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Damage and frature evolution in brittlematerials by shape optimization methodsGrégoire Allaire1 François Jouve2Niolas Van Goethem1,3Marh 14, 2011
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3 Universidade de Lisboa, Fauldade de Ciênias, Departamento de Matemátia,CMAF, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.Email: vangoeth�ptmat.f.ul.pt AbstratThis paper is devoted to a numerial implementation of the Franfort-Marigo model of damage evolution in brittle materials. This quasi-statimodel is based, at eah time step, on the minimization of a total energywhih is the sum of an elasti energy and a Gri�th-type dissipated en-ergy. Suh a minimization is arried over all geometri mixtures of thetwo, healthy and damaged, elasti phases, respeting an irreversibilityonstraint. Numerially, we onsider a situation where two well-separatedphases oexist, and model their interfae by a level set funtion that istransported aording to the shape derivative of the minimized total en-ergy. In the ontext of interfae variations (Hadamard method) and usinga steepest desent algorithm, we ompute loal minimizers of this quasi-stati damage model. Initially, the damaged zone is nuleated by usingthe so-alled topologial derivative. We show that, when the damagedphase is very weak, our numerial method is able to predit rak prop-agation, inluding kinking and branhing. Several numerial examples in

2d and 3d are disussed.1 IntrodutionFrature mehanis is a �eld of paramount importane whih is the subjet ofintense researh e�orts, see [22, 25, 46℄ and referene therein. While many worksaddress the issue of mirosopi modelling of fratures and the oupling of somedefet atomisti models with marosopi elasto-plasti models, we fous onpurely marosopi models in the framework of ontinuum mehanis. Roughly1



speaking suh ontinuum models an be lassi�ed in two main ategories. Onthe one hand, there are models of rak growth and propagation whih assumethat the rak is a (d− 1)-dimensional hypersurfae in dimension d (a urve inthe plane, and a surfae in the three-dimensional spae). On the other hand, onean onsider models of damage where there is a ompetition between the initialhealthy elasti phase and another damaged elasti phase. The transition fromhealthy to damaged an be smooth (i.e., there is a ontinuous damage variablewhih measures to what extent, or loal proportion, the material is damaged)or sharp (i.e., there is an interfae between a fully healthy and fully damagedzones). The Franfort-Marigo model [35℄ of quasi-stati damage evolution forbrittle materials pertains to the latter ategory and it is the purpose of thiswork to propose a numerial implementation of suh a model. One of our mainonlusion is that, although the Franfort-Marigo model is a damage model, it isable to desribe rak propagation, when the damaged phase is very weak, andit gives quite similar results to those obtained in [21, 22℄. This is not so muh asurprise (although not a proof, of ourse) sine the numerial approah in thesepapers is based on a Γ-onvergene approximation (à la Ambrosio-Tortorelli)whih amounts to replae the original frature model by a damage model.Setion 2 gives a omplete desription of the Franfort-Marigo damage modelthat we brie�y summarize now. A smooth body Ω ⊂ R
d (d = 2, 3) is �lled withtwo elasti phases: the undamaged or �healthy� phase, and the damaged onewhih is muh weaker. The damaged zone is Ω0 ⊂ Ω, with harateristi fun-tion χ(x), and the healthy zone is the remaining region Ω1 = Ω \ Ω0. Thebehavior of suh a mixture is assumed to be linearly elasti with a perfet inter-fae (i.e., natural transmission onditions take plae at the interfae). Startingfrom an initial on�guration of damaged and healthy phases mixture χinit(x)and for a given set of loads, the new damaged on�guration χopt(x) is obtainedby minimizing a total energy

J(χ) = Jelast(χ) + κ

∫

Ω

χdV , (1.1)whih is the sum of the elasti energy and a Gri�th-like bulk energy for thereation of the damaged region (where κ > 0 is a material parameter represent-ing the energy density released at the onset of damage), under an irreversibilityonstraint whih forbids an initially damaged zone to beome healthy anew, i.e.,
χ(x) ≥ χinit(x) .A quasi-stati damage evolution model is then obtained by a time disretizationof the fore loading and by applying the previous onstrained minimization ateah time step.For numerial purposes we represent the interfae Σ between the damagedand healthy regions, Ω0 and Ω1 respetively, by a level set funtion. The levelset method for front propagation, as introdued by S. Osher and J. Sethian [53℄,is well-known to be very onvenient for this purpose, inluding the possibilityof topology hanges. Here, we take advantage of another feature of the level set2



method, namely the loal harater of front displaement. In other words, wedo not seek global minimizers of (1.1) but rather loal minimizers obtained fromthe initial on�guration χinit by transporting it using the level set method. Al-though global minimization is the ultimate goal in many optimization problems(like, for example, shape optimization [3, 5℄), it turns out to be an undesirablefeature in the present problem of damage evolution. Indeed, as explained in[21℄, global minimization is mehanially not sound for a quasi-stati evolutionproblem where meta-stable states should be preferred to globally stable statesattained by rossing a high energy barrier.In the ontext of the level set method, at eah time step, the new damageon�guration χopt is obtained from the initialization χinit by solving a trans-port Hamilton-Jaobi equation with a normal veloity whih is minus the shapederivative of the total energy (1.1). Setion 3 is devoted to the omputation ofsuh a shape derivative, following Hadamard method of geometri optimization(see e.g. [3, 41, 49, 62℄). Remark that this omputation is not standard (andindeed new in the elastiity ontext, to the best of our knowledge) sine it isan interfae between two materials, rather than a boundary, whih is movedand sine the full strain and stress tensors are not ontinuous through the in-terfae. Note however that, for ontinuous �elds, the derivation with respetto the shape of an interfae is already known, see e.g. [56, 63℄. The numerialalgorithm for the level set method is by now standard and is brie�y realled inSetion 6.One of the inonvenienes of the level set method, as well as of most nu-merial methods for rak propagation, is its inability to nuleate damage andstart a front evolution if there is no initial interfae. Therefore, we use anotheringredient to initialize our omputations when no initial damaged zone is pre-sribed. Namely, we use the notion of topologial derivative as introdued in[33, 37, 61℄, and applied to the ase of elasti inlusions in [9, 10, 18℄ for inverseproblems, and to raks in [64℄. The topologial derivative aims at determiningwhether it is worth or not nuleating an in�nitesimal damage inlusion in thehealthy zone Ω1. This information is omplementary to that obtained by shapevariation sine, on the one hand, the shape derivative annot nuleate new in-lusions and, on the other hand, one an inlusion is reated, only the shapederivative an expand it further on. The notion of topologial derivative will bedetailed in Setion 4.The resulting numerial algorithm is somehow similar to previous algorithmsin strutural optimization [5, 65℄. When the damaged phase is muh weakerthan the healthy phase (say, with a 10−3 ratio between the Young moduli) andfor a suitably hosen Gri�th energy release parameter κ (whih sales like theinverse of the mesh size ∆x), our numerial results are very similar to thoseof [21℄ whih were obtained for a frature model. Therefore we laim thatour numerial implementation of the Franfort-Marigo damage model is ableto simulate rak propagation. Numerial experiments, inluding a study ofonvergene under mesh re�nement, are performed in Setion 6. We believeour approah is simpler and omputationally less intensive than other lassialmethods for rak propagation [1, 14, 17, 39, 40, 50, 51℄. Let us emphasize that3



level-set methods have already been used in frature mehanis [19, 39, 40℄,usually in onjuntion with the extended �nite element method [47℄. However,one novelty of our work is that we use a single level-set funtion instead oftwo for parametrizing the rak and that the weak damage phase avoids theuse of disontinuous �nite elements. After ompletion of this work we learnedthat similar ideas were independently introdued in [15℄ and [45℄. A di�erentapproah, alled eigendeformation, was reently proposed in [59℄: it uses two�elds, like in [21℄, and relies on a saling resembling ours (see (2.11) below).Eventually Setion 7 draw some onlusions on our numerial experiments whihyield omparable but di�erent results from those obtained by the bak-trakingalgorithm for global minimization proposed in [20℄, [22℄. Our results, inludingsome omputations in 2d, were announed in [7℄.2 The Franfort-Marigo model of damage2.1 Desription of the modelThis setion gives a omprehensive desription of the Franfort-Marigo model[35℄ of quasi-stati damage evolution for brittle materials. In a smooth domain
Ω ⊂ R

d this damage model is stated as a marosopi phase transition problembetween a damaged phase oupying a subset Ω0 ⊂ Ω and an healthy phase inthe remaining region Ω1 = Ω\Ω0. To simplify the presentation, in a �rst step weonsider a stati problem starting from a healthy on�guration (namely, withoutany irreversibility onstraint). The harateristi funtion of Ω0 is denoted by
χ(x). The healthy and damaged phases are both assumed to be linear, isotropiand homogeneous, so we work in a linearized elastiity framework and the Lamétensor of elastiity in Ω is

Aχ = A1(1 − χ) +A0χ,where 0 < A0 < A1 are the Lamé tensors of isotropi elastiity in the damagedand healthy regions, respetively, de�ned by
A0,1 = 2µ0,1I4 + λ0,1I2 ⊗ I2where I2 and I4 denote the identity 2nd and 4th order tensors, respetively.The boundary of the body is made of two parts, ∂Ω = ΓD ∪ ΓN , where aDirihlet boundary ondition uD is imposed on ΓD and a Neumann boundaryondition g is imposed on ΓN . We assume that uD ∈ H1(Ω; Rd), g ∈ L2(∂Ω; Rd)and we onsider also a body fore f ∈ L2(Ω; Rd). (Slightly stronger regularityassumptions on the data f, g, uD will be made in the sequel.) We denote by nthe unit normal vetor on ∂Ω. We introdue the a�ne spae of kinematiallyadmissible displaement �elds

V = {u ∈ H1(Ω; Rd) suh that u = uD on ΓD}.As usual, the strain and stress tensors assoiated to a displaement u write as
e(u) =

1

2

(
∇u+ ∇Tu

)
, σ(u) = Aχe(u). (2.1)4



The elastiity system reads as






− div (Aχe(uχ)) = f in Ω,
uχ = uD on ΓD,
Aχe(uχ)n = g on ΓN .

(2.2)It is well-known that (2.2) an be restated as a minimum potential energy prini-ple, that is, the displaement �eld uχ ∈ V minimizes in V the energy funtional
Pχ(u) =

∫

Ω

(
1

2
Aχe(u) · e(u) − f · u

)

dV −
∫

ΓN

g · udS ,i.e.,
Pχ(uχ) = min

u∈V
Pχ(u) .The Franfort-Marigo model amounts to minimize jointly over u and χ a totalenergy whih is the sum of the elasti potential energy and of a Gri�th-typeenergy (aounting for the reation of the damaged region), writing as

J (u, χ) = Pχ(u) + κ

∫

Ω

χdV , (2.3)where κ is a positive material parameter whih represents the release of elastienergy due to the derease of rigidity at the onset of damage and an be inter-preted as a density of dissipated energy of the damaged region. We all κ theGri�th energy release parameter. In other words, the Franfort-Marigo modelis based on the minimization over χ ∈ L∞(Ω; {0, 1}) of
J(χ) = J (uχ, χ) = min

u∈V
J (u, χ) . (2.4)Instead of writing (2.4), we an �rst minimize in χ and later in u (sine (2.3)is doubly minimized, the order of minimization does not matter). Sine χ(x)takes only the values 0 and 1, the minimization is easy, provided that we know

uχ (whih is of ourse never the ase). Indeed, minimizing (2.4) is equivalent tothe following loal minimization at eah point x ∈ Ω

min
χ∈{0,1}

{1

2
Aχe(uχ) · e(uχ) + κχ}(x),providing a transition riterion from the healthy to the damaged phase as soonas the release of elasti energy is larger than the threshold κ. More preisely, apoint x is damaged if and only if

1

2
A1e(uχ) · e(uχ)(x) − 1

2
A0e(uχ) · e(uχ)(x) ≥ κ . (2.5)After minimization in χ we obtain a non-linear non-onvex funtional to beminimized in V

E(u) =
1

2

∫

Ω

min
(
A1e(u) · e(u), A0e(u) · e(u) + 2κ

)
dV (2.6)

−
∫

Ω

f · u dV −
∫

ΓN

g · u dS.5



In truth the Franfort-Marigo model is quasi-stati whih means that weonsider a sequene of minimization problems of the above type, with an addi-tional thermodynami irreversibility onstraint. The time is disretized by aninreasing sequene (ti)i≥1, with t1 = 0 and ti < ti+1. At eah time ti the loadsare denoted by fi and gi, the imposed boundary displaement is uD,i, the a�nespae of kinematially admissible displaement �elds is Vi, the harateristifuntion of the damaged phase is χi and the orresponding displaement is uχi
,solution of (2.2) with loads fi and gi and Dirihlet boundary ondition uD,i.The initial damaged zone is given and haraterized by χ0.The model is irreversible whih means that a material point x ∈ Ω whih isdamaged at a previous time must remain damaged at a later time ti, i.e.,

χi(x) ≥ χi−1(x). (2.7)Therefore, introduing Ji and Ji, whih are de�ned as (2.3) and (2.4) with theloads at time ti, the Franfort-Marigo model is a sequene, indexed by i ≥ 1, ofminimization problems
inf

