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Abstract. We give uniqueness theorem and reconstruction algorithm for the non-
linearized problem of finding the dielectric anisotropy f of the medium from non-overdeter-
mined polarization tomography data. We assume that the medium has uniform background
parameters and that the anisotropic (dielectric permeability) perturbation is described by
symmetric and sufficiently small matrix-function f. On a pure mathematical level this
article contributes to the theory of non-abelian Radon transforms and to iterative methods
of inverse scattering.

1. Introduction
We consider the system

00,m = mof(x)n, xR HeS? (1.1)
where
SN
00, = 0;,—, 1.2
Z Jaxj ( )
j=1
n at fixed 6 is a function on R® with values in Z, (1.3
Zp={zcC?: 20 =0}, (1.4)
f is a sufficiently regular function on R® with values in Ms 3 (1.5)
(that is in 3 x 3 complex matrices) with sufficient decay at infinity, .
mp is the orthogonal projector on Zj. (1.6)

In (1.1) the unit vector 6 is considered as a spectral parameter.

System (1.1) arises in the electromagnetic polarization tomography and is a system
of differential equations for the polarization vector-function 7 in a medium with zero con-
ductivity, unit magnetic permeability and appropriately small anisotropic perturbation of
some uniform dielectric permeability. This anisotropic perturbation of the dielectric perme-
ability tensor corresponds to the matrix-function f of (1.1). In addition, by some physical
arguments, f must be skew-Hermition, fi; = —f;;. For more information on physics of
the electromagnetic polarization tomography see [Sh1], [NS], [Sh3] and references therein
(and, in particular, [KO] and [A]).

Let

w e S? 068&,, 0t =wx 0,

g = 1w, pg =n" for ne Zy,
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where
SL={eS*: 6w =0}, (1.9)

x denotes vector product, Zy is defined by (1.4).
From (1.1)-(1.9) it follows that

00,10 = F(z,0,w)p, R HeSk,

(wf(m)w  wf(x)dt _ BVl (1.10)
F(:E’Hﬂw) - (OLf(x)w QJ‘f(l‘)QJ‘> ’ 'ff(x)C - Z flj( )£1Cja

1<4,5<3

where y is related with n of (1.1) by (1.8) and is a C*-valued function on R? for fixed w
and 6.

We consider also (1.10) for p taking its values in My o (that is in 2 x 2 complex
matrices). Let u denote the solution of (1.10) such that

lim pt(z+ s6,0,w) =1Id for zeR?, (1.11)

S§——00

where Id is the 2 x 2 identity matrix. Let

S(z,0,w) = lim pt(z+s0,0,w), (x,0) €Ty, (1.12)

s——+400

where
T, ={(z,0): v€Xy, HS.}, weSs?

1.13
Xp=ReZy, HeS? (1.13)

where S, is defined by (1.9), Zp is defined by (1.4). In addition, ut and S are well defined

due to (1.5).
Note that
I, CTS?* weS? (1.14)
where
TS = {(2,0): z€R?, 9eS?, 20 =0}. (1.15)

In addition, we interpret TS?™! as the set of all rays in R%. As a ray v we understand a
straight line with fixed orientation. If 4 = (z,6) € TS ', then
y={yeR?: y=x+s0, scR} (modulo orientation) and @ gives the orientation of .
Note also that

I, ~R*x S, (1.16a)

or, more precisely,
(2,0) €T, &z =601 + &Huw, €=(£,86)eR?, HeSL ~S, (1.16b)
where w € §?, 8+ = w x 0. In addition, we consider (&,0) e R? x S' as coordinates on I',.
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One can see that S of (1.12) is a matrix-function on

Y={(y,w): y€T,, weS’}=

) ) (1.17)
{(pw): v =(2,0) TS, weSp},
where S is defined as in (1.9). On the other hand, one can show that
S(x,0,w) at fixed weSy and (z,0) € TS?
uniquely determines S(z,6,:) on S; and, (1.18)

. . . 2
as a corollary, S can be considered as a matrix — function on T'S”.

The matrix-function S can be considered as a non-abelian ray transform of f. See
[MZ], [V], [Sh2], [N], [FU], [E], [M], [DP], [P] and references therein for some other non-
abelian ray transforms.

In the present work we say that S of (1.11)-(1.13) is the polarization ray transform of
f.

Using the terminology of the scattering theory one can say also that S is the ”scat-
tering” matrix for system (1.10).

The basic problem of the polarization tomography in the framework of the model
described by (1.1), (1.10) consists in finding f on R® from S on A, where A is some
appropriate subset of 3 of (1.17). It is especially natural to consider this problem for the
case when dim A = 3.

