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AbstratThis paper deals with the numerial simulations ofthe Vlasov-Poisson equation using a phase spae grid inthe quasi-neutral regime. In this limit, expliit numerialshemes su�er from numerial onstraints related to thesmall Debye length and large plasma frequeny. Here,we propose a semi-Lagrangian sheme for the Vlasov-Poisson model in the quasi-neutral limit. The main in-gredient relies on a reformulation of the Poisson equationderived in [4℄ whih enables asymptotially stable sim-ulations. This sheme has a omparable numerial ostper time step to that of an expliit sheme. Moreover,
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7 Conlusion 448 Appendix: Details for the omputation of theomplex integrals 451 IntrodutionFor many years, the modeling and numerial simulation of plas-mas has been an ative �eld of researh. The desription of theplasma is usually performed in two ways. On the one hand,�uid models whih need that the system is lose to a thermo-dynamial equilibrium to be valid. On the other side, kinetimodels onsider a phase spae repartition of the partiles, butnumerial simulations are larger than �uid ones. Indeed, thehigh dimensionality of the kineti models (6 dimensions plusthe time) makes the simulations di�ult to handle. However,when ollisionless problems are studied, the use of kineti mod-els is neessary sine �uid models annot aurately desribe thephysis.In addition, kineti simulations are omplex due to the largevariety of sales involved in the system. Among them, there aretwo important physial length and time sales: the Debye lengthand the eletron plasma period. The Debye length measures thetypial length of harge unbalanes whereas the eletron plasmaperiod haraterizes the motion of the osillations due to theeletrostati restoring fores when harge unbalanes our.We are interested in this paper in the so-alled quasi-neutrallimit where both parameters are small ompared with maro-sopi lengths of interest. From a numerial point of view, alassial expliit sheme has to solve these miro-parameters inorder to remain stable, whih requires a very small time stepand phase spae ells. But on the other side, simulations haveto be performed on marosopi lengths, whih makes kinetisimulations hallenging.Many asymptoti models have been derived to desribe suh3



regimes, but in situations where both quasi-neutral and nonquasi-neutral regimes oexist, these models are not valid. Hene,hybrid approahes an be adopted (see [18, 21, 25℄). However,a spei� development is neessary to onnet the models, andthe interfae has to be arefully desribed through an asymp-toti analysis (see [10, 16℄) or thanks to physial onsiderations.Finally, these two points are quite di�ult to handle numeri-ally. Hene, it seems important to develop numerial methodswhih an handle the two regimes simultaneously.The main goal of this work is to present Vlasov-type sim-ulations (i.e. using a grid of the phase spae) whih are validin both the quasi-neutral and the non-quasi-neutral regime. Tothat purpose, following the strategy introdued in [4, 5, 8℄, anew numerial sheme is introdued, the stability analysis ofwhih shows that its stability domain is independent of the De-bye length. The present approah allows stable simulations evenwhen the mesh does not resolve the Debye length and the plasmaperiod.As in [8℄, the Vlasov-Poisson model is studied with arbitrar-ily small values of the Debye length (whih orresponds to thequasi-neutral regime). The Poisson equation is re-written in anequivalent form: the so-alled Reformulated Poisson Equation(RPE). It has been �rst introdued in [4, 5℄ within the ontextof the �uid Euler-Poisson system, and the extension to the ki-neti framework has been performed in [8℄. The RPE enablesto overome the drasti redution of time and spae steps and isnot more di�ult or ostly to solve numerially. Its goal is thesimulation of the Vlasov-Poisson equation over time and lengthsales whih are arbitrarily small or large ompared with theplasma period and Debye length. With time and spae stepswhih resolve the plasma period and Debye length, it produesomparable results to the standard semi-Lagrangianmethod butunlike the latter it still produes stable results if the time andspae steps do not resolve them (under-resolved situations). Ofourse, in suh under-resolved situations, the plasma osillations4



and wave-lengths are �ltered out and annot be aurately a-ounted for. However, this �ltering out of the small sales stru-tures is preisely what allows the method to highlight the largesales strutures and makes it valuable for the simulation of thelarge sale dynamis of the plasma.This work is based on the same model as [8℄ sine the Vlasovequation is oupled with the RPE, but a semi-Lagrangian Vlasovsolver is used in plae of a Partile In Cell (PIC) solver. Suhsolvers are very often used for kineti simulations (see [1, 19℄)with the advantage that the omputational ost of these meth-ods remains aeptable, even in high dimensions. However, theinherent numerial noise beomes too signi�ant for some appli-ations. Hene, methods disretizing the Vlasov equation on aphase spae grid have been proposed (see [14, 13, 27℄). UnlikePIC methods, the distribution funtion is well resolved every-where, even in zones where few plasma partiles are present.The semi-Lagrangian method an be viewed as an intermedi-ate method between PIC methods and Eulerian methods. Themesh of the phase spae is kept �xed in time (Eulerian method),and the Vlasov equation is integrated along the trajetories us-ing the invariane of the distribution funtion along the hara-teristi urves (Lagrangian method). Interpolation is performedto evaluate the new value of the distribution funtion on the gridnodes. In partiular, one of the advantages of suh a methodis to have a good desription of the phase spae (also in re-gions where the density is low), and unlike PIC methods, it isnoiseless.The main partiularity of this work onsists in the time inte-gration of the trajetories and its oupling with the �eld solver.As in [8℄, the partile trajetories are omputed using a semi-impliit sympleti integrator: the harateristis in veloity areintegrated using an impliit eletri potential evaluated at anexpliit position. Semi-impliit time disretization of the har-ateristis has already been employed in [3, 20, 22, 23℄, but theuse of the Reformulated Poisson Equation makes the approah5



di�erent. This equation enables to predit a stable eletri �eldeven for small values of the Debye length λ. Moreover, thepresent approah does not su�er from unphysial deay of on-served quantities suh as the total energy, whih an preventthe asymptoti preserving property of the numerial sheme.Besides, as mentioned in [4, 5, 8℄, the oupling with the RPEtogether with the new time integration has the same ompu-tational ost per time step as the standard resolution of theVlasov-Poisson equation.Moreover, a stability analysis of the model is performed inthe linear framework, proving that the numerial sheme is sta-ble for small values of the Debye length λ, even if the time stepdoes not resolve it. Suh a study has been performed for theEuler-Poisson ontext in [9℄. However, the strategy is di�erentin the Vlasov ase. Indeed, starting from the semi-disretizedlinearized version of the Vlasov equation oupled with the RPE,we derive a semi-disretized dispersion relation. The roots ofthis dispersion relation provide an indiation on the stabilityof the numerial sheme. Indeed, when the imaginary part ofthe root is negative, then the numerial sheme is stable. As aomparison, we also derive a dispersion relation for the lassialnumerial sheme whih does not enjoy suh a property whenthe time step is bigger than the Debye length. This study em-phasizes the Asymptoti Preserving property sine the dampingoe�ient obtained by solving the dispersion relation presentsthe orret behavior as λ goes to zero. These results are on-�rmed by the numerial results. In non-linear situations, themethod gives extremely satisfatory results when λ = 1 (re-solved situation). On the other hand, when λ ≪ 1 and ∆t,
∆x do not resolve the sales assoiated with λ (under-resolvedsituation), the method provides a stable solution in whih theplasma osillations and wave-lengths are �ltered out, while las-sial methods are simply unstable.The paper is organized as follows. In the next part, wedesribe the Vlasov-Poisson model and introdue the Reformu-6



