆t V n+1.

• Ba
kward adve
tion of ∆t in the velo
ity dire
tion
V n = V n+1 − ∆t ∂xφ

n+1(Xn),Step 3. Interpolation of f(tn, Xn, V n) and updating of thedistribution fun
tion thanks to the following equality
f(tn+1, Xn+1, V n+1) = Πf(tn, Xn, V n),where Π is an interpolation operator.Step 4. Computation of the density ρn+1(Xn+1)

ρn+1(Xn+1) =

∫

IR

f(tn+1, Xn+1, v)dv,and resolution of the Poisson equation at time tn+1 to get φn+1and En+1.It is well known that the stability of this 
lassi
al s
hemerequires a spa
e and a time step whi
h resolve the parameter
λ (the numeri
al results will show this fa
t). But this 
lassi
alapproa
h will be used as a referen
e to make 
omparison withthe new approa
h.3.3 The asymptoti
ally stable time dis
retiza-tionAs evoked previously, we use the Reformulated Poisson Equa-tion (2.14) to 
ompute the ele
tri
 potential at time tn+1. Tothat purpose, a time dis
retization has to be performed, de-du
ed from a time dis
retization of the Euler-Poisson equation(see [4, 5, 8℄). 16



In the sequel, we fastly re
all the main steps allowing toderive a time disretization of the Reformulated Poisson Equa-tion. The starting point is the semi-dis
retization in time of(2.11)-(2.12) in the following way
ρk+1 − ρk

∆t
+ ∂xj

k+1 = 0, (3.13)
jk+1 − jk

∆t
+ ∂xS

k − ρk∂xφ
k+1 = 0. (3.14)Now, we perform the same 
omputations as in the 
ontinuous
ase (see se
tion 2.3): we take the dis
rete time di�eren
e of(3.13) and we 
ombine it with the spa
e derivative of (3.14) toeliminate the dis
rete moment jk. This leads to

ρk+1 − 2ρk + ρk−1

∆t2
+ ∂x

(
ρk∂xφ

k+1
)

= ∂2
xS

k. (3.15)By substituting the density ρk+1 by (1 + λ2∂2
xφ

k+1) thanks tothe Poisson equation whi
h we suppose satis�ed at time tn+1,we get the semi-impli
it time di�eren
ing of (2.14)
−∂x

(
(ρk∆t2 + λ2)∂xφ

k+1
)

= −∆t2∂2
xS

k−2ρk+ρk−1+1. (3.16)Let us remark that (3.16) is an ellipti
 problem whi
h allows to
ompute φk+1 thanks to quantities at time tn and whi
h doesnot degenerate when λ goes to zero; moreover, its numeri
alresolution has the same 
ost as the traditional Poisson equation.The spatial approximation of (3.16) is performed in a usualway, by dis
retizing the spa
e derivatives on the �xed grid (xi)iusing un
entered �nite di�eren
es. The reader is refered to [5℄for more details.4 Continuous dispersion relation of thelinearized Vlasov-Poisson modelIn this se
tion, we study the dispersion relation of the linearizedVlasov-Poisson model for di�erent values of λ. To derive the17



dispersion relation; the Vlasov-Poisson model (2.1)-(2.2) is lin-earized around a equilibrium Maxwellian distribution fun
tion
f0(x, v) =

1√
2π

exp

(
−v2

2

)
, E0(x) = 0. (4.1)We may reformulate the Vlasov-Poisson system (2.1)-(2.2) asequations for the perturbations f1 and E1 of the equilibrium(4.1) so that

f = f0 + f1, E = 0 + E1.We dedu
e that they satisfy the linearized Vlasov-Poisson equa-tion
∂tf1 + v∂xf1 − E1∂vf0 = 0, (4.2)
λ2∂xE1 = −

∫
f1 dv. (4.3)Note that the linearized Poisson equation is equivalent to

λ2∂tE1 =

∫
vf1 dv (4.4)whi
h 
orresponds to the linearization of the Ampère equationaround the Maxwellian steady-state.The dispersion relation of (4.2)-(4.3) (see[11℄) is

D(ω, ξ, λ) = 1 +
1

λ2ξ2

∫
∂vf0

ω

ξ
− v

dv. (4.5)As in [15℄, this fun
tion D (4.5) 
an be reformulated as
D(ω, ξ, λ) = 1+

1

λ2ξ2

(
1 +

√
π

2

ω

ξ
exp(− ω2

2ξ2
)

(
i − erfi (

ω√
2ξ

)