From results of [NS] it follows that there is a non-uniqueness in this problem if f is
not symmetric even if S is given on A = X. Results of [NS] also imply a local uniqueness
theorem (up to a natural obstruction if f is not symmetric) for the case when S is given
on ¥ (or on TS? in the sense (1.18)).

In the present work we consider the following inverse problem for equations (1.1),
(1.10).

Problem 1.1. Find symmetric f, fi; = fji, from S on A (or from partial information
about S on A), where

A={(y,w): veTly,, we{w, .. . "}, (1.19)

. 2
where w!, ..., w" are some fixed points of S°.

One can see that Problem 1.1 is a version of the aforementioned basic problem of the
polarization tomography with dim A = 3, see definitions (1.13), (1.17), (1.19).

The main results of the present work consist in uniqueness theorem and reconstruction
algorithm for nonlinearized Problem 1.1 with sufficiently small f, where only the element
Si1 of S = (S5;5) on A is used as the data and where

k=6, w' =e1, w? =es, w3 =es,

wh = (e1 + €2)/V2, W° = (€1 + €3)/V2, Wb = (es+e5)/V?2, (1.20)

where eq, e, e is the basis in R, See Sections 2, 3 and, in particular, Theorem 3.1.
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One can see that this reconstruction is non-overdetermined: we reconstruct 6 functions
fij» 1<i<j<3,on R? from 6 functions S1;(-,w), w € {w',...,w’}, of 3 variables.

Our reconstruction is iterative and its first apprximation more or less coincides with
the linearized polarization tomography reconstruction of Section 5.1 of [Sh1]. In addition,
we give estimates on the reconstruction error f— f™ for the approximation f” with number
n € N, see Theorem 3.1 . To our knowledge even f — f! was not estimated rigorously in
the literature.

The main results of the present work are presented in detail in Sections 2 and 3.

Some possible development of the present work and some open questions are mentioned
in Section 6.

2. Reconstruction algorithm
Consider the classical ray transform [ defined by the formula

If(v) = /f(:v + s0)ds, v=(x,0) € 7S 1, (2.1)
R

for any complex-valued sufficiently regular function f on R? with sufficient decay at infinity,
where TS? ! is defined by (1.15) (and where d = 2 or d = 3).
We use the following Radon-type inversion formula for [ in dimension d = 2:

(@) = % / W (20,0040, B(s,0) = Lh(s,0),

ds
(2.2)
h(s,0) = %p.v./@dt,

where g(s,0) = If(s6+,0), x = (x1,22) € R?, 0 = (61,60) € S', 6+ = (—65,6,), s € R, df
is the standard element of arc length on S'.

We use the following slice by slice reconstruction of f on R?® from g = If on T, of
(1.13) for fixed w € S$*:

22 (2.30)
7S' (V) Y
for each two-dimensional plane Y of the form
Y =X(S,) +y, yeXH(S,), (2.3b)

where S, is defined by (1.9), X (S.) is the linear span of S} in R®, X (S1) is the orthogonal
complement of X (S}) in R*, TS'(Y) is the set of all oriented straight lines lying in Y. In
addition,

T, =U TSY(X(SL) +v). (2.4)

yex+(S.)
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Consider the three-dimensional transverse ray transformation J defined by the formula
(see Section 5.1 of [Shl]):

Jf(v,w) = H{wfw)(y) =

/wf(:c + sOwds, (v,w) € X, v=(x,0), (2.5)
R

for any M3 3-valued sufficiently regular function f on R? with sufficient decay at infinity,
where w fw is defined as in (1.10), ¥ is defined by (1.17).

We use the following reconstruction of symmetric f on R? from Jf on A of (1.19) for
wl,...,wk given by (1.20):

fii =190, =123,

_ 1
fiz=11g,— §(f11 + fa2),

) 1 (2.6)
fiz =1 g, — §(f11 + f33),

_ 1
foz =14 guo — §(f22 + f33),

where g, = J f ‘F and I ;! denotes the slice by slice reconstruction via inversion formulas

(2.2), (2.3) for I from data on I',,.

Now we are ready to present our iterative reconstruction of sufficiently small, sym-
metric and compactly supported f from the element Sy; of S = (5;;) on A, where S is
defined by (1.12), A is defined by (1.19), (1.20).

Thus, in addition to (1.5), we assume that

[ is symmetric, fi; = fji,
f(z)=0 for |z|>ro, (2.7)

f is sufficiently small.
Let

AO = (Sll - 1)‘/\7 (28)
fr=xJ A, (2.9)

where J, ! denotes the reconstruction via inversion formulas (2.6) for J from data on A,
x denotes the multiplication by smooth x such that

=1 f <
x(z) or |z| <o, (2.10)
x(z) =0 for |x|>r,

where rg is the number of (2.7), 1 > rg.



