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Abstract

In this work we study reactive flows through porous media. We suppose dominant Peclet’s number, dominant
Damkohler’s number and general linear reactions at the pore boundaries. Our goal is to obtain the dispersion
tensor and the upscaled model. We introduce the multiple scale expansions with drift for the problem and use
this technique to upscale the reactive flow equations. Our result is illustrated with numerical simulations for

the dispersion tensor.
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1. Introduction

Our understanding of porous media flows comes
from the knowledge of basic physical principles at the
pore level and from observations at the macroscale.
Solving multiphase multicomponent Navier-Stokes e-
quations at the level of pores (the fine scale) requires
gathering of tremendous amount of fine scale data.
Consequently, the present computational resources are
not able to handle such flows. Furthermore, it is al-
most impossible to obtain a complete description of
the geometry and of the ongoing chemical process.

To circumvent this difficulty a usual approach is
to describe the essential physical behavior in an av-
eraged sense. This corresponds to upscaling from the
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microscale to the macroscale, where we do not have
to consider all finer scale details.

There are different approaches to the upscaling of
flows through porous media. Early references involve
the method of moments (Aris, Brenner), more recent
papers use either volume averaging or multiple scale
expansions. The multiple scale expansions have the
advantage of making the results mathematically rig-
orous by means of the homogenization method.

The simplest flow type in porous media is sin-
gle phase single component flow. Here upscaling of
the Navier-Stokes equations gives Darcy’s law. The
multiple scale expansion was constructed by Ene and
Sanchez-Palencia and the approximation was justified
by Tartar using the homogenization method. For a
review of the classic results on derivation of Darcy’s
law, with detailed references, we refer to [2].

Next important question linked with the saturated
flow through porous media is the upscaling of tracer
dispersion. The transverse diffusion causes the parti-
cle cloud, which is transported by the flow, to undergo
a transition from the pore level convection-diffusion to
a convection-dispersion phenomenon at the macroscale.
The observed spreading is called hydrodynamic dis-
persion. Its effects are closely linked with the size of
the Péclet number and for diffusive transport through
porous media we are typically in Taylor dispersion-
mediated miring, which means that we have a dom-
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inant Péclet number smaller than a threshold value.
When Péclet’s number reaches that threshold value,
than diffusive transport changes its behavior to tur-
bulent mizing.

The theoretical study of the dispersion goes back
to the pioneering paper of Taylor [35], where an ex-
plicit expression for effective dispersion in cylindrical
capillaries was found. It led to thousands of arti-
cles on dispersion in capillaries. It is interesting to
note that recent mathematical analysis from [26] and
[12] showed that Taylor’s dispersion theory is valid for
all Péclet’s numbers smaller than the threshold value,
corresponding to the characteristic small scale diffu-
sion and the characteristic global advection times of
same order. This was advocated through numerous
numerical experiments in [15], where Péclet’s num-
bers corresponding to Taylor’s experiments from [35]
were determined and found to be close to the thresh-
old value.

For study of dispersion in porous media using an
averaging technique, we refer to [11] and [31]. The
upscaled system is obtained by making the ad hoc clo-
sure hypothesis that the perturbation of the upscaled
concentration is proportional to its gradient.

Study of the dispersion in porous media via anal-
ysis by multiple scale expansions was undertaken in
a number of papers. Papers [33] and [24] focused at
the important case when Péclet number is of order
e~!, where ¢ is the characteristic pore size. In [8] dis-
persion was studied for various magnitudes of Péclet’s
numbers. The systematic study of the dispersion ten-
sor is in [34] and in [7].

Presence of the chemical reactions complicates fur-
ther the situation. Already for reactive flows through
capillaries the literature is reduced to several recent
papers (see [15] for references). We mention mod-
eling dispersion for a flow in a biporous media with
adsorption in the micropores, in [10] using multiple
scale expansions technique from [9]. Multiple scale
expansion for reactive flows with dominant Péclet’s
number and with infinite rate constant for adsorption
is in [21]. The case of infinite linear adsorption con-
stant is considered in [23].