lated Poisson Equation. Then, we reall the main steps of thesemi-Lagrangian method. Next, the asymptotially stable nu-merial sheme is presented with a lassial sheme. A stabilityanalysis is then performed on these two numerial shemes bysolving the assoiated dispersion relation. Finally, some numeri-al results in linear and nonlinear regimes illustrate the e�ienyof the new method ompared to the lassial one.2 The Vlasov-Poisson model and its quasi-neutral limitIn this setion, we present the Vlasov-Poisson system and itsquasi-neutral limit. As in [4℄, we show that the Poisson equationan be reformulated into an ellipti equation whih does notdegenerate in the quasi-neutral limit and, at the limit, providesan equation for the quasi-neutral potential.2.1 The Vlasov-Poisson system and its prop-ertiesIn this paper, we restrit ourselves to the one-dimensional Vlasov-Poisson system, even if this work straightforwardly extends tothe multi-dimensional ase.Here, we onsider only one speies of partiles, the eletrons,and we assume that the ions form a uniform neutralizing bak-ground. Under these assuptions, the time evolution of the ele-tron distribution funtion f(t, x, v) in phase spae (x, v) ∈ IR×IR(with t the time, x the spatial diretion and v the veloity) isgiven by the dimensionless Vlasov equation
∂tf + v∂xf + ∂xφ∂vf = 0, (2.1)where the eletri potential φ(t, x) is oupled to f through the7



Poisson equation
λ2∂xxφ(t, x) = ρ(t, x) − 1, with ρ(t, x) =

∫
f(t, x, v)dv.(2.2)In this one-dimensional ontext, this Poisson equation (2.2) isequivalent to the Ampère equation

∂tE =
j

λ2
, j(t, x) =

∫

IR

vf(t, x, v)dv, (2.3)where E = −∂xφ is the eletri �eld.Here the density ρ has been normalized to the ion bakgrounddensity and the eletron mass to unity. The dimensionless pa-rameter λ is the ratio of the Debye length to the length unit,or equivalently the ratio of the plasma period to the time unit.Here, veloities are normalized to ioni thermi veloity andspae to a harateristi length of the problem.In the sequel, we brie�y reall some lassial estimates onthe Vlasov-Poisson system (2.1)-(2.2). First of all, mass andmomentum are preserved with time,
d

dt

∫

IR×IR

f(t, x, v)

(
1
v

)
dxdv = 0, t ∈ IR+.Next, multiplying the Vlasov equation (2.1) by |v|2 and per-forming an integration by parts, we �nd the onservation of thetotal energy Et for the (2.1)-(2.2) system

dEt

dt
=

d

dt
(Ek(t) + Ep(t)) = 0, t ∈ IR+,where Ek denotes the kineti energy and Ep the potential energy

Ek(t) =

∫

IR×IR

f(t, x, v)
|v|2
2

dxdv, Ep(t) =
λ2

2

∫

IR

|∂xφ(t, x)|2dx.On the other hand, we an de�ne the harateristi urves ofthe Vlasov-Poisson equation (2.1)-(2.2) as the solutions of the8



following �rst order di�erential system





dX

dt
(t; s, x, v) = V (t; s, x, v),

dV

dt
(t; s, x, v) = ∂xφ(t, X(t; s, x, v)),

(2.4)with the initial onditions
X(s; s, x, v) = x, V (s; s, x, v) = v.We denote by (X(t; s, x, v), V (t; s, x, v)) the position in phasespae at the time t, of a partile whih was in (x, v) at time s.Let say that t → (X(t; s, x, v), V (t; s, x, v)) is the harateris-ti urves solution of (2.4). Then, the solution of the Vlasov-Poisson equation (2.1)-(2.2) is given for all t ≥ 0 by

f(t, x, v) = f(s, X(s; t, x, v), V (s; t, x, v)) (2.5)
= f0(X(0; t, x, v), V (0; t, x, v)), (x, v) ∈ IR × IR,(2.6)where f0 is a given initial ondition of the Vlasov-Poisson equa-tion. This equality means that the distribution funtion f isonstant along the harateristi urves whih is the basis ofthe semi-Lagrangian method we reall in a next setion.2.2 The quasi-neutral modelThe quasi-neutral limit of the Vlasov-Poisson system (λ → 0)has been studied rigorously in a series of papers (for examplesee [2℄).Formally, passing to the limit λ → 0 in (2.1)-(2.2) merelyamounts to replaing the equation (2.2) by the quasi-neutralityonstraint ρ = 1. The Poisson equation is then lost, while theeletrostati potential beomes the Lagrange multiplier of thequasi-neutrality onstraint. This is exatly the same in the in-ompressible Euler equations in whih the pressure is a Lagrangemultiplier for the divergene-free onstraint.9



Assuming that the quasineutrality onstraint is satis�ed ini-tially, integrating (2.1) with respet to the veloity variable leadsto the divergene-free onstraint for the saled eletri urrent
∂x

∫
vf dv = 0. (2.7)Then, using (2.7) and after some omputations that will be de-tailed in the next setion, we obtain the following ellipti equa-tion for the quasi-neutral potential φ

∂2
xφ = ∂2

xS, (2.8)where S is the seond moment of the distribution funtion f ,
S(t, x) =

∫
v2f(t, x, v) dv.In summary, the quasi-neutral model onsists in the followingsystem

∂f

∂t
+ v∂xf + ∂xφ∂vf = 0, (2.9)