In our iterative reconstruction, f! is the first approximation to f.

From the approximation f" with number n the approximation f"*! with number
n + 1 is constructed as follows:

(1) We find the element u};" of u"* = (,u?j’L) on

V={(z,0,w): €R? 0cS., we{w, . . . ub}}, (2.11)
where "1 satisfies (1.10), (1.11) with f™ in place of f in (1.10);
(2) We find
STy (z,0,w) = SEIJPOO wi (z+s50,0,w), (x,0,w) € A, (2.12)
A™ = (S11— ST 45 (2.13)

(3) Finally, we find
fn+1 — X(fn + JXlAn), (2.14)
where J, ! and  are the same that in (2.9).

Note that in (2.9), (2.14) we do not assume that A", A™ are in the range of J.
However, J) 'g is well-defined on the basis of (2.6) for any

9= (9w, 9u,6), where
goi 1s a complex — valued sufficiently regular

. . . (2.15)
function on TI',; with sufficient decay at
infinity (see (1.16)) for each ¢ € {1,...,6}.
3. Convergence
We consider
L®o(R?) = {u: 4 e L®(R?), ||“||ﬁoo.,a(R3) < 400}, 0>0, (3.1)
where .
u(p) = (%)3 / ePry(x)dz, pe R, (3.2)
RS
el sy = 18l
[l .o ety = 55 5D (1+ [p])7 (D)) (3.3)
(R™) 3
pER
We consider
C*7(R?) = {u: 0 e Cl(R?), HUH@a,G(]RB) < 400}, >0, 0 >0, (3.4)
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where 4 is defined by (3.2), Cl® denotes [a]-times continuously differentiable functions,
[a] is the integer part of «,

”uHé’a,G(Rg) = Ha”ca,a(R3)7 (35)

HﬂHca,g(Rz): sup (14 p))?107a(p)| for o= o], (3.6)
171<[o], peR?

HaHCa,U(RB) = max (N1, Np) for a > o],

Nl = ||aHC[a],U(R3)7

o (3.7)
Ny = sup (1+|p))°? 07 a(p’) /— 87 U(P)|,
71=[a], peR?, peR?, [p—p'|<1 lp — p/|e~le]
where
0 u(p) = %, J = (J1,J2,J3) € (NUO), |J| = Ji + Jo + J5. (3.8)
Op;' Opy* Ops®

In addition, in (3.1)-(3.8) we assume that u, @ are M,,, ,,-valued functions, in general,
where M,,, ,,, is the space of n; X ny matrices with complex elements,

|M| = max |M;;| for M € My, n,. (3.9)
1<i<ng J 12
1<j<ng

In addition, in the present work we always have that 1 <n; <3, 1 <ng <3.

Lemma 3.1. Let u € L7 (R?), v € C*(R?), where a > 0, 0 > 3. In addition,
in general, we assume that u is My, n,- valued and v is My, m,- valued, where moy = ny
or/and ny = my (and where 1 < ny,na, my,ms < 3). Let

either w = vu for mg =mny

(3.10)
or w=uv for ng =m;.
Then for each of w of (3.10) the following estimate holds:
w e C*7(R?)
(3.11)
||w||é’a,a(R3) S )\1(&? J)||U||éa,a(R3) ||u||ﬁoo,a(R3)
for some positive \y = A\1(«, 0).
Lemma 3.1 is proved in Section 4.
We consider
B0 (8) = {g: §€17(A), glzmmen) < +o0}, 720, (3.12)
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where ¢ is complex-valued, A is defined by (1.19) with w?, ..., w" given by (1.20),

g:(g(AJl’"'?ng)? .g:(g(AJl?"'?gwk)?
goﬂ:gh—\ia gwi:griv
. 1 'w (3.13)
Jwi(p,0) = (%) /elpwgwi(a:ﬂ)da:, (p,0) €T, i=1,...,k,
Xo
Hg||f,°°xd(A) = H§||L°°vff(A),
|9z (a) = max ess sup (14 [p])7|gus (p,0)]; (3:14)

1€4{1,....,k} (p,0)eT i

where I',, and Xy are defined according to (1.13). Actually, in (3.12) we consider L>(A)
as

L®A) =L>(T,1) @ ... ® LT r). (3.15)
We assume that

f isa Ms3 — valued function on R3,
fe L (R?) for some o > 3,

[ is symmetric, fi; = fji,

f(z) =0 for |z|>ro,

(3.16)

x is a nonnegative real — valued function on R3,

x € C™(R®) for some m e N, m > o,

x(x) = x(y) if |y = [z, (3.17)
x(x) =1 for |z| <o,

x(z) =0 for |x| >r,

where 7o, 71 are some fixed real numbers, ro < 1. Properties (3.16), (3.17) imply, in
particular, that

Xf _Afa , (318)
x € C*?(R”) for any « > 0.
Theorem 3.1. Let f and x satisfy (3.16), (3.17). Let
HfHAoo,O' 3 S‘Sggo(aaaap)?