χ∈L∞(Ω;{0,1}),χ≥χi−1

Ji(χ) = inf
u∈Vi,χ∈L∞(Ω;{0,1}),χ≥χi−1

Ji(u, χ) , (2.8)with minimizers χ
i
and uχi

(if any).2.2 Mathematial properties of the modelThe Franfort and Marigo model is ill-posed, namely, there does not exist anyminimizer of (2.8) in most ases. This an easily be seen beause (2.8) is equiv-alent to the minimization of the non-linear elasti energy (2.6) whih is notonvex, neither quasi-onvex. Atually, one of the main purposes of the semi-nal paper [35℄ of Franfort and Marigo was to relax the minimization problem(2.8) and show the existene of suitably generalized solutions. The relaxationof (2.8) amounts to introdue omposite materials, obtained by a �ne mixingof the two phases, as ompetitors in the minimization of the total energy. Suhomposite materials inlude the limits, in the sense of homogenization, of mini-mizing sequenes of (2.8): they are haraterized by a phase volume fration inthe range [0, 1] and a homogenized elastiity tensor whih is the output of themirostruture at given volume frations. It turns out that optimal mirostru-tures are found in the lass of sequential laminates. For further details we referto [35℄ for the �rst time step and to [34℄ for the following time steps (where theirreversibility onstraint plays a ruial role). This relaxed approah has beenused for numerial omputations of damage evolution in [4℄.One drawbak of the Franfort-Marigo approah is that it relies on globalminimization, i.e., at eah time step ti the funtional Ji(u, χ) is globally min-imized with respet to both variables u and χ. There is no true mehanialmotivation for insisting on global minimization with respet to χ. Beause ofglobal minimization, damage might our at time step ti in a region far awayfrom the initially damaged zone at the previous time step ti−1, whereas, in most6



irumstanes, it seems more natural from a physial viewpoint to have expan-sion of the previously damaged area. Therefore, in a quasi-stati regime whihmay favor metastability e�ets, it seems reasonable to prefer loal minimization(with respet to χ) instead of global minimization. In the ontext of fraturemehanis it was proved in [51℄ that ritiality solutions of the Gri�th model aredi�erent from the energy globally minimizing solutions proposed by Franfortand Marigo.Unfortunately, for a salar-valued version of our damage model (antiplaneelastiity), it was reently proved in [38℄ that loal minima are atually globalones (both in the original setting of harateristi funtions or in the relaxedsetting of omposite materials, loality being evaluated in the L1(Ω)-norm).However this last result of [38℄ does not prevent the possibility of a di�erentframework in whih loal minimizers would not be global ones (see, for example,the notion of ε-stable minimizer in [44℄). In the present paper we propose suha framework based on the notion of front propagation in the original ase of amarosopi distribution of healthy and damaged phases (i.e., not onsideringomposite materials). Instead of representing a damaged zone by a harateristifuntion χ ∈ L∞(Ω; {0, 1}) we rather introdue the interfae Σ between thehealthy and the damaged regions. Admissible variations of this interfae areobtained in the framework of Hadamard method of shape variations [3℄, [41℄,[49℄, [55℄, [62℄ (see Setion 3 below). More preisely, the minimization in (2.8)is restrited to on�gurations whih are obtained by a Lipshitz di�eomorphismfrom a referene or an initial on�guration. This is a severe restrition of thespae of admissible designs sine, for example, all on�gurations share the sametopology as the referene one. As a onsequene there annot be nuleation ofnew damaged zones away from the initial one. This leaves open the possibility ofthe existene of loal, but not global, minimizers. We shall not prove anythingrigorously on this issue but our numerial simulations indiate that they doindeed exist. Let us remark that the hosen numerial approah by level setsallows for topology hanges by breaking a damage region in two parts, but neverby reating a new damage region.On the other hand, working in the framework of Hadamard method of frontrepresentation does not help at all onerning the existene of (loal or global)minimizers. One again we are speehless on this issue. Of ourse, one simpleremedy is to add a surfae energy in the minimized total energy
Jreg(u, χ) = Pχ(u) + κ

∫

Ω

χdV + κ′ TV (χ) , (2.9)with the total variation norm de�ned by
TV (χ) = sup

φ∈C1(Ω;Rd)

|φ|≤1 in Ω

∫

Ω

χ divφdV.When χ is the harateristi funtion of a smooth subset Ω0, the number TV (χ)is also the perimeter of Ω0. A possible justi�ation of this new term in (2.9)7



is to onsider a Gri�th surfae energy on top of the previous Gri�th bulkenergy. We all "regularized" the energy in (2.9) sine it is well-known toadmit minimizers χ in the lass L∞(Ω; {0, 1}) [13℄. In truth, if we mention thisadditive surfae energy, this is beause the unavoidable numerial di�usion ofour omputational algorithm has preisely the e�et of adding suh a surfaeenergy. For our numerial tests, we shall not rely on (2.9) and rather we usethe standard energy (2.3).2.3 Goal of the present studyThe goal of this paper is to propose and test the following numerial methodfor the damage model of Franfort and Marigo. At eah time step ti the mini-mization (2.8) is performed by Hadamard method of shape sensitivity. In otherwords, we ompute the shape derivative of the objetive funtion Ji with re-spet to the interfae between the healthy and damaged phases and, applyinga steepest desent algorithm, we move this interfae in (minus) the diretionof the shape gradient. The minimization of Ji is stopped when the shape gra-dient is (approximately) zero, i.e., at a stationary point (a loal minimizer innumerial pratie) of the objetive funtion. We use a level set approah toharaterize the interfae between the healthy and damaged phases. As is wellknown, it allows for large deformations of the interfae with possibly topologyhanges. After onvergene at time ti, we pass to the next disrete time ti+1 byhanging the loads and we start a new minimization of Ji+1, taking into aountthe irreversibility onstraint (2.7). We iterate until a �nal time tifinal
whih wehoose when the struture is almost entirely damaged.We propose two possible ways of initializing our omputations. Either westart from an initial damaged zone χ0 at time t1 = 0, or, in ase the initialstruture is not damaged at all, we nuleate a small damaged zone by usingthe notion of topologial derivative. This nuleation step takes plae before westart the �rst minimization of J1. In partiular, the resulting initial damagedzone is usually not a loal minimizer of the total energy (2.3). We are thusable to predit damage propagation without presribing any initial rak as isommonly done in engineering pratie.Although the onsidered model has been designed in the framework of dam-age mehanis, it turns out to be able to aurately desribe rak propagation insome spei� regimes. More preisely, when the damaged phase is very weak (itsrigidity A0 is negligible) and the energy release rate is large enough, the resultsof our numerial omputations are raks rather than damaged sub-domains.In other words, the damaged zone is a thin hypersurfae with a thikness of afew mesh ells onentrating along a urve in 2d or a surfae in 3d. However,our model, based on the minimization of (2.3), has no intrinsi lengthsale asopposed to other frature models where there is a ompetition between bulk(elasti) energy and surfae (rak extension) energy [22℄. Therefore we mustintrodue some harateristi lengthsale in our model if we want to supportour laim that it is able to predit rak propagation. We do this at a numeriallevel by requiring that our frature results are onvergent under mesh re�ne-8



ment, a neessary ondition for any reasonable numerial algorithm. To obtainsuh a onvergene we sale the Gri�th bulk energy release parameter κ like
1/∆x, where ∆x is the mesh size whih is re�ned. More preisely, we introduea harateristi lengthsale ℓ and we de�ne a new material parameter γ whihan be thought of as a Gri�th surfae energy release parameter (or fraturetoughness in the language of frature mehanis)

γ = κℓ . (2.10)Then, instead of minimizing (2.3), we minimize (assuming, for simpliity, thatthere are only bulk fores)
J∆x(u, χ) =

∫

Ω

(
1

2
Aχe(u) · e(u) − f · u

)

dV +
γ

∆x

∫

Ω

χdV , (2.11)where γ/∆x has the same physial units than κ. Although (2.11) has beenwritten in a ontinuous framework, we are atually interested in its disretizedversion for a mesh of size ∆x obtained, for example, with pieewise a�ne on-tinuous Lagrange �nite elements for u and pieewise onstant �nite elements for
χ. In other words, rather than (2.11) we onsider
J∆x(u∆x, χ∆x) =

∫

Ω

(
1

2
Aχe(u∆x) · e(u∆x) − f · u∆x

)

dV +
γ

∆x

∫

Ω

χ∆x dV ,(2.12)where the minimization arries over the �elds u∆x and χ∆x belonging to theabove �nite element spaes (of �nite dimension, linked to the mesh size ∆x).When ∆x goes to zero, we expet that, for a minimizing sequene χ∆x, the lastterm of (2.11) onverges to a surfae energy
lim

∆x→0

γ

∆x

∫

Ω

χ∆x dV = γ

∫

Γ

dS,where Γ is the rak urve in 2d or surfae in 3d. The numerial examples ofSetion 6 show that it is indeed the ase: the damage zone onentrates arounda surfae Γ with a thikness of a few ells ∆x. We believe that the disretesaled energies (2.12) onverges, in some sense to be made preise, as ∆x and
A0 go to zero, to the frature model

min
u,Γ

∫

Ω\Γ

(
1

2
A1e(u) · e(u) − f · u

)

dV + γ

∫

Γ

dS (2.13)where the displaement �eld u may be disontinuous through the rak Γ. Weare not able to prove suh a result whih would �rst require to order the speedof onvergene of ∆x and A0 to zero. Remark however that similar results ofonvergene of a sequene of disrete energies to a ontinuous limit energy havealready been obtained, e.g., in the ontext of image segmentation for disreteMumford-Shah energies [29℄ or for spin systems [24℄. A natural andidate forthe type of onvergene of (2.12) to (2.13) would be of ourse Γ-onvergene.9



However, sine our numerial approah relies on some type of loal minimizers,whereas Γ-onvergene only deals with global minimizers, one should pertain toa variant of Γ-onvergene for "loal minimizers" (a notion to be made preise)as in the reent works [23℄, [43℄, [58℄. Although a onvergene of (2.12) to (2.13)would probably be di�ult and quite tehnial to prove, our numerial resultsare a lear indiation that it may hold true.This onjetured link between the damage model (2.11) and the fraturemodel (2.13) is, of ourse, reminisent (but not equivalent) of the numerialapproah in [21℄, [22℄ where a frature model is numerially approximated by adamage model (based on the Γ-onvergene result of [8℄).3 Shape derivative3.1 On the notion of shape gradientShape di�erentiation is a lassial topi [3℄, [41℄, [49℄, [55℄, [62℄. We brie�yreall its de�nition and main results in the present ontext. Here, the overalldomain Ω is �xed and we onsider a smooth open subset ω ⊂ Ω whih mayvary. Denoting by χ the harateristi funtion of ω, we onsider variations ofthe type
χθ = χ ◦

(
Id+ θ

)
, i.e., χθ(x) = χ

(
x+ θ(x)

)
,with θ ∈ W 1,∞(Ω; Rd) suh that θ is tangential on ∂Ω (this last onditionensures that Ω = (Id + θ)Ω). It is well known that, for su�iently small θ,

(Id+ θ) is a di�eomorphism in Ω.De�nition 3.1 The shape derivative of a funtion J(χ) is de�ned as the Fréhetderivative in W 1,∞(Ω; Rd) at 0 of the appliation θ → J
(
χ ◦ (Id+ θ)

), i.e.
J
(
χ ◦ (Id+ θ)

)
= J(χ) + J ′(χ)(θ) + o(θ) with lim

θ→0

|o(θ)|
‖θ‖W 1,∞

= 0 ,where J ′(χ) is a ontinuous linear form on W 1,∞(Ω; Rd).Lemma 3.1 ([41℄, [62℄) Let ω be a smooth bounded open subset of Ω and θ ∈
W 1,∞(Ω; Rd). Let f ∈ H1(Ω) and g ∈ H2(Ω) be two given funtions. Assumethat Σ is a smooth subset of ∂ω with boundary ∂Σ. The shape derivatives of

J1(ω) =

∫

ω

f dV and J2(Σ) =

∫

Σ

g dSare J ′
1(ω) =

∫

∂ω

f θ · n dS and
J ′

2(Σ) =

∫

Σ

(
∂g

∂n
+ gH

)

θ · n dS +

∫

∂Σ

g θ · τ dL, (3.1)respetively, where n is the exterior unit vetor normal to ∂ω, H is the meanurvature and τ is the unit vetor tangent to ∂ω suh that τ is normal to both
∂Σ and n, and dL is the (d− 2)-dimensional measure along ∂Σ.10



3.2 Main resultTo simplify the notations we forget the time index ti in this setion. Althoughthe state equation and the ost funtion of the Franfort-Marigo model are (2.2)and (2.4) respetively, we onsider a slightly more general setting in this setion(to pave the way to more general models in the future). More preisely, weonsider a state equation






− div (Aχe(uχ)) = fχ in Ω,
uχ = uD on ΓD,
Aχe(uχ)n = gχ on ΓN ,

(3.2)where
fχ := (1 − χ)f1 + χf0 and gχ := (1 − χ)g1 + χg0with fk ∈ H1(Ω; Rd) ∩ C0,α(Ω; Rd) and gk ∈ H2(Ω; Rd) ∩ C1,α(Ω; Rd), k = 0 or