∂2
xφ = ∂2

xS. (2.10)We �rst note that the Vlasov-Poisson system (2.1)-(2.2) and(2.9)-(2.10) di�er by the ellipti equations for the potential φnamely the Poisson equation (2.2) for the former and the quasi-neutral limit (2.10) for the latter.A major di�ulty is to �nd a diret way to obtain the equa-tion (2.10) from the quasi-neutral limit of (2.2). In [4, 5℄, inorder to unify these two di�erent equations, a new reformula-tion of the Poisson equation has been derived.2.3 The reformulated Poisson equationThis present part realls the main steps of the derivation of theReformulated Poisson Equation (see [4, 5, 8℄).By taking the two �rst moments of the Vlasov equation, weget the ontinuity equation
∂tρ + ∂xj = 0, (2.11)10



and the equation evolving the urrent density j

∂tj + ∂xS − ρ∂xφ = 0, (2.12)where ρ =
∫

f(v)dv, j =
∫

vf(v)dv and S =
∫

v2f(v)dv. Inorder to eliminate the urrent j, we make the di�erene betweenthe time derivative of (2.11) and the divergene of (2.12). Itfollows
∂ttρ − ∂xxS + ∂x(ρ∂xφ) = 0. (2.13)Now, using the Poisson (2.2) to replae ρ in the �rst term of(2.13) gives the Reformulated Poisson Equation

−∂x

[
(λ2∂tt + ρ)∂xφ

]
= −∂xxS (2.14)whih is equivalent to the original one if initially the Poissonequation (2.2) and its time derivative are satis�ed.In the quasi-neutral limit (λ → 0), the reformulated equation(2.14) formally onverges toward the quasi-neutral potential el-lipti equation (2.10). It does not degenerate into an algebraiequation like the Poisson equation (2.2) does. Then the refor-mulated system

∂f

∂t
+ v∂xf + ∂xφ∂vf = 0, (2.15)

−∂x

[
(λ2∂tt + ρ)∂xφ

]
= −∂xxS (2.16)seems to be an appropriate framework to deal with problemswhih are partly or totally in the quasi-neutral regime.In the next setion, we show how we an use this refor-mulated system to derive an asymptoti time strategy for theVlasov-Poisson problem.3 An asymptoti preserving sheme forthe Vlasov-Poisson modelIn this part, we desribe a numerial sheme used to solve theVlasov-Poisson system. In a previous work of P. Degond et. al11



[8℄, a PIC method was used to solve the Vlasov-Poisson equa-tion. Although they ould deal with unresolved Debye lengthand plasma eletron period and get stable simulations, they ob-served an unphysial strong deay of the total energy whihould not permit to verify if the PIC method enjoys the asymp-toti preserving property. In this work, we propose to use asemi-Lagrangian method to overome this lak of energy on-servation.3.1 The semi-Lagrangian methodIn this setion, we will reall the priniples of the semi-Lagrangianmethod for the Vlasov-Poisson equation (see [27℄ for more de-tails) in two dimensions of the phase spae.First of all, we introdue the �nite set of mesh points (xi, vj), i =
0, ..., Nx and j = 0, ..., Nv to disretize the phase spae ompu-tational domain. Then, given the value of the distribution fun-tion f at the mesh points at any given time step tn, we obtainthe new value at mesh points (xi, vj) at tn+1 using

f(tn + ∆t, xi, vj) = f(tn, Xn, V n),where the notations (Xn, V n) = X(tn; tn +∆t, xi, vj), V (tn; tn +
∆t, xi, vj) are used for the solutions of (2.4), and ∆t stands forthe time step. For eah mesh point (xi, vj), the distributionfuntion f is then omputed at tn+1 by the two following steps

1. Find the starting point of the harateristi ending at
(xi, vj), whih is Xn and V n.

2. Compute f(tn, Xn, V n) by interpolation, f being knownonly at mesh points at time tn.Now, for the general ase, in order to deal with step 1, weneed to introdue a time disretization of (2.4). A lot of numer-ial methods exist for the resolution of the harateristi urves,12



given by the following ordinary di�erential equations
dX

dt
= V, (3.1)

dV

dt
= ∂xφ(t, X). (3.2)Here, we want to use a robust and stable sheme whih an takeinto aount the spatial and time osillations of the eletri po-tential φ when the parameter λ tends towards 0. To reah thisgoal, the �rst di�ulty is related to the time disretization of φin the right hand side of (3.2). In the ontext where the plasmais at equilibrium, it refers to a soure term in the momentumonservation's law of the Euler equations. In the work of S.Fabre (see [12℄), it is proven that a neessary ondition for sta-bility for the Euler-Poisson system is the use of an impliit timedisretization of the advetion term ∂xφ. We therefore do thesame for the time disretization of φ in (3.2).The seond di�ulty is related to the time disretization of(3.1) oupled to the spae disretization of the right hand side of(3.2). In order to preserve the total mass quantity for all timeand to preserve the areas of the transformation (Xn, V n) →

(Xn+1, V n+1), we have to use the well known Euler sympletishemes for (3.1)-(3.2) (see [17℄ for more details).Then, we have two possible alternatives to disretize (3.1)-(3.2). The �rst one we all (EI) is (E for expliit in spae and Ifor implitit in veloity)
Xn+1 − Xn

∆t
= V n, (3.3)

V n+1 − V n

∆t
= ∂xφ

n+1(Xn+1), (3.4)
13



and the seond one (IE) writes
Xn+1 − Xn

∆t
= V n+1, (3.5)

V n+1 − V n

∆t
= ∂xφ

n+1(Xn). (3.6)But some basi omputations on the (EI) sheme lead to
Xn+1 − 2Xn + Xn−1

∆t2
= ∂xφ

n(Xn), (3.7)whereas the same ones for the (IE) sheme give
Xn+1 − 2Xn + Xn−1

∆t2
= ∂xφ

n+1(Xn). (3.8)The two shemes (3.7) and (3.8) orrespond to an expliit andan impliit time disretization of the equation desribing themotion of eletrons
d2X

dt2
= ∂xφ(t, X).In order to get stable numerial results with respet to the timestep ∆t and the parameter λ and sine we deal with strongosillations in spae and in time of the eletri potentiel φ, wehave to hoose the sympleti sheme (IE) to solve (3.1)-(3.2).Therefore the starting point of the harateristi urves end-ing at (Xn+1, V n+1) is omputed thanks to the following numer-ial sheme

Xn = Xn+1 − ∆t V n+1, (3.9)
V n = V n+1 − ∆t ∂xφ

n+1(Xn). (3.10)The seond step of the semi-Lagrangian method deals withthe interpolation of fn(Xn, V n) by using the values of fn on themesh points. This is done by using loal ubi B-splines. Formore details on this step, we refer the reader to [7℄.14