Lor & (3.19)

‘|XHC’1+@,J(R3) < P

for some a €]0,1[, p > 0, g9 > 0, where €9 = €¢(a, 0, p) is sufficiently small. Let S be the
polarization ray transform of f (see Section 1 and, in particular, formulas (1.11), (1.12)).
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Let A be defined by (1.19), (1.20). Then the element S11 of S = (Si;) on A uniquely
determines f by the iterative reconstruction algorithm of Section 2; in addition,

"= f i L°(R3) as n— +o0,

" el n (3.20)
||f - f ||£M,U(R3) S a/(a,O', p)(b(a,a, p)) 18 +17

for some a and b, where f™, n € N, are defined by (2.9), (2.14).
Theorem 3.1 follows from Lemma 3.1, properties (3.18), and Propositions 3.1, 3.2, 3.3.

Proposition 3.1. Let
g€ L®°(A) for some o >3, (3.21)

where g is complex-valued (and A is defined by (2.19), (2.20)). Let Jy* be defined as in
(2.9). Then

Jytg e L=7(R?), (3.2
||J1§lg‘|£ma(R3) < )\2Hg||ﬁoo,g(A) )

for some positive Ao. In addition, if g = Jf, where f satisfies (3.16), then g satisfies (3.21)
and
Jilg=T. (3.23)

Proposition 3.1 is proved in Section 4.

Proposition 3.2. Let the assumptions of Theorem 3.1 be fulfilled. Let °Jf on A
and 51 f on R® be defined by the formulas

A =Jf+6°Tf on A, (3.24)
JIAY = f 460 f on R, (3.25)

where A, J PAY are defined as in (2.8), (2.9). Then

50T f € L= (A),

3.26
60 F ) < Al )22, (3:20)
o' f € Lo (R?), 327
Hélin/oo,o(RB) S )\2)\3(@,0’, p)€2? .
for some positive \3 = A3(a, o, p).
Proposition 3.2 is proved in Section 4.
Proposition 3.3. Let
fr=x(f+d"f), (3.28)
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where f, x satisfy (3.16), (3.17),
5nf c i—joo,cr(]Ri%)7
Hf”fjoo,o‘(RS) S € S 81(a70-? p)?
Hf _|_ 5nf”ﬁoo,o’(R3) S € S 51(0{,0', p)?

‘|X‘|él+a,o’(R3) S p

(3.29)

for some a €]0,1], p > 0, &1 > 0, where &1 = €1(a, 0, p) is sufficiently small. Let f"*! be
constructed from S11 (for f) and f™ as described in Section 2. Then

= x(f+ 6", (3.30)

where .
6n+1f c LOO’U(RS),

n n (3.31)
H5 +1f”fjoo,o’(R3) S )\4(@,0’, p)ng fHEoo,o‘(R:a)

for some positive \y = A\y(, 0, p).
Proposition 3.3 is proved in Section 5.
To obtain Theorem 3.1 we assume that gg of (3.19) and £; of (3.29) are so small that

€0+ Xadged < g1, Mg <1,
0 2A3E) S €1, A4€1 (3.32)

)\4(1 + )\2)\380) <b, beyg <1,
for some b = b(«,0,p), where Ay, A3, A4, €1 are the constants of Propositions 3.1, 3.2,
3.3. Under these assumptions, Theorem 3.1 follows directly from Propositions 3.2, 3.3 and

Lemma 3.1. In addition, we use Proposition 3.3 with ¢ given as € + AyA3e? in terms of €
of Theorem 3.1.

4. Proofs of Lemma 3.1 and Propositions 3.1 and 3.2

Let
L7 (R?) = {0 € L=(R?) : lll . 2y < 00}, @ 20, (4.1)
where || - HLoo,a(R3) is defined as in (3.3),
C*7(R®) = {a € CIY(R?) : o]l o o gy < +00}, @ >0, 0 >0, (4.2)

where Cl®] and || - are defined as in (3.4) and (3.6), (3.7),

oo ®?)
L>9(A) ={9 € L=(A) : ||I9llpece(n)y < +oc}, o >0, (4.3)

where || - ||ps.o(a) is defined as in (3.14). In addition, we assume that @ of (4.1), (4.2) is
matrix-valued (of some fixed size), in general, and § of (4.3) is complex-valued.
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Proof of Lemma 3.1. We use, in particular, that
u/lﬁg - lALl * ag,
iy * fa(p) = /ﬁl(p — )iz (p')dp’, peR?, (4.4)
RB