))
.(4.6)where er� is the imaginary error fun
tion de�ned su
h that

erfi(0) = 0, and
d

dx
erfi(x) =

2√
π

exp(x2).18
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(a) (b)Figure 1: Absolute value of the Imaginary part of the solutionto (4.6) as a fun
tion of ξ: (a) λ = 1, (b) λ = 10−1.For the reader's 
onvenien
e, the details of the 
omputationsfrom (4.5) to (4.6) have been put in the Appendix.This last formulation enables to 
ompute numeri
ally ω as afun
tion of (ξ, λ). In the sequel, we plot the imaginary part ofthe solutions of (4.6) as a fun
tion of ξ for di�erent values of λ.We 
an observe that there exists at least two 
urves of solu-tions of (4.6). We plot on Figs. 1, 2 two 
urves of solutions ofthe dispersion relation: the absolute value of the Imaginary partof the solution ω = ωr + iωi is plotted as a fun
tion of the wavenumber, for di�erent values of λ. Several 
urves of solutionsexist, but we restri
t ourselves to solutions with small ωi.In the literature, numeri
al simulations 
apture the wave as-so
iated with the smallest ωi sin
e the others waves are dampedvery fastly; however, residual of these highly damped waves 
anbe observed at the beginning of the simulations: the �rst os
il-lation is usually larger than the following ones (see [6, 14℄).
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(a) (b)Figure 2: Absolute value of the Imaginary part of the solutionto (4.6) as a fun
tion of ξ: (a) λ = 10−2, (b) λ = 10−3.5 Stability analysis of the linearized equa-tionsIn this se
tion, we study the linear stability of a semi-dis
retizationin time of the Vlasov-Poisson (Vlasov-Ampère) system and ofthe Vlasov-RPE system. For ea
h system, we start from thetime dis
retization of its linearized version. Then, by usinga spatial Fourier transform, the dis
rete dispersion relation is
omputed for ea
h s
heme, whi
h enables to study the stabilityof the time dis
retization. Even if looking at the stability of alinearized semi-dis
retized version of the initial model is quiterestri
tive, this study is easier and 
an give some indi
ationsof the behavior of the fully dis
retized model. Let us mention[9℄, in whi
h the authors perform a similar study for the Euler-Poisson and Euler-RPE systems; asymptoti
 stability is thenproved when the RPE is used.
20



5.1 Stability analysis of the linearized Vlasov-Ampère systemIn order to analyse the numeri
al stability of the semi-dis
retes
heme, we start from the time dis
retization of the linearizedversion the Vlasov-Poisson model (4.2)(4.4)
fn+1

1 − fn
1

∆t
+ v∂xf

n+1
1 − En+1

1 ∂vf0 = 0, (5.1)
λ2

∆t
(En+1

1 − En
1 ) =

∫
vfn

1 dv, (5.2)where the �ux term as well as the ele
tri
 �eld is 
onsideredimpli
it, following [9℄. In order to analyse the stability of thenumeri
al s
heme (5.1)-(5.2), it is 
ustomary, at this point, to in-trodu
e the Fourier transforms in spa
e of the perturbed distri-bution fun
tion and of the ele
tri
 �eld. The numeri
al s
hemein Fourier spa
e reads
f̂n+1

1 − f̂n
1

∆t
+ iξvf̂n+1

1 − Ên+1
1 ∂vf0 = 0, (5.3)

λ2

∆t
(Ên+1

1 − Ên
1 ) =

∫
vf̂n

1 dv, (5.4)where f̂n, Ên denote the spatial Fourier transform of fn, Enrespe
tively.Let us follow the standard pro
edure for analyzing small am-plitudes waves. Assuming that all perturbed quantities evolvein time like exp(−iωt), the Fourier transforms in spa
e of f̂nand Ên 
an be written as
f̂n

1 = Cf exp(−iωn∆t), Ên = Ce exp(−iωn∆t), (5.5)where Cf and Ce are fun
tions of ξ. Seeking the solution of(5.3)-(5.4) under the form (5.5) leads to
Cf [exp(−iω∆t)(1 + i∆tξv) − 1] = Ce∆t exp(−iω∆t)∂vf0,

Ce
λ2

∆t
(exp(−iω∆t) − 1) =

∫
vCf dv,21



whi
h gives
Cf =

Ce∆t exp(−iω∆t)∂vf0

exp(−iω∆t)(1 + i∆tξv) − 1
, (5.6)

Ce
λ2

∆t
(exp(−iω∆t) − 1) =

∫
vCf dv. (5.7)Sin
e we deal with non-zero solutions, plugging the expres-sion of Cf given by (5.6) in (5.7) gives