1 (0 < α < 1) . We also assume that uD belongs to H2(Ω; Rd) and that thesubset Ω0 (with harateristi funtion χ) is smooth. Under these assumptionsthe solution uχ of (3.2) belongs to H2(Ω0; Rd) and H2(Ω1; Rd) and is of lass
C2,α away from the boundary and from the interfae. The ost funtion is takenas
J(χ) =

1

2

∫

Ω

Aχe(uχ) · e(uχ)dV +

∫

Ω

jχ(x, uχ)dV +

∫

∂Ω

hχ(x, uχ)dS, (3.3)where
jχ := (1 − χ)j1 + χj0 and hχ := (1 − χ)h1 + χh0with jk(x, u) and hk(x, u), k = 0, 1, twie di�erentiable funtions with respetto u, satisfying the following growth onditions

|jk(x, u)| ≤ C(|u|2 + 1), |(jk)′(x, u)| ≤ C(|u| + 1), |(jk)′′(x, u)| ≤ C,
|hk(x, u)| ≤ C(|u|2 + 1), |(hk)′(x, u)| ≤ C(|u| + 1), |(hk)′′(x, u)| ≤ C.(3.4)where ′ denotes the partial derivative with respet to u ∈ R

d. To avoid someunneessary tehnialities we also assume that h1(x, uD(x)) = h0(x, uD(x)) on
ΓD so that the objetive funtion is equal to

J(χ) =
1

2

∫

Ω

Aχe(uχ) · e(uχ)dV +

∫

Ω

jχ(x, uχ)dV +

∫

ΓN

hχ(x, uχ)dS + Cwhere C is a onstant whih does not depend on χ.Remark 3.1 When the imposed displaement on ΓD vanishes, uD = 0, the ostfuntion of the Franfort-Marigo model simpli�es and redues to a multiple ofthe ompliane. Indeed, the energy equality for the state equation (2.2) (whihis valid only if uD = 0), namely
∫

Ω

Aχe(uχ) · e(uχ) dV =

∫

Ω

f · uχ dV +

∫

ΓN

g · uχ dS,11



implies that the ost funtion (2.4) (with jχ = κχ − f · uχ and gχ = −g · uχ)redues to
J(χ) = κ

∫

Ω

χdV − 1

2

(∫

Ω

f · uχ dV +

∫

ΓN

g · uχ dS

)

. (3.5)Of ourse, the study of (3.5) is muh simpler than that of the general objetivefuntion (3.3). However, sine many numerial tests involve non-homogeneousboundary displaements, uD 6= 0, we must study (3.3) and not merely (3.5).We need to introdue the so-alled adjoint problem






− div (Aχe(pχ)) = fχ + j′χ(x, uχ) in Ω,
pχ = 0 on ΓD,
Aχe(pχ)n = gχ + h′χ(x, uχ) on ΓN .

(3.6)We denote by Σ the interfae between the damaged and healthy regions Ω0 and
Ω1. We de�ne n = n0 = −n1 the outward unit normal vetor to Σ. We use thejump notation

[α] = α1 − α0 (3.7)for a quantity α that has a jump aross the interfae Σ.The shape derivative of (3.3) will be an integral on the interfae Σ as is learfrom Lemma 3.1. The state uχ and adjoint pχ are ontinuous on Σ but not alltheir derivatives. Atually the tangential omponents of their deformation ten-sors are ontinuous as well as the normal vetor of their stress tensors. To makethis result preise, at eah point of the interfae Σ we introdue a loal basismade of the normal vetor n and a olletion of unit tangential vetors, olle-tively denoted by t, suh that (t, n) is an orthonormal basis. For a symmetri
d× d matrix M, written in this basis, we introdue the following notations

M =

(
Mtt Mtn

Mnt Mnn

)where Mtt stands for the (d−1)× (d−1) minor of M, Mtn is the vetor of the
(d− 1) �rst omponents of the d-th olumn of M, Mnt is the row vetor of the
(d− 1) �rst omponents of the d-th row of M, and Mnn the (d, d) entry of M.Let us reall that dV, dS and dL indiate volume integration in R

d, and surfae(or line, aording to the value of d) integration in R
d−1 and R

d−2, respetively.Lemma 3.2 Let e and σ denote the strain and stress tensors of the solution tothe state equation (3.2) or adjoint state equation (3.6). All omponents of σnt,
σnn, and ett are ontinuous aross the interfae Σ (assumed to be smooth) whileall other entries have jumps through Σ, rewritten in terms of these ontinuousquantities as






[enn] = [(2µ+ λ)−1]σnn − [λ(2µ+ λ)−1] trett

[etn] = [(2µ)−1]σtn

[σtt] = [2µ]ett + ([2µλ(2µ+ λ)−1] trett + [λ(2µ+ λ)−1]σnn)Id−1
2

(3.8)12



where Id−1
2 is the identity matrix of order d− 1.Proof. By standard regularity theory, on both sides of the smooth interfae Σthe solution, as well as its deformation and stress tensors e and σ, are smooth.This implies that the ontinuity of the displaement through the interfae yieldsthe ontinuity of ett. The transmission ondition implies that σtn and σnn arealso ontinuous on the interfae. The other quantities have jumps (3.8) whihare omputed through the strain-stress relation (2.1). �Theorem 3.1 Let Ω be a smooth bounded open set, Σ be a smooth hypersurfaein Ω, γ = Σ ∩ ΓN and θ ∈ W 1,∞(Ω; Rd). The shape derivative in the diretion

θ of the objetive funtion J(χ), as given by (3.3), is
J ′(χ)(θ) =

∫

Σ

D(x) θ · n dS

+

∫

Σ

(
(f0 − f1) · pχ + (j0 − j1)(x, uχ)

)
θ · n dS

+

∫

γ

(
(g0 − g1) · pχ + (h0 − h1)(x, uχ)

)
θ · τ dL

(3.9)with
D(x) = −[

1

(λ+ 2µ)
]σnn(uχ)σnn(pχ) − [

1

µ
]σtn(uχ) · σtn(pχ)

+ [2µ] ett(uχ) · ett(pχ) + [
2λµ

(λ+ 2µ)
] trett(uχ) trett(pχ)

+ [
λ

(λ + 2µ)
] (σnn(uχ) trett(pχ) + σnn(pχ) trett(uχ))

+ [
1

2(λ+ 2µ)
] (σnn(uχ))2 + [

1

2µ
] |σtn(uχ)|2 − [µ] |ett(uχ)|2

− [
λµ

λ+ 2µ
] ( trett(uχ))2 − [

λ

λ+ 2µ
]σnn(uχ) trett(uχ),

(3.10)
where uχ and pχ are the solutions of the state equation (3.2) and adjoint equation(3.6), respetively, and where the brakets denotes the jump as de�ned by (3.7).Equivalently, D(x) an be rewritten as
D(x) = −σnn(uχ)[enn(pχ)] + ett(uχ) · [σtt(pχ)] − 2[etn(uχ)] · σtn(pχ)

+
1

2

(

σnn(uχ)[enn(uχ)] − ett(uχ) · [σtt(uχ)] + 2σtn(uχ) · [etn(uχ)]
)

.(3.11)Remark 3.2 A formula, partially symmetri to (3.11), holds true
D(x) = −σnn(pχ)[enn(uχ)] + ett(pχ) · [σtt(uχ)] − 2[etn(pχ)] · σtn(uχ)

+
1

2

(

σnn(uχ)[enn(uχ)] − ett(uχ) · [σtt(uχ)] + 2σtn(uχ) · [etn(uχ)]
)

.(3.12)13



The main interest of (3.11), or (3.12), ompared to (3.10), is that it does notinvolve jumps of the Lamé oe�ients whih blow up when the damaged phasedegenerate to zero.Indeed, it is interesting to investigate the limit of the shape derivative inTheorem 3.1 when A0 onverges to zero. In suh a ase, we reover previouslyknown formulas, used in shape optimization [3℄, [41℄, [62℄. As A0 tends to zero,it is well known that, on the interfae Σ, the normal stress σn = (σtn, σnn) on-verges also to zero, while the deformation tensor e remains bounded. Therefore,the limit formula of (3.11), or (3.12), is
D(x) = ett(uχ) · σtt(pχ) − 1

2
ett(uχ) · σtt(uχ). (3.13)The proof of Theorem 3.1 is given in the next subsetion (exept some teh-nial omputations whih are postponed to Appendix A). Similar results in theondutivity setting (salar equations) appeared in [16℄, [42℄, [54℄.Let us now restate Theorem 3.1 for the Franfort-Marigo ost funtion, inwhih ase we have

jk(x, u) = −fk · uk + κδk0 and hk(x, u) = −gk · ukwhere δk0 is the Kroneker symbol, equal to 0 if k = 1 and to 1 if k = 0. Itturns out that the problem is self-adjoint, i.e., there is no need of an adjointstate. More preisely, in this ontext we �nd that pχ = 0. We further simplifythe previous Theorem 3.1 by taking fores whih are the same in the damagedand healthy regions, i.e., f0 = f1 and g0 = g1. Then, we obtainCorollary 3.1 Let f0 = f1 and g0 = g1. The shape derivative of (2.4) in thediretion θ is
J ′(χ)(θ) =

∫

Σ

D(x) θ · n dSwith
D(x) = κ+

1

2

(

σnn(uχ)[enn(uχ)]−ett(uχ)·[σtt(uχ)]+2σtn(uχ)·[etn(uχ)]
)

. (3.14)Furthermore, if A0 ≤ A1, then (D(x) − κ
)
≤ 0 on Σ.The last result of Corollary 3.1 implies that, upon negleting the Gri�thenergy release rate, i.e. taking κ = 0, one should take θ · n ≥ 0 to get anegative shape derivative. In other words, the damaged phase should �ll theentire domain in order to minimize the energy funtional (2.4) (whih is learfrom the minimization (2.5)).

14



3.3 The Lagrangian approah to shape di�erentiationThis setion is devoted to the proof of Theorem 3.1 by means of a Lagrangianmethod whih, in the ontext of shape optimization, is desribed in e.g. [3℄, [5℄,[28℄. It amounts to introdue a Lagrangian whih, as usual, is the sum of theobjetive funtion and of the onstraints multiplied by suitable Lagrange multi-pliers. In shape optimization the state equation is seen as a onstraint and theorresponding Lagrange multiplier is preisely the adjoint state at optimality.The shape derivative J ′(χ)(θ) is then obtained as a simple partial derivativeof the Lagrangian L. This approah is also very onvenient to guess the exatform of the adjoint problem.In the present setting it is the shape of the subdomains Ω0 and Ω1 whihis varying, or equivalently the interfae Σ. Di�erentiating with respet to theposition of this interfae is more ompliated than di�erentiating with respetto the outer boundary as in usual shape optimization problems. The additionaldi�ulty, whih was reognized in [54℄ (see also [16℄, [42℄) is that the solution uχof the state equation (3.2) is not shape di�erentiable in the sense of De�nition3.1. The reason is that some spatial derivatives of uχ are disontinuous atthe interfae (beause of the jump in the material properties): thus, when weadditionally di�erentiate with respet to the position of Σ, we obtain that thosespatial derivatives of u′χ(θ) have a part whih is a measure onentrated onthe interfae, and onsequently u′χ(θ) "esapes" from the funtional spae V inwhih we di�erentiate. The remedy is simply to rewrite the state equation (3.2)as a transmission problem. We thus introdue the restritions u0 to Ω0, and u1 to
Ω1, of the solution uχ of (3.2). In other words, they satisfy uχ = (1−χ)u1+χu0and are solutions of the transmission problem







− div
(
A1e(u1)

)
= f1 in Ω1

u1 = uD on Γ1
D = ΓD ∩ ∂Ω1

A1e(u1)n1 = g1 on Γ1
N = ΓN ∩ ∂Ω1

u1 = u0 on Σ = ∂Ω0 ∩ ∂Ω1

A1e(u1)n1 +A0e(u0)n0 = 0 on Σ

(3.15)and






− div
(
A0e(u0)

)
= f0 in Ω0

u0 = uD on Γ0
D = ΓD ∩ ∂Ω0

A0e(u0)n0 = g0 on Γ0
N = ΓN ∩ ∂Ω0

u0 = u1 on Σ
A0e(u0)n0 +A1e(u1)n1 = 0 on Σ

, (3.16)whih is equivalent to (3.2). Reall that n = n0 = −n1 denotes the outwardunit normal vetor to the interfae Σ.Introduing the notations σi(vi) = Aie(vi) and σi(qi) = Aie(qi), the general
15



Lagrangian is de�ned as
L(v1, v0, q1, q0,Σ) =

∫

Ω1

[

j1(x, v1) +
1

2
σ1(v1) · e(v1) − σ1(v1) · e(q1) + f1 · q1

]

dV

+

∫

Ω0

[

j0(x, v0) +
1

2
σ0(v0) · e(v0) − σ0(v0) · e(q0) + f0 · q0

]

dV

+

∫

Γ0
N

[
g0 · q0 + h0(x, v0)

]
dS +

∫

Γ1
N

[
g1 · q1 + h1(x, v1)