In most situations it turned out that the multi-
ple scale expansions could be done rigourously us-
ing a particular homogenization tool called the two-
scale convergence. It was introduced by Nguentseng
and Allaire and we refer to [1] for a complete the-
ory with applications and references. It was general-
ized to cover also presence of surface terms in [4] and

[27]. The two-scale convergence not only justifies us-
ing multiple scales expansions but also for very com-
plex structures is simpler than expansions, because
it necessitates less computations. An example is ob-
taining Biot’s equations from poroelasticity (for re-
view see [25]). With such motivation, Piatnitski et al
introduced in [13] and [22] the two-scale convergence
with drift. See also [3] for a detailed theory. Then it
was applied with success in [5] to reactive flows with
volume reactions and infinite linear adsorption con-
stant at pore boundaries.

In this paper we present for the first time in the en-
gineering literature the multiple scale expansion with
drift applied to reactive flows through porous media
with dominant Péclet’s and Damkohler’s numbers and
general linear surface reactions. It was anticipated in
[28], pages 212-216, and is closely linked with theoreti-
cal notion of the two-scale convergence with drift. The
question of the rigorous mathematical justification of
the upscaling is addressed in the preprint [6]. In this
article we present the model, apply the multiple scale
expansion with drift to it and obtain formally the up-
scaled model. Then it is illustrated with numerical
simulations for the dispersion matrix. We note that
in [8] and [34] it was necessary to use two time scales
in order to get the correct result. Here we will see
that the approach is more elegant and calculations
shorter.

The plan of the paper is as follows: In Sec. 2 we
present examples of the reactive flows covered by our
result.

2. Examples of reactive flows

We consider reactive transport of solute particles
transported by a stationary incompressible viscous
flow through a porous medium. The flow regime is
assumed to be laminar through the fluid part Qf of
this porous medium, which is supposed to be a net-
work of interconnected channels. The flow satisfies
a slip (non penetrating) condition on the fluid/solid
interfaces and (1; is saturated by the fluid. Solute
particles are participants in a chemical reaction with
the solid boundaries of the pores.

2.1. Model for reactive transport of a single solute
This is the simplest example and it is described
by the following model for the solute concentration c*
and for the surface concentration ¢*:
ac*

o T V¥ (5, t7) - Vet — D*V2.¢* =0 in Qf, (1)




where v* is the fluid velocity, and D* the molecu-

lar diffusion (a positive constant). At the solid/fluid

boundary 9€); takes place an assumed linear adsorp-

tion process, described by the following equations:
oc¢* ¢

:8t*:k(c CK*

—D*V ' -n ) ondQy, (2)
where k* represents the rate constant for adsorption,
K™ the linear adsorption equilibrium constant and n
is the unit normal at 0€1; oriented outwards with re-
spect to .

2.2. Model for the binary ion exchange

We now consider another, more complex model,
namely ion exchange with two species. The binding
on the pore surfaces is due to electric charges car-
ried by the solutes and the exchange complex. For a
detailed mathematical modeling and references from
the chemical engineering we refer to [14]. Let us just
briefly recall the equations.

For ¢ = 1,2, let M; denote the ion 7 in solution, let
M; denote the ion 7 attached to the exchange complex
and let n; denote the valence of ion 7. In order to
maintain electroneutrality the exchange reaction has
the form

n2M1 + n1M2 = nlMQ + nng.

The reaction rate from left to the right will be de-
noted by ki, and from right to left by ks. In models
for the binary ion exchange differences in molecular
diffusivities are neglected. Hence in {}; we have equa-
tion (1) for both concentrations ¢}, i = 1,2. At the
solid/fluid boundaries 0€f \ 02 we suppose the fol-
lowing rate description for the adsorption reaction:

0s*

?

ot*

:Fi(d{vST?C;vS;)v 1=1,2, (3)
where F; and F, are given by F; = ng(i/ﬁl — 12:2),
= nl(icg — ];:1) and c; and s denote the concentra-
tions of M; and M;, respectively. Valences n;, i = 1,2
are supposed to be bigger than or equal to 1.