λ2

∆t
(exp(−iω∆t) − 1) −

∆t exp(−iω∆t)

∫
v∂vf0

exp(−iω∆t) − 1 + i exp(−iω∆t)∆tξv)
dv = 0,whi
h 
an be rewritten as

λ2

∆t
(exp(−iω∆t) − 1) − i

ξ

∫
v∂vf0

exp(iω∆t) − 1

i∆tξ
− v

dv = 0. (5.8)Some basi
 
omputations lead to
1 − i

∆t

λ2ξ(exp(−iω∆t) − 1)

∫
v∂vf0

ã − v
dv = 0,with ã =

exp(iω∆t) − 1

i∆tξ
=

a

ξ
. Sin
e the following equality holds

∫
v∂vf0

ã − v
dv = ã

∫
∂vf0

ã − v
dv,the dis
rete dispersion relation asso
iated to the Vlasov-Ampèredis
retization is given by

D∆t
1 (ω, ξ, λ) = 1 +

exp(iω∆t)

λ2ξ2

∫
∂vf0

ã − v
dv. (5.9)22



Moreover, for all α ∈ C| , we have (see the Appendix for moredetails)
∫

∂vf0

α − v
dv = 1 + α

√
π

2
exp(−α2/2)

(
i − er�(α/

√
2)

)
.This previous 
omputations �nally give the following dis
retedispersion relation

D∆t
1 = 1 +

exp(iω∆t)

λ2ξ2
(5.10)

(
1 +

√
π

2

a

ξ
exp(− a2

2ξ2
)

(
i sign (ξ) − erfi (

a√
2ξ

)

))(5.11)with a = (exp(iω∆t)−1)/(i∆t). Remark that, sin
e lim∆t→0 a =
ω, in the limit ∆t tends towards 0, we re
over the 
ontinuousdispersion relation (4.5)

lim
∆t→0

D∆t
1 (ω, ξ, λ) = D(ω, ξ, λ).Thanks to this formulation of the dispersion relation (5.11),we are able to 
ompute ω as a fun
tion of (ξ, λ, ∆t). Themain goal 
onsists in the determination of the behavior of thesmall amplitudes perturbed waves: if Im(ω) < 0, the perturba-tions are damped and the numeri
al s
heme is stable whereas ifIm(ω) > 0, the numeri
al s
heme is then unstable. The numer-i
al results are resumed in the table 1. We 
an observe that thestability 
ondition has to be respe
ted; indeed when ∆t > λ, we�nd Im(ω) > 0 and the numeri
al s
heme is then unstable.5.2 Stability analysis of the linearized Vlasov-RPE systemIn this part, we perform the same analysis as previously for theVlasov-RPE system

∂f

∂t
+ v∂xf − E∂vf = 0, (5.12)

−∂x

[
(λ2∂tt + ρ)E

]
= ∂xxS. (5.13)23



∆t, λ 1 10−1 10−2 10−3 10−4

10−1 −0.8808 −0.1506 +45.55 +91.8 +137.86
10−2 −0.8563 −1.8028 −1.7806 +1381 +1842
10−3 −0.8518 −1.7585 −1.7377 −1.7376 +18420
10−4 −0.8513 −1.7538 −1.7533 −1.7331 −1.7333

0 −0.8513 −1.7533 −1.7528 −1.7326 −1.7326Table 1: Imaginary part of the root of the dispersion relationasso
iated to the Vlasov-Ampère model in the impli
it 
ase:Im(ω) for ξ = 1 as a fun
tion of (∆t, λ).The linearized Vlasov-RPE system around the Maxwellian steadystate writes
∂tf1 + v∂xf1 − E1∂vf0 = 0, (5.14)
∂x(λ

2∂2
t E1 + E1) = −∂2

xS1, (5.15)with S1(t, x) =
∫

v2f1(t, x, v) dv.In order to re
over the 
ontinuous dispersion relation whi
hpermits to analyse the small amplitudes waves, we assume thatall perturbed quantities vary with (x, t) like exp(i(ξx − ωt)).Thus equations (5.14)-(5.15) redu
e to
i(ω − ξv)Cf + Ce∂vf0 = 0, (5.16)
iξ(1 − ω2λ2)Ce = ξ2

∫
v2Cf dv (5.17)respe
tively. Solving the �rst of these equations for Cf andsubstituting into the integral in the se
ond, we formally get, (if

