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The bounded confidence model of opinion dynamics, introduced by Deffuant et al., is a
stochastic model for the evolution of [0,1]-valued opinions within a finite group of peers.
We show that as time goes to infinity, the opinions evolve into a random non-interacting
set of clusters, and subsequently the opinions in each cluster converge to their barycenter;
the limit empirical distribution is called a partial consensus. Then, we prove a mean-
field limit result: for i.i.d. initial opinions, as the number of peers increases and time is
rescaled accordingly, the peers asymptotically behave as i.i.d. peers, each influenced by
opinions drawn independently from the unique solution of a nonlinear integro-differential
equation. As a consequence, the (random) empirical distribution process converges to
this (deterministic) solution. We also show that as time goes to infinity, this solution
converges to a partial consensus, and identify sufficient conditions for the limit not to
depend on the initial condition, and for formation of total consensus. Finally, we show
that if the equation has an initial condition with a density, then its solution has a density
at all times, develop a numerical scheme to solve the corresponding functional equation
of the Kac type, and show, using numerical examples, that bifurcations may occur.

Keywords: Social networks; reputation; opinion; mean-field limit; propagation of chaos;
nonlinear integro-differential equation; kinetic equation; numerical experiments.
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1. Introduction

Some models about opinion dynamics are based on binary values,15,3,32,24,38,34 and
often lead to attractors that display uniformity of opinions. These models are not
valid for scenarios such as the social network of truck drivers interested in the quality
of food of a highway restaurant or the critics’ ratings about the new opening movies,
for which it is required to have a continuous spectrum of opinions. For example, a
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continuous model is widely used in politics when people are positioned according
to how left- (or right-) wing their opinions are.12

One of the most popular models is the bounded confidence model introduced by
Deffuant et al.,9 in which repeatedly two peers are randomly selected and influence
one another if their [0, 1]-valued opinions differ by less than a deviation threshold.
This has been extensively studied: from the topological point of view, ranging from
random graphs13 to lattice topology,39,40 and from the dimensional point of view,
as it can be generalized to multidimensional vector opinions.31,40 There are also
studies39 in which the deviation threshold depends on the peer (i.e., some people
are more tolerant than others) or in which the interaction is performed and averaged
among all the potential pairs of peers that tolerate each other.11,21

Reputation systems have lately emerged due to the necessity to measure trust
about users while doing transactions over the internet. Popular examples that use
reputation systems are e-Bay33 or Bizrate.37 The model introduced in Refs 25 and
7 for the evolution of the trust and the potential effects that a group of liars might
have while trying to attack the system is a generalization of the bounded confidence
model, in particular when there are no liars nor direct observations and the evolution
of the system is only carried by interaction throughout the different peers.

The mean-field approach is a deterministic approximation for a large num-
ber of peers. It has been used in many different contexts such as TCP
connections,36,4,20 HTTP flows,5 bandwidth sharing between streaming and file
transfers,23 mobile networks,8, robot swarms,27 transportation systems,2 and rep-
utation systems.25,30,29 For online reputation systems it is appealing to use such
methods, as the number of users may be very large (over 400 million for Facebook1).

However, justifying the validity of the mean-field approach is not easy, and the
proof methods in the cited papers do not apply here, as we discuss in Section 4.

In this paper, we consider a fully connected network, the same deviation test for
all peers, and [0, 1]-valued opinions. The model (and mean-field approach) can be
easily generalized to vector-valued opinions. We make the following contributions.
• We prove that in the model with finitely many peers, as time increases, opin-

ions tend to group into clusters, the number of which remains constant after some
random finite time. Subsequently, within every cluster all opinions converge to their
barycenter. The distribution of opinions thus converges to a degenerate form, which
we call a “partial consensus", in which there are only a small number of fixed opin-
ions which differ too much to influence each other.
•We prove a mean-field limit result, propagation of chaos: in the limit when the

number of peers goes to infinity and time is rescaled accordingly, if the peers are
i.i.d. of arbitrary law m0 at time zero, then the processes of their opinions become
i.i.d., each with a nonlinear Markovian evolution corresponding to that of a peer
being influenced by opinions drawn independently from the unique solution of a
nonlinear integro-differential equation starting at m0. If m0 has a density, then this
solution has a density at all times, which satisfies a functional formulation of this
equation. This implies law of large numbers results: the (random) process empirical
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measures converge to the (deterministic) Markovian law described above, and their
marginal processes converge to the solution of the integro-differential equation.

The probabilistic structure of the limit equation is the same as that of kinetic
equations, such as the cutoff spatially-homogeneous Boltzmann or Kac equations,
used in statistical mechanics to describe the limit of certain particle systems with
binary interaction. The mean-field limit proofs in this paper use results elaborated
in this setting by Graham-Méléard19,18 and Desvillettes et al.10

From this perspective, the limit is as if each peer were influenced by an infinite
supply of independent statistically similar peers, which have instantaneous opinions
distributed according to the nonlinear integro-differential equation given by the
consistency relations coming from the resulting feedback.

To the best of our knowledge, this is the first rigorous mean-field limit result for
this opinion model. Similar integro-differential equations were used before,9,6,26 but
without formal justification. Our equation differs by a factor 2, and the equations
in these references appear to be slightly incorrect. This illustrates the importance
of being able to derive the macroscopic equation from a microscopic description, as
we do in this paper. Our result is also more general in that we make no particular
assumption on m0 (other than being a probability distribution).
• The mean-field limit has similar long-time behavior as the model with finitely

many peers, namely it converges to a partial consensus.
• We develop a numerical method for the integro-differential equation, and use

it to explore the properties of the model. We observe phase transitions while varying
the deviation threshold. We model the scenario of a company fusion, categorizing the
workers into “undecided” and “extremists”. We obtain that having 20% of the workers
“undecided” is enough to unite the two factions of extremists and achieve consensus.
Last, we establish a bound on the deviation threshold, in order to determine if there
is total consensus or not, under the assumption of symmetric initial conditions.

The rest of the paper is organized as follows. Section 2 describes the finite model,
and Section 3 studies some of its long time properties. Section 4 rigorously derives
the mean-field limit, and Section 5 studies some of its long time properties. Section 6
is devoted to numerical results for the mean-field limit. All proofs are in Section 7.

2. Model and Notation

We use the model for N ≥ 2 interacting peers introduced in Ref 9. The random
variable (r.v.) XN

i (k) with values in [0, 1] denotes the reputation record kept at peer
i ∈ {1, . . . , N} at time k ∈ N = {0, 1, . . . }, representing its belief (or opinion) about
a given subject, the same for all peers. The system state at time k ∈ N is given by
the collection XN (k) = (XN

i (k))1≤i≤N .
The discrete-time process XN = (XN (k), k ∈ N) evolves in function of the de-

viation threshold ∆ ∈ (0, 1] and the confidence factor w ∈ (0, 1). At each instant k,
two peers i and j are selected uniformly at random without replacement, and

• if |XN
i (k)−XN

j (k)| > ∆ then XN (k + 1) = XN (k), the two peers’ beliefs
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being too different for mutual influence,
• if |XN

i (k)−XN
j (k)| ≤ ∆ then the values of peers i and j are updated to

XN
i (k + 1) = wXN

i (k) + (1− w)XN
j (k) ,

XN
j (k + 1) = wXN

j (k) + (1− w)XN
i (k) ,

and the values of the other peers do not change at time k+1, the two peers
having sufficiently close beliefs to influence each other.

Small values of ∆ and large values of w mean that the peers trust very much their
own beliefs in comparison to the new information given by the other interacting
peer. If w = 1

2 then both peers will have the average value after actual mutual
influence. The extreme excluded values ∆ = 0 or w = 1 correspond to peers never
changing belief, and w = 0 to peers exchanging beliefs if these are close enough.

Of interest is the reduced description given by the empirical measure ΛN with
samples in P([0, 1]N), and its marginal process MN = (MN (k), k ∈ N) also called
the occupancy process with sample paths in P([0, 1])N, given by

ΛN =
1
N

N∑
n=1

δXN
i

=
1
N

N∑
n=1

δ(XN
i (k),k∈N) , MN (k) =

1
N

N∑
n=1

δXN
i (k) ,

so that, for bounded measurable g : [0, 1]N → R and h : [0, 1]→ R,

〈g,ΛN 〉 =
1
N

N∑
n=1

g(XN
i ) , 〈h,MN (k)〉 =

1
N

N∑
n=1

h(XN
i (k)) .

We will also re-scale time as t = k
N and use the rescaled occupancy process M̃N =

(M̃N (t), t ∈ R+), given by M̃N (t) = MN (bNtc). In Section 4, this process is shown
to converge in probability to a deterministic process (m(t), t ∈ R+), called the “mean
field limit".

3. Long-time behavior of the finite N model

When the number of peers is fixed and finite, we prove that as k goes to infinity
MN (k) converges almost surely to a random probability measureMN (∞). We show
thatMN (∞) is a combination of at most

⌈
1
∆

⌉
Dirac measures at points separated by

at least ∆. A key observation here is that if h is any convex function then 〈h,MN (k)〉
is non-increasing in k. Dittmer and Krause 11,22 obtained similar results, but for a
deterministic model.

Definition 3.1. We say that ν ∈ P[0, 1] is a partial consensus with m0 components
if ν =

∑m0
m=1 αmδxm with xm ∈ [0, 1], |xm − xm′ | > ∆ for m 6= m′, and αm > 0.

Necessarily m0 ≤
⌈

1
∆

⌉
and

∑m0
m=0 αm = 1. If m0 = 1, i.e., if ν is a Dirac measure,

we say that ν is a total consensus.

If MN (k) is a partial consensus, then peers are grouped in a number of compo-
nents, within one component all peers have the same value, and components are too
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far to interact. A partial consensus is an absorbing state for MN , and Theorem 3.9
below shows that MN (k) converges almost surely as k →∞ to one such state.

3.1. Convexity and Moments

We start with results about convexity and moments, which are needed to establish
the convergence result, and are also of independent interest.

Proposition 3.2. For any convex function h : [0, 1]→ R, any x, y, and w in [0, 1],

h (wx+ (1− w)y) + h (wy + (1− w)x)− h(x)− h(y) ≤ 0

with equality when h is strictly convex possible only if x = y or w = 0 or w = 1.

It follows immediately from the model definition that in any sample path, mo-
ments are non-decreasing with time, and the first moment is constant.

Corollary 3.3. If h : [0, 1] → R is a convex function, then 〈h,MN (k)〉 is a non-
increasing function of k along any sample path.

Applying Corollary 3.3 to h(x) = x, h(x) = −x and h(x) = xn gives the
following:

Corollary 3.4. For n = 1, 2, . . . and k ∈ N, let µNn (k) = 1
N

∑N
i=1X

N
i (k)n denote

the n-th moment of MN (k) and σN (k) the standard deviation, given by σN (k)2 =
µN2 (k)− µN1 (k)2.

(1) The mean µN1 (k) is stationary in k, i.e., µN1 (k) = µN1 (0).
(2) The moments and the standard deviation are non-increasing in k, i.e., if k ≤ k′

then µNn (k) ≥ µNn (k′) and σN (k) ≥ σN (k′)

Next, we prove that stationarity of moments is equivalent to reaching partial
consensus:

Proposition 3.5. If MN (k) is a partial consensus, then µNn (k′) = µNn (k) for all
n ≥ 1 and k′ ≥ k. Conversely, if for some n ≥ 2 there exists a (random) instant k
such that µNn (k′) = µNn (k) for all k′ ≥ k, then MN (k′) = MN (k) for all k′ ≥ k and
MN (k) is a partial consensus, almost surely.

3.2. Almost Sure Convergence to Partial Consensus

Definition 3.6. We say that two peers i and j are connected at time k if their
values x and y satisfy |y − x| ≤ ∆. We say that F ⊂ {1, 2, . . . , N} is a cluster at
time k if it is a maximal connected component.

In other words, a cluster is a maximal set of peers such that every peer can pass
the deviation test with one neighbour in the cluster. The set of clusters at time k
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is a random partition of the set of peers. The following proposition states that a
cluster can either split or stay constant, but cannot grow.