In the engineering literature it is observed that the
ion exchange capacity §° = nis] + nasj is conserved.
Following [14] and [20], we find out that {¢*, 5}, with
¢* = nic] + nacs, satisfies the equations

oc*
ot*

+ V(2" t*)Vse* — D*V2.* =0 in Qf x (0,7),
(4)
05

—D*V " -n = pr 0 ondQs\ 002 (5)

Hence §* = nys]|i=0 +n2s3|t=0. Next we observe that

1 1
s5=—(8" —mni1s8]); 5 =—(¢" —nic} 6
> n2( 151); € n2( 1) (6)
and it is enough to study the corresponding problem
for {c7, s7}.

We note that the system (4)-(5) does not contain
chemical reactions. Hence {¢*, 5"} are calculated in-
dependently and then we turn to the determination
of ¢f and s}, 7 =1,2.

Following [14] the reaction rates appearing in (3)
are

= (7)

with k‘l = %17?2531(%)711 and k‘g = 12‘27315?2(%)”1
being positive constantQS. More general rate functi%)ns,
corresponding to other chemical settings, are intro-
duced similarly (see [14]). The isotherms (i.e. singu-
lar points) corresponding to the ordinary differential
equation (ODE)

are studied in [14] where it was established that (8)
defines a monotone isotherm.

In order to get isotherms we suppose that ¢* does
not depend on time and that initially it was a con-
stant. Then ¢*(a*,t*) = C} = constant > 0. For §*
we suppose 5 = 5; = constant> 0.

Let {c}?, s]?} be such isotherm. Then

i&Fl s*

€q . eqy _ k eq\n2—1,°2  _eq n1+
e (c1',81") = naki(c)) (m 1)
y I3
B (s1)"2 (- — ) = 22 >0, (9)
n1 no
1 0F eq eq e s* _
- , = —nqk aQ\n2 (2 eqyni—1__
ng 05 (¢, s17) niki(ci’) (nl s1')
x 2
kong(sSy2 -1 (S — nym = 1 g (1)
ni no

and the linearized rate function reads

0s]
ot*

*

S

* * * 1
:Flccl _Flssl :Flc<cl - h)

= —D*Vy«c] - n.



2.8. Reactive flow systems with m species

We investigate again another model of ion ex-
change reactions, or more general adsorption reac-
tions, between an aqueous solution involving mono
and multi-valent cations and Ng different exchange
sites. It is based on the following set of simultaneous
chemical reactions

’I?,jMZ‘ + niMj(Ea)nj = TLZ‘MJ‘ + ani(Ea)np

(a=1,...,Ng), t,7=1,...,m,

where M; designates the i-th cation with valence n;
and F, signifies an exchange site of type a with unit
charge.

We are interested in the pore level modeling of
the reactive flows of m solutes. The general mathe-
matical reference is the book [18]. Chemistry is pre-
sented there through non-linear source terms and the
approach is very general. In this paper we would like
to apply our approach to particular reactive flows
with adsorption at the pore boundaries. A mathe-
matically oriented reference with detailed modeling is
the book [32]. In fact they present models with the
surface terms already scaled up to volume ones. Also
the molecular diffusion is neglected. Nevertheless, the
adsorption modeling is given in details.

We start by recalling the basic quantitative de-
scription of the adsorption mechanism. If there is a
finite rate of transfer from solution to adsorbent, then
one assumes that this rate depends on the pertinent
parameters of the problem. Frequently, it is assumed
that the rate of transfer of solute is determined by
the rate of transfer of mass through the stagnant film
about the particle, other processes occurring at equi-
librium. Let s} be the concentration of the i-th solute
on the solid in moles par unit surface. Then we have

615:‘ =k(c — "), (12)
where £ is the rate velocity and c;* the concentration
in the fluid if it was in equilibrium with the adsorbed
phase. ¢* are given non-linear functions of s}, corre-
sponding to the isotherms.

If a local equilibrium were established everywhere
at any time, then the surface concentrations s; would
be related to the volume concentrations c; by

si = filcl,...,cn),

i=1,...,m.  (13)

Typical example is the Langmuir adsorption isotherm

N;K;a;

(ai,... ="
filar 1+ Kja,

y ) i=1,...,m,

(14)
where K; = kq;/ko; is the ratio of the rate velocities
(of adsorption and desorption) and N; is the limiting
value of s} (the maximum number of moles of solute
i that can be adsorbed per unit of adsorbent).