3.2 The lassial time disretization for theVlasov-Poisson modelIn this subsetion, the Ampère equation will be used to preditthe eletri �eld at time tn+1 (En+1 = −∂xφ
n+1) in (3.10). In-deed, we use the fat that in one dimension of spae, the Poissonequation (2.2) and the Ampère equation (2.3) are equivalent(note that the methodology an be extended to multidimen-sional problems using the ontinuity equation, see [6℄ for exam-ple). In the rest of the paper, the use of the Ampère equation inorder to predit the eletri �eld at time tn+1 will be referred tothe �lassial time disretization�. Its time disretization writes

En+1
i = En

i +
∆t

λ2
jn
i , (3.11)where ∆t is the time step, En

i is the eletri �eld evaluated at
t = tn in x = xi. Finally, jn

i denotes the urrent evaluated attime tn in xi, and is given by
jn
i =

Nv∑

j=0

f(tn, xi, vj)vj∆v, (3.12)with ∆v the veloity step.Hene the lassial numerial sheme an be deomposedinto the following steps.Let us suppose that f(tn, xi, vj), (∂xφ
n)i are known on themesh pointsStep 1. Computation of a predition of En+1

i , alled Ẽn+1
i ,by solving the Ampère equation

Ẽn+1
i = En

i +
∆t

λ2
jn
i ,where jn

i is omputed via (3.12).Step 2. Resolution of (2.4)15



• Bakward advetion of ∆t in the spatial diretion
Xn = Xn+1 − ∆t V n+1.

• Bakward advetion of ∆t in the veloity diretion
V n = V n+1 − ∆t ∂xφ

n+1(Xn),Step 3. Interpolation of f(tn, Xn, V n) and updating of thedistribution funtion thanks to the following equality
f(tn+1, Xn+1, V n+1) = Πf(tn, Xn, V n),where Π is an interpolation operator.Step 4. Computation of the density ρn+1(Xn+1)

ρn+1(Xn+1) =

∫

IR

f(tn+1, Xn+1, v)dv,and resolution of the Poisson equation at time tn+1 to get φn+1and En+1.It is well known that the stability of this lassial shemerequires a spae and a time step whih resolve the parameter
λ (the numerial results will show this fat). But this lassialapproah will be used as a referene to make omparison withthe new approah.3.3 The asymptotially stable time disretiza-tionAs evoked previously, we use the Reformulated Poisson Equa-tion (2.14) to ompute the eletri potential at time tn+1. Tothat purpose, a time disretization has to be performed, de-dued from a time disretization of the Euler-Poisson equation(see [4, 5, 8℄). 16



In the sequel, we fastly reall the main steps allowing toderive a time disretization of the Reformulated Poisson Equa-tion. The starting point is the semi-disretization in time of(2.11)-(2.12) in the following way
ρk+1 − ρk

∆t
+ ∂xj

k+1 = 0, (3.13)
jk+1 − jk

∆t
+ ∂xS

k − ρk∂xφ
k+1 = 0. (3.14)Now, we perform the same omputations as in the ontinuousase (see setion 2.3): we take the disrete time di�erene of(3.13) and we ombine it with the spae derivative of (3.14) toeliminate the disrete moment jk. This leads to

ρk+1 − 2ρk + ρk−1

∆t2
+ ∂x

(
ρk∂xφ

k+1
)

= ∂2
xS

k. (3.15)By substituting the density ρk+1 by (1 + λ2∂2
xφ

k+1) thanks tothe Poisson equation whih we suppose satis�ed at time tn+1,we get the semi-impliit time di�erening of (2.14)
−∂x

(
(ρk∆t2 + λ2)∂xφ

k+1
)

= −∆t2∂2
xS

k−2ρk+ρk−1+1. (3.16)Let us remark that (3.16) is an ellipti problem whih allows toompute φk+1 thanks to quantities at time tn and whih doesnot degenerate when λ goes to zero; moreover, its numerialresolution has the same ost as the traditional Poisson equation.The spatial approximation of (3.16) is performed in a usualway, by disretizing the spae derivatives on the �xed grid (xi)iusing unentered �nite di�erenes. The reader is refered to [5℄for more details.4 Continuous dispersion relation of thelinearized Vlasov-Poisson modelIn this setion, we study the dispersion relation of the linearizedVlasov-Poisson model for di�erent values of λ. To derive the17



dispersion relation; the Vlasov-Poisson model (2.1)-(2.2) is lin-earized around a equilibrium Maxwellian distribution funtion
f0(x, v) =

1√
2π

exp

(
−v2

2

)
, E0(x) = 0. (4.1)We may reformulate the Vlasov-Poisson system (2.1)-(2.2) asequations for the perturbations f1 and E1 of the equilibrium(4.1) so that

f = f0 + f1, E = 0 + E1.We dedue that they satisfy the linearized Vlasov-Poisson equa-tion
∂tf1 + v∂xf1 − E1∂vf0 = 0, (4.2)
λ2∂xE1 = −

∫
f1 dv. (4.3)Note that the linearized Poisson equation is equivalent to

λ2∂tE1 =

∫
vf1 dv (4.4)whih orresponds to the linearization of the Ampère equationaround the Maxwellian steady-state.The dispersion relation of (4.2)-(4.3) (see[11℄) is

D(ω, ξ, λ) = 1 +
1

λ2ξ2

∫
∂vf0

ω

ξ
− v

dv. (4.5)As in [15℄, this funtion D (4.5) an be reformulated as
D(ω, ξ, λ) = 1+

1

λ2ξ2

(
1 +

√
π

2

ω

ξ
exp(− ω2

2ξ2
)

(
i − erfi (

ω√
2ξ

)

))
.(4.6)where er� is the imaginary error funtion de�ned suh that

erfi(0) = 0, and
d

dx
erfi(x) =

2√
π

exp(x2).18
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(a) (b)Figure 1: Absolute value of the Imaginary part of the solutionto (4.6) as a funtion of ξ: (a) λ = 1, (b) λ = 10−1.For the reader's onveniene, the details of the omputationsfrom (4.5) to (4.6) have been put in the Appendix.This last formulation enables to ompute numerially ω as afuntion of (ξ, λ). In the sequel, we plot the imaginary part ofthe solutions of (4.6) as a funtion of ξ for di�erent values of λ.We an observe that there exists at least two urves of solu-tions of (4.6). We plot on Figs. 1, 2 two urves of solutions ofthe dispersion relation: the absolute value of the Imaginary partof the solution ω = ωr + iωi is plotted as a funtion of the wavenumber, for di�erent values of λ. Several urves of solutionsexist, but we restrit ourselves to solutions with small ωi.In the literature, numerial simulations apture the wave as-soiated with the smallest ωi sine the others waves are dampedvery fastly; however, residual of these highly damped waves anbe observed at the beginning of the simulations: the �rst osil-lation is usually larger than the following ones (see [6, 14℄).
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(a) (b)Figure 2: Absolute value of the Imaginary part of the solutionto (4.6) as a funtion of ξ: (a) λ = 10−2, (b) λ = 10−3.5 Stability analysis of the linearized equa-tionsIn this setion, we study the linear stability of a semi-disretizationin time of the Vlasov-Poisson (Vlasov-Ampère) system and ofthe Vlasov-RPE system. For eah system, we start from thetime disretization of its linearized version. Then, by usinga spatial Fourier transform, the disrete dispersion relation isomputed for eah sheme, whih enables to study the stabilityof the time disretization. Even if looking at the stability of alinearized semi-disretized version of the initial model is quiterestritive, this study is easier and an give some indiationsof the behavior of the fully disretized model. Let us mention[9℄, in whih the authors perform a similar study for the Euler-Poisson and Euler-RPE systems; asymptoti stability is thenproved when the RPE is used.
20