Proposition 3.7. Let CN (k) = {C1, . . . , C`} be the set of clusters at time k. Then
either CN (k+ 1) = CN (k) or CN (k+ 1) =

(
CN (k) \ C`1

)
∪C′ where C′ is a partition

of C`1 , for some `1 ∈ {1, . . . , `}.

The number of clusters is thus non decreasing, and since it is bounded by
⌈

1
∆

⌉
,

it must be constant after some time. The previous proposition implies that the
clusters themselves remain unchanged, i.e., we have shown the following corollary.

Corollary 3.8. There exists a random time KN such that

CN (k) = CN (KN ) for k ≥ KN .

Finally, we show that the occupancy measure converges to a partial consensus.
Let LN be the final number of clusters, i.e., the cardinality of CN (KN ).

Theorem 3.9. As k goes to infinity, MN (k) converges almost surely, for the weak
topology on P[0, 1], to a random probability MN (∞), which is a partial consensus
with LN components.

We use the usual weak topology for probability measures, for which νn converges
to ν if and only if 〈f, νn〉 converges to 〈f, ν〉 for any continuous (and hence bounded)
f : [0, 1] → R. Equivalently, the cumulative distribution function (CDF) of νn
converges to the CDF of ν at all continuity points of the limit.

Theorem 3.9 notably implies that there is convergence to total consensus if and
only if LN = 1. The probability p∗ := P(LN = 1) of convergence to total consensus
is not necessarily 0 or 1, but:

(1) If the diameter of MN (0) is less than ∆ (i.e., maxi,j
∣∣XN

i (0)−XN
j (0)

∣∣ < ∆)
then p∗ = 1 (obvious);

(2) If there is more than 1 cluster in MN (0) then p∗ = 0 (follows from Proposi-
tion 3.7).

4. Mean-field limit results when N goes to infinity

4.1. Topological and measure-theoretic preliminaries

Let S be a metric space with a σ-field (not necessarily the Borel σ-field), P(S) the
space of probability measures on S (for this σ-field), and D(R+,S) the Skorohod
space of right-continuous paths with left-hand limits (for this metric).

When S is given the Borel σ-field, the weak topology of P(S) corresponds to
the convergences

Pn
weak−−−−→
n→∞

P ⇔ 〈f, Pn〉 −−−−→
n→∞

〈f, P 〉 , ∀f ∈ Cb(S,R)
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where Cb(S,R) denotes the space of continuous bounded functions. Convergence in
law of random elements, defined possibly on distinct probability spaces but having
common sample space S, is defined as weak convergence of their laws:

Yn
law−−−−→
n→∞

Y ⇔ L(Yn) weak−−−−→
n→∞

L(Y )⇔ E(f(Yn)) −−−−→
n→∞

E(f(Y )) , ∀f ∈ Cb(S,R) .

If S is separable and is given the Borel σ-field, then the weak topology is metriz-
able and P(S) is separable (Ethier-Kurtz,14 Theorems 3.3.1 and 3.1.7).

If S is not separable, then the Borel σ-field is usually too strong to sustain
reasonable probability measures, and S must be given a weaker, separable, σ-field.
This causes problems between topological and measure-theoretic issues, and classic
results such as the Portmanteau theorem (Ref. 14, Theorem 3.3.1) may fail to hold.

The natural σ-field on D(R+,S) is the product (or projection) σ-field of the
σ-field on S, and will always be used in the sequel. The classical topology given
D(R+,S) is the Skorohod topology, which can be metrized by (3.5.2) or (3.5.21)
in Ref. 14. If S is separable then D(R+,S) is separable (Ref. 14, Theorem 3.5.6)
and then, if S is given the Borel σ-field, the Borel σ-field of the Skorohod topology
and the product σ-field coincide. For weak convergence with a continuous limit
process, uniform convergence on bounded time intervals may be used with adequate
measurability assumptions on the test functions (Ref. 14, Theorem 3.10.2).

4.2. Mean-field regime, rescaled and auxiliary systems

The number N of peers is typically large, and we let it go to infinity. At each
time-step two peers are possibly updated, and the empirical measures have jumps
of order 1

N , hence time must be rescaled by a factor N . This is a mean-field limit,
in which time is usually rescaled by physical considerations; here, we could say “the
more peers, the more often they meet”. It is also related to fluid limits.

A non-trivial continuous-time limit process is expected for the rescaled system

X̃N = (X̃N
i )1≤i≤N , X̃N = (X̃N (t), t ∈ R+) = (XN (bNtc), t ∈ R+) , (4.1)

with sample paths in D(R+, [0, 1]N ). The empirical measure Λ̃N and its marginal
process M̃N = (M̃N (t), t ∈ R+) (satisfying Λ̃Nt = M̃N (t) with classic notation for
marginal laws for process laws) are given by

Λ̃N =
1
N

N∑
i=1

δ eXN
i

=
1
N

N∑
i=1

δ( eXN
i (t),t∈R+) , M̃N (t) =

1
N

N∑
i=1

δ eXN
i (t) , (4.2)

respectively with samples in P(D(R+, [0, 1])) and sample paths in D(R+,P[0, 1]).
An auxiliary (rescaled) system is obtained by randomizing the jump instants of

the original model by waiting i.i.d. exponential r.v. of mean 1
N between selections.

A convenient construction uses a Poisson process (A(t), t ∈ R+) of intensity 1 to set

X̂N = (X̂N
i )1≤i≤N , X̂N = (X̂N (t), t ∈ R+) = (XN (A(Nt)), t ∈ R+) ,

Λ̂N =
1
N

N∑
i=1

δ bXN
i
, M̂N = (M̂N (t), t ∈ R+) , M̂N (t) =

1
N

N∑
i=1

δ bXN
i (t) ,

(4.3)
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with sample spaces as above.
If Tk for k ≥ 0 are given by T0 = 0 and the jump instants of (A(t), t ∈ R+), then

X̃N (t) = X̂N (t′) = XN (k) ,
k

N
≤ t < k + 1

N
,

Tk
N
≤ t′ < Tk+1

N
. (4.4)

Note that M̃N (t) = MN (bNtc) and M̂N (t) = MN (A(Nt)), but that the relation-
ship between Λ̃N and Λ̂N and ΛN is more involved.

The process X̂N is a pure-jump Markov process with rate bounded by N , at
which two peers are chosen uniformly at random without replacement, say i and j
at time t, and

• if |X̂N
i (t−)− X̂N

j (t−)| > ∆ then X̂N (t) = X̂N (t−),
• if |X̂N

i (t−)− X̂N
j (t−)| ≤ ∆ then only the values of peers i and j change to

X̂N
i (t) = wX̂N

i (t−) + (1− w)X̂N
j (t−) ,

X̂N
j (t) = wXN

j (t−) + (1− w)X̂N
i (t−) .

Remark 4.1. Each of the N(N−1)
2 unordered pairs of peers is thus chosen at rate

2
N−1 , and then both peers undergo a simultaneous jump in their values if these are
close enough. Each peer is thus affected at rate 2.

The generator AN of X̂N = (X̂N
n )1≤n≤N acts on f ∈ L∞([0, 1]N ) as

ANf((xn)1≤n≤N ) =
2

N − 1

∑
1≤i<j≤N

[f((xn)i,j1≤n≤N )− f((xn)1≤n≤N )]1{|xi−xj |≤∆}

(4.5)
where (xn)i,j1≤n≤N is obtained from (xn)1≤n≤N by replacing xi and xj with wxi +
(1−w)xj and wxj + (1−w)xi and leaving the other coordinates fixed. Its operator
norm is bounded by 2N , and the law of the corresponding Markov process X̂N is
well-defined in terms of the law of X̂N (0) = XN (0). From a statistical mechanics
perspective, X̂N is a particle system in binary mean-field interaction.

For 1 ≤ k ≤ N , this generator acts on hk ∈ L∞([0, 1]N ) which depend only on
the k-th coordinate, of the form hk((xn)1≤n≤N ) = h(xk) for some h ∈ L∞[0, 1], as

2
N − 1

∑
1≤j≤N :j 6=k

[h(wxk + (1− w)xj)− h(xk)]1{|xk−xj |≤∆}

:= A

(
1

N − 1

∑
1≤j≤N :j 6=k

δxj
(dy)

)
h(xk) (4.6)

where the generators A(µ) act on h ∈ L∞[0, 1] as

A(µ)h(x) = 2〈[h(wx+ (1− w)y)− h(x)]1{|x−y|≤∆} , µ(dy)〉 , µ ∈ P[0, 1] . (4.7)

Hence, if the X̂N
i (0) converge in law to i.i.d. r.v. of law m0, then the X̂N

i

are expected to converge in law to i.i.d. processes of law Q, the law of a time-
inhomogeneous Markov process X̂ with initial law m0 and generator A(m(t)) at
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time t ∈ R+, where m(t) = L(X̂t) = Qt is the instantaneous law of this same
process, the marginal of Q.

Considering the forward Kolmogorov equation for this Markov process,
(m(t), t ∈ R+) should satisfy the following weak (or distributional-sense) formu-
lation of a nonlinear integro-differential equation.

Definition 4.1 (Problem 1). We say thatm = (m(t), t ∈ R+) withm(t) ∈ P[0, 1]
is solution to Problem 1 with initial value m0 ∈ P[0, 1] if m(0) = m0 and

〈h,m(t)〉 − 〈h,m(0)〉 =
∫ t

0

〈A(m(s))h,m(s)〉 ds

:=
∫ t

0

2
〈
[h(wx+ (1− w)y)− h(x)]1{|x−y|≤∆} ,m(s)(dy)m(s)(dx)

〉
ds (4.8)

for all test functions h ∈ L∞[0, 1]. This can be written more symmetrically as

〈h,m(t)〉 − 〈h,m(0)〉 =
∫ t

0

〈
[h(wx+ (1− w)y) + h(wy + (1− w)x)

− h(x)− h(y)]1{|x−y|≤∆} ,m(s)(dy)m(s)(dx)
〉
ds . (4.9)

Remark 4.2. The basic probabilistic structure is the same as in the weak forms
(2.1), (2.2), (2.4) (with L = 0) of the spatially homogeneous version (without x-
dependence) of the Boltzmann equation (1.1) in Graham-Méléard19, the weak form
(1.7) of the (cutoff) Kac equation (1.1)-(1.2) in Desvillettes et al.,10 the nonlin-
ear Kolmogorov equation (2.7) in Graham,16 and the kinetic equation (9.4.4) in
Graham.17 The weak formulation involves explicitly the generator of the underlying
Markovian dynamics, and allows to understand it more directly. We shall discuss the
functional formulation (for probability density functions) of this integro-differential
equation in Section 6, which involves an adjoint expression of this generator.

The distance in total variation norm of µ and µ′ in P(S) is given by

|µ− µ′| = sup
‖φ‖∞≤1

〈φ, µ− µ′〉 = 2 sup{µ(A)− µ′(A) : measurable A ⊂ S} . (4.10)

Theorem 4.2. Consider the generators A(µ) given by (4.7), and m0 in P[0, 1].

(1) There is a unique solution m = (m(t), t ∈ R+) to Problem 1 starting at m0.
For the total variation norm on P[0, 1], t 7→ m(t) is continuous, and m0 7→
(m(t), t ∈ R+) is continuous for uniform convergence on bounded time sets.

(2) There is a unique law Q = L(X̂) on D(R+, [0, 1]) for an inhomogeneous Markov
process X̂ = (X̂(t), t ∈ R+) with generator A(m(t)) at time t and initial law
L(X̂(0)) = m0. Its marginal Qt = L(X̂t) is given by m(t).

Note that the presence of indicator functions requires quite strong topologies.
For instance, if 0 < a < b = a + ∆ < 1 and m0 = 1

2 (δa + δb), then there exists
MN

+ (0) with support not intersecting [a, b] and converging weakly to m(0), and
starting there MN

+ (k) and mN
+ (t) have at least two clusters and support outside
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[a, b]. There exists also MN
− (0) with support inside (a, b) and converging weakly to

m(0), and MN
− (k) and mN

+ (t) have one cluster and support inside (a, b) for any
k ∈ N, and will be a total consensus after some random time.