]
dS

− 1

2

∫

Σ

(
σ1(v1) + σ0(v0)

)
n · (q1 − q0)dS

− 1

2

∫

Σ

(
σ1(q1) + σ0(q0)

)
n · (v1 − v0)dS

+
1

2

∫

Σ

(
σ1(v1) + σ0(v0)

)
n · (v1 − v0)dS, (3.17)where q0 and q1 play the role of Lagrange multiplier or, at optimality, of the ad-joint state p0 and p1(on the same token, at optimality v0, v1 are equal to u0, u1).The funtions v0, v1 satisfy non homogeneous Dirihlet boundary onditions andbelong to the a�ne spae V , while the other funtions q0, q1 vanishes on ΓDand thus belong to the vetor spae V0 de�ned as

V0 = {u ∈ H1(Ω; Rd) suh that u = 0 on ΓD}.Of ourse, di�erentiating the Lagrangian with respet to q0 and q1, and equalingit to 0, provides the state equations (3.15) and (3.16). The next result statesthat di�erentiating the Lagrangian with respet to v0 and v1, and equaling itto 0, yields the adjoint equation.Lemma 3.3 The optimality ondition
∂L
∂v1

(u1, u0, p1, p0, χ) =
∂L
∂v0

(u1, u0, p1, p0, χ) = 0for variations in V0 is equivalent to the adjoint problem (3.6).Proof. This is a lassial omputation [3℄, [28℄, [54℄ whih we do not detail.Di�erentiating the Lagrangian with respet to v0 and v1 and equaling it to zeroyields






− div
(
Aie(pi)

)
= j′i(x, u

i) − div
(
Aie(ui)

) in Ωi

pi = 0 on Γi
D

Aie(pi)ni = h′i(x, u
i) +Aie(ui)ni on Γi

N

p0 = p1 on Σ
A0e(p0)n = A1e(p1)n on Σ

(3.18)whih is equivalent to (3.6). �16



As we already said, the solution uχ of (3.2) is not shape di�erentiable. How-ever its Lagrangian or transported ounterpart, namely θ → uχ◦(Id+θ)◦(Id+θ),is atually di�erentiable by a simple appliation of the impliit funtion theorem(see hapter 5 in [41℄). As a onsequene, upon a suitable extension outside Ωi,the solution ui of (3.15-3.16) are indeed shape di�erentiable.Lemma 3.4 The solutions u1 of (3.15) and u0 of (3.16) are shape di�eren-tiable.The main interest of the Lagrangian is that its partial derivative with respetto the shape χ, evaluated at the state uχ and adjoint pχ, is equal to the shapederivative of the ost funtion.Lemma 3.5 The ost funtion J(χ) admits a shape derivative whih is givenby
J ′(χ)(θ) =

∂L
∂χ

(u1, u0, p1, p0, χ)(θ), (3.19)where (u1, u0, p1, p0) are the solutions of the state equation (3.15-3.16) and ad-joint equation (3.18).Proof. This is again a lassial result [3℄, [28℄ whih we brie�y reall. We startfrom the identity
J(χ)(θ) = L(u1, u0, q1, q0, χ) (3.20)where q1, q0 are any funtions in V . We di�erentiate (3.20) with respet to theshape. By virtue of Lemma 3.4 we obtain

J ′(χ)(θ) =
∂L
∂χ

(u1, u0, q1, q0, χ)(θ) + 〈 ∂L
∂v0,1

(u1, u0, q1, q0, χ),
∂u0,1

∂χ
(θ)〉. (3.21)The notation ∂L

∂χ means that it is a shape partial derivative, i.e., we di�erentiate
L in the sense of De�nition 3.1 while keeping the other arguments (u1, u0, q1, q0)�xed. Taking now (q1, q0) = (p1, p0) anels the last term in (3.21) beause it isthe variational formulation of the adjoint problem by virtue of Lemma 3.3. Wethus obtain (3.19). �To �nish the proof of Theorem 3.1 it remains to ompute the partial shapederivative of the Lagrangian. It is a oneptually simple appliation of Lemma3.1 whih, nevertheless, is quite tedious. Therefore the proof of the followingLemma is postponed to Appendix A.Lemma 3.6 The partial shape derivative of the Lagrangian

∂L
∂χ

(u1, u0, p1, p0, χ)(θ),is preisely equal to the right hand side of (3.9).17



4 Topologial derivativeThe aim of this setion is to evaluate the sensitivity of the ost funtion to theintrodution of an in�nitesimal damaged region ωρ inside the healthy region
Ω1. In theory the shape of the smooth inlusion an be arbitrary. However, forpratial and numerial purposes it will be assumed to be a ball in R

d.4.1 Main resultLet ω be a smooth open subset of R
d. Let ρ > 0 be a small positive parameterwhih is intended to go to zero. For a point x0 ∈ Ω1 we de�ne a resaledinlusion

ωρ = {x ∈ R
d :

x− x0

ρ
∈ ω}, (4.1)whih, for small enough ρ is stritly inluded in Ω1 and disonneted from

Ω0. The total damaged zone is thus Ω0
ρ := Ω0 ∪ ωρ and the healthy phase is

Ω1
ρ := Ω \ Ω0

ρ. Let χρ, χ, χωρ
denote the harateristi funtions of Ω0

ρ,Ω
0 and

ωρ, respetively (verifying χρ = χ+ χ
ωρ
). In the sequel, in order to distinguishintegration in the variables x and y := x−x0

ρ , the symbol dV will sometimes bereplaed by dV (y) or dV (η) (where η is a dummy variable similar to y).Let us reall the notations for the non-perturbed domain Ω = Ω0 ∪ Ω1 (i.e.,without the damage inlusion). The ost funtion then writes as
J(χ) =

1

2

∫

Ω

Aχe(uχ) · e(uχ)dV +

∫

Ω

jχ(x, uχ)dV +

∫

∂Ω

hχ(x, uχ)dS, (4.2)where jχ = j0χ+j1(1−χ), hχ = h0χ+h1(1−χ), and the so-alled �bakground�solution� uχ solves the state equation (3.2) on Ω = Ω0 ∪Ω1. As in the previoussetion, we assume that the integrands j0, j1(x, u) and h0, h1(x, u) are twiedi�erentiable funtions with respet to u, satisfying the growth onditions (3.4).Moreover, let us reall that the so-alled �bakground� dual solution pχ solvesthe adjoint problem (3.6) on Ω = Ω0 ∪ Ω1.On the perturbed domain Ω = Ω0
ρ ∪ Ω1

ρ, the ost funtion is
J(χρ) =

1

2

∫

Ω

Aχρ
e(uχρ

) · e(uχρ
)dV +

∫

Ω

jχρ
(x, uχρ

)dV +

∫

∂Ω

hχ(x, uχρ
)dS,beause χρ ≡ χ, and thus hχρ

≡ hχ, on ∂Ω (the inlusion ωρ is away from theboundary), and where uχρ
solves







− div
(
Aχρ

e(uχρ
)
)

= f in Ω
uχρ

= uD on ΓD

Aχρ
e(uχρ

)n = g on ΓN

(4.3)with Aχρ
= A0χρ + A1(1 − χρ), the Lamé tensor of the material with theinlusion. 18



De�nition 4.1 If the objetive funtion admits the following so-alled topolog-ial asymptoti expansion for small ρ > 0:
J(χρ) − J(χ) − ρdDJ(x0) = o(ρd),then the number DJ(x0) is alled the topologial derivative of J at x0 for theinlusion shape ω.The main result of this setion is the following theorem.Theorem 4.1 The topologial derivative DJ(x0) of the general ost funtion(4.2), evaluated at x0 for an inlusion shape ω, has the following expression:

DJ(x0) := Me(uχ)(x0) · e(pχ)(x0) − 1

2
Me(uχ)(x0) · e(uχ)(x0)

+ |ω|(j0 − j1)(x0, uχ(x0)), (4.4)where uχ and pχ are the solution to the primal and dual problems (3.2) and(3.6), respetively, and whereM is the so-alled elasti moment tensor as de�nedbelow by (4.10). Moreover, M is positive if [A] is positive, and negative if [A]is negative.In the ase of our damage model, the ost funtion is (2.4), i.e., jχ(x, uχ) =
κχ − f · uχ and hχ(x, uχ) = −g · uχ. The problem is then known to be self-adjoint, i.e., the adjoint pχ is equal to 0. In suh a ase Theorem 4.1 simpli�esas follows.Corollary 4.1 The topologial derivative of the ost funtion (2.4) at x0 for aninlusion shape ω is

DJ(x0) := |ω|κ− 1

2
Me(uχ)(x0) · e(uχ)(x0), (4.5)where uχ is the bakground solution of (3.2) and M is the elasti moment tensorde�ned below by (4.10).In 2d, the elasti moment tensor M for a unit disk-inlusion ω has beenomputed in [11℄. The topologial derivative (4.5) for a disk-inlusion is:

DJ(x0) = πκ− 2π
µ1[µ](λ1 + 2µ1)

λ1(µ0 + µ1) + µ1(µ1 + 3µ0)
e(uχ) · e(uχ)(x0)

+
π

2

(

− (λ1 + 2µ1)[λ+ µ]

λ0 + µ0 + µ1
+ 2

µ1[µ](λ1 + 2µ1)

λ1(µ0 + µ1) + µ1(µ1 + 3µ0)

)

tre(uχ) tre(uχ)(x0).In 3d, the elasti moment tensor M for a unit ball-inlusion ω has also beenomputed in [12℄. The topologial derivative (4.5) for a ball-inlusion is:
DJ(x0) =

4π

3
κ− 2π

3b

(

2[µ]e(u) · e(u) +
[λ]b− 2[µ]a

(3a+ b)
tre(u) tre(u)

)

,19



with ν1 =
λ1

2(λ1 + µ1)
and

a := −5µ1ν1[λ] − λ1[µ]

15λ1µ1(1 − ν1)
, b :=

15µ1(1 − ν1) − 2[µ](4 − 5ν1)

15µ1(1 − ν1)
> 0.In order to prove Theorem 4.1 we need several tehnial tools detailed in thenext subsetions.4.2 Elasti moment tensorThe goal of this subsetion is to de�ne the elasti moment tensor as a 4thorder tensor expressing the leading behaviour in the far �eld of wξ, solution tothe anonial problem (4.9) of a unit damage inlusion ω in a uniform healthybakground.We introdue a mirosopi variable y = x−x0

ρ in order to resale the problemwith a unit inlusion ω. This resaling, entered on the inlusion, in the limit as
ρ goes to zero, transforms the elastiity problem posed on Ω in a problem posedon R

d. The symbols ey, divy et. are used to speify the derivation w.r.t. y.We begin by realling the Green tensor for linear elastiity in a uniformin�nite material.Notations 4.1 (Green tensor of elastiity) The fundamental tensor of lin-ear elastiity Γ := (Γij)1≤i,j≤d reads:
Γij(y) :=







− α

4π

δij
|y|d−2

− β

4π

yiyj

|y|d if d ≥ 3

α

2π
δij ln |y| − β

2π

yiyj

|y|2 if d = 2
, (4.6)where

α =
1

2

(
1

µ1
+

1

2µ1 + λ1

) and β =
1

2

(
1

µ1
− 1

2µ1 − λ1

)

.The omponent Γij represents the ith Cartesian omponent of the fundamentalsolution in the free-spae with a unit Dira load δ0 at the origin in the diretionof vetor −ej, that is,
− div

(

A1ey(

d∑

i=1

Γijei)

)

= −ejδ0, (4.7)where ek denotes the kth element of the anonial basis of R
d.We introdue the following Hilbert spae (so-alled Deny-Lions or Beppo-Levi spae)

W := {w ∈ H1
loc(R

d; Rd) suh that e(w) ∈ L2(Rd; Rd×d)}, (4.8)20



equipped with the salar produt of L2(Rd) for the deformation tensor e(w),whih is well adapted to elastiity problems posed in the whole spae R
d. Forany symmetri matrix ξ we introdue wξ(y), solution to the anonial problem

{
− divy

(
Aχω

ey(wξ)
)

= − divy (χ
ω
[A]ξ) in R

d,
wξ ∈ W,

(4.9)whih is easily seen to be well-posed. The fat that wξ belongs to W impliesit has some deay properties at in�nity (by embedding of W in some Lebesguespae, see [32℄, [2℄). We shall not dwell on them sine Lemma 4.1 below improvethese deay properties.Lemma 4.1 (Far �eld expression) The solution wξ of the anonial problem(4.9) has the following pointwise behavior at in�nity:
wξ = −∂pΓq(y)Mpqklξkl + O(|y|−d) as |y| → ∞, (4.10)where Γq := Γkqek is the fundamental Green's tensor of linear elastiity of thehealthy material, and M is the 4th order elasti moment tensor with respet toinlusion ω, independent of ξ, de�ned by

M = [A] (N + |ω|I4) (4.11)with a 4th order tensor N de�ned by
Nξ :=

∫

ω

ey(wξ)dV (y). (4.12)Remark 4.1 Lemma 4.1 tells us that, beause the right hand side in (4.9) haszero average, wξ behaves like O(|y|−d+1) at in�nity. The interest of the anon-ial problem for us is that, by denoting ξ0 = e(uχ)(x0), we shall prove in somesense
uχρ