Nonlinear mappings f; define a diffeomorphism on
a subset of R™ and we have

s¥ 1

kk )
' KiNil—Z;-nzls;/Nj7

i=1,...,m. (15)

oFf:
Properties of the Jacobian matrix [—f:] are discussed

J
in [32], Vol. 2, chapter 3, in the context of the study
of the generalized Riemann invariants. It is proved
afi .
that the matrix [8—‘}2] has m real distinct eigenvalues.
c™

It is important to note that this matrix is neither
symmetric nor normal and it is diagonalized only by
a similarity transform, which is not orthogonal.

We are interested in a linearized problem. We
suppose that there is a constant equilibrium state
(Cley---sCme) 3 Sie = fi(Cles---yCme). This is a
positive steady solution for the ODE on the surface.
Then we study the perturbation of that solution
-y Sme + Sy,

* * *
Cle t Cly--+3Cme T Cpps Sle+ S1,--

Then, using that c;e — ¢/*(s1e, ..., 8me) = 0, we have

* Kok * * *
Cie + ¢ — 7 (S1e + 815+ s Sme + Spy) = € —
m sk
Z[ﬁci l

0s’

j=1 J

s=s.5; + O(|s" ). (16)

Hence the linearized law (12) reads

ds* =
G- = K=Y Fys) = —D'Veim, i=1...m,
7j=1
(17)
where
C; i
ﬁ(l_f‘Zchje)? j#h
F. = ! j=1
i 11 “
E(E +cie)(1+ Zchje), j=1

7j=1



Since the application defining Langmuir isotherm
is bijective, we know that F' is invertible. Neverthe-
less, F' is not symmetric. Following [32|, Vol. 2,
chapter 3, we know that F' has m distinct and real
eigenvalues and there is a regular matrix S such that

SFS™ = A= diag (A,...,Am).

Our microscopic system for ¢* = diag (cf,...,c},)
and s* = diag (s},...,s),) is

g;:* + (v* - Ve )e* = D*V2.c* in Q (19)

c*(z*,0) = cy(z"), " € Qy, (20)

—D*V+c*-n = gj* = k*(c* — Fs")
on 0\ 0N (21)
s*(z*,0) =sp(z¥), " € 9Qy. (22)

Now we apply the similarity transform S to the prob-

lem (19)-(22) and obtain the following system for {Sc*, Ss*}:

a;i + (V" Vgr)(Sc*) = D*VE.(Sc) in €y
(23)
Se¢*(2",0) = Seg(a), @t €y, (24)
—D*V,+(Sc*) - n = 8;? = k*(Se* — ASs")
on 0\ 09 (25)

Ss*(z*,0) = Ss(z*), 2" €09,  (26)

Again we are back to the homogenization problem
(29)-(32), but this time for every component of Sc*.

3. Dimensionless equations and the assump-
tions on the data

The main conclusion of the previous section is that
after linearization we are back to system (1)-(2) and
that it should be the starting point for the upscaling
procedure.

To make an asymptotic analysis of the problem
we must first introduce appropriate scales deduced
from characteristic parameters. We denote them by
a R-index (meaning "reference"). The characteristic
length Lg coincides in fact with the "observation dis-
tance". We assume that the typical heterogeneities

in Q; have a characteristic size £/ << Lp. We set
14

€= I << 1 and the rescaled flow domain is now

R
Q. = Q¢ /Lg, with notation reminding us that it con-
tains pores of characteristic non-dimensional size e.
Setting

Solid part

Fluid part

Figure 1: The unit pore Y

C* * * 1 . . .
up = — T—,v(x,t):—v (x*,t"),
R R
&F
vs = —, we obtain the dimensionless equations

CR
ou VRTR D*TR .
a—tf LR V(.T,t) vaf—L—%V§’U,f =0in QE'
(27)
and
- *c Vzu n—é—Ravs = k*(cpu ¢ Us)on(?Q
Lp BV T e T Y T R R
(28)
This problem involves the following time scales:
Tr, = characteristic global advection time =K
R
2
Tp = characteristic global diffusion time = D]j:
Tpr = A (characteristic desorption time)
CR . s . .
Ty = —=— (characteristic adsorption time)
crk*
. . .. Lr
T,ecact = superficial chemical reaction time :?

and the following characteristic non-dimensional num-
bers
Peloc

LRV, T
_ g*R - T_]z = — (Péclet’s number);

Pe



LR,I;J* TD Daloc
Da = = =
D Treact €
ber).