In statistical mechanics, convergence to an i.i.d. system is called chaoticity, and
the fact that chaoticity at time 0 implies chaoticity at further times is called prop-
agation of chaos, a terminology nowadays often restricted to process convergence.
Compactness-uniqueness methods are classically used for proofs, see Sznitman,35

and also Méléard,28 Graham-Méléard19 Section 4, and Graham,16,17 but require
weak topologies for compactness criteria, and continuity properties in order to pass
to the limit; hence, the indicator functions prevent using them here.

Another difficulty for proofs is the presence of simultaneous jumps of pairs of
particles. This prevents relating the interacting system in a simple way to an inde-
pendent system (which cannot have such jumps), or writing an evolution formula
for the empirical measure which is almost in closed form. Because of that, the cou-
pling methods introduced by Sznitman,35 see also Méléard28 and Graham-Robert,20

cannot be adapted here. Moreover, these use contraction techniques, and the metric
used is too weak for the indicator functions.

4.3. Rigorous mean-field limit results for the auxiliary system

Systems of this type were studied in Graham-Méléard18,19 (see also Ref. 10). The
first paper studied a class of not necessarily Markovian multitype interacting sys-
tems, as a model for communication networks. The second studied Monte-Carlo
methods for a class of Boltzmann models, and in particular expressed some notions
and results of the first in this framework. Their results yield the following.

For k ≥ 1 and T ≥ 0 and laws P and P ′ onD(R+, [0, 1]k), let |P−P ′|T denote the
distance in variation norm (4.10) of the restrictions of P and Q on D([0, T ], [0, 1]k).
When clear, the processes will be restricted to [0, T ] without further mention.

Theorem 4.3. Consider the auxiliary system (4.3) for N ≥ 2. If the X̂N
i (0) :=

XN
i (0) are i.i.d. of law m0, then there is propagation of chaos. More precisely, let

m = (m(t), t ∈ R+) and Q be as in Theorem 4.2 for m(0) = m0, and T > 0.

(1) For 1 ≤ k ≤ N ,

|L(X̂N
1 , . . . , X̂

N
k )− L(X̂N

1 )⊗ · · · ⊗ L(X̂N
k )|T ≤ 2k(k − 1)

2T + 4T 2

N − 1
,

and ∣∣∣∣∣ 1
N

N∑
i=1

L(X̂N
i )−Q

∣∣∣∣∣
T

≤ |L(X̂N
i )−Q|T ≤ 6

exp(2T )− 1
N + 1

.

(2) For any φ : D([0, T ], [0, 1])→ R such that ‖φ‖∞ ≤ 1,

E

[〈
φ, Λ̂N − 1

N

N∑
i=1

L(X̂N
i )
〉2
]
≤ 4 + 8T + 16T 2

N
.
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Moreover

Λ̂N
in probab.−−−−−−→
N→∞

Q , M̂N in probab.−−−−−−→
N→∞

m,

respectively for the weak topology on P(D(R+, [0, 1])) with the Skorohod topology
on D(R+, [0, 1]), and for the topology of uniform convergence on bounded time
intervals on D(R+,P[0, 1]) with the weak topology on P[0, 1].

Remark 4.3. The convergence result for Λ̂N is equivalent to convergence in law
to Q (Ethier-Kurtz,14 Corollary 3.3.3). The convergence result for M̂N implies
convergence in law to m for test functions which are continuous, bounded, and
measurable for the product σ-field (Ref. 14, Theorem 3.10.2). Separability issues
restrict these results, and in fact convergence of Λ̂N holds for any convergence
induced by a denumerable set of bounded measurable functions. See also Section 4.1.

4.4. From the auxiliary to the rescaled system

For k ≥ 1, let ak denote the Skorohod metric on D(R+, [0, 1]k) given by (3.5.21) in
Ethier-Kurtz14 for the atomic metric (x, y) 7→ 1{x 6=y} on [0, 1]k (which induces the
topology of all subsets of [0, 1]k, for which any function is continuous). Note that
ak is measurable with respect to the usual Borel σ-field on [0, 1]k × [0, 1]k.

A time-change is an increasing homeomorphism of R+, i.e., a continuous func-
tion from R+ to R+ which is null at the origin and strictly increasing to infinity.
Two paths are close for ak if there is a time-change close to the identity such that
the time-change of one path is equal to the other path.

Eq. (4.4) is the key to obtain the following quite general result showing that
the rescaled system X̃N is very close to the the auxiliary system X̂N , up to a
well-controlled (random) time-change.

Theorem 4.4. Consider the rescaled system (4.1) and the auxiliary system (4.3)
for N ≥ 2. Then limN→∞ aN (X̃N , X̂N ) = 0 in probability.

This result and Theorem 4.3 now yield the main mean-field convergence result.

Theorem 4.5. Consider the rescaled system (4.1) for N ≥ 2. If the X̃N
i (0) :=

XN
i (0) are i.i.d. of law m0, then there is propagation of chaos. More precisely, let

m = (m(t), t ∈ R+) and Q be as in Theorem 4.2 for m(0) = m0.

(1) For 1 ≤ k ≤ N ,

lim
N→∞

L(X̃N
1 , . . . , X̃

N
k ) = Q⊗k ,

for the weak topology on P(D(R+, [0, 1]k)) induced by test functions which are
either uniformly continuous for the Skorohod metric ak, bounded, and mea-
surable for the usual product σ-field (for the usual Borel σ-field on [0, 1]k), or
continuous for the usual Skorohod topology (for the usual metric on [0, 1]k) and
bounded.
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(2) For the usual topology of [0, 1],

Λ̃N
in probab.−−−−−−→
N→∞

Q , M̃N in probab.−−−−−−→
N→∞

m,

respectively for the weak topology on P(D(R+, [0, 1])) with the Skorohod topology
on D(R+, [0, 1]), and for the topology of uniform convergence on bounded time
intervals on D(R+,P[0, 1]) with the weak topology on P[0, 1].

For the second result, see Remark 4.3.

5. Infinite N Model

We now study the mean-field limit m = (m(t), t ∈ R+) obtained in Section 5 when
N goes to infinity. As for the finite N model, we find that there is convergence to
a partial consensus, as time goes to infinity; the limit may depend on the initial
conditions, which is the deterministic counterpart of the fact that the limit is random
when N is finite. We are able to say more; in particular, we find tractable sufficient
conditions for the limit to be a total consensus.

5.1. Convexity and Moments

Applying Proposition 3.2 to the equivalent definition of Problem 1 given by (4.9)
yields the following:

Corollary 5.1. Let m = (m(t), t ∈ R+) be solution of Problem 1. If h : [0, 1]→ R
is convex, then 〈h,m(t)〉 is a non-increasing function of t.

For n = 1, 2, . . . and t ∈ R+, let µn(t) =
∫ 1

0
xn m(t)(dx) denote the n-th moment

of m(t), and σ(t) denote its standard deviation, given by σ(t)2 = µ2(t)− µ1(t)2.

(1) The mean µ1(t) is stationary, i.e., µ1(t) = µ1(0).
(2) The moments µn(t) are non-increasing in t, i.e., if t1 ≤ t2 then µn(t1) ≥ µn(t2).
(3) The standard deviation σ(t) is a non-increasing function of t.

Furthermore, we have the bounds:

Proposition 5.2. For all t ≥ 0, we have σ(0) ≥ σ(t) ≥ σ(0)e−4w(1−w)t.

Note that Corollary 5.1 and Proposition 5.2 generalize results of Ref 6, which
established similar results for the case w = 1/2. However, our bound in Proposi-
tion 5.2 is different, as the equation considered in Ref. 6 misses a factor 2.

5.2. Convergence to Partial Consensus

It is immediate that a partial consensus is a stationary point for Problem 1, i.e.,
if (m(t), t ∈ R+) is solution of Problem 1 with initial value a partial consensus m0,
then m(t) = m0 for all t. Conversely, we show, in Theorem 3 below, that any
trajectory (m(t), t ∈ R+) converges to a partial consensus.
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It is useful to consider the essential sup and inf of m(t), defined as follows.

Definition 5.3. For ν ∈ P[0, 1], let ess sup(ν) = inf{b ∈ [0, 1], ν ((b, 1]) = 0} and
ess inf(ν) = sup{a ∈ [0, 1], ν ([0, a)) = 0}.

Note that if ess inf(ν) = a and ess sup(ν) = b, then the support of ν is included
in [a, b], i.e., for any measurable B ⊂ [0, 1], ν(B) = ν (B ∩ [a, b]).

Proposition 5.4. Let (m(t), t ∈ R+) be solution of Problem 1. Then ess sup(m(t))
[resp. ess inf(m(t))] is a non-increasing [resp. non-decreasing] function of t.

Theorem 5.5. Let (m(t), t ∈ R+) be solution of Problem 1. As t goes to infinity,
m(t) converges, for the weak topology on P[0, 1], to m(∞) which is a partial consen-
sus for every ∆′ < ∆ (i.e. m(∞) =

∑m0
m=1 αmδxm with xm ∈ [0, 1], |xm − xm′ | ≥ ∆

for m 6= m′, and αm > 0.).

Note that the limit m(∞) may depend on the initial condition m0, and may or
may not be a total consensus (as shown in the next section). We are in particular
interested in finding initial conditions that guarantee thatm(∞) is a total consensus.
The following is an immediate consequence of Proposition 5.4:

Corollary 5.6. If the diameter of m0 is less than ∆, i.e., if ess sup(m0) −
ess inf(m0) < ∆, then m(∞) is a total consensus.

Note that the converse is not true: if the diameter of m0 is larger or equal than
∆, there may be convergence to total consensus (see next section for an example).

5.3. Convergence to Total Consensus

We find sufficient criteria for guaranteeing some upper bounds on the number of
components of m(∞), in particular, we find some sufficient conditions for conver-
gence to total consensus. Although the bounds are suboptimal, to the best of our
knowledge, they are the first of their kind. The bounds are based on Corollary 5.1.

First define, for n ∈ {1, 2, 3, . . . } and µ0 ∈ [0, 1], the set Pn(µ0) of partial
consensus with n components and mean µ0, i.e., ν ∈ Pn(µ) iff there is some sequence
0 ≤ x1 < · · · < xn ≤ 1, with xi + ∆ < xi+1, some sequence αi for i = 1, . . . , n with
0 < αi < 1 and

∑n
i=1 αi = 1, such that ν = 1

n

∑n
i=1 αiδxi

and 1
n

∑n
i=1 αixi = µ0.

Second, for any convex, continuous h : [0, 1]→ R+, let Qn(µ0, h) be the set of strict
lower bounds of the image by the mapping ν 7→ 〈h, ν〉 of Pn(µ0), i.e., q ∈ Qn(µ0, h)
iff for any consensus ν with n components and mean µ0, it holds that 〈h, ν〉 > q. If
Pn(µ0) is empty, let Qn(µ0, h) = R+.

Note that Qn(µ0, h) is necessarily an interval, with lower bound 0. The following
proposition states that Qn is non decreasing with n.

Proposition 5.7. For n ∈ {1, 2, 3, . . . }, µ0 ∈ [0, 1], and any convex, continuous
h : [0, 1]→ R+, it holds that Qn(µ0, h) ⊂ Qn+1(µ0, h).
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Combining Proposition 5.7 with Corollary 5.1, we obtain:

Theorem 5.8. Let (m(t), t ∈ R+) be a solution of Problem 1 with initial condition
m0, and d be the number of components of the limiting partial consensus m(∞).
Assume that, for some n ∈ {2, 3, . . . }, some convex continuous h : [0, 1]→ R+, and
some q ≥ 0, we have q ∈ Qn(µ0, h), where µ0 is the mean of m0.

If 〈h,m0〉 ≤ q then d ≤ n− 1.

We now give an example of use of the theorem, obtained by taking n = 2 and
h(x) = |x− µ0|.