where uy, up are test functions on R®, @ is defined by (3.2). In addition, wuj, ug are
matrix-valued, in general, where the matrix product is defined in the standard way.
By the assumptions of Lemma 3.1 we have that

o€ L®°(R?), 0 € C¥°(RY). (4.5)
Formulas (3.11) follow from (4.4), (4.5), where we use, in particular, that
dp’ c1(o)
< for o > 3, 4.6
R/3<1+|p—pfr>v<1+|p'|>v 0+ ) o)

for some positive ¢; = ¢1(0).
Lemma 3.1 is proved.

Proof of Proposition 3.1. We use that I g, of (2.3), (2.6) can be defined also as
I;lgw = u,,, where
(47) 7 (9 (9, 0) + G (p, =0)) = G(p), p € Xo, 0 €S,

where u,, and 4, are related by (3.2), g, and g, are related as in (3.13). Indeed, (4.7)
means that

(4.7)

(2m)~3 / PTGV (, 0)dx = (2m) 3 / PPy, (x)d,
Xo R? (4.8)
peX\{r=sw,5scR}, S, weSs?

where )
9" (2,0) = 5(9u(2,0) + g(2,~0)), (z,0) € L. (4.9)
Representing p in (4.8) as
p=p10" + pow (4.10a)
and representing x in the left hand side of (4.8) as
T =60 + LHuw (4.10b)

and integrating (4.8) with e~ %22 one can see that u,, of (4.7) is the function such that
(2m) ™2 / P G (6107 + Eaw, 0)0(& — &) dErdEs =
RQ
(2m)~2 / eiplelwuw(:c)(S(w:c —&))dz, pr € R\0, & eR.
RS

(4.11)
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It remains to note that it is actually well-known that the determination of uw}y from

gw{Tsl(Y) via (4.9), (4.11) is equivalent to such a determination on the basis of (2.3),

where y = &w.
Formulas (4.7) imply that

€ L=7(R%),
HﬁwHLw,U(RB) < (47)_1”gw||L°°’0(1"w) (4.12)
if g, € L>=(T,),
where L>7(T,,) is considered as L7 (A) (see (4.3)) for the case when A is reduced to the

single T',.
Proposition 3.1 follows from (2.6) and (4.12).

Proof of Proposition 3.2. We consider Iy, Dy defined by

Tyu(x) = /u(a: +s0)ds, x€ X, 0€S? (4.13)
R
+oo
Dou(z) = / u(z + s)ds, = €R? 6cS? (4.14)
0

where u is a matrix-valued test function on R*, Xy is defined in (1.13).

We use that
pt(,0,w) = Id+ D_o(F(-,0,w)un" (-, 0,w)) on R, (4.15)
S(,0,w) =Id+ Ig(F(-,0,w)u™(-,0,w)) on X, (4.16)
where pt, F, S are defined in Section 1 (see (1.10), (1.11), (1.12)), # € S.,, w € S*. In

addition, (4 15) is an integral equation for u™, (4.16) is a formula for S.
Lemma 4.1. Let u € C%9(R?) for some o > 3. Then

Tou € OO’U (Xg),

(4.17)
Mol o (x,) < 2]l o0 ey, 0 €52
where

CO7(Xg) ={g: §€CXo), lgllgorixy < +o0}, (4.18)

~ 1 2 ipx

a(r) = (32) /ep g(x)dz, p € Xo, (4.19)

Xo
Hg”éo,o(x(,) = Héllco,o(xe),

(4.20)

19]lco.o(x,) = sup (14 [p|)7]g(p)|-
pEXp
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Lemma 4.1 follows from the formula

2m)tg =1 for g = Iyu (4.21)

Xo

and definitions (3.2)-(3.6), (4.18)-(4.20).
Lemma 4.2. Let

[ wu(z)w wu(z)0+
v(@,0,w) = <9Lu(az)w QLu(x)HL) ’ (4.22)

where u is a M3 3- valued function on R3 = € R? w, 0, 0+ are vectors of (1.7). Then

||U(',9,w)||ﬁoo,a(R3) < 02||U||,joo,a(R3) for u € IAJOO’U(RS), o>0, (4.23)
lo( 8,0l o ) < C2lltll oo gy Jor w€ CHO(RY), @20, 020, (4.24)
where co is some positive constant.
Lemma 4.2 follows from definitions (4.22), (3.1)-(3.8).
Lemma 4.3. Let u € C*°(R?) for some o €]0,1[, 0 > 3. Let v € C1T*7(R3). Then

vD_gu € C*7(R?),

) (4.25)
HUD—GUHC’Q,U(R'?’) S CS(a7 O-)H/I')Hé’l-i-a,o'(R?’)HUHC’OA,U(RB)7 0 6 S Y

for some positive cz = c3(a, o).
In Lemma 4.3, u, v are matrix-valued, in general, where the matrix product is defined
in the standard way.