(Damkohler’s num-

We choose to study a regime for which Tr = Tp,
i.e. we are interested at dispersion at global diffusion
time.

Let us be a little more precise on the definition of
Q.. >From now on we assume that {2, is an e-periodic
open subset of R”, n = 2,3. The unit periodicity
cell is Y = (0,1)" on which we consider a smooth
partition X% U Y? where X is the solid part and Y°
is the fluid part (its periodic extension is a smooth
connected open subset) (see Fig. 1). By periodic
translations we obtain Y7 = (Y + j), B = (X% +
7), 82 =% +7), Q. = U YZ and S. = 99..

jezn
Q. is supposed to be connect]ed and its boundary S
smooth.

The equations for u. = uy and v, = v, in their
non-dimensional form read (with the velocity v. = v)

0

67;5 + Pe v.(z,t) - Vyue = Vau, in Q. x (0,7) (29)
ue(x,0) = u'(z), = €Q., (30)

. TA 61)5

_va:ue "= Treact ot

Tp Ta

= - o0 0,7 1
Treact (ua TDEva) on : X( ’ ) (3 )
v(2,0) = 00(x), =€ 9. (32)

In the present work we make the following two hy-
pothesis.

HYPOTHESIS 1

1 1 Ty Tx
Pe~—-, Da~-, — ~¢g, — ~ 1. 33
€ € Treact Tpk ( )

Note that this hypothesis implies

Vi ~ k*, D* ~ {Vg, ég ~ ler and K* ~ (.

HYPOTHESIS 2 The velocity field is periodic, i.e.
x
vaJj::b<g)
with a periodic divergence—free vector field b(y)
satisfying

max | b(y) | < C, div,b(y) =0 in Y?,
yeY?o

b(y) -n(y) =0 on 9¥°.

The initial data are chosen such that u%(z) €

L2(R™) (i.e. / [u®(z)? dz < +o0) and v° € H'(R")
R

m./qmeHme%m<+@.nmg

n

into account (33), we rewrite problem (29)-(32) as
follows

P oc .
Orue + il b(g) Ve — V2u, = 01in Q. x (0,7),
(34)
Ou, . Ty o Day,. veTp
on B Treact atvs B ( : TDE)
on 99 x (0,7), (35)

ue(z,0) = u’(x), ve(z,0) = 00(x), (36)

with )
Ty CR

= E£—
Treact ler

where we recall that Pe;,., Day,. and eéc—’; are of order
1 with respect to e.

Remark 1. If the velocity field b(y) is not divergence-
free and/or does not satisfy the no-penetration con-
dition b(y)-n(y) = 0 on 9%, it is still possible to ho-
mogenize (34)-(36) by using first a factorization prin-
ciple in the spirit of [5].

4. Two-scale multiple expansion with drift

Before proposing a multiple scale expansion, we
need to know what is behavior of the solution with
respect to . It follows from a prior: estimates.

4.1. A priori estimates, uniform in e

First a prior: estimate is obtained by testing the
equation (34) by u. and integrating the result by parts
over .. Then the boundary condition (35) is multi-
plied by v.T4/Tpr and integrated over S.. The re-
sulting two relations are summed up and the following
energy estimates follows:

sup {/ (Jue(t, z)|* + |Vue(t, z)|?) dz+

0<t<T .
c / lvel? dS} < © / (@) + [10@)[?) de,
0 R”
(37)
T 1
/ / | —ve — uc|? dedt < Ce?. (38)
0o Ja. K



Next using the ordinary differential equation for v,
from (37)-(38) we get

/OT/ (Jos(t, 2)[* + [Voe(t,2)|*) dadt <
C/Rn (@) + [0(2)? + €2 Va0 (@)2) da. (39)

4.2. Two-scale ansatz with drift

Now we introduce a formal method for guessing

the correct homogenized problem (51). It is the method

of two-scale asymptotic expansions with drift
(see [28], [13] and [22]). More precisely, one assumes

that
+OOZ- b* =z
:E cui | t,z — —1t,— ],
, E €
=0

with u;(t, z,y) a function of the macroscopic variable
x and of the periodic microscopic variable y € Y =
(0,1)™, and similarly

b* z
stz<tw——t g)

Note that effective drift velocity b* is unknown and
its determination is part of the problem.