Corollary 5.9. Let (m(t), t ∈ R+) be a solution of Problem 1 with initial condition
m0, and let µ0 be the mean of m0. Assume that ∆ ≥ 1

2 and 1−∆ ≤ µ0 ≤ ∆. If∫ 1

0

|x− µ0|m0(dx) <
2
∆

min {µ0(∆− µ0), (1− µ0)(∆− 1 + µ0)}

then m(t) converges to total consensus.

If we apply this to m0 equal to the uniform distribution, we find the sufficient
condition ∆ > 2

3 for convergence to total consensus. In Corollary 5.15 we find a
better result, obtained by exploiting symmetry properties.

Definition 5.10. We say that ν ∈ P[0, 1] is symmetric if the image measure of ν
by x 7→ 1− x is ν itself.

Note that if ν has a density f , this simply means that f(x) = f(1− x). Neces-
sarily, if ν is symmetric, the mean of ν is 1

2 . If a partial consensus ν = 1
n

∑n
i=1 αiδxi

(with xi < xi+1) is symmetric, then xn+1−i = 1−xi and αn+1−i = αi; in particular,
if n is odd, xn+1

2
= 1

2 .

Proposition 5.11. Let (m(t), t ∈ R+) be a solution of Problem 1 with initial value
m0. If m0 is symmetric, then m(t) is symmetric for all t ≥ 0.

We can extend the previous method to the symmetric case, as follows. Define
SPn as the set of symmetric partial consensus with n components and q ∈ SQn(h)
iff for any symmetric consensus ν with n components 〈h, ν〉 > q. If SPn is empty,
then SQn(h) = R+. We have similarly:

Proposition 5.12. For n ∈ {1, 2, 3, . . . }, and any convex, continuous h : [0, 1] →
R+, SQn(h) ⊂ SQn+1(h).

Theorem 5.13. Let (m(t), t ∈ R+) be a solution of Problem 1 with symmetric
initial condition m0, and d be the number of components of the limiting partial
consensus m(∞). Assume that, for some n ∈ {2, 3, . . . }, some convex continuous
h : [0, 1]→ R+, and some q ≥ 0, we have q ∈ SQn(h).

If 〈h,m0〉 ≤ q then d ≤ n− 1

We apply Theorem 5.13 with h(x) =
∣∣x− 1

2

∣∣. It is easy to see that for ν ∈ SP2

we have 〈h, ν〉 ≥ ∆
2 , which shows the following:
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Corollary 5.14. Let (m(t), t ∈ R+) be a solution of Problem 1 with symmetric
initial condition m0. If ∆ > 2

∫ 1

0

∣∣x− 1
2

∣∣ m0(dx) then m(t) converges either to total
consensus or to partial consensus with 3 or more components.

In particular, ifm0 is the uniform distribution on [0, 1], then
∫ 1

0

∣∣x− 1
2

∣∣m0(dx) =
1
4 and the condition in the previous corollary is ∆ > 1

2 , thus we have shown:

Corollary 5.15. Let (m(t), t ∈ R+) be a solution of Problem 1 with initial condition
the uniform distribution on [0, 1]. If ∆ > 1

2 then m(t) converges to total consensus.

Corollary 5.16. Let (m(t), t ∈ R+) be a solution of Problem 1 with initial condition
m0 =

(
1−α

2

)
δ0 + αδ 1

2
+
(

1−α
2

)
δ1. There is convergence to total consensus for

∆ > 1− α if α ≤ 1
2 , or ∆ > 1

2 if α ≥ 1
2 .

6. Numerical Approach

In the mean-field limit, the dynamical behavior of the system of peers can be de-
scribed by the integro-differential equation given in weak form in Definition 4.1
(Problem 1). This equation has no closed solution to our knowledge, and we have
developed a numerical method for it.

We describe the algorithm, and analyze its precision and complexity. An im-
portant fact is that this algorithm requires considerably less running time than the
probabilistic methods used in Neau31 when N is large (which is not surprising in
dimension 1). The program consists in 600 lines of C++ code, and the parsing and
plotting of the results was done using Matlab.

6.1. Functional formulation of Problem 1

The numerical method is based on the functional formulation for probability density
functions (PDFs) obtained by duality from the weak formulation in Definition 4.1
of Problem 1. The following result is fundamental in this aspect.

Theorem 6.1. Let (m(t), t ≥ 0) be a solution of Problem 1. If the initial condition
m0 is absolutely continuous with respect to Lebesgue measure, then so is m(t) for
every t ≥ 0, and moreover the densities f(·, t) of m(t) satisfy the integro-differential
equation

∂f(x, t)
∂t

=
2
w

∫ x+∆w

x−∆w

f

(
x− (1− w)y

w
, t

)
f(y, t) dy − 2f(x, t)

∫ x+∆

x−∆

f(y, t) dy .

(6.1)
Conversely, if f : R×R+ → R is a solution of Eq.(6.1) such that f(·, t) is a PDF with
support [0, 1] for every t ≥ 0, then the probability measures m(t)(dx) = f(x, t) dx
solve Problem 1.

This result and Theorem 4.2 yield an existence and uniqueness result for
Eq.(6.1). This equation can be derived in statistical mechanics fashion by balance
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considerations. For the gain term, a particle in state x−(1−w)y
w interacts at rate 2

(see Remark 4.1) with a particle in state y to end up in state x, and the joint density
for this pre-interaction configuration at time t is 1

wf
(x−(1−w)y

w , t
)
f(y, t) (particles

are “independent before interacting”). The loss term is derived similarly.

Remark 6.1. As noted in Remark 4.2, this is a Boltzmann-like equation. This is
more obvious making the change of variables leading to post-interaction states x
and y, which is possible for w 6= 1/2 and yields the equivalent formulation

∂f(x, t)
∂t

=
2

2w − 1

∫ x+∆(2w−1)

x−∆(2w−1)

f

(
wx− (1− w)y

2w − 1

)
f

(
wy − (1− w)x

2w − 1

)
dy

− 2f(x, t)
∫ x+∆

x−∆

f(y, t) dy (6.2)

more reminiscent of Boltzmann or Kac equations such as (1.1) in Graham-Méléard19

or (1.1)-(1.2) in Desvillettes et al.10 In these, the fact that the gain term involves
pre-collisional velocities is obscured by the symmetries between pre-collisional and
post-collisional velocites.

In the rest of this section we assume that the hypothesis of the above theorem
holds. We show next that if the PDF f(·, 0) is bounded then so is f(·, t) and we can
control its growth over time.

Proposition 6.2. Let |f(·, t)|∞
def= supx∈[0,1] |f(x, t)|. Assume |f(·, 0)|∞ < ∞.

Then |f(·, T )|∞ ≤ e(
2
w + 2

1−w )T (M(0) + 4)− 4, ∀ T .

It follows that f(·, t) is bounded for all t, and iteratively, using, (6.1), f is C∞

on its second variable.
Having controlled the growth of f(x, t) it’s easy to control the growth of its

derivatives:

Proposition 6.3.
∣∣ ∂
∂tf(·, t)

∣∣
∞ ≤

(
2
w + 2

1−w

)
(M(t) + 4).

Thus, we have the following corollary:

Corollary 6.4. If |f(·, 0)|∞ <∞, then
∣∣ ∂n

∂tn f(·, T )
∣∣
∞ <∞, ∀ n, T <∞.

6.2. Numerical Solution of Eq.(6.1)

Facing the impossibility to solve the equation analytically, we simulate numerically
equation (6.1) discretizing in time and keeping track of the regularized (constant-
spline approximated) approximation of the solution fr(x, t) at time t. Note that at
time t = 0, fr(x, 0) is the given initial condition.
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6.2.1. Algorithm

The algorithm used takes as input an initial condition fr(x, 0), which is a piecewise
constant function of I intervals, a time T after which we want to calculate an
approximate solution and a maximum error ε and outputs an approximation of the
solution fr(x, T ). It works as follows:

First, we perform a discretization in t. In steps of ∆t we approximate fr(x, t+∆t)
by using a forward Euler method. In other words, we say that:

fr(x, t+ ∆t) ≈ fr(x, t) + ∆t∂tfr(x, t) = fe(x, t+ ∆t)

Here we exploit the fact that fr(x, t) is a piecewise constant function, so that we
can calculate analytically the derivative which is a piecewise linear function. The
deduction of the formula for the derivative is explained later. Hence, fe(x, t+ ∆t)
is also piecewise linear, as it is the sum of a piecewise linear and a piecewise con-
stant function. Then, we approximate fe(x, t+∆t) with another piecewise constant
function (which we will call fr(x, t+ ∆t) for simplicity) of It+∆t intervals, so that
we can reuse the same scheme and we can compute explicitly the expression for the
derivative. The constants are chosen in order to minimize the L1 norm of the error
(or, equivalently, the total variation norm of its associated measure).

We perform this loop until we calculate fr(x, T ) in steps of ∆t.
Knowing beforehand the complexity, we can choose the parameters ∆t and It so

that the total error is less than the specified. We have two ways of selecting them,
either in a fixed or in an adaptative way:

The first way consists on having a constant number of intervals throughout
the algorithm. Although the internal loop is executed faster (only once), we might
overestimate the number of intervals at some time, where the equation is not stiff
enough or ∆t is very small. In contrast, if we decide to adapt the number of inter-
vals at each step so that we bound the maximum error per iteration, we are sure
that we won’t have more than the necessary intervals, but at the cost of possibly
having to recalculate fr(x, t) several times, when errors are big. In any case, the
asymptotic cost of both algorithms is the same, as the calculation of fr(x, t) is not
the bottleneck, which is the calculation of fe(x, t).

Both algorithms are given next.

Algorithm 1 Fixed It
Input fr(x, 0), T, εmax
Output fr(x, T )
Pick ∆t and I according to εmax
for t← 0 to T step ∆t do

fe(x, t+ ∆t)← fr(x, t) + ∆t∂tfr(x, t)
fr(x, t+ ∆t)← PiecewiseConstantApproximation(fe(x, t+ ∆t), I)

end for
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Algorithm 2 Adaptive It
Input fr(x.0), T, εmax,∆t
Output fr(x, T )
for t← 0 to T step ∆t do

fe(x, t+ ∆t)← fr(x, t) + ∆t∂tfr(x, t)
I ← 1
repeat

fr(x, t+ ∆t)← PiecewiseConstantApproximation(fe(x, t+ ∆t), I)
εcurr ← GetError(fr(x, t+ ∆t), fe(x, t+ ∆t))
I ← 2I

until εcurr < εmax
end for

The method PiecewiseConstantApproximation returns the best piecewise con-
stant approximation for a piecewise linear function in terms of minimizing the L1

norm of the functions (or the total variation norm of the associated measures) while
the method GetError returns the error made by such approximation.

6.2.2. Optimal fr(x, t)

We want to determine which is the optimal piecewise constant approximation for
fe(x, t) and have the following proposition:

Proposition 6.5. The optimal constant which minimizes the error on any interval
X = [xs, xe] is given by fe

(
xs+xe

2 , t
)

We also need the following lemma, which will be used for the bounding of the
method’s error:

Lemma 6.6. fr(x, t) has mass 1 for any t.

6.2.3. Analytical expression of ∂tfr(x, t)

Now we will give an exact expression for the derivative, given that fr(x, t) is piece-
wise constant. This helps to understand how the calculation of the derivative is
implemented and its asymptotic cost. We can write, for any t:

fr(x, t) =
I∑
i=1

ai[H(x− xi+1)−H(x− xi)]

where H(x) is the Heaviside step function. Defining for any xi and xj :

Ii,j1 (x) def=
∫ x+∆

x−∆

H(x− xi)H(z − xj)dz =
∫ ∆

−∆

H(x− xi)H(x+ u− xj)du
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Ii,j2 (x) def=
1
w

∫ x+w∆

x−w∆

H(z − xi)H
(
x− (1− w)z − wxj

w

)
dz

=
∫ ∆

−∆

H(x+ wu− xi)H(x− (1− w)u− xj)du

The expression of Ii,j1 (x) and Ii,j2 (x) depends on the relative order between xi, xj
and m = max {(1− w)xi + wxj , xi − w∆} and is summarized in tables 1 and 2.
Finally, we can calculate ∂tfr(x, t) as:

∂tf
r(x, t) = −2

∑
i,j

aiaj(I
i,j
1 (x) + Ii+1,j+1

1 (x)− Ii,j+1
1 (x)− Ii+1,j

1 (x))

+2
∑
i,j

aiaj(I
i,j
2 (x) + Ii+1,j+1

2 (x)− Ii,j+1
2 (x)− Ii+1,j

2 (x)).