5.1 Stability analysis of the linearized Vlasov-Ampère systemIn order to analyse the numerial stability of the semi-disretesheme, we start from the time disretization of the linearizedversion the Vlasov-Poisson model (4.2)(4.4)
fn+1

1 − fn
1

∆t
+ v∂xf

n+1
1 − En+1

1 ∂vf0 = 0, (5.1)
λ2

∆t
(En+1

1 − En
1 ) =

∫
vfn

1 dv, (5.2)where the �ux term as well as the eletri �eld is onsideredimpliit, following [9℄. In order to analyse the stability of thenumerial sheme (5.1)-(5.2), it is ustomary, at this point, to in-trodue the Fourier transforms in spae of the perturbed distri-bution funtion and of the eletri �eld. The numerial shemein Fourier spae reads
f̂n+1

1 − f̂n
1

∆t
+ iξvf̂n+1

1 − Ên+1
1 ∂vf0 = 0, (5.3)

λ2

∆t
(Ên+1

1 − Ên
1 ) =

∫
vf̂n

1 dv, (5.4)where f̂n, Ên denote the spatial Fourier transform of fn, Enrespetively.Let us follow the standard proedure for analyzing small am-plitudes waves. Assuming that all perturbed quantities evolvein time like exp(−iωt), the Fourier transforms in spae of f̂nand Ên an be written as
f̂n

1 = Cf exp(−iωn∆t), Ên = Ce exp(−iωn∆t), (5.5)where Cf and Ce are funtions of ξ. Seeking the solution of(5.3)-(5.4) under the form (5.5) leads to
Cf [exp(−iω∆t)(1 + i∆tξv) − 1] = Ce∆t exp(−iω∆t)∂vf0,

Ce
λ2

∆t
(exp(−iω∆t) − 1) =

∫
vCf dv,21



whih gives
Cf =

Ce∆t exp(−iω∆t)∂vf0

exp(−iω∆t)(1 + i∆tξv) − 1
, (5.6)

Ce
λ2

∆t
(exp(−iω∆t) − 1) =

∫
vCf dv. (5.7)Sine we deal with non-zero solutions, plugging the expres-sion of Cf given by (5.6) in (5.7) gives

λ2

∆t
(exp(−iω∆t) − 1) −

∆t exp(−iω∆t)

∫
v∂vf0

exp(−iω∆t) − 1 + i exp(−iω∆t)∆tξv)
dv = 0,whih an be rewritten as

λ2

∆t
(exp(−iω∆t) − 1) − i

ξ

∫
v∂vf0

exp(iω∆t) − 1

i∆tξ
− v

dv = 0. (5.8)Some basi omputations lead to
1 − i

∆t

λ2ξ(exp(−iω∆t) − 1)

∫
v∂vf0

ã − v
dv = 0,with ã =

exp(iω∆t) − 1

i∆tξ
=

a

ξ
. Sine the following equality holds

∫
v∂vf0

ã − v
dv = ã

∫
∂vf0

ã − v
dv,the disrete dispersion relation assoiated to the Vlasov-Ampèredisretization is given by

D∆t
1 (ω, ξ, λ) = 1 +

exp(iω∆t)

λ2ξ2

∫
∂vf0

ã − v
dv. (5.9)22



Moreover, for all α ∈ C| , we have (see the Appendix for moredetails)
∫

∂vf0

α − v
dv = 1 + α

√
π

2
exp(−α2/2)

(
i − er�(α/

√
2)

)
.This previous omputations �nally give the following disretedispersion relation

D∆t
1 = 1 +

exp(iω∆t)

λ2ξ2
(5.10)

(
1 +

√
π

2

a

ξ
exp(− a2

2ξ2
)

(
i sign (ξ) − erfi (

a√
2ξ

)

))(5.11)with a = (exp(iω∆t)−1)/(i∆t). Remark that, sine lim∆t→0 a =
ω, in the limit ∆t tends towards 0, we reover the ontinuousdispersion relation (4.5)

lim
∆t→0

D∆t
1 (ω, ξ, λ) = D(ω, ξ, λ).Thanks to this formulation of the dispersion relation (5.11),we are able to ompute ω as a funtion of (ξ, λ, ∆t). Themain goal onsists in the determination of the behavior of thesmall amplitudes perturbed waves: if Im(ω) < 0, the perturba-tions are damped and the numerial sheme is stable whereas ifIm(ω) > 0, the numerial sheme is then unstable. The numer-ial results are resumed in the table 1. We an observe that thestability ondition has to be respeted; indeed when ∆t > λ, we�nd Im(ω) > 0 and the numerial sheme is then unstable.5.2 Stability analysis of the linearized Vlasov-RPE systemIn this part, we perform the same analysis as previously for theVlasov-RPE system

∂f

∂t
+ v∂xf − E∂vf = 0, (5.12)

−∂x

[
(λ2∂tt + ρ)E

]
= ∂xxS. (5.13)23



∆t, λ 1 10−1 10−2 10−3 10−4

10−1 −0.8808 −0.1506 +45.55 +91.8 +137.86
10−2 −0.8563 −1.8028 −1.7806 +1381 +1842
10−3 −0.8518 −1.7585 −1.7377 −1.7376 +18420
10−4 −0.8513 −1.7538 −1.7533 −1.7331 −1.7333

0 −0.8513 −1.7533 −1.7528 −1.7326 −1.7326Table 1: Imaginary part of the root of the dispersion relationassoiated to the Vlasov-Ampère model in the impliit ase:Im(ω) for ξ = 1 as a funtion of (∆t, λ).The linearized Vlasov-RPE system around the Maxwellian steadystate writes
∂tf1 + v∂xf1 − E1∂vf0 = 0, (5.14)
∂x(λ

