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Abstract

We consider the inverse scattering problem on the energy interval in
three dimensions. We are focused on stability and instability questions for
this problem. In particular, we prove an exponential instability estimate
which shows optimality of the logarithmic stability result of [Stefanov,
1990] (up to the value of the exponent).

1 Introdution
We consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ R3, (1.1)

where
v is real-valued, v ∈ L∞(R3),
v(x) = O(|x|−3−ε), |x| → ∞, for some ε > 0. (1.2)

Under conditions (1.2), for any k ∈ R3 \ 0 equation (1.1) with E = k2 has a
unique continuous solution ψ+(x, k) with asymptotics of the form

ψ+(x, k) = eikx − 2π2 e
i|k||x|

|x|
f

(
k

|k|
,
x

|x|
, |k|
)

+ o

(
1
|x|

)

as |x| → ∞
(
uniformly in

x

|x|

)
,

(1.3)

where f(k/|k|, ω, |k|) with fixed k is a continuous function of ω ∈ S2.
The function f(θ, ω, s) arising in (1.3) is refered to as the scattering am-

plitude for the potential v for equation (1.1). (For more information on di-
rect scattering for equation (1.1), under condition (1.2), see, for example, [6]
and [11].)

It is well known that for equation (1.1), under conditions (1.2), the scattering
amplitude f in its high-energy limit uniquely determines v̂ on R3 , where

v̂(p) = (2π)−3

∫
R3
eipxv(x)dx, p ∈ R3, (1.4)

via the Born formula. As a mathematical theorem this result goes back to [5]
(see, for example, Section 2.1 of [11] and Theorem 1.1 of [14] for details).

We consider the following inverse problem for equation (1.1).
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Problem 1.1 Given f on the energy interval I, find v.
In [7] it was shown that for equation (1.1), under the conditions (1.2), for

any E > 0 and δ > 0 the scattering amplitude f(θ, ω, s) on {(θ, ω, s) ∈ S2×S2×
R+, E ≤ s2 ≤ E + δ} uniquely determines v̂(p) on {p ∈ R3 | |p| ≤ 2

√
E}. This

determination is based on solving linear integral equations and on an analytic
continuation. This result of [7] was improved in [14]. On the other hand, if v
satisfies (1.2) and, in addition, is compactly supported or exponentially decaying
at infinity, then v̂(p) on {p ∈ R3 | |p| ≤ 2

√
E} uniquely determines v̂(p) on

{p ∈ R3 | |p| > 2
√
E} by an analytic continuation and, therefore, uniquely

determines v on R3.
In the case of fixed energy and potential v, satisfying (1.2) and, in addi-

tion, being compactly supported or exponentially decaying at infinity, global
uniqueness theorems and precise reconstructions were given for the first time
in [12], [13].

An approximate but numerically efficient method for finding potential v from
the scattering amplitude f in the case of fixed energy was devoloped in [15].
Related numerical implementation was given in [2].

Global stability estimates for Problem 1.1 were given by Stefanov in [17] (at
fixed energy for compactly supported potentials), see Theorem 2.1 in Section 2
of the present paper. In [17], using a special norm for the scattering amplitude
f , it was shown that the stability estimates for Problem 1.1 follow from the
Alessandrini stability estimates of [1] for the Gel’fand-Calderon inverse problem
of finding potential v in bounded domain from the Direchlet-to-Neumann map.
The Alessandrini stability estimates were recently improved by Novikov in [16].

In the case of fixed energy, the Mandache results of [10] show that logarith-
mic stability estimates of Alessandrini of [1] and especially of Novikov of [16]
are optimal (up to the value of the exponent). In [8] studies of Mandache were
extended to the case of Direchlet-to-Neumann map given on the energy inter-
vals. Note also that Mandache-type instability estimates for the elliptic inverse
problem concerning the determination of inclusions in a conductor by different
kinds of boundary measurements and the inverse obstacle acoustic scattering
problems were given in [3].

In the present work we apply to Problem 1.1 the approach of [10], [8] and
show that the Stefanov logarithmic stability estimates of [17] are optimal (up to
the value of the exponent). The Stefanov stability estimates and our instability
result for Problem 1.1 are presented and discussed in Section 2. In Section 3
we prove some basic analytic properties of the scattering amplitude. Finally, in
Section 5 we prove the main result, using a ball packing and covering by ball
arguments.