(x) ≈ uχ(x) + ρwξ0(
x− x0

ρ
).Remark 4.2 The elasti moment tensor M as de�ned by (4.11) is exatly thesame tensor as introdued in [9℄ and [11℄ (by means of layer potential tehniques)or in [27℄ (by means of a variational approah in the ondutivity setting).Proof of Lemma 4.1. Let us onsider an inlusion ω loated in the free-spae R

d and introdue a smooth open set U stritly ontaining ω and a ut-o�funtion ϕ ∈ C∞(Rd) suh that ϕ ≡ 0 on ω, ϕ ≡ 1 on R
d \ U . We de�ne afuntion f(y) by

f := − divy

(
Aχω

e(ϕwξ)
)
, (4.13)whih has ompat support in U beause of (4.9) and the fat that ϕ ≡ 1 on

R
d \ U . Sine ϕ ≡ 0 on ω we dedue that

{
− divy

(
A1ey(ϕwξ)

)
= f in R

d,
ϕwξ ∈W,

. (4.14)21



We an thus use the Green tensor to ompute the kth omponent of the solutionof (4.14)
ϕ(y)ek · wξ(y) = −

∫

Rd

Γkq(y − η)fq(η)dV (η). (4.15)It turns out that
∫

Rd

f(y)dV (y) =

∫

U

f(y)dV (y) = −
∫

∂U

Aχω
e(ϕwξ)ndS(y) =

= −
∫

U

div
(
Aχω

e(wξ)
)
dV (y)

(4.9)
= −

∫

U

div(χ
ω
[A]ξ)dV (y)

= −
∫

∂U

χ
ω
[A]ξn dS(y) = 0with n denoting the usual normal unit vetor to ∂U . By Taylor expansion ofthe Green funtion Γkq(y− η) in terms of Γkq(y) and its derivatives, taking intoaount that f has zero average and ompat support in U , and sine ϕ ≡ 1away from U , (4.15) yields that

ek · wξ(y) = ∂pΓkq(y)

∫

Rd

ηpfq(η)η + O(|y|−d). (4.16)Let us now evaluate ∫
Rd ηpfq(η)dV (η) that for the sake of alulus is rewrittenas ∫

Rd B
pqη · f(η)dV (η), where Bpq := eq ⊗ ep is a seond order tensor. By(4.13) and sine A1 = Aχω

on ∂U ,
∫

U

Bpqη · f(η)dV (η) =

∫

U

Aχω
e(ϕwξ) · e(Bpqη)dV (η) −

∫

∂U

Aχω
e(ϕwξ)n · BpqηdS(η)

=

∫

U

A1e(ϕwξ) · e(Bpqη)dV (η) −
∫

∂U

A1e(ϕwξ)n · BpqηdS(η)

= −
∫

U

div
(
A1e(Bpqη)

)

︸ ︷︷ ︸

=0

ϕwξdV (η) +

∫

∂U

A1e(Bpqη)n · ϕwξdS(η)

−
∫

∂U

A1e(ϕwξ)n · BpqηdS(η)

=

∫

∂U

(
Aχω

e(Bpqη)n · wξ −Aχω
e(wξ)n ·Bpqη

)
dS(η)

=

∫

U

div
(
Aχω

e(Bpqη)
)

︸ ︷︷ ︸

=div(−χω [A]Bpq)

·wξdV (η) −
∫

U

div
(
Aχω

e(wξ)
)

︸ ︷︷ ︸

= div(χω [A]ξ)

·BpqηdV (η)

=

∫

ω

[A]Bpq · e(wξ)dV (η) +

∫

ω

[A]ξ · BpqdV (η)

= [A]Bpq ·
∫

ω

(e(wξ) + ξ) dV (η). (4.17)Introduing Mijkl de�ned as
Mijkl := [A]ijmn (N + |ω|I4)mnkl (4.18)22



we obtain (4.10). �Lemma 4.2 (Symmetry and signature of M) The elasti moment tensor
M , de�ned by (4.11), is symmetri and positive if A0 < A1 while negative if
A0 > A1.Proof of Lemma 4.2. Let us multiply (4.9) by the solution wξ′ for anothersymmetri tensor ξ′, integrate by parts and observe that, by the symmetryproperty of the left hand side, we have

∫

Rd

Aχω
e(wξ) · e(wξ′)dV = [A]ξ ·Nξ′ = [A]ξ′ ·Nξ

= [A]N · ξ ⊗ ξ′ = [A]N · ξ′ ⊗ ξ, (4.19)the symmetry of [A]N and hene of M immediately follows. Take ξ = ξ′ in(4.19), then [A]N is learly positive. Therefore if [A] > 0, then M is obviouslypositive. Assume now that [A] < 0. The solution wξ of (4.9) is the minimizerof the following energy
I(w) =

1

2

∫

Rd

Aχω
e(w) · e(w)dV −

∫

Rd

χ
ω
[A]ξ · e(w)dVand its minimal value is, by (4.12), I(wξ) = − 1

2 [A]Nξ · ξ. On the other hand assoon as we rewrite
Aχω

e(w) · e(w) = −χ
ω
[A]e(w) · e(w) +A1e(w) · e(w)we obtain the lower bound I−(w):

I(w) ≥ I−(w) := −1

2

∫

Rd

χ
ω
[A]e(w) · e(w)dV −

∫

Rd

χ
ω
[A]ξ · e(w)dV.It is easily seen that e(w) = −ξ is a ritial point in ω of the above lower bound,whih, by the negative harater of [A], turns out to be the unique minimizer,thereby providing the minimal value 1

2 |ω|[A]ξ · ξ. Thus we dedue that
|ω|[A]ξ · ξ ≤ −[A]Nξ · ξwhih implies the desired result M < 0. �4.3 Asymptoti analysis in the perturbed domainThis subsetion is aimed at omparing the solutions of elastiity problems in theperturbed and non-perturbed domains. We de�ne the di�erene v := uχρ

− uχbetween the perturbed (uχρ
) and the bakground (uχ) displaement �elds. Theequation satis�ed by v is







− div
(
Aχρ

e(v)
)

= − div
(

χ
ωρ

[A]e(uχ)
) in Ω

v = 0 on ΓD

Aχρ
e(v)n = 0 on ΓN

. (4.20)23



Let us introdue a tensor ξ0 := e(uχ)(x0) and let wξ0 (y) be the solution of (4.9)for ξ = ξ0. We de�ne a resaled funtion wρ
ξ0

(x) := ρwξ0(
x−x0

ρ ) whih is asolution to
− div

(

Aχρ
e(wρ

ξ0
)
)

= − div
(

[A]χ
ωρ
e(uχ)(x0)

) in Ω,satisfying non-homogeneous, but small, boundary onditions. This funtion wρ
ξ0is the leading term of a so-alled inner asymptoti expansion for v as stated bythe following Lemma.Lemma 4.3 For any ut-o� funtion θ ∈ C∞

c (Ω) suh that θ ≡ 1 in a neigh-borhood U of x0, there exists a onstant C > 0 independent of ρ suh that wehave
v = θwρ

ξ0
+ δ, (4.21)with

||δ||H1(Ω) ≤ Cρd/2+1. (4.22)Moreover
||wρ

ξ0
||L2(Ω) ≤ C

{
ρ2
√

log ρ if d = 2
ρd/2+1 if d ≥ 3

and ||e(wρ
ξ0

)||L2(Ω) ≤ Cρd/2.(4.23)Remark 4.3 In the viinity of the inlusion ωρ, we have θ ≡ 1 for su�ientlysmall ρ, and (4.21) an be restated as
v(x) = ρwξ0

(
x− x0

ρ

)

+ oH1(ρ),whih is an inner asymptoti expansion for v, solution of (4.20). The L2-normsof δ and wρ
ξ0

are of the same order (at least for d ≥ 3) but the L2-norm of ∇δis smaller by a fator ρ than that of ∇wρ
ξ0
, whih explains the o(ρ) remainderin the above approximation of v.Proof of Lemma 4.3. The estimates (4.23) on wρ

ξ0
are simply obtained byresaling and by the deay properties of wξ0 . We obtain

||e(wρ
ξ0

)||2L2(Ω) =

∫

Ω

|ey(wξ0)(
x

ρ
)|2dV = ρd

∫

Ω/ρ

|ey(wξ0)(y)|2dV (y) ≤ Cρd.Similarly
||wρ

ξ0
||2L2(Ω) = ρ2

∫

Ω

|wξ0 (
x

ρ
)|2dV = ρd+2

∫

Ω/ρ

|wξ0(y)|2dV (y).However, Lemma 4.1 tells us that the behaviour at in�nity of wξ0 is suh thatit does not belong to L2(Rd) but is of the order of O(|y|−d+1). Therefore, using24



the radial oordinate r = |y| yields
||wρ

ξ0
||2L2(Ω) ≤ Cρd+2

∫

Ω/ρ

1

1 + |y|2(d−1)
dV (y) ≤ Cρd+2

∫ 1/ρ

1

dr

rd−1

≤ C

{
ρ4| log ρ| if d = 2
ρd+2 if d ≥ 3

(4.24)whih is the desired result. Furthermore, sine wξ0 = O(|y|−d+1) and ∇wξ0 =
O(|y|−d) at in�nity, we also dedue by resaling that

‖wρ
ξ0
‖L∞(Ω\U) ≤ Cρd and ‖∇wρ

ξ0
‖L∞(Ω\U) ≤ Cρd. (4.25)We now write the equation satis�ed by δ :







− div
(
Aχρ

e(δ)
)

= − div
(

[A]χ
ωρ

(e(uχ)(x) − e(uχ)(x0))
)

+ g in Ω

δ = 0 on ΓD

Aχρ
e(δ)n = 0 on ΓN

,(4.26)where
g = div

[

Aχρ
e(θwρ

ξ0
)
]

− θ div
[

χ
ωρ

[A]e(uχ)(x0)
]

. (4.27)Let us multiply (4.26) and (4.27) by δ and integrate by parts, in suh a waythat
C||e(δ)||2L2(Ω) ≤

∣
∣
∣
∣

∫

Ω

Aχρ
e(δ) · e(δ)dV

∣
∣
∣
∣

≤
∫

ωρ

∣
∣
∣[A] (e(uχ)(x) − e(uχ)(x0)) · e(δ)

∣
∣
∣dV

+

∣
∣
∣
∣

∫

Ω

g · δdV
∣
∣
∣
∣
. (4.28)for C > 0. Let us remark that, away from the interfae between the two phases,

uχ is of lass C2,α for some α > 0 (sine we assume the fores to be of lass C0,α).Furthermore, the inlusion ωρ is smooth, so the C2,α regularity of uχ holds upto the interfae in the inlusion, and hene
|e(uχ)(x) − e(uχ)(x0)| ≤ Cρ in ωρ, (4.29)whih implies

∫

ωρ

∣
∣
∣[A] (e(uχ)(x) − e(uχ)(x0)) · e(δ)

∣
∣
∣dV ≤ Cρd/2+1||e(δ)||L2(Ω). (4.30)Moreover by (4.27), it results that

∫

Ω

g · δdV = −
∫

Ω

Aχρ
e(θwρ

ξ0
) · e(δ)dV +

∫

Ω

χ
ωρ

[A]e(uχ)(x0) · e(θδ)dV

= −
∫

Ω

Aχρ
e(θwρ

ξ0
) · e(δ)dV +

∫

Ω

Aχρ
e(wρ

ξ0
) · e(θδ)dV

=

∫

Ω

Aχρ

(

e(wρ
ξ0

) · (δ ⊗∇θ)s − e(δ) · (wρ
ξ0

⊗∇θ)s
)

dV, (4.31)25



where the supersript �s� stands for the symmetri part. Hene, sine ∇θ van-ishes on a neighborhood U of ωρ, by Korn inequality and by estimates (4.25),it follows that
∣
∣
∣
∣

∫

Ω

g · δdV
∣
∣
∣
∣

≤ C
(

||wρ
ξ0
||L∞(Ω\U) + ||e(wρ

ξ0
)||L∞(Ω\U)

)

||∇θ||L2(Ω\U)||e(δ)||L2(Ω)

≤ Cρd||e(δ)||L2(Ω). (4.32)Therefore, by (4.28)-(4.32) and sine d/2+ 1 ≤ d for d ≥ 2, the following globalestimate holds
||e(δ)||L2(Ω) ≤ C

(

ρd + ρd/2+1
)

≤ Cρd/2+1, (4.33)ompleting the proof by Korn and Poinaré inequalities. �Similarly, we shall need a omparison between the perturbed and bakgroundadjoints. However, the adjoint in the perturbed domain (with an inlusion) isnot the standard one. Rather, we introdue a slightly di�erent adjoint problem






− div
(
Aχρ

e(p̃χρ
)
)

= fχ + j′χ(x, uχ) in Ω
p̃χρ

= 0 on ΓD

Aχρ
e(p̃χρ

)n = gχ + h′χ(x, uχ) on ΓN

(4.34)whose solution p̃χρ
depends on the inlusion sine the Lamé tensor Aχρ

orre-sponds to the perturbed domain Ω = Ω0
ρ ∪ Ω1

ρ. Nevertheless, p̃χρ
is di�erentfrom pχρ

, de�ned by (3.6) with χρ instead of χ, beause the right hand side of(4.34) depends only on χ and not on χρ.We de�ne the di�erene between the above perturbed adjoint and the "true"bakground adjoint, q := p̃χρ
− pχ, whih is the solution of