Proof of Lemma 4.3. We use that

D_gu() = G *u(z) = / G (@ — y)uly)dy,
R3

(4.26)
Gy (z) = §(wz)s(0+2)h(0),
where w, 0, 0+ are related as in (1.7), § is the Dirac function,
h(s) =1 f > 0,
(s) or s (4.27)
h(s) =0 for s <0.
Further in this proof we assume for simplicity that
0=e, 0F =ey, w=es, (4.28)

where ej, ey, e is the basis in R®.
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We use that

U1 * U = (27‘(’)3@1’&2, (429)

where uy, ug are the same that in (4.4).
We use also that, under assumptions (4.28),

Gi ) = (2n) ™" [ ol s(ahir)i =

RB
1 1 1 (4.30)
2m) 2 — [ PP p(2y)day = (27) 2= = (2m) P —— R?
@2m) 25 [ PP ha)dn = (2n) P e = () pe
R
Due to (4.26)-(4.30), we have that
"o ia(p) 3
D = P 5 eRE. 4.31
ou(p) oo P (4.31)
Due to (4.4), (4.31), we have that
vDyu(p) = /ﬁ(p ~p) 28y pe RS, (4.32)
Py + 140
RZ%
To prove Lemma 4.3, it is sufficient to prove that
| 5\ )| < 03,1(047U)H@H(ja,a(]Rs)||a||ca,o(]R3) (4.330)
VLgup)| > , .33a
(L+1[pl)®
ouDgup), 2@l gnsme e il
| | < - , (4.33)
apj (1 + |p|)
for p e R3, j = 1,2, 3 and some positive 3,1, C3,2-
Proceeding from (4.32) we have that
vDgu(p / / p) i) dp’ = A(p) + B(p) (4.34)
pl + 10 ’ '

lpiI<1  |pyl>1

Alp) = / oo =i +po. [ 30— )P 4y — AL () + As(p)(4.35)

/ pl

pi= |py <1

191 go,0 2y 4] 8
o (R%) coo(R% .,
[Ar(p)| < / o = dp' <
(1 + |p - D |) (1 + |p |) (4.36)

p1=0

63,171(0-) H/ﬁHCO,o’(RB) Ha|’00,a(R3)(1 + |p|)—a’
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H{)HCQ -(R3 ”ﬂHCQ o (R3 |p/ |a
As(p)| < Const(o / (/ T(IR) 7 ( )dp'> 1 . <
| 2( )| ( ) (1—|—’p—p'|)"(1—|—’p'|)” |p’1’ 1

Ip,|<1 p|=0 (4.37)
¢3,1,2(2 0)0]] oo m2) 18]l oo g2y (1 + [PD 77
191l go.0 2y 2] 3
R0 @R
B(y)| < / ap' <
1_|_ p_p/ o 1_|_ p/ o
iy =P D70+ 1P (4.38)

1(0) 9] .o 5 1] o et (1 101

where p € R3, 31,1, C3,1,2 are some positive constants, ¢; is the constant of (4.6).
Estimate (4.33a) follows from (4.34)-(4.38). Estimate (4.33b) follows from (4.34)-
(4.38) with o(p) replaced by 0v(p)/Op;.
Lemma 4.3 is proved.
We continue the proof of Proposition 3.2.
Using (4.15), the property that

F(-,0,w) = xF(-,0,w), (4.39)

where  is the function of (3.16), (3.17), and Lemmas 3.1, 4.3 we obtain that

—+o0
ph(,0,w) =TId+ > D_gw;(-,0,w),
=1 (4.40)
w;(+,0,w) =F(,0,w)D_g...F(-,0,w)D_g F(-,0,w),
j—1
+oo
F('7 07w)lu+('7 0,&)) = F(7 0,&)) + ij+1('7 ng)7 (441)
=1

where

i—1
Hw]'(WH?w)H(ja,a(R?’) < (03(a7U)HF('aevw)HéHa,a(R?’))j ||F('797w)||éa,a(R3) <

L (4.42)
qi(g2)’ e,
where
1 = Mi(a, U)CQHXH@(X,J(RS), (4.43)
g2 = M (1 +a,0)ccs(a, 0)||X||él+a,o(R3)7
and A1, co, c3, € are the numbers of Lemmas 3.1, 4.2, 4.3 and Theorem 3.1.
Due to (4.41)-(4.43), we have that
+
||F(= G,W)H ('7 0,&)) - F(7 07w)||éa,a(R3) <
(4.44)