2 Stability and instability estimates
In what follows we suppose

supp v(x) ⊂ D = B(0, 1), (2.1)
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where B(x, r) is the open ball of radius r centered at x. We consider the
orthonormal basis of the spherical harmonics in L2(S2) = L2(∂D):

{Y pj : j ≥ 0; 1 ≤ p ≤ 2j + 1}. (2.2)

The notation (aj1p1j2p2) stands for a multiple sequence. We will drop the sub-
script

0 ≤ j1, 1 ≤ p1 ≤ 2j1 + 1, 0 ≤ j2, 1 ≤ p2 ≤ 2j2 + 1. (2.3)

We expand function f(θ, ω, s) in the basis {Y p1j1 × Y
p2
j2
}:

f(θ, ω, s) =
∑

j1,p1,j2,p2

aj1p1j2p2(s)Y p1j1 (θ)Y p2j2 (ω). (2.4)

As in [17] we use the norm

||f(·, ·, s)||σ1,σ2 =

 ∑
j1,p1,j2,p2

(
2j1 + 1
es

)2j1+2σ1
(

2j2 + 1
es

)2j2+2σ2

|aj1p1j2p2(s)|2


1/2

.

(2.5)
If a function f is the scattering amplitude for some potential v ∈ L∞(D) sup-
ported in B(0, ρ), where 0 < ρ < 1, then

|aj1p1j2p2(s)| ≤ C(s, ||v||L∞(D))
(

esρ

2j1 + 1

)j1+3/2(
esρ

2j2 + 1

)j2+3/2

(2.6)

and, therefore, ||f(·, ·, s)||σ1,σ2 <∞, see estimates of Proposition 2.2 of [17].

Theorem 2.1 (see [17]). Let v1, v2 be real-valued potentials such that vi ∈
L∞(D) ∩ Hq(R3), supp vi ⊂ B(0, ρ), ||vi||L∞(D) ≤ N for i = 1, 2 and some
N > 0, q > 3/2 and 0 < ρ < 1. Let f1 and f2 denote the scattering amplitudes
for v1 and v2, respectively, in the framework of equation (1.1) with E = s2,
s > 0, then

||v1 − v2||L∞(D) ≤ c(N, ρ)φδ(||f1(·, ·, s)− f2(·, ·, s)||3/2,−1/2), (2.7)

where φδ(t) = (− ln t)−δ for some fixed δ, where, in particular, 0 < δ < 1, and
for sufficiently small t > 0.

The main result of the present work is the following theorem.

Theorem 2.2. For the interval I = [s1, s2], such that s1 > 0, and for any
m > 0, α > 2m and any real σ1, σ2 there are constants β > 0 and N > 0, such
that for any v0 ∈ Cm(D) with ||v0||L∞(D) ≤ N , supp v0 ⊂ B(0, 1/2) and any
ε ∈ (0, N), there are real-valued potentials v1, v2 ∈ Cm(D), also supported in
B(0, 1/2), such that

sup
s∈I

(||f1(·, ·, s)− f2(·, ·, s)||σ1,σ2) ≤ exp
(
−ε− 1

α

)
,

||v1 − v2||L∞(D) ≥ ε,
||vi − v0||L∞(D) ≤ ε, i = 1, 2,
||vi − v0||Cm(D) ≤ β, i = 1, 2,

(2.8)
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where f1, f2 are the scattering amplitudes for v1, v2, respectively, for equation
(1.1).

Remark 2.1. In the case of fixed energy s1 = s2 we can replace the condition
α > 2m in Theorem 2.2 by α > 5m/3.
Remark 2.2. We can allow β to be arbitrarily small in Theorem 2.2 if we
require ε ≤ ε0 and replace the right-hand side in the first inequality in (2.8) by
exp(−cε− 1

α ), with ε0 > 0 and c > 0 depending on β.
Remark 2.3. Note that Theorem 2.2 and Remark 2.1 imply, in particular, that
for any real σ1 and σ2 the estimate

||v1 − v2||L∞(D) ≤ c̃(N, ρ,m, I) sup
s∈I

φδ(||f1(·, ·, s)− f2(·, ·, s)||σ1,σ2) (2.9)

can not hold with δ > 2m in the case of the scattering amplitude given on the
energy interval and with δ > 5m/3 in the case of fixed energy. Thus Theorem
2.2 and Remark 2.1 show optimality of the Stefanov logarithmic stability result
(up to the value of the exponent).
Remark 2.4. A disadvantage of estimate (2.7) is that