− div
(
Aχρ

e(q)
)

= − div
(

χ
ωρ

[A]e(pχ)
) in Ω

q = 0 on ΓD

Aχρ
e(q)n = 0 on ΓN

. (4.35)We introdue the tensor ξ′0 := e(pχ)(x0) and the resaled funtion wρ
ξ′
0
(x) :=

ρwξ′
0
(x−x0

ρ ) whih is the leading term of an inner asymptoti expansion for q.Lemma 4.3 an then be generalized as follows.Lemma 4.4 For any ut-o� funtion θ ∈ C∞
c (Ω) suh that θ ≡ 1 in a neigh-borhood U of x0, there exists a onstant C > 0 independent of ρ suh that wehave

q = θwρ
ξ′
0

+ δ,with
||δ||H1(Ω) ≤ Cρ1+d/2. (4.36)Moreover

||wρ
ξ′
0
||L2(Ω) ≤ C

{
ρ2
√

log ρ if d = 2
ρd/2+1 if d ≥ 3

and ||e(wρ
ξ′
0
)||L2(Ω) ≤ Cρd/2.26



4.4 Proof of Theorem 4.1We ombine the ingredients of the two previous subsetions to prove Theorem4.1 on the topologial derivative. Let us reall that we assume the integrandsof the objetive funtion, j0, j1(x, u) and h0, h1(x, u), to be C2 funtions withrespet to u with adequate growth onditions.Realling that hχρ
≡ hχ on ∂Ω beause the inlusion does not touh theboundary, we write a seond-order Taylor expansion of the objetive funtion

J(χρ) =
1

2

∫

Ω

Aχe(uχ + v) · e(uχ + v)dV − 1

2

∫

ωρ

[A]e(uχ + v) · e(uχ + v)dV

+

∫

Ω

jχ(uχ + v)dV +

∫

∂Ω

hχ(uχ + v)dS +

∫

ωρ

(j0 − j1)(uχ + v)dV

= J(χ) +

∫

Ω

Aχe(uχ) · e(v)dV +
1

2

∫

Ω

Aχe(v) · e(v)dV

− 1

2

∫

ωρ

[A]
(

e(uχ) · e(uχ) + 2e(uχ) · e(v)
)

dV − 1

2

∫

ωρ

[A]e(v) · e(v)dV

+

∫

Ω

j′χ(x, uχ) · vdV +

∫

∂Ω

h′χ(x, uχ) · vdS +

∫

ωρ

(j0 − j1)(uχ)dV

+
1

2

∫

Ω

j′′χ(uχ)v · vdV +
1

2

∫

∂Ω

h′′χ(uχ)v · vdS

+

∫

ωρ

(j0 − j1)′(uχ) · vdV +
1

2

∫

ωρ

(j0 − j1)′′(uχ)v · vdV, (4.37)where uχ = uχ + ζv with 0 < ζ < 1. From assumption (3.4) we know that j′′χand h′′χ are bounded on Ω and thus
∣
∣
∣
∣

∫

Ω

j′′χ(uχ)v · v dV
∣
∣
∣
∣
≤ C‖v‖2

L2(Ω) ≤ o(ρd)and, sine v = δ on ∂Ω,
∣
∣
∣
∣

∫

∂Ω

h′′χ(uχ)v · vdS
∣
∣
∣
∣
=

∣
∣
∣
∣

∫

∂Ω

h′′χ(uχ)δ · δdS
∣
∣
∣
∣
≤ C‖δ‖2

H1(Ω) ≤ o(ρd)by Lemma 4.3. A similar estimate holds for the last term of (4.37). The penul-timate term is bounded by
∣
∣
∣
∣
∣

∫

ωρ

(j0 − j1)′(uχ) · vdV
∣
∣
∣
∣
∣
≤ Cρd/2

(
‖uχ‖L∞(ωρ) + 1

)
‖v‖L2(Ω) ≤ o(ρd)beause the bakground solution uχ is smooth on ωρ (it does not "see" theinlusion). Thus, the two last lines of (4.37) are small of the order of o(ρd).All other terms in (4.37) ontribute to the �nal result, formula (4.4). First, byresaling and ontinuity of uχ on ωρ, we have

∫

ωρ

(j0 − j1)(uχ)dV = ρd|ω|(j0 − j1)(uχ(x0)) + o(ρd).27



Similarly, by ontinuity of e(uχ), using the notation ξ0 = e(uχ)(x0), and sine
v = θwρ

ξ0
+ δ with θ ≡ 1 in ωρ, we dedue

1

2

∫

ωρ

[A]
(

e(uχ) · e(uχ) + 2e(uχ) · e(v)
)

d =
ρd

2

∫

ω

[A]
(

ξ0 · ξ0 + 2ξ0 · ey(wξ0)
)

dV (y)

+

∫

ωρ

[A]e(uχ) · e(δ)dV + o(ρd).Using again the ontinuity of e(uχ) in ωρ and (4.36), we bound the last term
∣
∣
∣
∣
∣

∫

ωρ

[A]e(uχ) · e(δ)dV
∣
∣
∣
∣
∣
≤ Cρd+1.Seond, from the variational formulation of (4.20) we get

1

2

∫

Ω

Aχe(v) · e(v)dV − 1

2

∫

ωρ

[A]e(uχ(v) · e(v)dV =
1

2

∫

Ω

Aχρ
e(v) · e(v)dV

=
1

2

∫

ωρ

[A]e(uχ) · e(v)dV =
ρd

2

∫

ω

[A]ξ0 · ey(wξ0)dV (y) + o(ρd),where we have again replaed v by wρ
ξ0

+ δ in ωρ and negleted the δ term.Third, from (3.2) we have
∫

Ω

Aχe(uχ) · e(v) dV =

∫

Ω

fχ · v dV +

∫

∂Ω

gχ · vdS.Thus, the Taylor expansion (4.37) of the objetive funtion is rewritten
J(χρ) = J(χ) +

∫

Ω

(

fχ + j′χ(x, uχ)
)

· v dV +

∫

∂Ω

(

gχ + h′χ(x, uχ)
)

· vdS

− ρd

2

∫

ω

[A]
(

ξ0 · ξ0 + ξ0 · ey(wξ0 )
)

dV (y)

+ ρd|ω|(j0 − j1)(uχ(x0)) + o(ρd). (4.38)By Lemma 4.1 we know that
−ρ

d

2

∫

ω

[A]
(

ξ0 · ξ0 + ξ0 · ey(wξ0)
)

dV (y) = −ρ
d

2
Mξ0 · ξ0.It remains to show that the two �rst integrals in the right hand side of (4.38)are of order O(ρd) and �nd formula (4.4) for the topologial derivative. To doso, we use the adjoint problems (4.34) and (4.35) as follows. Multiplying (4.34)

28



by v and (4.20) by p̃χρ
we obtain

∫

Ω

(

fχ + j′χ(x, uχ)
)

· vdV +

∫

∂Ω

(

gχ + h′χ(x, uχ)
)

· vdS =

∫

Ω

Aχρ
e(p̃χρ

) · e(v)dV

=

∫

ωρ

[A]e(uχ) · e(p̃χρ
)dV =

∫

ωρ

[A]e(uχ) · e(pχ + q)dV

=

∫

ωρ

[A]e(uχ) · e(pχ + θwρ
ξ′
0

+ δ)dV

= ρd

∫

ω

[A]ξ0 ·
(
ξ′0 + ey(wξ′

0
)
)
dV (y) + o(ρd)

= ρdMξ0 · ξ′0 + o(ρd),by appliation of Lemma 4.4, resaling, using the ontinuity of e(uχ) and e(pχ)in ωρ and thanks to the formula forM in Lemma 4.1 (reall that ξ′0 = e(pχ)(x0)).Eventually we have proved
J(χρ) = J(χ) − ρd

2
Mξ0 · ξ0 + ρdMξ0 · ξ′0 + ρd|ω|(j0 − j1)(uχ(x0)) + o(ρd),whih is preisely formula (4.4). This ahieves the proof of Theorem 4.1 sinethe properties of M have been proved in Lemma 4.2.5 Computational algorithmThe main task is to ompute, for eah disrete time ti, i ≥ 0, a minimizer χiof the Franfort-Marigo model (2.8). As we already said, we are interested inloal minima. Our notion of loal minima is numerial in essene, that is, weminimize (2.8) with a gradient desent algorithm in the level set framework.A minimum is thus loal in the sense of perturbations of the loation of theinterfae Σ. Our algorithm is made of two nested loops:(i) an outer loop orresponding to the inreasing sequene of disrete times

ti, i ≥ 0,(ii) an inner loop of gradient iterations for the minimization of the funtional(2.8) at eah �xed time step ti.The irreversibility onstraint (2.7) on the damaged zone is taken into aountin the outer loop (i), whereas the inner loop (ii) is purely numerial and is notsubjet to this irreversibility onstraint between two suessive iterates of (ii).The inner loop is performed with the level set method of Osher and Sethian[53℄ that we now brie�y desribe (it is very similar with its appliation in theontext of shape optimization [5℄, [65℄).In the �xed bounded domain Ω, uniformly meshed one and for all, weparametrize the damaged zone Ω0 by means of a level set funtion ψ suh that






ψ(x) = 0 ⇔ x ∈ Σ,
ψ(x) < 0 ⇔ x ∈ Ω0,
ψ(x) > 0 ⇔ x ∈ Ω1.29



The normal n to the damaged region Ω0 is reovered as ∇ψ/|∇ψ| and the meanurvature H is given by the divergene of the normal divn. These quantities areevaluated by �nite di�erenes sine our mesh is uniformly retangular. Although
n andH are theoretially de�ned only on Σ, the level-set method allows to de�neeasily their extension in the whole domain Ω.Following the minimization proess, the damaged zone is going to evolveaording to a �titious time s whih orresponds to desent stepping and hasnothing to do with the "real" time ti in the outer loop (i). As is well-known, ifthe shape is moving with a normal veloity V , then the evolution of the level-setfuntion is governed by a simple Hamilton-Jaobi equation [52℄, [60℄,

∂ψ

∂s
+ V|∇ψ| = 0, (5.1)whih is posed in the whole body Ω, and not only on the interfae Σ, whenthe veloity V is known everywhere. We now explain how we derive V for ourspei� problem.For the minimization of (2.8) we use the shape derivative given by (3.9),

J ′(χ)(θ) =

∫

Σ

D θ · n dS, (5.2)where the integrandD(x) ∈ L2(Σ) is given by Theorem 3.1 and θ ∈ W 1,∞(Ω; Rd)in any admissible diretion of derivation. Sine only the normal omponent of
θ plays a role in (5.2), we always look for a normal vetor �eld, i.e., we restritour attention to

θ = v n with a salar �eld v ∈ W 1,∞(Ω). (5.3)The veloity V is going to be hosen as an �optimal� diretion of derivation, v,suh that
J ′(χ)(V n) =

∫

Σ

DV dS ≤ 0. (5.4)The simplest hoie V = −D, whih enfores (5.4) and is ommonly used instrutural optimization [5℄, is not satisfatory in the present situation, sine Dis de�ned as a jump on Σ only, without natural extension over Ω. We thereforesuggest another hoie based on the identi�ation of the duality produt between
J ′(χ) and v (realling that θ = v n) with the usual salar produt in H1(Ω). Inother words we represent J ′(χ) by a salar �eld (−V) ∈ H1(Ω) suh that, forany test funtion v,

J ′(χ)(v n) = −
∫

Ω

(∇V · ∇v + Vv) dV. (5.5)Combining (5.2) and (5.5), and requiring the desent ondition (5.4), we hoosethe veloity V in (5.1) as the unique solution in H1(Ω) of the variational for-mulation
∫

Ω

(∇V · ∇v + Vv) dV = −
∫

Σ

D v dS ∀ v ∈ H1(Ω). (5.6)30



Solving (5.6) to ompute a shape derivative is a usual trik in shape optimizationfor regularizing derivatives [3℄, [55℄. However, (5.6) is used here mostly forextending the �natural� veloity D away from the interfae Σ. In pratie weadd a small positive oe�ient (linked to the mesh size) in front of the gradientterm in (5.6) in order to limit the regularization and the spreading of the veloityaround the interfae.For numerial purpose, as explained in [5℄, the surfae integral in the righthand side of (5.6) is written as a volume integral
∫

Σ

D v dS =

∫

Ω

δΣ D v dV, (5.7)where the Dira mass funtion δΣ is approximated by
δǫ
Σ =

1

2
|∇(sǫ(ψ))|with the following approximation of the sign funtion

sǫ(x) =
ψ(x)

√

ψ(x)2 + ǫ2
,where ǫ > 0 is a small parameter hosen in order to spread the integration overa few mesh ells around the interfae. The integrand D, being atually a jump

[E ] of a disontinuous quantity E (see formulae (3.11) or (3.12)), requires alsosome speial are. In (5.7) we replae D = [E ] by
Dapprox = [E ]approx = 2 ((1 − χ)E − χE)where χ is the harateristi funtion of the damaged phase (numerially it isalways equal to 0 or 1 exept in those ells ut by the interfae where it isinterpolated by the loal proportion of damaged phase in the ell). The fator