2∂2
t E1 + E1) = −∂2

xS1, (5.15)with S1(t, x) =
∫

v2f1(t, x, v) dv.In order to reover the ontinuous dispersion relation whihpermits to analyse the small amplitudes waves, we assume thatall perturbed quantities vary with (x, t) like exp(i(ξx − ωt)).Thus equations (5.14)-(5.15) redue to
i(ω − ξv)Cf + Ce∂vf0 = 0, (5.16)
iξ(1 − ω2λ2)Ce = ξ2

∫
v2Cf dv (5.17)respetively. Solving the �rst of these equations for Cf andsubstituting into the integral in the seond, we formally get, (if

Ce is non-zero) the following dispersion relation
D̃ =

1

ξ
− ω2λ2

ξ
+

∫
v2∂vf0

vξ − ω
dv = 0.Using the fat that

∫
v2∂vf0

vξ − ω
dv = −1

ξ
+

ω2

ξ2

∫
∂vf0

vξ − ω
dv24



we get̃
D(ω, ξ, λ) =

ω2λ2

ξ


1 +

1

λ2ξ2

∫
∂vf0

ω

ξ
− v

dv


 = 0 (5.18)whih is the same dispersion relation as for the linearized Vlasov-Poisson equation multiplied by (ωλ/ξ)2.We ompute the time approximate solutions of the linearizedVlasov-RPE system (5.14)-(5.15) with the following numerialsheme

fn+1 − fn

∆t
+ v∂xf

n+1 − En+1∂vf0 = 0, (5.19)
λ2 ∂xE

n+1 − 2∂xE
n + ∂xE

n−1

∆t2
+ ∂xE

n+1 =−∂2
x

∫
v2fndv.(5.20)The stability analysis is done using the spae Fourier transformof (5.19)-(5.20)

f̂n+1 − f̂n

∆t
+ iξvf̂n+1 − Ên+1∂vf0 = 0, (5.21)

i
λ2

∆t2
(Ên+1 − 2Ên + Ên−1) + iÊn+1 = ξ

∫
v2f̂n dv. (5.22)Note that the equation (5.22) is still valid when ξ = 0.As in the Vlasov-Ampère ase, we use the deomposition (5.5)for the linear stability analysis.Seeking the solution of (5.21)-(5.22) under the form (5.5) leadsto

Cf [exp(−iω∆t)(1 + i∆tξv) − 1] = Ce∆t exp(−iω∆t)∂vf0,(5.23)
i
λ2

∆t
(exp(−iω∆t) + exp(iω∆t) − 2) (5.24)

+i exp(−iω∆t)Ce =ξ

∫
v2Cf dv. (5.25)25



Sine we deal with non-zero solutions, plugging the expressionof Cf given by (5.23) in (5.25) leads to
i
2λ2

∆t2
(cos(ω∆t) − 1) + i exp(−iω∆t) =

ξ

Ce

∫
v2Cfdv.Using the fat that

∫
v2Cf dv =

iCe

ξ

∫
v2∂vf0

ã − v
dv, with ã =

exp(−iω∆t) − 1

i∆tξ
,we get

−i
4λ2

∆t2
sin2(

ω∆t

2
) + i exp(−iω∆t) = i

∫
v2∂vf0

ã − v
dv.Sine the following equality holds

∫
v2∂vf0

ã − v
dv = 1 + ã2

∫
∂vf0

ã − v
dv,the disrete dispersion relation assoiated to the Vlasov-RPEdisretization (5.21)-(5.22) is

D∆t
2 (ω, ξ, λ) = 1−exp(−iω∆t)+

4λ2

∆t2
sin2

(
ω∆t

2

)
+ã2

∫
∂vf0

ã − v
dv.(5.26)The previous omputations give the following disrete dispersionrelation

D∆t
2 = 1 − exp(−iω∆t) +

4λ2

∆t2
sin2(

ω∆t

2
) (5.27)

a

ξ

(
1 +

√
π

2

a

ξ
exp(− a2

2ξ2
)

(
i sign (ξ) − erfi (

a√
2ξ

)

)) (5.28)Remark that, in the limit ∆t tends towards 0, we reover theontinuous dispersion relation (5.18)
lim

∆t→0
D∆t

2 (ω, ξ, λ) = ξD̃(ω, ξ, λ).26



The numerial solutions of the dispersion relation D∆t
2 areexposed in Table 2 where the imaginary part of ω is written asa funtion of ∆t and for di�erent values of λ. As expeted, thenumerial sheme is stable for all values of λ and ∆t sine allthe values of the imaginary part of ω are negative.

∆t, λ 1 10−1 10−2 10−3 10−4

10−1 −0.8949 −2.0081 −1.9817 −1.9817 −1.9817
10−2 −0.8573 −1.7924 −1.7708 −1.7707 −1.7707
10−3 −0.8519 −1.7574 −1.7367 −1.7366 −1.7366
10−4 −0.8514 −1.7537 −1.7332 −1.7330 −1.7330

0 −0.8513 −1.7533 −1.7328 −1.7326 −1.7326Table 2: Imaginary part of the root of the dispersion relationassoiated to the Vlasov-RPE model in the impliit ase: Im(ω)for ξ = 1 as a funtion of (∆t, λ).6 Numerial resultsIn this setion, we propose to validate the method with twotests ases. The �srt one is a linear Landau damping: a uniformquasi-neutral stationary solution of the Vlasov-Poisson equationis perturbed. The seond one is the bump-on-tail instability (see[24, 26℄). As pointed out in setion 2, the total energy is pre-served with time at the ontinuous level. As a diagnosti, wethen are interested in the time evolution of the kineti, eletro-stati and total energies Ek, Ep and Et, respetively given by
Ek =

1

2

∫ ∫
fv2dvdx, Ep =

λ2

2

∫
E2dx, Et = Ep + Ek.We also plot the eletri �eld and the logarithm of the eletrienergy to aurately study the damping oe�ient omputed inthe previous setion. 27



6.1 Linear Landau dampingWe then initialize the Vlasov-Poisson equation with
f0(x, v) =

1√
2π

(1 + α sin(κx)) exp(−v2

2
),on the interval [0, 2π/κ], with periodi boundary onditions inthe spae diretion and homogeneous Dirihlet boundary on-ditions in the veloity diretion. The same numerial test asehas been studied in [8℄ using a PIC solver of the Vlasov equationoupled with the Reformulated Poisson Equation.The numerial parameters are the following: vmax = 6 wherethe veloity domain extend from −vmax to vmax, we use a num-ber of ells Nv = 128; the κ parameter is taken equal to κ = 1,