Ce is non-zero) the following dispersion relation
D̃ =

1

ξ
− ω2λ2

ξ
+

∫
v2∂vf0

vξ − ω
dv = 0.Using the fa
t that

∫
v2∂vf0

vξ − ω
dv = −1

ξ
+

ω2

ξ2

∫
∂vf0

vξ − ω
dv24



we get̃
D(ω, ξ, λ) =

ω2λ2

ξ


1 +

1

λ2ξ2

∫
∂vf0

ω

ξ
− v

dv


 = 0 (5.18)whi
h is the same dispersion relation as for the linearized Vlasov-Poisson equation multiplied by (ωλ/ξ)2.We 
ompute the time approximate solutions of the linearizedVlasov-RPE system (5.14)-(5.15) with the following numeri
als
heme

fn+1 − fn

∆t
+ v∂xf

n+1 − En+1∂vf0 = 0, (5.19)
λ2 ∂xE

n+1 − 2∂xE
n + ∂xE

n−1

∆t2
+ ∂xE

n+1 =−∂2
x

∫
v2fndv.(5.20)The stability analysis is done using the spa
e Fourier transformof (5.19)-(5.20)

f̂n+1 − f̂n

∆t
+ iξvf̂n+1 − Ên+1∂vf0 = 0, (5.21)

i
λ2

∆t2
(Ên+1 − 2Ên + Ên−1) + iÊn+1 = ξ

∫
v2f̂n dv. (5.22)Note that the equation (5.22) is still valid when ξ = 0.As in the Vlasov-Ampère 
ase, we use the de
omposition (5.5)for the linear stability analysis.Seeking the solution of (5.21)-(5.22) under the form (5.5) leadsto

Cf [exp(−iω∆t)(1 + i∆tξv) − 1] = Ce∆t exp(−iω∆t)∂vf0,(5.23)
i
λ2

∆t
(exp(−iω∆t) + exp(iω∆t) − 2) (5.24)

+i exp(−iω∆t)Ce =ξ

∫
v2Cf dv. (5.25)25



Sin
e we deal with non-zero solutions, plugging the expressionof Cf given by (5.23) in (5.25) leads to
i
2λ2

∆t2
(cos(ω∆t) − 1) + i exp(−iω∆t) =

ξ

Ce

∫
v2Cfdv.Using the fa
t that

∫
v2Cf dv =

iCe

ξ

∫
v2∂vf0

ã − v
dv, with ã =

exp(−iω∆t) − 1

i∆tξ
,we get

−i
4λ2

∆t2
sin2(

ω∆t

2
) + i exp(−iω∆t) = i

∫
v2∂vf0

ã − v
dv.Sin
e the following equality holds

∫
v2∂vf0

ã − v
dv = 1 + ã2

∫
∂vf0

ã − v
dv,the dis
rete dispersion relation asso
iated to the Vlasov-RPEdis
retization (5.21)-(5.22) is

D∆t
2 (ω, ξ, λ) = 1−exp(−iω∆t)+

4λ2

∆t2
sin2

(
ω∆t

2

)
+ã2

∫
∂vf0

ã − v
dv.(5.26)The previous 
omputations give the following dis
rete dispersionrelation

D∆t
2 = 1 − exp(−iω∆t) +

4λ2

∆t2
sin2(

ω∆t

2
) (5.27)

a

ξ

(
1 +

√
π

2

a

ξ
exp(− a2

2ξ2
)

(
i sign (ξ) − erfi (

a√
2ξ

)

)) (5.28)Remark that, in the limit ∆t tends towards 0, we re
over the
ontinuous dispersion relation (5.18)
lim

∆t→0
D∆t

2 (ω, ξ, λ) = ξD̃(ω, ξ, λ).26



The numeri
al solutions of the dispersion relation D∆t
2 areexposed in Table 2 where the imaginary part of ω is written asa fun
tion of ∆t and for di�erent values of λ. As expe
ted, thenumeri
al s
heme is stable for all values of λ and ∆t sin
e allthe values of the imaginary part of ω are negative.