2 in the above formula takes into aount the fat that
∫

Ω

δǫ
ΣχdV ≈ 1

2

∫

Σ

dS.In our numerial experiments we use formula (3.11) and not (3.10) beause thelatter one exhibits singular jumps when the damaged phase is very weak (whihis the ase for our simulations of rak propagation). Of ourse, in the ase of adegenerate (zero) damaged phase we an use the limit formula given by Remark3.2 whih are of ourse muh simpler (we did so in our previous publiation [7℄).Remark 5.1 Note that the same problem of omputing a jump of a disontin-uous quantity at an interfae was independently addressed in [45℄. This work isalso relying on the level set method and is applied to the Mumford-Shah fun-tional in image segmentation. It an also be applied to frature mehanis and,as our proposed approah, it relies on a fattening of the frature path.31



Our proposed algorithm for the inner loop (ii) is an iterative method, stru-tured as follows:1. Initialization of the level set funtion ψ0 as the signed distane to theprevious damaged interfae Σi orresponding to the harateristi funtion
χ0 ≡ χi.2. Iteration until onvergene, for k ≥ 0:(a) Computation of the state uk by solving a problem of linear elastiitywith oe�ients Aχk = (1 − χk)A1 + χkA0.(b) Deformation of the interfae by solving the transport Hamilton-Jaobiequation (5.1). The new interfae Σk+1 is haraterized by the har-ateristi funtion χk+1 or the level-set funtion ψk+1 solution of(5.1) after a pseudo-time step ∆sk starting from the initial ondition

ψk(x) with veloity Vk omputed through (5.6) in terms of uk. Thepseudo-time step ∆sk is hosen suh that J(χk+1) ≤ J(χk).() Irreversibility onstraint: we replae χk+1 by max(χk+1, χ0) where
χ0 ≡ χi orresponds to the damaged zone at the previous iterationof the outer loop (i).At eah iteration of above the inner loop, for stability reasons, we also reini-tialize the level-set funtion ψ [52℄, [60℄. This is ruial beause the integrand Dof the shape derivative involves normal and tangential omponents of stress orstrain tensors, whih requires a preise evaluation of the normal n by formula

∇ψ/|∇ψ|. Atually it turns out that this reinitialization step must be muhmore preise in the present ontext than for shape optimization [5℄. Indeed,a poor reinitialization an in�uene the propagation of the damage zone. Wetherefore use a trik suggested in [57℄ for an inreased auray of the seond-order reinitialization proess. The Hamilton-Jaobi equation (5.1) is solved byan expliit seond order upwind sheme on a Cartesian grid. The boundaryonditions for ψ are of Neumann type. Sine this sheme is expliit in time, itstime step is given by a CFL ondition. In numerial pratie we often take thedesent step ∆sk of the order of the Hamilton-Jaobi time step whih stabilizesthe damage evolution.6 Simulation resultsOtherwise expliitly mentioned, all our numerial experiments are performedwith a healthy material having Young modulus E1 = 1000 and Poisson ratio
ν1 = 0.3 (white material on the pitures). The damaged phase (blak materialon the pitures) has always Poisson ratio ν0 = 0.3 (the fat that ν0 = ν1does not matter) but has di�erent Young modulus in di�erent plaes. Morepreisely, in Subsetion 6.1 we onsider a moderately weak damaged phase with
E0 = 500, while in the next subsetions the damage phase is assumed to bealmost degenerate, i.e. E0 = 10−3: this last ase orresponds to a limit where32



our model behaves almost like a brittle frature model. Atually some modelsof frature mehanis [36℄ are approximated by Γ-onvergene tehniques [21℄,[22℄, whih is similar in spirit to a damage model. Therefore it is not surprisingthat our damage model an predit rak propagation.In the sequel we all ritial load the value of the applied displaement forwhih the damage region has ompletely rossed the omputational domain(meaning failure of the struture), and initiation load the �rst value for whihthe damage zone departs from its initialization. All other intermediate loadvalues are alled subritial, while values above the ritial one are alled super-ritial.In order to validate our method, two types of numerial experiments aredone. On the one hand, for simple problems we hek onvergene under variousre�nements of the mesh size, of the time step, et. On the other hand, weompare our results with a variety of existing benhmarks tested by laboratoryexperiments or other numerial methods.6.1 2d damage simulation

(a) Initial load (b) Critial load () Superritial loadFigure 1: Mode I damage for the 320×320mesh with 100 time steps. Initial on-�guration with an imposed displaement of 0.02 (a) ritial load at an imposeddisplaement of 0.06 (b) and superritial load with an imposed displaementof 0.072 ().The numerial experiments with a moderately weak damaged phase, E0 =
500, are easier to perform that the ones with a degenerate phase but their resultsare mehanially less interesting. Therefore we ontent ourselves with a singleexperiment, namely a mode I tration (Fig. 1) in a square box of size 1 with aGri�th energy release parameter κ = 1. The imposed vertial displaement atthe bottom is inreased from 0.02 to 0.08 on a given time interval and shown as33



absissa in the �gures. In order to study onvergene under mesh re�nement,four di�erent meshes are used: 280 × 280 (oarse), 320 × 320 (intermediate 1),
400×400 (intermediate 2), 452×452 (�ne). Similarly, for onvergene under timestep re�nement, we divide the time interval suessively in 100, 200 and 400 timesteps. Fig. 1 displays the result for the 320 × 320 mesh with 100 time steps.There are no subritial loads: the initiation load oinides with the ritialload whih means that, not only the appearane of damage is sudden, but thestruture ompletely fails in just one load displaement inrement. Fig. 2 showsthat the results are onvergent under mesh re�nements. The urves are almostidential and the position of the ritial load is learly onverging as the meshis re�ned. Fig. 3 is onerned with onvergene under time-step re�nement.In partiular, the ritial loads for the three time re�nements show very goodagreement, meaning that our quasi-stati numerial model seems to onverge toa time-ontinuous model as the time step tends to zero.The ost funtion (2.4), whih is minimized at eah time step, is the sum ofthe Gri�th or damage energy and of the elasti energy. The damage energy,displayed on Fig. 2a, is disontinuous and inreases abruptly at the ritial load.Similarly, the elasti energy, displayed on Fig. 2b, is disontinuous dereasing atthe ritial load, whih orresponds to the release of energy produed by damage.However, by omparison, the ost funtion, displayed on Fig. 2, seems to beroughly ontinuous with respet to time (there is a small bump at the ritialload).Eventually, we have heked the following formula for the dissipation ofenergy (see Theorem 4.1 in [34℄)

min
u,χ

J (u, χ)(T ) − min
u,χ

J (u, χ)(0) =

∫ T

0

∫

ΓD

(σn) · duD

dt
(t) dS dt (6.1)where J Â is de�ned by (2.3) and uD is the applied displaement. In theabsene of any other applied load, formula (6.1) expresses the onservation oftotal energy. If we plot the right hand side of (6.1), we obtain exatly the ostfuntion on the left hand side with a numerial preision of the order of 10−6.6.2 2d frature with mode I loadingWe now swith to a very weak damage phase, E0 = 10−3, in order to mimirak propagation. Here the Gri�th energy release parameter is κ = 3.5. Weperform the same mode I tration experiment as in Subsetion 6.1 with the sameparameter values otherwise expliitly spei�ed. For a mesh of size 320 × 320,with an initial rak having a width of 8 mesh ells, a height of 16, and for 100time steps, when the imposed vertial displaement at the bottom is inreasedfrom 0.005 to 0.05, we obtain a rak whih breaks the struture in just onetime inrement (see Fig. 4). For all other values of the parameters, the samequalitative behavior is observed: the initial and ritial loads are the same fora mode I rak.We then investigate the onvergene under time-step re�nement (Fig. 5).The imposed vertial displaement at the bottom is inreased from 0.005 to34
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Figure 3: Mode I damage experiment: ost funtion with respet to the imposeddisplaement for the 320 × 320 mesh and for 100, 200 and 400 time steps.

(a) Initial rak (b) Critial loadFigure 4: Mode I rak: initial on�guration (a) and ritial load at 0.0028 (b).36



0.05. The time interval is suessively divided in 100, 200 and 400 time steps.The mesh is of size 320×320 with an initial rak having a width of 8 mesh ells.On Fig. 5 the values of the ritial loads are obviously onverging as ∆t goesto zero. Therefore we believe that our quasi-stati numerial model, as appliedto �rak-like� damage, also onverges to a time-ontinuous model as the timestep tends to zero.
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Figure 5: Time-step re�nement for the mode I rak: ost funtion with respetto the imposed displaement for three time re�nements.We now perform three di�erent test ases of onvergene under mesh re�ne-ment with four meshes for eah test (see Figs. 6, 7, 8). The four di�erent meshesare: 280× 280 (oarse), 320× 320 (intermediate 1), 400× 400 (intermediate 2),
452 × 452 (�ne). From these three re�nement proesses, only the last one isfully satisfatory but the two previous ones are illuminating so we keep them inour exposition.In the �rst ase (Fig. 6), the given initial rak has a onstant width. Inother words, the number of ells in a ross-setion of the initial rak is 6, 8, 10and 12 respetively for the four di�erent meshes. The initial rak tip is slightlyrounded for the �ner meshes in order to avoid the appearane of sharp orners.The imposed vertial displaement at the bottom is inreased from 0.005 to
0.05. On Fig. 6 we observe that the value of the ritial load is dereasing asthe mesh is re�ned and does not seem to onverge (espeially when omparedto the damage ase in Fig. 2). Similarly, the value of the ost funtion at theritial load is dereasing with �ner meshes beause a thinner rak (on a �nermesh) osts less Gri�th energy. Therefore, ontrary to the damage experieneof Subsetion 6.1, no mesh onvergene an be laimed in this �rst experiment.37
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Figure 6: First mesh onvergene test for the mode I rak: ost funtion withrespet to the imposed displaement for various meshes and with 100 time steps.In the seond ase (Fig. 7), we antiipate that a rak should have a thiknessof the order of a few ells ∆x when ∆x goes to zero. Therefore, whatever thevalue of ∆x, the initial rak is hosen with a width of two ells only, whihmeans that the initial rak is thinner and thinner as the mesh is re�ned. Theimposed vertial displaement at the bottom is now inreased from 0.005 to
0.05. Re�nements with respet to the mesh size are shown on Fig. 7. Theritial load again ours sooner for �ner meshes, thereby indiating that thereis no onvergene under mesh re�nement.In the third ase (Fig. 8), we replae the minimization of (2.4) by thatof the saled ost funtion (2.11) in an attempt to show that there is indeedonvergene under mesh re�nement. In other words we replae the Gri�thenergy release parameter κ by its saled version γ

∆x = κℓ
∆x where ∆x is the meshsize. We again hoose E0/E1 = 10−6 and take ℓ = 1/320 (so that ℓ/∆x = 1for the �intermediate 1� mesh). In pratie, this saling implies that it is moredi�ult to reate damage for �ner meshes, a phenomenon that should balanethe opposite e�et displayed in the two previous ases. As explained in Setion2.3 this saling is preisely designed so the saled Gri�th energy onverges toa surfae energy when ∆x goes to zero. On Fig. 8 we hek that the ritialloads are onverging, so we laim that mesh onvergene is observed with thispartiular saling of κ.Eventually, we have again heked the balane of energy expressed in (6.1):the ost funtion perfetly mathes the time integral of the dissipated energy(i.e. the the right hand side of (6.1)), up to a numerial preision of the order38
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Figure 7: Seond mesh onvergene test for the mode I rak: ost funtionwith respet to the imposed displaement for various meshes and with 100 timesteps.
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Figure 8: Third mesh onvergene test for the mode I rak: ost funtion(2.11) with respet to simultaneous mesh, rak and κ re�nements for 100 timesteps. 39



of 10−6.6.3 2d frature with mode II loadingWe now turn to another rak experiment with a mode II loading. The di-mensions of the omputational domain are the same as in the above mode Iexperiments. The weak damage phase is again E0 = 10−6 while the imposedhorizontal displaement at the bottom is here inreased from 0.1 to 1.0 on agiven time interval. On Figs. 9a and 9b the initial and ritial raks are shownfor the 320 × 320 mesh. We emphasize that �ritial� has not exatly the samemeaning here as for the mode I rak: the mode II rak does not atuallybreak the struture. The rak stops just a few ells before reahing the oppo-site boundary and does not move anymore as the load inreases. This longestrak on�guration is alled ritial. However, frature is here again brutal inthe sense that the initiation load oinides with the ritial load. On Fig. 9 wean see that the mode II loading yields a branhing of the rak. By symmetryand sine the model is linearized elastiity the two rak branhes are symmetri,one in ompression and the other in tration. It means that another mehanialmodel taking into aount the non-interpenetration of material would produeonly the branh under tration, i.e., the lips of whih are opening under theload, as it an be observed in physial experiments.Four di�erent meshes are used: 280× 280 (oarse), 320× 320 (intermediate1), 400×400 (intermediate 2), 452×452 (�ne). In our experiment (Fig. 10), weminimize the saled version (2.11) of the ost funtion, i.e., κ is replaed by κℓ
∆x ,and the rak width is always exatly two mesh ells. Convergene under meshre�nement is learly obtained. Even more, the two �nest mesh urves almostoinide.