Case Ii,j
1 (x)

xi ≤ xj −∆ ≤ xj + ∆

8<:
0 if x ≤ xj −∆

x− (xj −∆) if xj −∆ ≤ x ≤ xj + ∆

2∆ if xj + ∆ ≤ x

xj −∆ ≤ xi ≤ xj + ∆

8<:
0 if x ≤ xi

x− (xj −∆) if xi ≤ x ≤ xj + ∆
2∆ if xj + ∆ ≤ x

xj −∆ ≤ xj + ∆ ≤ xi


0 if x ≤ xi

2∆ if xi ≤ x

Table 1. Ii,j
1 (x)

6.2.4. Error Bound

To calculate the error made by our approximation, define

gs(x, t) def= f(x, t) if t ≥ s ≥ 0, gs(x, t) def= fr(x, t) if 0 ≤ t < s,

and let νte(dx), νtr(dx) and µts(dx) be the measures associated to fe(x, t), fr(x, t)
and gs(x, t) respectively. Note that νtr(dx) = µtt(dx). Thus, we want to calculate:

εtot = |µT0 (dx)−νTr (dx)|T =

∣∣∣∣∣∣
T/(∆t)∑
k=1

µT(k−1)∆t(dx)− µTk∆t(dx)

∣∣∣∣∣∣
T

≤
T/(∆t)∑
k=1

∣∣∣µT(k−1)∆t(dx)− µTk∆t(dx)
∣∣∣
T
.

We can decompose the error done in each iteration of the loop as:

|µk∆t
k∆t(dx)−µk∆t

(k−1)∆t(dx)|T ≤ |νk∆t
r (dx)−νk∆t

e (dx)|T+|νk∆t
e (dx)−µk∆t

(k−1)∆t(dx)|T = εc.s+εeu.

Let I0 be the smallest I such that w∆, (1−w)∆ and ∆ are multiples of 1
I . Assuming

that I is large enough to be a multiple of I0, we can prove the following:
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Case Ii,j
2 (x)

m ≤ xi + w∆ ≤ xj − (1− w)∆ ≤ xj + (1− w)∆

8><>:
0 if x ≤ xj − (1− w)∆

x−xj

1−w
+ ∆ if xj − (1− w)∆ ≤ x ≤ xj + (1− w)∆

2∆ if xj + (1− w)∆ ≤ x

xi + w∆ ≤ m ≤ xj − (1− w)∆ ≤ xj + (1− w)∆

8><>:
0 if x ≤ xj − (1− w)∆

x−xj

1−w
+ ∆ if xj − (1− w)∆ ≤ x ≤ xj + (1− w)∆

2∆ if xj + (1− w)∆ ≤ x

m ≤ xj − (1− w)∆ ≤ xi + w∆ ≤ xj + (1− w)∆

8>>><>>>:
0 if x ≤ xj − (1− w)∆

x−xj

1−w
− xi−x

w
if xj − (1− w)∆ ≤ x ≤ xi + w∆

x−xj

1−w
+ ∆ if xi + w∆ ≤ x ≤ xj + (1− w)∆

2∆ if xj + (1− w)∆ ≤ x

xi + w∆ ≤ xj − (1− w)∆ ≤ m ≤ xj + (1− w)∆

8><>:
0 if x ≤ m

x−xj

1−w
+ ∆ if m ≤ x ≤ xj + (1− w)∆

2∆ if xj + (1− w)∆ ≤ x

m ≤ xj − (1− w)∆ ≤ xj + (1− w)∆ ≤ xi + w∆

8>>><>>>:
0 if x ≤ xj − (1− w)∆

x−xj

1−w
− xi−x

w
if xj − (1− w)∆ ≤ x ≤ xj + (1− w)∆

∆− xi−x
w

if xj + (1− w)∆ ≤ x ≤ xi + w∆

2∆ if xi + w∆ ≤ x

xi + w∆ ≤ xj − (1− w)∆ ≤ xj + (1− w)∆ ≤ m


0 if x ≤ m

2∆ if m ≤ x

xj − (1− w)∆ ≤ m ≤ xi + w∆ ≤ xj + (1− w)∆

8>>><>>>:
0 if x ≤ m

x−xj

1−w
− xi−x

w
if m ≤ x ≤ xi + w∆

x−xj

1−w
+ ∆ if xi + w∆ ≤ x ≤ xj + (1− w)∆

2∆ if xj + (1− w)∆ ≤ x

xj − (1− w)∆ ≤ xi + w∆ ≤ m ≤ xj + (1− w)∆

8><>:
0 if x ≤ m

x−xj

1−w
+ ∆ if m ≤ x ≤ xj + (1− w)∆

2∆ if xj + (1− w)∆ ≤ x

xj − (1− w)∆ ≤ m ≤ xj + (1− w)∆ ≤ xi + w∆

8>>><>>>:
0 if x ≤ m

x−xj

1−w
+ xi−x

w
if m ≤ x ≤ xj + (1− w)∆

∆− xi−x
w

if xj + (1− w)∆ ≤ x ≤ xi + w∆

2∆ if xi + w∆ ≤ x

xj − (1− w)∆ ≤ xi + w∆ ≤ xj + (1− w)∆ ≤ m


0 if x ≤ m

2∆ if m ≤ x

xj − (1− w)∆ ≤ xj + (1− w)∆ ≤ m ≤ xi + w∆

8<:
0 if x ≤ m

∆− xi−x
w

if m ≤ x ≤ xi + w∆

2∆ if xi + w∆ ≤ x

xj − (1− w)∆ ≤ xj + (1− w)∆ ≤ xi + w∆ ≤ m


0 if x ≤ m

2∆ if m ≤ x

Table 2. Ii,j
2 (x)

Proposition 6.7.

εc.s(I) = εc.s(I0)
I0
I
≤ ∆t

2
|∂tfr(x, (k − 1)∆t)|∞

I0
I
. (6.3)

We will now bound |∂tfr(x, (k − 1)∆t)|∞.

Proposition 6.8. Let M(t) = |fr(x, t)|∞. Assuming that |fr(x, 0)|∞ = M(0) =
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M <∞ we have the following uniform bound:

|∂tfr(x, k∆t)|∞ ≤ C1(M,T ) ∀ 0 ≤ k ≤ T

∆t
− 1.

Substituting in (6.3), we get that:

εc.s ≤
C1I0

2
∆t
I

= O

(
∆t
I

)
. (6.4)

Proposition 6.9. We have

εeu = O((∆t)2). (6.5)

Adding equations (6.4) and (6.5) we get that:

|µk∆t
k∆t(dx)− µk∆t

(k−1)∆t(dx)|T ≤ εc.s + εeu = O

(
(∆t)2 +

∆t
I

)
.

Finally, we will bound |µT(k−1)∆t(dx) − µTk∆t(dx)|T in terms of |µk∆t
k∆t(dx) −

µk∆t
(k−1)∆t(dx)|T :

Proposition 6.10. For all 1 ≤ k ≤ T
∆t and for all t ≥ k∆t we have:∣∣∣µtk∆t(dx)− µt(k−1)∆t(dx)

∣∣∣
T
≤ e8(t−k∆t)

∣∣∣µk∆t
k∆t(dx)− µk∆t

(k−1)∆t(dx)
∣∣∣
T
.

Combining the previous propositions, we can conclude the following:

Theorem 6.11. For any fixed T , the error of the method is O( 1
I + ∆t).

6.2.5. Complexity

We will now give the complexity analysis of both algorithms. For simplicity of the
analysis, we will assume that I is large enough so that w∆, (1 − w)∆ and ∆ are
multiples of 1

I .
For the first algorithm we have that the computation of the derivative takes

O(I2), since we have a double sum over I intervals. Also, this produces O(I2) splines
because every Ii,jk (x), k = 1, 2 is composed of at most 4 splines. Since the splines are
not produced in increasing order of x, we need to sort them, which takes O(I2 log I)
time. Taking into account the expression of the derivative and the assumption on
I, the support of every spline is the union of some of the intervals, i.e, there isn’t
any spline such that its support doesn’t fully cover some interval. Therefore, we can
compress our O(I2) splines into O(I) splines in one pass (O(I2) time). Finally, we
only need one pass to make the piecewise constant spline approximation since now
everything is sorted and compressed. This takes O(I) time.
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Since all this loop is executed T
∆t times, the running time has complexity

O
(

1
∆tI

2 log I
)
.

For the second algorithm, the procedure (and the cost) is the same until the
piecewise constant approximation. In this case, we double the number of intervals
until we are below some error εmax. Therefore, the total cost is O

(∑k
i=0 2i

)
=

O(2k+1) for some k because both the error calculation and the piecewise constant
approximation are linear in the number of intervals. As we know from the previous
subsection that the error per iteration is O

(
1
I

)
once fixed ∆t, k is O(− log(εmax))

and therefore the complexity is O
(

1
εmax

)
. Adding this for the T

∆t executions of the

loop, we get that the total running time is O
(

1
∆t

1
ε2max

log
(

1
εmax

))
.

6.3. Numerical Results

In this section, we present the results got obtained by simulating using the above
described algorithm. We study different scenarios for the initial distribution: uni-
form, extremist and undecided and beta. We plot different bifurcations (in terms of
how many components we have at the end) depending on ∆. Moreover, we compare
the experimental results with the bounds obtained in section 5 and the probabilistic
Monte Carlo simulations presented in Ref 9.

6.4. Evolution of the system: different settings

In order to illustrate the behavior of the system as time passes, we show how the
system evolves from a uniform distribution to one (or more) components, depending
on the deviation threshold ∆. We run those sets of experiments for 3 different
values of w, specifically 0.5, 0.75, and 0.9 and plot the probability function at times
t = 0, t = 20 and t = 100. The simulations have been done with the parameters
I = 200,∆t = 0.1, T = 100. Although the set of parameters might theoretically
yield a big error, in practice this error is much smaller.

From the images, we see that w does not seem to impact the number of compo-
nents of m(∞), but the weights do depend on w.

6.5. Extremists and Undecided

We now present some common scenarios: imagine a company fusion and the opinion
of the employees about the new company, or a rough categorization of voters in
an election. We can characterize these opinions as extremists (either 0 or 1) or
undecided (0.5). The density of the opinions is α for the undecided and 1−α

2 for
each of the extremist classes. To simulate this, we have approximated the initial
conditions (Diracs) to constant splines of value Iα and I 1−α

2 respectively, centered
at their corresponding points, such that the initial condition has mass 1. We plot
the result (1 component, i.e. total consensus, or 2 components) for each pair (α,∆)
in [0, 1]×

[
1
2 , 1
]
in Figure 4. We know from Corollary 5.16 that total consensus must
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Fig. 1. w = 0.5. Evolution of m(t) at times t = 0, 20, 100.

Fig. 2. w = 0.75. Evolution of m(t) at times t = 0, 20, 100.

occur for ∆ ≥ α and we see that the region of convergence to total consensus is a
bit larger, and slightly depends on w.

Note that values of ∆ smaller than 1
2 would result in no motion at all. We do

this for the previous set of values for w and find that in every case, the fraction
of undecided people necessary to achieve consensus is much smaller than what one
would expect.

We also plot the center of masses of the first half of the distribution to show
that it is not a smooth function of α and that close to the critical value ∆c(α) there
is a jump. We did this for the previous 3 values of w but show only one result for
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Fig. 3. w = 0.9. Evolution of m(t) at times t = 0, 20, 100.

(a) w = 0.5 (b) w = 0.75

(c) w = 0.9

Fig. 4. Bifurcation diagram for extremists and undecided. The curly line separates the region of
convergence to total consensus (above) from convergence to a partial consensus with two compo-
nents. The straight line is the sufficient condition in Corollary 5.16.

brevity.
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Fig. 5. w = 0.9. Center of masses of the first half, showing that the transition is abrupt.