α << 1 to onsider linear regimes, and ∆t = 0.5∆x/vmax.The two di�erent methods we detailed in setion 3.1 are om-pared: the lassial method uses the Ampère equation to preditthe eletri potential at time tn+1 whereas the asymptoti stableapproah uses the RPE disretization (3.16).The initialization of the RPE sheme is done in the followingway: we �rst ompute the initial density ρ0 thanks to the initialdata f 0 and we assume that ρ−1 = ρ0. Thanks to (3.16), we areable to ompute φ1, the approximation of φ at time ∆t. For theAmpère approah, lassially the initial density ρ0 enables us toompute φ0 aording to the Poisson equation; then thanks tothe initial urrent, we an advane the disrete Ampère equation(3.11) to get φ at time ∆t.On Figs. 3, 4 and 5, we give the results obtained by thetwo approahes with λ = 1 and ∆x = 2.4 × 10−2, whih resultsto a resolved ase sine (∆x, ∆t) < λ. The kineti, eletriand total energies are plotted on Fig. 3, the eletri �eld attime t = 2 ω−1
p and t = 10 ω−1

p is plotted on Fig. 4 and thelogarithm of the eletri energy on Fig. 5. For both methods,the results are stable sine the stability onstraint is full�lledfor the Ampère approah. The total energy is partiularly wellonserved with time for both methods. We an also observe that28



the results of the RPE approah are very lose to the standardone on the di�erent quantities we plot. Moreover, the numerialdamping oe�ient is in well agreement with that omputed inthe previous setion for the two approahes. This test validatesthe RPE method with respet to the standard one.On Figs. 6, 7 and 8, the same numerial parameters areonsidered but λ = 0.1. The same onlusions as before areavailable for these results: both methods give aurate resultswith respet to the total energy onservation and to the dampingoe�ient. Moreover, the assoiated period of the wave is verylose to the omputed omplex solution of the dispersion relation(ω = 10.15 − i0.12 whereas numerially we obtain ω = 10.2 −
i0.1).Finally, Figs. 9, 10 and 11 present some results where λ =
10−2. In this ase, the stability ondition is not (stritly) re-speted in the standard approah neither in the RPE algorithm.However, both methods give stable results even if we an observesome di�erenes. Indeed, on Fig. 10, the Ampère approahmakes appear some osillations on the eletri �eld whereasthe RPE one does not. The RPE method smoothes the mi-rosale osillations and onsequently gives stable results, evenwhen λ < ∆x. On Fig. 11 the logarithm of the eletri en-ergy is plotted as a funtion of time. Up to t ≈ 4 ω−1

p , bothmethods are nearly superimposed. First, the two urves presenta highly damped behavior sine the damping oe�ient equals
−10; then, a seond behavior appears with a lower dampingoe�ient (about −1.73). We verify that these two behaviorsare solutions to the dispersion relation; as mentioned in the se-tion 4, the dispersion relation has several solutions, and two ofthem are aptured by the numerial methods. From a quanti-tative point of view, the numerial methods are able to reoveraurately the solutions of tables 1 and 2. For large times, theAmpère method seems to degenerate whereas the RPE approahappears to be more robust (we an observe a reurrene e�etfor example on Fig. 19; see also remark 6.1).29



The last �gures present numerial results for the RPE ap-proah only. Indeed, when λ = 10−3 or 10−4, the Ampère ap-proah gives rise to unstable results: the eletri �eld generatedby the Ampère equation beomes very strong whih pushes thepartiles outside the veloity domain, so the total mass fallsto zero. On Fig. 12, we observe that the total energy is stillwell preserved with time even if a deay ours at the beginningof the simulation. This remains quite reasonable ompared tothe deay observed for PIC simulations in [8℄ due to the largenoise resulting from the PIC assignment proedure. The use ofa phase spae grid solver seems to e�iently avoid this kind ofphenomenom. On Fig. 14 the logarithm of the eletri �eld alsopresents two di�erent behaviors (the �rst behaviour, very fast,an not be distinguished on the �gure 14). They are both in agood agreement with the solutions of the dispersion relation wedetermined in setion 4. On the ontrary, in the Ampère on-text, sine there exists one solution of the dispersion relationwhih gives rise to a positive imaginary part, the method leadsto unstable numerial results.Finally, the asymptoti preserving property is investigatedonsidering very small values of λ (λ = 10−4, 10−8). We wantto hek if the numerial sheme tends towards a numerial ap-proximation of the limit system of the Vlasov-Poisson system as
λ goes to zero. To that purpose, we ompare our numerial re-sults in whih λ = 10−8 with the limit system (2.9)-(2.10). Thenumerial parameters are the same as previously. The initialondition with α = 0 has to be onsidered to respet the quasi-neutrality ondition ρ = 1 initially. In this ase, the eletri �eldis null everywhere and the Maxwellian initial ondition is thena stationary solution. We an observe that the RPE methodgives satisfatory results sine the eletri �eld is very lose tozero (see Fig. 16), and the total energy is equal to π for largetimes. Fig. 18 shows that the total mass is equal to one for theRPE method whereas the total mass assoiated to the Ampèreapproah fails to zero, due to numerial instabilities. We an30



observe that for λ lose to zero, the RPE approah is able tonumerially reover the quasi-neutral limit with a �xed grid ofthe phase spae, i.e without resolving the small sales as theDebye length for example.
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Remark 6.1 In the previous example where the spatial frequeny
κ was hosen equal to one, the Landau damping rate is too strongto observe the reurrene e�et. This purely numerial e�et isdue to both a veloity disretisation and a periodi spae box; itan be proved (see [14℄) the problem is periodi in time with aperiod of length the reurrene time TR = 2π/(κ∆v).In some simulations, the reurrene e�et an not be ob-served (see Fig. 11 for example). It is not redued or elimi-nated; the numerial parameters are suh that the amplitude ofthe eletri �eld reahes the roundo� mahine preision beforethe reurrene time. Hene, the reurrene e�et is then elimi-nated.In order to illustrate this reurrene phenomenon, we hoosea smaller spatial frequeny κ = 0.5 to obtain a smaller Landaudamping rate (see Fig. 1). The results are presented on Fig. 19and we reover the reurrene e�et at time TR = 2π/(κ∆v) forthe two methods. In this ase, we hose Nv = 64 so that thereurrene time TR ≈ 67ω−1

p .
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6.2 Bump on tail instabilityWe initialize the Vlasov-Poisson equation with
f0(x, v) = f1(v)(1 + α cos(κx)),where α = 0.04, κ = 0.3 and the phase spae domain is [0, 20π]×