The idea is to plug this ansatz in the equation
(34).

We note the corresponding chain rule differentia-
tion:

b*t =z b*t =z

V[ue(t,x— c ?g)] :(Eilv +v$)u6(t7x_ e ag)7

b*

V2[u (t, 2 — Et,z)] (—2v2+ div,V,
b* =z
Du(t,x — —t, =
+v )UE( z c 75)7

0 b*t x 0 b* b*t x
a[us(t,x— - 76)] (@t ?Vx)us(t’$_ - 7g)

After plugging all these expressions into the equa-
tions (34)-(36) and equating the coefficients in front
of the same powers of ¢, we get the following cascade
of equations:

2.

Equation of order e~

Pe;o.b(y) - Vyug — Vzuo =0 in Y9
T
—Vyup-n=0=u— YA on ox%;  (40)
Tpr

{up,vo} is Y° — periodic.

We deduce

Tpe

uo(t,x,y) = uo(t,x) andvg(t, z,y) = T—uo(t x).
A
(41)
Equation of order e
Pe;,cb(y) - Vyur — V2 yu1 = (b*—
Pelocb(y)) -Vzup in YO
K* .
T
= Dayo.(u1 — A A) on 820;
DE
[ {ui,v1} is YV — periodic.
We deduce
_ Tpgk D*K*
v = TA (Ul + ]%*52 b VxUO) (43)

and we search for uq (¢, x,y) of the form

For w; we have a cell problem, with the same differen-
tial operator as in problems (40) and (42). A feature
of these problems is that 0 is an eigenvalue.

Consequently, in order to solve such problems we
need an appropriate tool and it is the Fredholm alter-
native which is stated as follows:

Fredholm’s alternative for the cell problem:
The boundary value problem

Peiocb(y) - Vy((y) = ViC(y)
VyC(y) - n=h(y) on 95%
¢ is YV — periodic

=g(y) in YO

(44)
has a unique solution in H'(Y"), up to an additive
constant, if and only if the compatibility condition

/YO 9(y) dy + /820 h(y) dS = 0.

is satisfied.

(45)

The cell problem, defining w;, reads as follows:

Pelocb(y) . Vywi — Vzwi =
b: — Pelocbi(y) in YO;

(46)
—(Vywi + ei) 1N = on 820;

w; is Y? — periodic.



Fredholm alternative requires that the compatibility
condition (45) is satisfied. This gives us the value of
the drift b*:

* Pej,.

K* / b( )dy_Pelocb (47)
Yo

where |Y?| is the relative volume of the fluid part of
the unit cell (the porosity) and |9%°|,,_1 is the dimen-
sionless pore surface area in the unit cell (the tortuos-
ity). Formula (47) ensures that w; exists and is unique
up to an additive constant. Multiplying (46) by w;
and integrating by parts yields the energy equality

/ \Vywi\Qdy = Peloc/ (b; — bi)w;dy+
YO Yo

K*
/ ( Pelocbz
gx0 - ¥

from which we deduce that w has at most linear
growth in Pej,..

€; - n)w;dSy,

Equation of order £°:

Pelocb(y) . VyUQ — V§U2 = Viu() — Orup+
Pejo.(b — b(y))Veuy + 2 div, Vyuy in Y,

—(Vyus + Vyur) -n = ( —Peycb - Vv (48)
Ovg, CRr vT's 0
—)—=D — ox;

It ) lon ajoc(u2 The ) on ;
[ {u2,va} is YV — periodic.