∆t, λ 1 10−1 10−2 10−3 10−4

10−1 −0.8949 −2.0081 −1.9817 −1.9817 −1.9817
10−2 −0.8573 −1.7924 −1.7708 −1.7707 −1.7707
10−3 −0.8519 −1.7574 −1.7367 −1.7366 −1.7366
10−4 −0.8514 −1.7537 −1.7332 −1.7330 −1.7330

0 −0.8513 −1.7533 −1.7328 −1.7326 −1.7326Table 2: Imaginary part of the root of the dispersion relationasso
iated to the Vlasov-RPE model in the impli
it 
ase: Im(ω)for ξ = 1 as a fun
tion of (∆t, λ).6 Numeri
al resultsIn this se
tion, we propose to validate the method with twotests 
ases. The �srt one is a linear Landau damping: a uniformquasi-neutral stationary solution of the Vlasov-Poisson equationis perturbed. The se
ond one is the bump-on-tail instability (see[24, 26℄). As pointed out in se
tion 2, the total energy is pre-served with time at the 
ontinuous level. As a diagnosti
, wethen are interested in the time evolution of the kineti
, ele
tro-stati
 and total energies Ek, Ep and Et, respe
tively given by
Ek =

1

2

∫ ∫
fv2dvdx, Ep =

λ2

2

∫
E2dx, Et = Ep + Ek.We also plot the ele
tri
 �eld and the logarithm of the ele
tri
energy to a

urately study the damping 
oe�
ient 
omputed inthe previous se
tion. 27



6.1 Linear Landau dampingWe then initialize the Vlasov-Poisson equation with
f0(x, v) =

1√
2π

(1 + α sin(κx)) exp(−v2

2
),on the interval [0, 2π/κ], with periodi
 boundary 
onditions inthe spa
e dire
tion and homogeneous Diri
hlet boundary 
on-ditions in the velo
ity dire
tion. The same numeri
al test 
asehas been studied in [8℄ using a PIC solver of the Vlasov equation
oupled with the Reformulated Poisson Equation.The numeri
al parameters are the following: vmax = 6 wherethe velo
ity domain extend from −vmax to vmax, we use a num-ber of 
ells Nv = 128; the κ parameter is taken equal to κ = 1,

α << 1 to 
onsider linear regimes, and ∆t = 0.5∆x/vmax.The two di�erent methods we detailed in se
tion 3.1 are 
om-pared: the 
lassi
al method uses the Ampère equation to predi
tthe ele
tri
 potential at time tn+1 whereas the asymptoti
 stableapproa
h uses the RPE dis
retization (3.16).The initialization of the RPE s
heme is done in the followingway: we �rst 
ompute the initial density ρ0 thanks to the initialdata f 0 and we assume that ρ−1 = ρ0. Thanks to (3.16), we areable to 
ompute φ1, the approximation of φ at time ∆t. For theAmpère approa
h, 
lassi
ally the initial density ρ0 enables us to
ompute φ0 a

ording to the Poisson equation; then thanks tothe initial 
urrent, we 
an advan
e the dis
rete Ampère equation(3.11) to get φ at time ∆t.On Figs. 3, 4 and 5, we give the results obtained by thetwo approa
hes with λ = 1 and ∆x = 2.4 × 10−2, whi
h resultsto a resolved 
ase sin
e (∆x, ∆t) < λ. The kineti
, ele
tri
and total energies are plotted on Fig. 3, the ele
tri
 �eld attime t = 2 ω−1
p and t = 10 ω−1

p is plotted on Fig. 4 and thelogarithm of the ele
tri
 energy on Fig. 5. For both methods,the results are stable sin
e the stability 
onstraint is full�lledfor the Ampère approa
h. The total energy is parti
ularly well
onserved with time for both methods. We 
an also observe that28



the results of the RPE approa
h are very 
lose to the standardone on the di�erent quantities we plot. Moreover, the numeri
aldamping 
oe�
ient is in well agreement with that 
omputed inthe previous se
tion for the two approa
hes. This test validatesthe RPE method with respe
t to the standard one.On Figs. 6, 7 and 8, the same numeri
al parameters are
onsidered but λ = 0.1. The same 
on
lusions as before areavailable for these results: both methods give a

urate resultswith respe
t to the total energy 
onservation and to the damping
oe�
ient. Moreover, the asso
iated period of the wave is very
lose to the 
omputed 
omplex solution of the dispersion relation(ω = 10.15 − i0.12 whereas numeri
ally we obtain ω = 10.2 −
i0.1).Finally, Figs. 9, 10 and 11 present some results where λ =
10−2. In this 
ase, the stability 
ondition is not (stri
tly) re-spe
ted in the standard approa
h neither in the RPE algorithm.However, both methods give stable results even if we 
an observesome di�eren
es. Indeed, on Fig. 10, the Ampère approa
hmakes appear some os
illations on the ele
tri
 �eld whereasthe RPE one does not. The RPE method smoothes the mi-
ros
ale os
illations and 
onsequently gives stable results, evenwhen λ < ∆x. On Fig. 11 the logarithm of the ele
tri
 en-ergy is plotted as a fun
tion of time. Up to t ≈ 4 ω−1