6.6. Initial uniform conditions in terms of delta

We present here the evolution of the number of components with respect to ∆, using
as initial condition a uniform distribution. Note that we have capped the situations
with more than 7 components into the category ”7 or more”, which are represented
by 7 in the graph. For a component to be considered as such, we require that it has
at least 1% of the total mass. Otherwise we consider it as a zero. Again, the results
are plotted for the 3 different values of w.

We observe that the results are almost independent of w, as there is almost
no difference between the 3 curves (see Figure 6 for the combined plot of all 3
functions). Another interesting thing to remark is that if we compare our results for
w = 0.5 with the deterministic model with the ones in Ref 9 with the probabilistic
model, the intervals of ∆ in which they have a high probability of convergence to
n components correspond to the same intervals in which we have convergence to n
components. This suggests that the approximation for N = ∞ is good enough to
preserve properties such as the final state.

6.7. Beta distribution as initial condition

Here we study the evolution of the number of components with respect to ∆, using
as initial condition a Beta(1,6) distribution. The functions that have 5 or more com-
ponents have been put into the category represented with a 5. Again, we consider
a component if it has 1% of the total mass or more. We present the results for the
3 different values of w.

We can observe again the same phenomenon as in the uniform case, namely that
the influence of w is negligible. If we compare the results from the ones in Subsection
7.3, we can conclude that the final result depends on the initial condition, even for
the same parameters w and ∆. Moreover, we can see that for a fixed (w,∆), if we
start with a Beta distribution the number of components will be smaller or equal
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Fig. 6. ∆ vs Number of components of m(∞). Uniform initial conditions. Blue - w = 0.5 (below
black), Red - w = 0.75, Black - w = 0.9

(a) w = 0.5 (b) w = 0.75

(c) w = 0.9

Fig. 7. ∆ vs Number of components of m(∞). Initial condition Beta(1,6).

than if we start with a uniform one. This is explained by the fact that with the Beta
distribution the mass is more concentrated than with the Uniform distribution (in
our case: to the left) and therefore it should be harder (i.e, ∆ should be smaller) to
split in the same number of components.
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7. Proofs

Proof of Proposition 3.2

By definition, since h is convex,

h(wx+ (1− w)y) ≤ wh(x) + (1− w)h(y) ,

h(wy + (1− w)x) ≤ wh(y) + (1− w)h(x) ,

with strict inequalities if h is strictly convex except when x = y or w ∈ {0, 1}, and
summing these two inequalities yields the result.

Proof of Proposition 3.5

The first statement is obvious, since a partial consensus is an absorbing state.
We prove the second statement. It follows from the second statement in

Lemma 1 that, if the two peers, say (i, j) chosen at any time slot k′ are such
that

∣∣XN
i (k′)−XN

j (k′)
∣∣ ≤ ∆ and XN

i (k′) 6= XN
j (k′), then µNn (k′ + 1) < µNn (k′).

Assume now that the hypothesis of the second statement holds. It follows that all
peers chosen for interaction at times k′ ≥ k have reputation values that either differ
by more than ∆, or are equal, thus, at any time slot k′ ≥ k, the interaction has no
effect. It follows that MN (k) = MN (k′) for k′ ≥ k.

Further, assume that MN (k) is not a partial consensus. Thus, there exists a
pair of peers (i, j) such that

∣∣XN
i (k)−XN

j (k)
∣∣ ≤ ∆ and XN

i (k) 6= XN
j (k). The

pair (i, j) is never chosen in a interaction at times k′ ≥ k, for otherwise this would
contradict the fact that MN (k′) is stationary. But this occurs with probability 0.

Proof of Proposition 3.7

Let i, j be the peers selected for interaction at time k. If they are in different clusters,
then there is no change to the process and the proposition holds. Assume now that
i, j are in the same cluster, say `1 = `. After interaction, the distance between i to
any peer, say i′, not in C` is increased; since i and i′ are not connected at time k,
they are not either at time k + 1. The same holds between j and i′. Therefore, the
only difference between connections at time k and k+ 1 concern pairs of peers that
that are both in C`. Thus C(k + 1) = {C1, ..., C`−1} ∪ C′ where C′ is a partition of
C`.

Proof of Theorem 3.9

Let σ2(k) be the variance of MN (k) (we drop superscript N in the notation local
to this proof). By Corollary 3.4, σ(k) is non decreasing and nonnegative, and thus
converges to some σ(∞).

For k ≥ KN the set of clusters remains the same, CN (k) = {C1, .., C`}, and we
can thus define the diameter of cluster `1 by

δ`1(k) = max
i,j∈C`1

∣∣XN
i (k)−XN

j (k)
∣∣ (7.1)
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and let, for all `1 ∈ {1, ..., LN}:

δ`1 = lim sup
k≥KN

δ`1(k)

Assume that δ`1 > 0 for some `1. Since σ2(k) is a Cauchy sequence, there exists
some random time K1 ≥ KN such that for all k > K1 and k′ > K1:∣∣σ2(k′)− σ2(k)

∣∣ < 2w(1− w)
N

(
δ`1
2

)2

(7.2)

Thus there is an infinite subsequence of time slots K2(n), with n ∈ N, such that
K2(n) ≥ KN , K2(n) ≥ K1 and

δ`1(K2(n)) >
δ`1
2
> 0

For k ≥ KN , let (I(k), J(k)) be a pair of peers that achieves the maximum in
Eq.(7.1) and let Ek be the event “the pair of peers selected for interaction at time
k is (I(k), J(k))". The probability of Ek, conditional to all past up to time slot
k, is 2

N(N−1) , thus is constant and positive. Thus the probability that Ek occurs
infinitely often is 1, i.e. with probability 1 we can extract an infinite subsequence
of time slots K3(n) of K2(n) such that EK3(n) is true. By Lemma 7.1, we have

σ2 (K3(n) + 1)− σ2 (K3(n)) >
2w(1− w)

N

(
δ`1
2

)2

which contradicts Eq.(7.2). This proves that δ`1 = 0 for all cluster `1.
Let µ`1(k) be the empirical mean of cluster `1 at time k ≥ KN . Since interactions

that modify the state of the process at times k ≥ KN are all intra-cluster, it follows
that µ`1(k) = µ`1(KN ) := µ`1(∞) for all k ≥ KN . For i ∈ C`1 ,

∣∣XN
i (k)− µ`1(k)

∣∣ ≤
δ`1(k) → 0, it follows that XN

i (k) → µ`1(∞) as k → ∞. Thus, for any continuous
f : [0, 1]→ R:

lim
k→∞

〈f,MN (k)〉 =
1
N

LN∑
`1=1

N`1f (µ`1(∞))

where N`1 is the cardinality of C`1 . This shows that, with probability 1, MN (k)
converges to MN (∞) = 1

N

∑LN

`1=1N`1δµ`1 (∞).
It remains to show thatMN (∞) is a partial consensus. This follows from the fact

that if i and j are not in the same cluster at time slot k, then
∣∣XN

i (k)−XN
j (k)

∣∣ > ∆,
which implies that |µ`1(k)− µ`2(k)| > ∆ if `1 6= `2 and, since, µ`1(k) is stationary
for k large enough, that |µ`1(∞)− µ`2(∞)| > ∆.

Lemma 7.1. Let (i, j) be the pair of peers chosen for interaction at time slot k.
Assume that

∣∣XN
i (k)−XN

j (k)
∣∣ ≤ ∆. Then the reduction in variance is σ2(k+ 1)−

σ2(k) = 2w(1−w)
N

(
XN
i (k)−XN

j (k)
)2.

Proof. By direct computation.
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Proof of Theorem 4.2

We write (4.7) and (4.8) in the notation of Section 2.2 in Graham16, in which the
corresponding equations are (2.5) and (2.7), and

A(µ)h(x) = 2
〈
[h(wx+ (1− w)y)− h(x)]1{|x−y|≤∆} , µ(dy)

〉
=
∫

(h(z)− h(x))J(µ, x, dz)

for J(µ, x, dz) the image measure of 1{|x−y|≤∆}2µ(dy) by y 7→ wx+ (1−w)y. Since
|J(µ, x, ·)| ≤ 2 and |J(µ, x, ·) − J(ν, x, ·)| ≤ 2|µ − ν|, the assumptions of Proposi-
tion 2.3 in Ref. 16 are satisfied, yielding the results. The family (4.7) is uniformly
bounded by 4 in operator norm, and thus there is a well-defined inhomogeneous
Markov process with generator A(m(t)) at time t and arbitrary initial law.

Proof of Theorem 4.3

First, the proof of (1). The generator AN corresponds to the “binary mean-field
model” (2.6) in Graham-Méléard19 with N instead of n and Li = 0, and (using∑

1≤i 6=j≤N = 2
∑

1≤i<j≤N ) “jump kernel”

µ̂(x, y, dh, dk) = 1{|x−y|≤∆}2δ{(w−1)x+(1−w)y,(w−1)y+(1−w)x}(dh, dk)

which is uniformly bounded in total mass by Λ = 2. We conclude with Theorem 3.1
in Ref. 19 and the triangular inequality | 1

N

∑N
i=1 L(X̂N

i ) − Q|T ≤ |L(X̂N
i ) − Q|T

(the X̂N
i are exchangeable).

Now, the proof of (2). As in the proof of Theorem 3.1 in Ref. 19,〈
φ, Λ̂N − 1

N

N∑
i=1

L(X̂N
i )
〉2

=
1
N2

[
N∑
i=1

(φ(X̂N
i )− E[φ(X̂N

i )])

]2

in which[
N∑
i=1

(φ(X̂N
i )− E[φ(X̂N

i )])

]2

=
N∑
i=1

(φ(X̂N
i )− E[φ(X̂N

i )])2

+
∑

1≤i 6=j≤N

(φ(X̂N
i )− E[φ(X̂N

i )])(φ(X̂N
j )− E[φ(X̂N

j )])

where the first sum on the r.h.s. has N terms, the second N(N − 1), and

E
[
(φ(X̂N

i )− E[φ(X̂N
i )])(φ(X̂N

j )− E[φ(X̂N
j )])

]
= E[φ(X̂N

i )φ(X̂N
j )]− E[φ(X̂N

i )]E[φ(X̂N
j )] ,

and we conclude to the first formula in (2) using (1) for k = 2.
Classically, the weak topology in the Polish space P(D(R+, [0, 1])) has a

convergence-determining sequence (gm)m≥1 of continuous functions bounded by 1
(such a sequence is constructed in the proof of Proposition 3.4.4 in Ethier-Kurtz14),
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and can thus be metrized by d(P,Q) =
(∑

i≥1 2−i〈gm, P −Q〉2
)1/2. Moreover, the

first formula in (2) and the second in (1) imply that E(d(Λ̂N , Q)2) goes to 0, which
proves convergence in probability for Λ̂N .

The result for Λ̂N implies the result for its marginal process M̂N as a quite
general topological fact, since the limit marginal process m is continuous and the
spaces are Polish (Theorem 4.6 in Graham-Méléard,19 Section 4.3 in Méléard28);
proofs first use the Skorohod topology, and then Theorem 3.10.2 in Ref. 14.

Proof of Theorem 4.4

Let λN : R+ → R+ be the (random) time-change given by the linear interpolation
of λN ( kN ) = Tk

N , i.e., by

t ∈
[
k

N
,
k + 1
N

]
7→ λN (t) = (k + 1− tN)

Tk
N

+ (tN − k)
Tk+1

N
, k ∈ N .

Then (4.4) implies that

X̃N (t) = X̂N (λN (t)) , t ∈ R+ ,

so that their atomic distance is null. The triangular inequality yields, for k ∈ N,

|λN (t)− t| ≤
∣∣∣∣TkN − k

N

∣∣∣∣+
1
N

(Tk+1 − Tk) +
1
N
, t ∈

[
k

N
,
k + 1
N

]
,

and hence, for any T > 0,

sup
0≤t≤T

|λN (t)− t| ≤ 1
N

sup
0≤k≤bNTc

|Tk − k|+
1
N

sup
0≤k≤bNTc

(Tk+1 − Tk) +
1
N
.