The compatibility condition for the existence of wuo
reads:

/Y (Petge(b — b(y)) - Vur+
i éR 81}0
div, Vyus + VZug — dyup) dy = Ten /820(E
K* .
A /620 (atuo — divy{

PelocB + W)V:BUO}) dSy. (49)

—Pej,cb - V,01)dS, =

* TY*

_ K
Pelocb®( /;Z /2

After replacing uq by its previous value in terms of
V. up and w;, we deduce from (49) the homogenized
problem (50)-(51).

KaOpug = divy (A*Vaug) in R" x (0,T),  (50)

¢
VO ul(@) + 5 105100 ()

uo(x,0) = in R", (51)

K*
YOl + 7|320|n—1

K*

where Ky = |V + —|0%°|,,_1. The effective diffu-
sion tensor A* is defined merely by its inner product
with the hessian matrix V?ug, so that only its sym-
metric part contributes. It is defined by

ow; *K*D*

L dy + Pel,,———
yo Oy; L g2

Peloc/ Wj (y)bl(y) dy + Pelocl_)i/ Wy (y) dy+
Yo Yo

K* -
Pelocbi /
14 550

which should be symmetrized. This is not the best
form for studying the properties of the dispersion ten-
sor A*. After testing the equation (46) for w;, by w;
and using Green’s formula and deleting the antisym-
metric contribution, we get the following equivalent
symmetric form of it:

K* K*D*
A* P €loc— / A*

1020, 1b;b;—

wj(y) dSy + Y16 (52)

|02°],_1b®b

" / I+ Vyw()(I+ Vyw(y)Tdy.  (33)
YO

Obviously the tensor A* is positive definite and prob-
lem (50)-(51) has a unique solution . Furthermore
A* has at most quadratic growth in Pej,. (see [16],
[19] for examples and counter-examples of such growth,
depending on the geometry of the flow field b(y)).

In [6] we proved that the sequence {uc,v.} of so-
lutions to (34)-(36) satisfies

ue(t, ) = ug <t,x -

PelocB

t “(t,x),
o) 4 rt(t,e)

T Pejocb
ve(t,z) = “2E . (t,:v — % ) +rl(t,x) (54)

with functions 7 and r? vanishing as ¢ — 0.

Remark 2. Convection is not seen in the homoge-
nized equation (51) because the solution u is defined
in moving coordinates when compared to u. and v, in
(54). However, (51) is equivalent to a convection dif-
fusion equation by a simple change of reference frame.
Indeed, introducing u.(t, ) = ug (t,:v - %t), it
is a solution of

Kdal + PelocE

o Vie —div (A*Vi) =0

€
in R™ x (0,7)

¢
YOul(@) + 7 |00ln-10° ()

in R”




5. Numerical study of the effective dispersion
tensor

We now present some numerical tests in the two-
dimensional case obtained with the FreeFem--+ pack-
age [30]. For these simulations, Lagrange P1 finite
elements, with a characteristic Galerkin upwinding,
are used and the total number of vertices (or degrees
of freedom) is 34077 (we checked that our results are
converged under mesh refinement). The solid obsta-
cles are isolated circular disks. We have the following
data for the parameters.

PARAMETERS VALUES
Observation length : Lp 10 m,

Pore length : /¢ 107° m
e=//Lg 1076
Characteristic velocity: Vg : 1073 m/sec
Diffusion coefficient: D* : 1078 m?/sec,
Péclet’s number: Pe : 10°
Adsorption rate k* : 1073 m/sec
Adsorption equilibrium constant K* | 107> m
Damkohler’s number: Da 10°

Local Péclet’s number: Pej,, 1

Local Damkohler’s number: Day,. 1

Table 1: Parameter values.

The velocity b(y) is generated by solving the fol-
lowing filtration problem in the fluid part Y of the
unit cell Y

Vyp—Vib=e¢; in Y9,
divyb =0 in Y%
Y o (55)
b=0 on 07
p, b are Y — periodic.
Data concerning the non-dimensional velocity and
the geometry of the unit are the following:
PARAMETERS VALUES
Porosity : [Y?| =1—r%x 0.874336
Tortuosity : [0X0|; = 2r7 1.25664
K4 factor: 2.13097
Mean velocity : [, b(y) dy : | (0.03853,—1.44 - 10™°)

Table 2: Parameter values for the flow.