[−9, 9].The funtion f1 is a distribution funtion whih has a bumpof the Maxwell distribution on its tail,
f1(v) = np exp(−v2/2) + nb exp(−(v − vd)

2/2v2
t ),where vd = 4.5, vt = 0.5 and nb/np = 2/9, and the amplitudeof the bump is hosen in order to satisfy ∫

f1(v) dv = 1. Thenumerial parameters are the following: ∆t = 0.5∆x/vmax with
vmax = 9. The two methods are ompared in this nonlinear on-text with respet to the eletrostati energy Ep and the spatiallyintegrated distribution funtion

F (t, v) =

∫ 20π

0

f(x, v, t)dx. (6.1)Obviously, di�erent values of λ are investigated.In the ase λ = 1, we plot in Fig. 20 the time evolution ofthe eletrostati energy Ep = λ2

2

∫
E2dx. The number of pointsis Nx = Nv = 1024 so that ∆t = 0.0034. First of all, the twomethods give rise to equivalent results: the instability grows af-ter t = 10 ω−1

p and the maximum value of Ep is reahed for thetwo methods at t ≈ 21 ω−1
p . These quantitative observations arein very good agreement with the results obtained in [24℄. But,due to a �rst order time integration of the harateristis andto an additional di�usion of the method, the amplitude of theeletri energy has a tendeny to derease when long time simu-lations are onsidered. Howevern this tendeny is qualitativelyomparable with the two methods and for this reason, annot beattributed to an exess of numerial di�usion produed by the41



use of the RPE. Rather, it is most probably a onsequene of the�rst order time integration of the harateristis, a seond ordertime integration of the harateristis an remove partially thisphenomenon. Then, onsidering the ase λ = 1, we plot on Fig.21 the time development of the spatially integrated distributionfuntion given by (6.1). The small bump on the tail is trappedby the eletri �eld and a plateau is gradually formed for ve-loities in the range v ∈ [2, 6]. The same onlusions have beendrawn in [24℄.Now, we test the method in under-resolved situations, whenthe time and spae steps are several orders larger than the Debyelength, and we show that the RPE method gives stable resultsin whih the plasma osillations and wave-lengths are �lteredout. Of ourse, in suh under-resolved situation, the Ampèreequation is dramatially unstable. In the following, the numberof points is �xed equal to 128 in eah diretion and the value of
λ is modi�ed.On Fig. 22 and 23, the time history of the eletri energy isplotted for the two methods with λ = 0.1, in a resolved situa-tion: the spatial and time steps are suh that ∆x, ∆t < λ = 0.1.We observed that the results are very similar for both approhes.However, if the same numerial parameters as in the previ-ous ase are onsidered (so that an under-resolved situation(∆x = 0.5 > λ and ∆t = 0.027) is onsidered), the Ampèreapproah leads to unstable results sine the eletri energy be-omes very important around t ≈ 100 ω−1

p . On the ontrary, theRPE approah is able to produe an aurate history of the ele-tri energy even for very large time sales. However, the osilla-tions whih oured at the beginning (t < 10 ω−1
p ) in the resolvedase (see the right pannel of Fig. 22) have nearly disappearedin the under-resolved ase. The RPE approah seems to dampthese osillations so that stable results are obtained for largertimes. In fat, small sales are not onsidered by the methodand only a overall behaviour is reprodued so that marosopitime sales an be envisaged even when λ is small. On Fig. 26,42



we plot the total energy as a funtion of the time. First, as ob-served before, in the resolved ase, the two approhes are nearlysuperimposed. Then, we remark that the RPE approah, inthe under-resolved ase displays an energy deay whih is fasterbut still of the same order as in the resolved ase. As in theprevious ase, the RPE approah shows a orret behavior atlarge time sales whih enables stable long time simulations ofquasi-neutral plasmas.All these phenomena are available when the value of λ isdiminished; indeed, on Fig. 27, λ = 10−2 and on Fig. 28 λ =
10−4 are onsidered with �xed spatial and time steps: ∆x = 0.5and ∆t = 0.027. As observed in the previous tests, the eletrienergy is strongly damped at the beginning of the simulation.However, the time history of the total mass and total energy onFig. 27 and 28 is well reprodued sine they are well preservedeven in these strongly under-resolved ases.
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∂vf0

v − α
dv, α ∈ C| ,where f0 is a Maxwellian

f0(v) =
1√
2π

exp(−v2/2).
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∫

∂vf0

v − α
dv = Pr ∫

∂vf0(v + α)

v
dv + iπ∂vf0(α), (8.1)where the Cauhy prinipal value denoted by Pr is de�ned byPr ∫ +∞

−∞

g(v)

v
dv = lim

δ→0

[∫
−δ

−∞

g(v)

v
dv +

∫ +∞

δ

g(v)

v
dv

]
.Let us detail the omputations assoiated to the �rst term whihwe all I.

I = − 1√
2π

Pr ∫
(v + α) exp(−(v + α)2/2)

v
dv

= − 1√
2π

[∫
e−(v+α)2/2dv + αPr ∫

e−(v+α)2/2

v
dv

]
.46
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∆x = 0.5, λ = 0.1.Let us all J the last term.

J = Pr ∫
e−(v+α)2/2

v
dv

= lim
δ→0

[∫
−δ

−∞

e−(v+α)2/2

v
dv +

∫ +∞

δ

e−(v+α)2/2

v
dv

]

= lim
δ→0

[∫ +∞

δ

e−α2/2e−v2/2
(
−eαv − e−αv

)
dv

]

= −2e−α2/2

∫ +∞

0

exp(−v2/2) sh(vα)
dv

v
.It is possible to express this last integral as a funtion of the er�funtion, er�(x) = (2/

√
π)

∫ x

0
exp(t2)dt. Indeed, notiing that

y(x) =

∫ +∞

0

e−v2/2sh(vx)
dv

v
,47
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0.1.satis�es the di�erential equation y′′ − xy′ = 0, we get that

∫ +∞

0

e−v2/2sh(vα)
dv

v
=

π

2
er�(

α√
2

)
.Hene, gathering the previous terms leads to an expression of I

I = − 1√
2π

[√
2π − αe−α2/2πer�(α/

√
2)

]
. (8.2)Finally, the initial omplex integral we look for beomes

∫
∂vf0

v − α
dv=− 1√

2π

[√
2π−αe−α2/2πer�(α/

√
2)

]
− i

√
π

2
αe−α2/2,

= −1 + α

√
π

2
e−α2/2er�(α/

√
2) − i

√
π

2
αe−α2/2,

= −1 + α

√
π

2
e−α2/2

(er�(α/
√

2) − i
)

.48
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