For ε > 0, Kolmogorov’s maximal inequality implies that

P
(

1
N

sup
0≤k≤bNTc

|Tk − k| ≥ ε
)
≤ 1
ε2N2

bNTc∑
i=1

var(Ti − Ti−1) =
bNT c
ε2N2

,

and classically

P
(

1
N

sup
0≤k≤bNTc

(Tk+1 − Tk) ≥ ε
)

= 1− (1− e−Nε)bNTc+1 ≤ (bNT c+ 1)e−Nε .

Hence, for all δ > 0,

lim
N→∞

P
(

sup
0≤t≤T

|λN (t)− t| ≥ δ
)

= 0 ,

from which the result follows.

Proof of Theorem 4.5

Result (1) follows from the previous convergence in probability result and Theo-
rem 4.3, using either the uniform continuity of the test functions (for the atomic
metric) or Corollary 3.3.3 in Ethier-Kurtz14 (for the usual metric). Result (2), which
involves Polish spaces, follows as for Theorem 4.3.
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Proof of Proposition 5.2

For 0 < b and t ∈ [0, b] define u(t) := σ2(b− t)−σ2(b). Note that µ1(t) is a constant
thus u(t) = µ2(b− t)− µ2(b). By the alternative definition of Problem 1

u(t) = −
∫ b

b−t

∫
[0,1]2

[
(wx+ (1− w)y)2 + (wy + (1− w)x)2 − x2 − y2

]
1{|x−y|≤∆}m(s)(dx)m(s)(dy)ds

By Proposition 3.2, the bracket is nonpositive, and the indicator function is upper
bounded by 1 thus

u(t) ≤ −
∫ b

b−t

∫
[0,1]2

[
(wx+ (1− w)y)2 + (wy + (1− w)x)2 − x2 − y2

]
m(s)(dx)m(s)(dy)ds

= K

∫ t

b−t
σ2(s)ds = K

(
σ2(b) +

∫ t

0

u(s)ds
)

with K = 4w(1− w). By Grönwall’s lemma:

u(t) ≤ Kσ2(b)t+K2σ2(b)eKt
∫ t

0

se−Ksds = σ2(b)
(
eKt − 1

)
Let t = b and the proposition follows.

Proof of Proposition 5.4

Fix some t0 ≥ 0; we will show that ess inf(m(t)) ≥ ess inf(m(t0)) for every t ≥ t0.
Clearly, it is sufficient to consider the case ess inf(m(t0)) > 0. Take some arbitrary
a < ess inf(m(t0)). Let h(x) = 1{x≤a} and ϕ(t) = 〈h,m(t)〉. We have ϕ(t0) = 0 and,
by definition of Problem 1:

ϕ(t) ≤ 2
∫ t

t0

〈|h(wx+ (1− w)y)− h(x)| ,m(s)(dx)m(s)(dy)〉ds

Note that |h(wx+ (1− w)y)− h(x)| ≤ 1 and that h(wx + (1 − w)y) − h(x) 6= 0
requires either x ≤ a, y > a or x > a, y ≤ a. Thus

ϕ(t) ≤ 2
∫ t

t0

2ϕ(s)(1− ϕ(s))ds ≤ 4
∫ t

t0

ϕ(s)ds

By Grönwall’s lemma, this shows that ϕ(t) = 0 for t ≥ t0. Thusm(t)[0, a] = 0 for all
t ≥ t0 and this is true for any a < ess inf(m(t0)) thus ess inf(m(t)) ≥ ess inf(m(t0)).
This shows ess inf(m(t)) is non decreasing; the proof is similar by analogy for the
ess sup.
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Proof of Theorem 5.5

1. We show thatm(t) converges to some probabilitym(∞). This follows from Propo-
sition 3.2 applied for example to the family of functions hω : x→ e−ωx indexed by
ω ∈ [0,∞). For any fixed ω, 〈hω,m(t)〉 is a nondecreasing function of t and is non-
negative, thus converges as t → ∞. The limit is a probability (apply convergence
to the constant equal to 1).
2. We would like to conclude that m(∞) is a stationary point, i.e.
〈A(m(∞))h,m(∞)〉 = 0 for any h ∈ L∞[0, 1], however there is a technical diffi-
culty since the definition of A involves the non continuous function 1{|x−y|≤∆}. We
circumvent the difficulty as follows. For ε > 0 and smaller than ∆, let `ε(x) be the
continuous function of x ∈ R+ equal to 1 for x ≤ ∆− ε, 0 for x ≥ ∆, and the linear
interpolation in-between. We have 1{x≤∆−ε} ≤ `ε(x) ≤ 1{x≤∆} for all x ≥ 0. Let
h(x) = x2. By the alternative definition of Problem 1, for t and u ≥ 0:

〈h,m(t+ u)〉 − 〈h,m(t)〉

≤ −2w(1− w)
∫ t+u

t

〈(x− y)2`ε(|x− y|),m(s)(dx)m(s)dy〉ds

Fix u ≥ 0 and let t→∞. By weak convergence of the product measure m(t)⊗m(t)
it follows that

0 ≤ −2w(1− w)u〈(x− y)2`ε(|x− y|),m(∞)(dx)m(∞)dy〉

and thus 〈(x− y)2`ε(|x− y|),m(∞)(dx)m(∞)dy〉 = 0 from where we conclude that

〈(x− y)21{|x−y|≤∆−ε},m(∞)(dx)m(∞)dy〉 = 0 (7.3)

for all ε ∈ (0,∆).
3. Fix some ε > 0 and integrate the previous equation with respect to y; it comes
that 〈r(x),m(∞)(dx)〉 = 0 with r(x) def= 〈(y − x)21{|y−x|≤∆−ε},m(∞)(dy)〉, thus
there is a set Ω1 ⊂ [0, 1] with m(∞)(Ω1) = 1 and r(x) = 0 for every x ∈ Ω1. Let x1

be an element of Ω1 (which is not empty since m(∞)(Ω1) = 1). Then r(x1) = 0 and
thus m(∞) ([(x1 −∆ + ε, x1) ∪ (x1, x1 + ∆− ε)] ∩ [0, 1]) = 0 and the restriction of
m(∞) to (x1 − ∆ + ε, x1 + ∆ − ε) ∩ [0, 1] is a dirac mass at x1. Apply the same
reasoning to the complement of (x1 − ∆ + ε, x1 + ∆ − ε), this shows recursively
that m(∞) is a finite sum of Dirac masses, i.e. m(∞) =

∑I
i=1 αiδxi

for some I ∈ N,
αi > 0,

∑I
i=1 αi = 1 and xi ∈ [0, 1].

Assume that |xi − xj | < ∆ for some i 6= j. Apply Eq.(7.3) with ε = ∆−|xi−xj |
2 .

The right-handside of Eq.(7.3) is lower bounded by αiαj(xi − xj)2 > 0, which is a
contradiction. Therefore |xi − xj | ≥ ∆ for all i 6= j.

Proof of Proposition 5.7

First we show that if ν ∈ Pn+1(µ0) then there exists some ν′ ∈ Pn(µ0) with 〈h, ν′〉 ≤
〈h, ν〉, which will clearly show the proposition.
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We are given ν =
∑n+1
i=1 αiδxi

∈ Pn+1(µ0). Let x′n = αnxn+αn+1xn+1
αn+αn+1

and

ν′ =
n−1∑
i=1

αiδxi
+
(
(αn + αn+1) δx′n

)
We have ν′ ∈ Pn(µ) and by convexity of h:

(αn + αn+1)h(x′n) ≤ αnh(xn) + αn+1h(xn+1)

thus 〈h, ν′〉 ≤ 〈h, ν〉 as required.

Proof of Theorem 5.8

By hypothesis 〈h,m0〉 ≤ q and since h is continuous, by Theorem 5.5, 〈h,m(∞)〉 ≤
q. Since the mean of m(∞) is also µ0 (again by Theorem 5.5 applied to h(x) = x),
it follows that q is not in Qd(h, µ0). Together with the hypothesis q ∈ Qn(h, µ0),
Proposition 5.7 implies that d < n.

Proof of Proposition 5.11

Let m′(t) be the image measure of m(t) by x 7→ 1− x. By direct computation and
the alternative form of Problem 1, it follows that m′(t) is solution to Problem 1
with initial condition m′(0) = m(0). By uniqueness, m′(t) = m(t).

Proof of Proposition 5.12

Let ν be a symmetric partial consensus with n + 1 components. We do as in
the proof of Proposition 5.7: If n + 1 is even, we replace the two middle com-
ponents by their weighted averages. If n + 1 is odd, we replace the three mid-
dle components xm−1, xm = 0.5, xm+1 (with m = n/2 + 1) by two components
(αm−1xm−1 + 0.5αmxm)/(αm−1 + 0.5αm) and (0.5αmxm + αm+1xm+1)/(0.5αm +
αm+1) with weights αm−1 + 0.5αm and 0.5αm + αm+1. We obtain some ν′ ∈ SPn
and 〈h, ν′〉 ≤ 〈h, ν〉 for any convex h, thus if q ∈ SQn(h) we must also have
q ∈ SQn+1(h).

Proof of Theorem 5.13

The proof is similar to Theorem 5.8.

Proof of Theorem 6.1

Assuming that m0 is absolutely continuous, the fact that m(t) is absolutely con-
tinuous can be proved by probabilistic arguments which use representations by
inhomogeneous Markov processes with uniformly bounded jump rates.
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More precisely, the proof of Theorem 2.1 in Desvillettes et al.,10 for a class of
equations (the generalized cutoff Kac equation) with the same probabilistic struc-
ture as ours, extends immediately to the present situation. It is an extension of
Theorem 4.2 proved using only its hypotheses.

If m = (m(t), t ∈ R+) is a solution of Problem 1 and m(t)(dx) = f(x, t) dx then,
for any bounded h, an elementary change of variables yields∫

h(x)f(x, t) dx−
∫
h(x)f(x, 0) dx

= 2
∫ t

0

∫∫
h(wx+ (1− w)y)1{|x−y|≤∆}f(x, s)f(y, s) dxdy ds

− 2
∫ t

0

∫∫
h(x)1{|x−y|≤∆}f(x, s)f(y, s) dxdy ds

=
2
w

∫ t

0

∫
h(x′)

[∫ x′+∆w

x′−∆w

f

(
x′ − (1− w)y

w
, s

)
f(y, s) dy

]
dx′ ds

− 2
∫ t

0

∫
h(x)f(x, s)

[∫ x+∆

x−∆

f(y, s) dy
]
dx ds

from which (6.1) readily follows.
The converse statement follows by integrating Eq.(6.1) by h(x) dx, which after

the reverse change of variables yields Problem 1 as a weak formulation.
Eq.(6.2) is obtained similarly using the change of variables x′ = wx−(1−w)y

2w−1 and
y′ = wy−(1−w)x

2w−1 .

Proof of Proposition 6.2

Because of the non-negativeness of f(x, t) for all t, we have:

∂f(x, t)
∂t

≤ 2
w

∫ x+w∆

x−w∆

f(y, t)f
(
x− (1− w)y

w
, t

)
dy.

For a fixed arbitrary t, let Ai = {x ∈ Supp(f(x, t))|i − 1 < f(x, t) ≤ i}, i > 0
be the level sets. Note that Aj = ∅ for all j > dM(t)e and that the Ai are disjoint.
For any x, we have that:

2
w

∫ x+w∆

x−w∆

f(y, t)f
(
x− (1− w)y

w
, t

)
dy

≤ 2
w

∑
i,j

µ

({
y

∣∣∣∣y ∈ Ai, x− (1− w)y
w

∈ Aj
})

max {i, j}2.

Using the fact that the Ai are disjoint we can get that:
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2
w

∑
i,j

µ

({
y

∣∣∣∣y ∈ Ai, x− (1− w)y
w

∈ Aj
})

max {i, j}2

=
2
w

∑
i

µ

y
∣∣∣∣∣∣y ∈ Ai, x− (1− w)y

w
∈
⋃
k≤i

Ak


 i2

+
2
w

∑
i

µ

({
y

∣∣∣∣∣y ∈ ⋃
k<i

Ak,
x− (1− w)y

w
∈ Ai

})
i2 = I1 + I2.