Next with given non-dimensional velocity b and
local Péclet number Pe;,., we solve the cell problem

= AN -7~ 27
§§§§§§§§§;;z%%{52;

i
//Z/
%/
/!
/QJL\{/L
A\
i
N

0
.

Figure 2: Fluid velocity in the unit cell.

(46). Its solution is the vectorial dimensionless con-
centration w = (wy,we) displayed in Figures 3 and 4
(the grey scale goes from smaller values in white to
larger values in black).

The value of the drift is then calculated using for-
mula (47) and we get

- 0.01808
b= ( —6.759 - 1076 ) (56)
As already noted, only the symmetric part of the ma-
trix A* matters for the homogenized problem (50)-
(561). It is naturally decomposed as A* = A; + Ao,
where
K*

Pe;
A= (G0 g [ by dye [ b dy

and
Ay = [ (T V) T+ V().

For Pej,. = 1 and Da;,. = 1, we get
[ 410-107% —-343-1077
17\ —-343.1077 2.87-10711 )~

0.778 —1.49-1074
Az = < ~1.49-107%  0.776 > and

. 0.779 —1.50-107*
A= ( —1.50-1074 0.776 > (57)




Figure 3: Dimensionless concentration w; for Pejo. = 1.

Figure 4: Dimensionless concentration ws for Pejo. = 1.
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Figure 5: Entries Al1, Aly and A5, of the dispersion matriz
A" as a function of the local Péclet’s number, for Dajoc =1
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Figure 6: Log-log plot of the (1,1) entry of the dispersion matriz
A* = Ay + Aa, together with its 2 components A1 and Az, as
a function of the local Péclet’s number, for Daj, =1

It is important to have A* as a function of Pej,. and
Da;,.. It is shown on figures which follow.

We do not make a direct comparison with the so-
lution of the full physical problem because its numer-
ical solution is costly, due to dominant Péclet and
Damkéhler numbers. However we compare our results
to those obtained in the absence of chemical reactions
(i.e., taking K* = 0). For large local Péclet’s number
the longitudinal dispersion A}, scales like Pe}  with
chemical reactions (see the slope on Figure 6) while it
roughly scales like Pellég without chemical reactions
(see the slope on Figure 7). Our numerical results in
the absence of chemical reactions are in close agree-
ment with the corresponding ones in the literature,
see e.g. [34] (Figures 7 and 8, page 2359) and [31]



107

10

10°

10'

107

10°

Figure 7: Log-log plot of the longitudinal dispersion Al as a
function of the local Péclet’s number, in the absence of chemical
reactions, K* =0

(Figures 18 and 20, pages 2559-2560).

6. Conclusion

In this article we presented a new multiple scale
expansion method, which we named two-scale expan-
sion with drift. It allowed us to determine the dis-
persion tensor for a reactive flow problem with dom-
inant Péclet and Damkohler’s numbers. We estab-

lished that the physical concentration of solute in the
t x

o' Tn
/ v*(y) dy) satisfying the problem
YO

fluid is approximated by ¢/ (z,t) = cruo(
t
LrKq

el ! 1

K _
g T

vy et

d JYO

div (D*A*Ve ) =0 in R™ x (0,T)
1

YOle0(@) + 51080l (@)

K*
YO + 7\820\71—1

in R"

=0 =

(58)
The derived model is much more complex than clas-
sical ones used in practical simulations (see e.g. [17]).
It is difficult to compare our model with those ob-
tained using volume averaging as in [29]. Indeed the
results of [29] are valid only for tubes and the models
do not correspond. In any case our computed longi-
tudinal dispersion A7}, in the absence of chemistry, is
very similar to those computed in [34] and [31]. How-
ever, there is a strong dependence of our result on the
chemistry terms and it seems to be relatively new in
the literature.
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Our homogenized model contributes to the under-
standing of effective reactive flows with dominant Pé-
clet’s and Damkdohler’s numbers. We give a relatively
simple method of calculating the dispersion tensor,
which can be used not only for the periodic media but
also for random statistically homogeneous porous me-
dia. Expression obtained for the homogenized tensor
shows that the size of dispersion could be very much
increased in function of the characteristic numbers.
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