p , bothmethods are nearly superimposed. First, the two 
urves presenta highly damped behavior sin
e the damping 
oe�
ient equals
−10; then, a se
ond behavior appears with a lower damping
oe�
ient (about −1.73). We verify that these two behaviorsare solutions to the dispersion relation; as mentioned in the se
-tion 4, the dispersion relation has several solutions, and two ofthem are 
aptured by the numeri
al methods. From a quanti-tative point of view, the numeri
al methods are able to re
overa

urately the solutions of tables 1 and 2. For large times, theAmpère method seems to degenerate whereas the RPE approa
happears to be more robust (we 
an observe a re
urren
e e�e
tfor example on Fig. 19; see also remark 6.1).29



The last �gures present numeri
al results for the RPE ap-proa
h only. Indeed, when λ = 10−3 or 10−4, the Ampère ap-proa
h gives rise to unstable results: the ele
tri
 �eld generatedby the Ampère equation be
omes very strong whi
h pushes theparti
les outside the velo
ity domain, so the total mass fallsto zero. On Fig. 12, we observe that the total energy is stillwell preserved with time even if a de
ay o

urs at the beginningof the simulation. This remains quite reasonable 
ompared tothe de
ay observed for PIC simulations in [8℄ due to the largenoise resulting from the PIC assignment pro
edure. The use ofa phase spa
e grid solver seems to e�
iently avoid this kind ofphenomenom. On Fig. 14 the logarithm of the ele
tri
 �eld alsopresents two di�erent behaviors (the �rst behaviour, very fast,
an not be distinguished on the �gure 14). They are both in agood agreement with the solutions of the dispersion relation wedetermined in se
tion 4. On the 
ontrary, in the Ampère 
on-text, sin
e there exists one solution of the dispersion relationwhi
h gives rise to a positive imaginary part, the method leadsto unstable numeri
al results.Finally, the asymptoti
 preserving property is investigated
onsidering very small values of λ (λ = 10−4, 10−8). We wantto 
he
k if the numeri
al s
heme tends towards a numeri
al ap-proximation of the limit system of the Vlasov-Poisson system as
λ goes to zero. To that purpose, we 
ompare our numeri
al re-sults in whi
h λ = 10−8 with the limit system (2.9)-(2.10). Thenumeri
al parameters are the same as previously. The initial
ondition with α = 0 has to be 
onsidered to respe
t the quasi-neutrality 
ondition ρ = 1 initially. In this 
ase, the ele
tri
 �eldis null everywhere and the Maxwellian initial 
ondition is thena stationary solution. We 
an observe that the RPE methodgives satisfa
tory results sin
e the ele
tri
 �eld is very 
lose tozero (see Fig. 16), and the total energy is equal to π for largetimes. Fig. 18 shows that the total mass is equal to one for theRPE method whereas the total mass asso
iated to the Ampèreapproa
h fails to zero, due to numeri
al instabilities. We 
an30



observe that for λ 
lose to zero, the RPE approa
h is able tonumeri
ally re
over the quasi-neutral limit with a �xed grid ofthe phase spa
e, i.e without resolving the small s
ales as theDebye length for example.
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Remark 6.1 In the previous example where the spatial frequen
y
κ was 
hosen equal to one, the Landau damping rate is too strongto observe the re
urren
e e�e
t. This purely numeri
al e�e
t isdue to both a velo
ity dis
retisation and a periodi
 spa
e box; it
an be proved (see [14℄) the problem is periodi
 in time with aperiod of length the re
urren
e time TR = 2π/(κ∆v).In some simulations, the re
urren
e e�e
t 
an not be ob-served (see Fig. 11 for example). It is not redu
ed or elimi-nated; the numeri
al parameters are su
h that the amplitude ofthe ele
tri
 �eld rea
hes the roundo� ma
hine pre
ision beforethe re
urren
e time. Hen
e, the re
urren
e e�e
t is then elimi-nated.In order to illustrate this re
urren
e phenomenon, we 
hoosea smaller spatial frequen
y κ = 0.5 to obtain a smaller Landaudamping rate (see Fig. 1). The results are presented on Fig. 19and we re
over the re
urren
e e�e
t at time TR = 2π/(κ∆v) forthe two methods. In this 
ase, we 
hose Nv = 64 so that there
urren
e time TR ≈ 67ω−1

p .
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6.2 Bump on tail instabilityWe initialize the Vlasov-Poisson equation with
f0(x, v) = f1(v)(1 + α cos(κx)),where α = 0.04, κ = 0.3 and the phase spa
e domain is [0, 20π]×