= j q1G2€>
€ g)) = ,
O j§_1(q2 Y =7 _——
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under the condition that goe < 1.
Due to (4.16), (4.44) and Lemma 4.1, we have that

2mq1 qoe?
HS(.,G,w)—Id—feF(-,@,w)H(jO,a(Xe) < T (4.45)
and, in particular,
S11(- 6 1-1 : < 10’ 4.46
1511 (-, 0,w) =1 = wawHCO,a(Xe) > 1——q2€ (4.46)
To obtain (3.26) we use (4.46), (4.43) and the following estimate
”XHC’QU(RB) < C4(a70)||XHé’1+a,o’(R3)7 (447)
where ¢4 is an appropriate positive constant. In addition, it is assumed that ¢ of
Theorem 3.1 is so small that
q2e0 < 1/2. (4.48)

As a result, proceeding from (4.46) we obtain (3.24), (3.26).
Finally, (3.27) follows from (3.24)-(3.26) and Proposition 3.1.
Proposition 3.2 is proved.

5. Proof of Proposition 3.3
We will use that in the construction of f**! from f™ and S;; the steps given by (2.13),
(2.14) can be rewritten as

frt = xJy (S - 1= 1), (5.1)
where 77} is the element of T" = (T7}), where

T (x,0,w) = ligl U(x+s6,0,w), (z,0,w) €A, (5.2)
00, U™ (x,0,w) = F"(z,0,w) ("t (z,0,w) — Id),
lim U'(x+s6,0,w) =0, (z,0,w)eEV,
where F™ and p"t are defined as F' and p™ of (1.10), (1.11) with f™ in place of f, V is
defined by (2.11).
Indeed, (5.2), (5.3) and the definition of "t imply that

(5.3)

U'(z,0,w) = u""(z,0,w) — Id — D_gF™(z,0,w), (x,0,w)€V, )
TV (z,0,w) = STy (x,0,w) — 1 — [hwf™(z)w, (x,0,w) € A, (5.5)

where Iy and Dy are defined by (4.13), (4.14). Using (5.5), (2.5) one can see that (5.1) is
equivalent to
= Ty (Su = Sy + ™). (5.6)
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Using that Jy'Jf™ = f™ (this is completely similar to (3.23)), one can see that f"*! of
(5.1), (5.6) coincides with f1 of (2.14).
Thus, it is sufficient to prove Proposition 3.3, where (2.14) is written as (5.1).
In this proof, in addition to 7" and U", we consider also 7' and U (defined in a
completely similar way with 7™, U™):
T(z,0,w)= lim U(x+s0,0,w), (x,0,w)€A, (5.7)

Ss——400

00,U(x,0,w) = F(z,0,w)(ut(z,0,w) — Id),

SEIPOO U(x+s0,0,w) =0, (z,0,w)eV, (5.8)
In addition, (in a completely similar way with (5.4), (5.5)) we have that
U(z,0,w) = put(z,0,w) — Id— D_¢F(z,0,w), (z,0,w)eV, (5.9)
Ti1(x,0,w) = S11(z,0,w) — 1 — [wf™(z)w, (z,0,w) € A. (5.10)
One can see that
frrt &) XJy (S — 1= T1) + xJy (T — T) (294510 (5.11)
IR T3 (T =T U2 (6, |
where
S = T N (T - TH). (5.12)

Thus, to complete the proof of Proposition 3.3 it is sufficient to obtain an appropriate
estimate on 711 — 17} (estimate (5.31) given below).

Let
0"y =17 — Ty, (5.13)
O"F =F" — F, (5.14)
Ot = ptt =t (5.15)

Using the definitions of 7™ and T one can see that 0”77, is the element of §"1" = (6"T5;),
where

"I = IQ(Fn(a eaw)(un—i_('v 9,&)) - Id) o F(7 evw)(u+('7 9,&)) - [d))’ (516)
where Iy is defined by (4.13). In addition, using (5.14), (5.15) formula (5.16) can be

rewritten as
ST = Ig(6"F(-,0,w)(ut (-, 0,w) — Id) + F™(-,0,w)6"u™t (-, 0,w)). (5.17)

The following estimates hold:
16" F(-,0,w) (1" (- 0,0) = Id) ]| p o 2

q143¢ n
)\1(0470)02(1 — q25)||5 f||ﬁoo,a(R3),

) <
(5.18)
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mn n, +
”F ('797("})5 1% ('797w)|’éa,g(R3) S
qquEHCSanZIoo,o'(R?’) (5.19)
(1 — goe)?
under the condition that goe < 1, where ¢, g2 are given by (4.43),

q3 = 03(a70)||X||él+a,a(R3)v (5.20)