(a) Initial rak (b) Critial loadFigure 9: Mode II rak experiment: initial on�guration (a) and ritial loadat 0.49 (b). 40
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Figure 10: Mode II rak test: ost funtion (2.11) with respet to simultaneousmesh, rak and κ re�nements for 100 time steps.6.4 Bittenourt's drilled plateThis test ase has been proposed in [17℄ where we found all the required nu-merial values of the parameters. It has been reprodued in many other works,inluding [19, 14℄. The Young modulus of the healthy phase is 3000 and its Pois-son ratio 0.35. The damaged phase has a Young modulus 3.10−3 and the samePoisson ratio. The value of the Gri�th energy release parameter is κ = 0.0014.Contrary to all other numerial simulations in this paper, the present experi-ment has been performed with a given �xed applied fore instead of a sequeneof inreasing displaements. The vertial unit load is applied on a single on-entrated point of the upper body boundary. The value of the Gri�th energyrelease parameter κ is suh that this applied unit load is ritial, i.e. a singletime step produes the raks displayed on Figs. 11a and 11b for two di�erentrak initializations. The distane from the left fae to the initial rak is de-noted by a, while b is the initial rak length. The 3 holes arry a Neumannboundary ondition. We use a non-uniform retangular mesh of size 470 × 800whih is more re�ned in the viinity of the holes. These two results are in goodagreement with laboratory experiment of [17℄, although that of Fig. 11a showsa slightly di�erent rak path near the seond hole.6.5 Coalesene of multiple raksThis experiment is made on a pre-raked sample (of size 1.6 × 2.2) with avertial imposed displaement along the vertial sides (orresponding to a mode41



(a) �rst ase a = 6, b = 1.5

(b) seond ase a = 5, b = 1Figure 11: The two Bittenourt's experiments:(a) �rst ase a = 6, b = 1.5, (b)seond ase a = 5, b = 1,II type loading). The healthy material has Young modulus E1 = 1 and Poissonratio ν1 = 0.3, the damaged phase has the same Poisson ratio but a smallerYoung modulus E0 = 10−3. The value of the Gri�th energy release parameteris κ = 10−7. The imposed vertial displaement is inreased from 0.001 to
0.005 with 100 time steps. The ritial load is attained at 0.0014. Two di�erentmeshes are shown on Fig. 12.6.6 Tration experiment on a �ber reinfored matrixWe perform a test ase proposed in [21℄ where all preise values of the param-eters an be found. The setting of Fig. 14a is the following. A unit vertialdisplaement is exerted on the upper layer of the solid whih is also lamped atits midpoint to avoid translations and rotations. The �ber (grey inlusion onFig. 14a) is also lamped. The healthy material has Young modulus E1 = 1000and Poisson ratio ν1 = 0.3, the damaged phase has the same Poisson ratio buta muh smaller Young modulus E0 = 10−3. The value of the Gri�th energyrelease parameter is κ = 8000. Exellent agreement with the numerial resultsof [21℄ are observed. Let us emphasize that this experiment is the only oneusing the topologial derivative to initiate the damaged zone: the map of thetopologial gradient at the initialization is displayed on Fig. 13. More preisely,the initial body is ompletely healthy without any damage: the applied loadis gradually inreased, until damage appears beause the topologial derivative42



(a) Initial raks (b) Coarse mesh, 160×220ells () Fine mesh, 320 × 440ellsFigure 12: Multiple rak experiment with a mode II loading.beomes negative. One the damaged zone has been initialized we use our shapegradient method to propagate the rak without further use of the topologialgradient. The �nal rak on Fig. 14 is very similar to that omputed in [21℄.There is a subtle point here in the use of the topologial derivative. Suh anotion is well de�ned for the ost funtion (2.3) whih features a bulk Gri�th-type energy. However, it is not possible to de�ne a topologial derivative for theost funtion (2.13) whih has a surfae Gri�th energy. Indeed, surfae energyasymptotially dominates bulk energy for small inlusions and no balane anbe established. In other words the notion of topologial derivative makes sensein our damage model but is irrelevant for frature models.Note also that the initialization pattern suggested by the topologial deriva-tive (whih is neessarily small by de�nition) is not a loal minimizer of the ostfuntion. Thus, suh an initialization is di�ult to ompare with other onesin the literature and its small extension is not a ontradition with theoretialresults [30℄ stating that an initial rak (minimizing the ost funtion) annotbe too small.Therefore we now ompare di�erent (ten) initializations for the same prob-lem. The �rst initialization is that given by the topologial gradient and alreadydisplayed on Figure 14b. The nine other ones, displayed on Figure 15, are in-reasingly larger raks obtained as intermediate inner iterates in the previousomputation (they are therefore not loal minimizers of the ost funtion). Thelarger raks of Figure 15 are very similar to the initial rak pattern in [22℄. Foreah of these initial raks we restarted the rak evolution from a zero imposeddisplaement whih is then gradually inreased. The evolutions of the elastienergy, the Gri�th energy and the ost funtion, when the imposed displae-ment is inreased, are shown on Figure 16. One an learly see the importaneof the initialization, a well-known fat in the minimization of non-onvex ener-43
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Figure 13: Fiber-reinfored matrix: isoontours of the topologial derivative atthe initialization.gies. The idea of restarting the minimization at smaller loading parameters froman intermediate rak solution at a larger loading parameter has already beenexploited in the so-alled bak-traking algorithm of [20℄, [22℄ for global mini-mization. Of ourse, the larger the initial rak is, the smaller is the ritial load.Interestingly enough we found that, for the 4th up to the 10th initializations,part of the rak evolution is smooth with respet to the loading parameter.This is atually the only ourrene in our numerial tests of a ontinuous rakevolution: all other examples feature a brutal frature proess. This smoothbehavior is very similar to that obtained in [22℄ (see Figures 31 and 32 on page92). On Figure 17, for the 5th initialization, we plot the two rak patternsobtained for the values 0.28 and 0.44 of the imposed displaement: in betweenthe rak evolution is ontinuous.6.7 3d mode 1, mode 2 and mode 3 raksWe eventually onlude our numerial tests by performing the 3 di�erent modeloadings in 3d with boundary onditions (imposed displaements) shown onFig. 18. We work with a ubi domain of size 1×1×1 meshed with 80×80×80ubi ells: its left bak fae (irles) is �xed while a uniform displaement ofmodulus 0.04 is applied on its right front fae. The healthy material has Youngmodulus E1 = 104 and Poisson ratio ν1 = 0.3, the damaged phase has the samePoisson ratio but a smaller Young modulus E0 = 1. The value of the Gri�thenergy release parameter is κ = 1. The initial and �nal raks are shown onFig. 19.For this large test ase (involving around 1.56 × 106 degrees of freedom)44



(a) Initial healthy �ber-reinfored ma-trix.

(b) Initial damage nuleated by thetopologial derivative. () Final rak.Figure 14: Fiber-reinfored matrix: an example of rak initiation by the topo-logial derivative.
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(a) 2nd initialization. (b) 3rd initialization. () 4th initialization.
(d) 5th initialization. (e) 6th initialization. (f) 7th initialization.
(g) 8th initialization. (h) 9th initialization. (i) 10th initialization.Figure 15: Fiber-reinfored matrix: di�erent rak initializations.

46



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

100

200

300

50

150

250

(a) Elasti energy.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

 80

 40

(b) Gri�th energy.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

100

200

300

50

150

250

() Cost funtion.Figure 16: Elasti energy, Gri�th energy and ost funtion, as a funtion ofthe imposed displaement, for the ten initializations of Figure 15. The �rstinitialization orresponds to the largest ritial load (or disontinuity) and thethe ritial load is dereasing with the label of the initialization.47



(a) Crak pattern for an imposed dis-plaement 0.28. (b) Crak pattern for an imposed dis-plaement 0.44.Figure 17: Fiber-reinfored matrix: two rak patterns for the 5th initializationat the beginning and at the end of a smooth evolution.

(a) Mode I loading. (b) Mode II loading.
() Mode III loading.Figure 18: Boundary onditions for the modes I, II and III in 3d.48



we use a sparse parallel diret linear solver for solving the elastiity system,requiring 40GB of memory and 15 minutes on 8 Intel Xeon proessors. Eahof these 3d omputations requires of the order of 150 and 200 iterations, i.e.solutions of the elastiity system, so the overall CPU time is about two days.

(a) Initial rak. (b) Mode I rak.

() Mode II rak. (d) Mode III rak.Figure 19: Initial and �nal raks for the modes I, II and III in 3d.7 Conluding remarksWe have proposed a numerial method, based on the Franfort-Marigo damagemodel and using a single level set funtion with standard �nite elements, for thesimulation of damage evolution and rak propagation. Our method is omput-ing a lass of loal minimizers of the Franfort-Marigo energy. The rak pathspredited by our numerial experiments are in exellent qualitative agreementwith previous results in the literature. However, the quasi-stati evolutions ofthe elasti energy, Gri�th-type damage energy and total ost funtion are dif-ferent from those we found in [22℄ (using global minimization), and in [51℄ (using49



ritiality). First, raks often break the struture in a single time inrement:frature is thus a brutal proess in most of our omputations, whih is not thease in [22℄, [51℄. Seond, as opposed to the global minimization approah of[22℄, the ost funtion (whih is the sum of the elasti and damage energies) isnot ontinuous in time: at the ritial load (when the struture breaks down)some energy is thus dissipated. This phenomenon seems to be featured by allloal minimization approahes and is usually interpreted as the neessity ofinluding kineti e�ets in the model.The ill-posed harater of the minimization problem (2.4) or (2.11) (whihdo not admit minimizers, in general) manifests itself in various aspets. First,as already said, we rarely found a loal minimizer in our numerial tests unlessthe struture was broken (frature is a brutal proess). The only exeption isthe �ber reinfored matrix test of Setion 6.6 where a larger than usual ini-tial rak allows us to obtain a smooth evolution of the rak, similar to thatobtained in [22℄. Seond, our numerial results are quite sensitive to some im-plementation issues. For example, it is neessary to use the omplete shapederivative formulas (3.9) (whih features the two phases) and not their simplerlimit (3.13), obtained when the damaged phase is assumed to have zero rigidity,otherwise the minimization of the ost funtion is less omplete and the valuesof the initiation or ritial loads may be wrong. Another important issue is thereinitialization proess whih must be preise enough so that the normal andtangent vetors to the interfae between the two phases are always auratelyomputed while the interfae itself does not move at all during reinitialization(otherwise it would ontradit the irreversibility onstraint).An interesting open problem is to prove the onjetured onvergene of thedisrete saled energy (2.12) towards the frature model (2.13). A natural ex-tension of our work is to handle a non-interpenetration ondition so that raksunder ompression do not propagate. We have used standard Q1 �nite elementsfor solving the linear elastiity system whih features a large variation of theYoung modulus between the two phases. It would be interesting to study ifextended �nite element methods (XFEM, see e.g. [39℄, [40℄) would improvethe numerial preision at a not too large expense in CPU ost. Of ourse,we should also perform more realisti test ases and make preise omparisonswith both physial experiments and other odes, inluding a study of CPU ost.Eventually let us mention that shape optimization for minimizing the risk ofrak propagation is also a promising �eld to investigate, following [48℄.A Computation of the shape derivativeThis appendix is devoted to the proofs of Lemma 3.6 and Corollary 3.1. Webegin with Lemma 3.6 whih furnishes the partial shape derivative of the La-grangian. To prove it we use Lemma 3.1. On the one hand, the derivativesof integrals on Ω0,1 are simple. On the other hand, the interfae Σ is either alosed surfae without boundary or a surfae whih meets the outer boundary
∂Ω: in both ases the derivative of an integral on Σ has no ontribution on50



its boundary ∂Σ as in (3.1). Eventually, even if the surfaes Γ0,1
N are subsetof the �xed boundary ΓN , they an vary tangentially to ΓN , so the derivativesof integrals on Γ0,1

N are made of the sole boundary term on γ = ∂Γ0,1
N in (3.1).Therefore, the partial shape derivative of L is
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θ · τdL, (A.1)where H denotes the mean urvature and τ is the external unit vetor normalto γ = ∂ΓN and n. Sine u0 = u1 and p0 = p1 on Σ, the terms involving theurvature vanish on Σ. Similarly the normal omponent of the stress tensorsare ontinuous through Σ. Thus, (A.1) simpli�es in
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interfae and jumps of the Lamé oe�ients. (In the following omputations, thesymbol · will denote, aording to the ontext, either a salar produt betweentwo vetors, or between two matries.)Let us ompute the integrand in the �rst term of the right hand side of (A.2).In the loal orthonormal basis (t, n) (adapted to the interfae Σ and introduedin Lemma 3.2) the following deomposition holds
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We obtain
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Assumption A0 ≤ A1 is equivalent to [µ] ≥ 0 and [κ] ≥ 0 with κ := λ +
2

d
µ,the bulk modulus. Sine σtn(u) only appears as a square produt in (A.4), itsu�es to hek that the ombination of all other terms is indeed negative, thatis,
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