We can bound I1 and I2 now as:

I1 ≤
2
w

∑
i

µ(Ai)i2, I2 ≤
2

1− w
∑
i

µ(Ai)i2,

subject to the following restrictions:∑
i

µ(Ai) ≤ 1,
∑
i

(i− 1)µ(Ai) ≤
∫ 1

0

f(x, t)dx = 1.

Plugging the second restriction into the bound of I1 and I2, we get that:
dM(t)e∑
i=1

µ(Ai)i2 ≤
dM(t)e2

dM(t)e − 1
+
dM(t)e−1∑

i=1

µ(Ai)
(
i2 − dM(t)e2

dM(t)e − 1
(i− 1)

)

=
dM(t)e2

dM(t)e − 1
+

1
dM(t)e − 1

dM(t)e−1∑
i=1

µ(Ai) (dM(t)ei− dM(t)e − i)(i− dM(t)e) .

The maximum of the RHS is attained when µ(Ai) = 0 ∀ i > 1 and µ(A1) is as big
as possible. By the first restriction, µ(A1) = 1. In that case, we have that:

dM(t)e∑
i=1

µ(Ai)i2 ≤
dM(t)e2

dM(t)e − 1
+ 1 ≤ dM(t)e+ 3 ≤M(t) + 4.

Therefore:

sup
Ai

{∑
i

µ(Ai)i2
}
≤M(t) + 4.

Finally, for any x we have:

2
w

∫ x+w∆

x−w∆

f(y, t)f
(
x− (1− w)y

w
, t

)
dy ≤ I1 + I2 ≤

(
2
w

+
2

1− w

)
(M(t) + 4),

which means that:

M ′(t) ≤
(

2
w

+
2

1− w

)
(M(t) + 4).

Integrating, we get the result.
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Proof of Proposition 6.3

Again, because of the non-negativeness of f(x, t) we have, for all x:∣∣∣∣ ∂∂tf(x, t)
∣∣∣∣

≤ max

{
2
w

∫ x+w∆

x−w∆

f(y, t)f
(
x− (1− w)y

w
, t

)
dy, 2f(x, t)

(∫ x+∆

x−∆

f(y, t)dy

)}
.

On the one hand, we have that:

2f(x, t)

(∫ x+∆

x−∆

f(y, t)dy

)
≤ 2M(t)

∫ 1

0

f(y, t)dy ≤ 2M(t),

on the other, using Proposition 6.2:

2
w

∫ x+w∆

x−w∆

f(y, t)f
(
x− (1− w)y

w
, t

)
dy ≤

(
2
w

+
2

1− w

)
(M(t) + 4),

therefore: ∣∣∣∣ ∂∂tf(·, t)
∣∣∣∣
∞
≤
(

2
w

+
2

1− w

)
(M(t) + 4).

Proof of Proposition 6.5

As fe(x, t+ ∆t) is piecewise linear, we can treat each interval independently. Given
a νe(x) associated to fe(x) = ax+ b we want to find:

min
νr

∫
X

|dνe(x)− dνr(x)| = min
M

∫ xe

xs

|ax+ b−M |dx.

If a = 0, then M = b has zero error. Let’s suppose a 6= 0. If M lies between axs + b

and axe + b, then:

min
M

∫ xe

xs

|ax+ b−M |dx = min
M

1
2a

[(axe + b−M)2 + (axs + b−M)2] =
a

4
(xe−xs)2.

The minimum is attained for

Mmin =

∫ xe

xs

(ax+ b)dx

xe − xs
=
a

2
(xs + xe) + b,

which is the value of the function at the midpoint of the interval. If M lies outside
axs + b and axe + b, then the error is greater than the previous case as we could
minimize it by setting M to one of the extremal values of fe in X.
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Proof of Lemma 6.6

Let fr(x, t) be defined piecewise in the intervals Xi = [xi, xi+1] and let Mmin,i

be the value of M that minimizes the error for the interval Xi. We have that,
independently of t:

∫ 1

0

fr(x, t)dx =
∫ 1

0

I∑
i=1

Mmin,i1Xi
dx =

I∑
i=1

∫
Xi

∫ xi+1

xi

fe(y, t)dy

xi+1 − xi
dx =

∫ 1

0

fe(y, t)dy.

Proof of Proposition 6.7

We first calculate the error when I = I0. Keeping in mind that for any interval, the
slope of fe(x, k∆t) is bounded by 2∆t|∂tf

r(x,(k−1)∆t)|∞
1/I0

, yielding:

εc.s.(I0) ≤ I0
Max. Slope

4

(
1
I0

)2

=
∆t
2
|∂tfr(x, (k − 1)∆t)|∞. (7.4)

However, if we divide each interval in two, the error is halved, because the error with

two intervals equals 2
Slope

4

(
1

1/2I0

)2

, where with one is equal to
Slope

4

(
1

1/I0

)2

.

Therefore, for sufficiently large I we can write:

εc.s(I) = εc.s(I0)
I0
I
≤ ∆t

2
|∂tfr(x, (k − 1)∆t)|∞

I0
I
. (7.5)

Proof of Proposition 6.8

M(∆t) = |fr(x,∆t)|∞ ≤ |fe(x,∆t)|∞ ≤ |fr(x, 0)|∞ + ∆t|∂tfr(x, 0)|∞

≤M + ∆tK1M + ∆tK2 = (1 + ∆tK1)M + ∆tK2,

where K1 = 2
w + 2

1−w ,K2 = 8
w + 8

1−w . The first inequality is true because when we
approximate by piecewise constant splines, the maximum of the function decreases
and the third is true by Proposition 6.2. Note that in order to be able to apply it
we are implicitly using Lemma 6.6 as the total mass is conserved. By induction:

M

(
T

∆t
∆t
)
≤ (1 + ∆tK1)

T
∆tM + ∆tK2

T/∆t−1∑
i=0

(1 + ∆tK1)i

= (1 + ∆tK1)
T
∆tM +

K2

K1
((1 + ∆tK1)

T
∆t − 1) ≤ K2

K1
(1 + ∆tK1)

T
∆t

(
M +

K2

K1

)
.

We can now boundM(k∆t) in the following way. As K1 and K2 are positive, taking
into account that (1 +K1∆t)

T
∆t is decreasing with ∆t, we have for any k:

M(k∆t) ≤ (1 + ∆tK1)
T
∆tM +

K2

K1
(1 + ∆tK1)

T
∆t ≤ eK1T

(
M +

K2

K1

)
.
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Using Proposition 6.3:

|∂tfr(x, (k − 1)∆t)|∞ ≤ K1M((k − 1)∆t) +K2 ≤ K1e
K1T

(
M +

K2

K1

)
+K2 = C1.

Proof of Proposition 6.9

We have that:

εeu = |νk∆t
e (dx)− µk∆t

(k−1)∆t(dx)|T

=
∫ 1

0

|g(k−1)∆t(x, k∆t)− g(k−1)∆t(x, (k − 1)∆t)−∆t∂tg(k−1)∆t(x, (k − 1)∆t)|dx

≤ 1
2

(∆t)2|∂2
ttg

(k−1)∆t(x, (k − 1)∆t)|∞ +O
(
(∆t)3

)
.

By Corollary 6.4, we can bound, for any k:

|∂2
ttg

(k−1)∆t(x, (k−1)∆t)|∞ ≤ 16∆|∂tg(k−1)∆t(x, (k−1)∆t)|∞|g(k−1)∆t(x, (k−1)∆t)|∞

≤ 16∆
(
K1e

K1T

(
M +

K2

K1

)
+K2

)
eK1T

(
M +

K2

K1

)
= C2,

therefore:

εeu ≤
C2

2
(∆t)2 +O((∆t)3) = O((∆t)2). (7.6)

Proof of Proposition 6.10

∂

∂t

∫ 1

0

|gk∆t(x, t)− g(k−1)∆t(x, t)|dx ≤
∫ 1

0

|∂tgk∆t(x, t)− ∂tg(k−1)∆t(x, t)|

≤
∫ 1

0

2

∣∣∣∣∣−gk∆t(x, t)
∫ x+∆

x−∆

gk∆t(y, t)dy + g(k−1)∆t(x, t)
∫ x+∆

x−∆

g(k−1)∆t(y, t)dy

∣∣∣∣∣
+
∫ 1

0

2
w

∣∣∣∣∣
∫ x+w∆

x−w∆

gk∆t(y, t)gk∆t

(
x− (1− w)y

w
, t

)
dy

−
∫ x+w∆

x−w∆

g(k−1)∆t(y, t)g(k−1)∆t

(
x− (1− w)y

w
, t

)
dy

∣∣∣∣∣ = I + J.

We will first bound I. We have that:

I ≤ 2
∫ 1

0

|g(k−1)∆t(x, t)− gk∆t(x, t)|
∫ x+∆

x−∆

g(k−1)∆t(y, t)dzdx

+2
∫ 1

0

gk∆t(x, t)
∫ x+∆

x−∆

|g(k−1)∆t(y, t)− gk∆t(y, t)|dzdx = I1 + I2.

On the one hand:

I1 ≤ 2
∫ 1

0

|g(k−1)∆t(x, t)− gk∆t(x, t)|dx,
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on the other:

I2 ≤ 2
∫ 1

0

gk∆t(x, t)
∫ 1

0

|g(k−1)∆t(y, t)−gk∆t(y, t)|dzdx ≤ 2
∫ 1

0

|g(k−1)∆t(x, t)−gk∆t(x, t)|dx.

Now we will bound J :

J ≤ 2
w

∫ 1

0

∫ x+w∆

x−w∆

gk∆t(y, t)
∣∣∣∣gk∆t

(
x− (1− w)y

w
, t

)
− g(k−1)∆t

(
x− (1− w)y

w
, t

)∣∣∣∣ dzdx
+

2
w

∫ 1

0

∫ x+w∆

x−w∆

∣∣∣gk∆t(y, t)− g(k−1)∆t(y, t)
∣∣∣ g(k−1)∆t

(
x− (1− w)y

w
, t

)
dzdx = J1+J2

J1 = 2
∫ 1

0

∫ x+∆

x−∆

gk∆t(x, t)
∣∣∣gk∆t (y, t)− g(k−1)∆t (y, t)

∣∣∣ dzdx
≤ 2

∫ 1

0

|gk∆t(x, t)− g(k−1)∆t(x, t)|dx

J2 = 2
∫ 1

0

∫ x+∆

x−∆

∣∣∣gk∆t(x, t)− g(k−1)∆t(x, t)
∣∣∣ g(k−1)∆t (y, t) dzdx

≤ 2
∫ 1

0

|gk∆t(x, t)− g(k−1)∆t(x, t)|dx.

Adding all the equations together we get that:

∂

∂t

∫ 1

0

|gk∆t(x, t)− g(k−1)∆t(x, t)|dx ≤ I + J ≤ I1 + I2 + J1 + J2

≤ 8
∫ 1

0

|gk∆t(x, t)− g(k−1)∆t(x, t)|dx.

Integrating:∣∣∣µtk∆t(dx)− µt(k−1)∆t(dx)
∣∣∣
T

=
∫ 1

0

|gk∆t(x, t)− g(k−1)∆t(x, t)|dx

≤ e8(t−k∆t)

∫ 1

0

|gk∆t(x, k∆t)− g(k−1)∆t(x, k∆t)|dx

= e8(t−k∆t)|µk∆t
k∆t(dx)− µk∆t

(k−1)∆t(dx)|T ,

as we wanted to prove.
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Proof of Theorem 6.11

εtot ≤
T/(∆t)∑
k=1

∣∣∣µT(k−1)∆t(dx)− µTk∆t(dx)
∣∣∣
T
≤ e8T

T/(∆t)∑
k=1

∣∣∣µk∆t
(k−1)∆t(dx)− µk∆t

k∆t(dx)
∣∣∣
T

= e8T T

∆t
O

(
(∆t)2 +

∆t
I

)
= O

(
∆t+

1
I

)
.
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