¢ is the number of (3.29), A1, c2, c3 are the numbers of Lemmas 3.1, 4.2, 4.3, 0 € S}u,
we S?
Proof of (5.18). Using (3.28), (4.39) and the definiions of F', F"", §"F' we have that

7w .) = xto) (BT BT, (5.21)

reR? HeS, weS
Using (4.40), (4.42) and Lemma 4.3 we obtain that

400
i— q143€
”X(:u—i_(v 9,&)) - Id)”éaa(R3) S Q1Q352(Q28)J ! = 1 i 226 (522)
i=1

under the condition that gse < 1.
Estimate (5.18) follows from (5.21), (5.22) and Lemmas 3.1 and 4.2.

Proof of (5.19). Using (4.40) for u™ and for u™* we have that

“+o0
F™(-,0,w)8"u* (-,0,w) = F"(-,0,w) Y D_g6™w;(-, 6, w),
j=1

5nwj('a 9,&)) = ’LU;L(, 9,&)) - wj('a 9,&)),

(5.23)

where w? is defined as w; of (4.40), but with F™ in place of F. In addition, one can see
that

0wy (-, 0,w) =0"F(-,0,w),

5.24
6"wjt1(+,0,w) =6"F(-,0,w)D_gw(-,0,w) + F(-,0,w)D_g0"w;(-,0,w), j €N, (5:24)

In addition, using (5.21), (5.24), Lemma 4.3, estimate (4.42) for v} and Lemma 3.1 we
have that
||5nwj+1('7eaw)Héa,o(R?’) <

3(0r, I 0.0) | g ey 183+

5(0 P, 0,0)l| gy e 16705 0,0 oo oy < (5.25)
Q@ 10" 1 o ey + 22615705 (10,0 o 5

[6™01 (10,6l oty < D™ e
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Using (5.25) we obtain that

H(snwj('ﬂ 97w)||éa,a(R3) < Q1H5nf“i/oo,a(R3)Zj,

: (5.26)
Zit1 = (@) +@eZ;, Z1=1
In addition, one can see that
Z;=3j(qe) ™, jEN, (5.27)

Estimate (5.19) follows from (5.23), (5.26), (5.27), Lemmas 3.1 and 4.3 and the formula

+oo . 1
E:ﬁfdz(l_mw 0<r<l. (5.28)
j=1

Using (5.12), (5.18), (5.19) and Lemma 4.1 we obtain that

”5nT(7 97w)HC‘0,U(X9) <

124143 q192 1 2 (5.29)
" fll- fesS S*.
( 1— qoe + (1 o QQE)2)€” fHLoo,o'(Rs)’ €9, wE
Proceeding from (5.29) and assuming that ; of (3.29) is so small that
we obtain that
16" T | oo (a) < (2A1¢20103 + 40192)e]|0" fl] 1 o R (5.31)

where q1, g2, g3, A\1, c2 are the same that in (5.18), (5.19).
Finally, (3.31) follows from (5.12), (5.31), (4.47) and Proposition 3.1.
Proposition 3.3 is proved.

6. Final remarks

Remark 6.1. In a subsequent paper we plan to generalize the iterative approach of
the present work to the case of the polarization tomography with limited phase measure-
ments, see, for example, [HL], [Sh3| for more information on this problem. Actually, in the
framework of the model described by (1.1) the polarization tomography with limited phase
measurements is reduced to the inverse problem for (1.10) with f — (1/2)tr (mg fm)Id in
place of f. In this inverse problem we do not plan to restrict the ”scattering” matrix S to
its element S7; only (in contrast with results of the present work).

Remark 6.2. It remains unclear whether a version of the Riemann-Hilbert prob-
lem method of [MZ], [N] can be used for solving Problem 1.1, instead of the iterative
approach of the present work. The reason is that the dependence of F(x,0,w) on the
spectral parameter 6 (and, more precisely, the quadratic dependence on 6 of the element
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Fyo(z,0,w) = 0+ f(2)0+) in (1.10) is not appropriate, in general, for direct applications of
the Riemann-Hilbert problem method of [MZ], [N].

Remark 6.3. On the other hand (with respect to Remark 1.2), if f is skew-symmetric,

fij = —fji, then Fys = 0 and the dependence of F(z,0,w) on @ is appropriate for direct
applications of aforementioned Riemann-Hilbert problem method to the inverse problem
for equations (1.1), (1.10). We remind that some results on the polarization tomography
with skew-symmetric f, including examples of transparent f, were given in [NS]. However,
the Riemann-Hilbert problem method was not yet used in these studies.
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