[−9, 9].The fun
tion f1 is a distribution fun
tion whi
h has a bumpof the Maxwell distribution on its tail,
f1(v) = np exp(−v2/2) + nb exp(−(v − vd)

2/2v2
t ),where vd = 4.5, vt = 0.5 and nb/np = 2/9, and the amplitudeof the bump is 
hosen in order to satisfy ∫

f1(v) dv = 1. Thenumeri
al parameters are the following: ∆t = 0.5∆x/vmax with
vmax = 9. The two methods are 
ompared in this nonlinear 
on-text with respe
t to the ele
trostati
 energy Ep and the spatiallyintegrated distribution fun
tion

F (t, v) =

∫ 20π

0

f(x, v, t)dx. (6.1)Obviously, di�erent values of λ are investigated.In the 
ase λ = 1, we plot in Fig. 20 the time evolution ofthe ele
trostati
 energy Ep = λ2

2

∫
E2dx. The number of pointsis Nx = Nv = 1024 so that ∆t = 0.0034. First of all, the twomethods give rise to equivalent results: the instability grows af-ter t = 10 ω−1

p and the maximum value of Ep is rea
hed for thetwo methods at t ≈ 21 ω−1
p . These quantitative observations arein very good agreement with the results obtained in [24℄. But,due to a �rst order time integration of the 
hara
teristi
s andto an additional di�usion of the method, the amplitude of theele
tri
 energy has a tenden
y to de
rease when long time simu-lations are 
onsidered. Howevern this tenden
y is qualitatively
omparable with the two methods and for this reason, 
annot beattributed to an ex
ess of numeri
al di�usion produ
ed by the41



use of the RPE. Rather, it is most probably a 
onsequen
e of the�rst order time integration of the 
hara
teristi
s, a se
ond ordertime integration of the 
hara
teristi
s 
an remove partially thisphenomenon. Then, 
onsidering the 
ase λ = 1, we plot on Fig.21 the time development of the spatially integrated distributionfun
tion given by (6.1). The small bump on the tail is trappedby the ele
tri
 �eld and a plateau is gradually formed for ve-lo
ities in the range v ∈ [2, 6]. The same 
on
lusions have beendrawn in [24℄.Now, we test the method in under-resolved situations, whenthe time and spa
e steps are several orders larger than the Debyelength, and we show that the RPE method gives stable resultsin whi
h the plasma os
illations and wave-lengths are �lteredout. Of 
ourse, in su
h under-resolved situation, the Ampèreequation is dramati
ally unstable. In the following, the numberof points is �xed equal to 128 in ea
h dire
tion and the value of
λ is modi�ed.On Fig. 22 and 23, the time history of the ele
tri
 energy isplotted for the two methods with λ = 0.1, in a resolved situa-tion: the spatial and time steps are su
h that ∆x, ∆t < λ = 0.1.We observed that the results are very similar for both appro
hes.However, if the same numeri
al parameters as in the previ-ous 
ase are 
onsidered (so that an under-resolved situation(∆x = 0.5 > λ and ∆t = 0.027) is 
onsidered), the Ampèreapproa
h leads to unstable results sin
e the ele
tri
 energy be-
omes very important around t ≈ 100 ω−1

p . On the 
ontrary, theRPE approa
h is able to produ
e an a

urate history of the ele
-tri
 energy even for very large time s
ales. However, the os
illa-tions whi
h o

ured at the beginning (t < 10 ω−1
p ) in the resolved
ase (see the right pannel of Fig. 22) have nearly disappearedin the under-resolved 
ase. The RPE approa
h seems to dampthese os
illations so that stable results are obtained for largertimes. In fa
t, small s
ales are not 
onsidered by the methodand only a overall behaviour is reprodu
ed so that ma
ros
opi
time s
ales 
an be envisaged even when λ is small. On Fig. 26,42



we plot the total energy as a fun
tion of the time. First, as ob-served before, in the resolved 
ase, the two appro
hes are nearlysuperimposed. Then, we remark that the RPE approa
h, inthe under-resolved 
ase displays an energy de
ay whi
h is fasterbut still of the same order as in the resolved 
ase. As in theprevious 
ase, the RPE approa
h shows a 
orre
t behavior atlarge time s
ales whi
h enables stable long time simulations ofquasi-neutral plasmas.All these phenomena are available when the value of λ isdiminished; indeed, on Fig. 27, λ = 10−2 and on Fig. 28 λ =
10−4 are 
onsidered with �xed spatial and time steps: ∆x = 0.5and ∆t = 0.027. As observed in the previous tests, the ele
tri
energy is strongly damped at the beginning of the simulation.However, the time history of the total mass and total energy onFig. 27 and 28 is well reprodu
ed sin
e they are well preservedeven in these strongly under-resolved 
ases.
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lusionIn this paper, we used a semi-Lagrangian s
heme to simulatequasi-neutral problems using the kineti
 des
ription. In order toover
ome the drasti
 stability 
ondition ∆x < λ, ∆t < λ, follow-ing [8℄, a Reformulated Poisson equation 
oupled with an appro-priate time dis
retization of the 
hara
teristi
 
urves has beenimplemented. An asymptoti
 preserving numeri
al s
heme isthen obtained, whi
h enables to simulate quasi-neutral regimes,in linear and in nonlinear regimes. The present strategy has a
omparable 
ost per time step to that of a standard dis
retiza-tion, but allows the use of dramati
ally larger time and spa
esteps.A
knowledgements: This work was supported by the MarieCurie A
tions of the European Commission in the frame ofthe DEASE proje
t (MEST-CT-2005-021122) and by the fren
h44



 0

 2

 4

 6

 8

 10

 0  50  100  150  200

Time

PSfrag repla
ements
Ampère

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

Time

PSfrag repla
ementsAmpère
RPE

(a) (b)Figure 22: Resolved 
ase. Comparison of the two methods:ele
tri
 energy as a fun
tion of time for the Ampère approa
h(left pannel), and for the RPE approa
h (right pannel). ∆x =
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ontra
t ASTRE 'SAV 34-180'.8 Appendix: Details for the 
omputa-tion of the 
omplex integralsFor the Ampère or the RPE 
ase, we are led to 
ompute integralsof the form ∫

∂vf0

v − α
dv, α ∈ C| ,where f0 is a Maxwellian

f0(v) =
1√
2π

exp(−v2/2).
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ase. Comparison of the two methods:time history of the spatially integrated distribution fun
tion asa fun
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ity for the Ampère approa
h (left pannel),and for the RPE approa
h (right pannel). ∆x = 0.05, λ = 0.1.Let us detail the 
omputation in the following. Using an appro-priate 
ontour in the 
omplex plane, we set
∫

∂vf0

v − α
dv = Pr ∫

∂vf0(v + α)

v
dv + iπ∂vf0(α), (8.1)where the Cau
hy prin
ipal value denoted by Pr is de�ned byPr ∫ +∞

−∞

g(v)

v
dv = lim

δ→0

[∫
−δ

−∞

g(v)

v
dv +

∫ +∞

δ

g(v)

v
dv

]
.Let us detail the 
omputations asso
iated to the �rst term whi
hwe 
all I.

I = − 1√
2π

Pr ∫
(v + α) exp(−(v + α)2/2)

v
dv

= − 1√
2π

[∫
e−(v+α)2/2dv + αPr ∫

e−(v+α)2/2

v
dv

]
.46
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∆x = 0.5, λ = 0.1.Let us 
all J the last term.

J = Pr ∫
e−(v+α)2/2

v
dv

= lim
δ→0

[∫
−δ

−∞

e−(v+α)2/2

v
dv +

∫ +∞

δ

e−(v+α)2/2

v
dv

]

= lim
δ→0

[∫ +∞

δ

e−α2/2e−v2/2
(
−eαv − e−αv

)
dv

]

= −2e−α2/2

∫ +∞

0

exp(−v2/2) sh(vα)
dv

v
.It is possible to express this last integral as a fun
tion of the er�fun
tion, er�(x) = (2/

√
π)

∫ x

0
exp(t2)dt. Indeed, noti
ing that

y(x) =

∫ +∞

0

e−v2/2sh(vx)
dv

v
,47
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0.1.satis�es the di�erential equation y′′ − xy′ = 0, we get that

∫ +∞

0

e−v2/2sh(vα)
dv

v
=

π

2
er�(

α√
2

)
.Hen
e, gathering the previous terms leads to an expression of I

I = − 1√
2π

[√
2π − αe−α2/2πer�(α/

√
2)

]
. (8.2)Finally, the initial 
omplex integral we look for be
omes

∫
∂vf0

v − α
dv=− 1√

2π

[√
2π−αe−α2/2πer�(α/

√
2)

]
− i

√
π

2
αe−α2/2,

= −1 + α

√
π

2
e−α2/2er�(α/

√
2) − i

√
π

2
αe−α2/2,

= −1 + α

√
π

2
e−α2/2

(er�(α/
√

2) − i
)

.48
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