δ < 1 even if m is very great. (2.10)

Apparently, proceeding from results of [16], it is not difficult to improve estimate
(2.7) for

δ = m+ o(m) as m→∞. (2.11)

3 Some basic analytic properties of the scattering
amplitude

Consider the solution ψ+(x, k) of equation 1.1, see formula (1.3). We have that

ψ+(x, k) = eikxµ+(x, θ, s), (3.1)

where θ ∈ S2, k = sθ and µ+(x, θ, s) solves the equation

µ+(x, θ, s) = 1−
∫

R3
G+(x, y, s)e−isθ(x−y)v(y)µ+(y, θ, s)dy, (3.2)

where

G+(x, y, s) =
eis|x−y|

4π|x− y|
. (3.3)

We suppose that condition (2.1) holds and, in addition, for some h > 0 we have
that

|Im s| ≤ h, (3.4)

c1(h,D)||v||L∞(D) ≤ 1/2, (3.5)
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where D = B(0, 1),

c1(h,D) = sup
x∈D

∫
D

e2h|x−y|

4π|x− y|
dy. (3.6)

Then, in particular, ∣∣∣e−isθ(x−y)eis|x−y|∣∣∣ ≤ e2h|x−y|. (3.7)

Solving (3.2) by the method of succesive approximations in L∞(D), we obtain
that

|µ+(x, θ, s)| ≤ 1
1− c1||v||L∞(D)

, θ ∈ S2, x ∈ D. (3.8)

Lemma 3.1. Let aj1p1j2p2(s) denote coefficients f(s, θ, ω) in the basis of the
spherical harmonics {Y p1j1 × Y

p2
j2
}, where f is the scattering amplitude for po-

tential v ∈ L∞(D) such that conditions (2.1) and (3.5) hold for some h > 0,

f(θ, ω, s) =
∑

j1,p1,j2,p2

aj1p1j2p2(s)Y p1j1 (θ)Y p2j2 (ω). (3.9)

Then aj1p1j2p2(s) is holomorphic function in Wh = {s | |Im s| ≤ h} and

|aj1p1j2p2(s)| ≤ c2(h,D) for s ∈Wh. (3.10)

Proof of Lemma 3.1. We start with the well-known formula

f(θ, ω, s) =
1

(2π)3

∫
R3
eis(θ−ω)xv(x)µ+(x, θ, s)dx. (3.11)

Note that, since θ, ω ∈ S2,

|eis(θ−ω)x| ≤ e2|Im s||x|. (3.12)

Combining it with (2.1), (3.5), (3.8) and (3.11) we obtain that

|f(θ, ω, s)| ≤ c̃2(h,D) for s ∈Wh. (3.13)

Using also that

aj1p1j2p2(s) =
∫
S2×S2

f(θ, ω, s)Y p1j1 (θ)Y p2j2 (ω)dθdω (3.14)

we obtain the result of Lemma 3.1. �

4 A fat metric space and a thin metric space
Definition 4.1. Let (X, dist) be a metric space and ε > 0. We say that a
set Y ⊂ X is an ε-net for X1 ⊂ X if for any x ∈ X1 there is y ∈ Y such
that dist(x, y) ≤ ε. We call ε-entropy of the set X1 the number Hε(X1) :=
log2 min{|Y | : Y is an ε-net fot X1}.

A set Z ⊂ X is called ε-discrete if for any distinct z1, z2 ∈ Z, we have
dist(z1, z2) ≥ ε. We call ε-capacity of the setX1 the number Cε := log2 max{|Z| :
Z ⊂ X1 and Z is ε-discrete}.
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The use of ε-entropy and ε-capacity to derive properties of mappings between
metric spaces goes back to Vitushkin and Kolmogorov (see [9] and references
therein). One notable application was HilbertŠs 13th problem (about repre-
senting a function of several variables as a composition of functions of a smaller
number of variables). In essence, Lemma 4.1 and Lemma 4.2 are parts of the
Theorem XIV and the Theorem XVII in [9].

Lemma 4.1. Let d ≥ 2 è m > 0. For ε, β > 0, consider the real metric space

Xmεβ = {v ∈ Cm(Rd) | supp v ⊂ B(0, 1/2), ||v||L∞(Rd) ≤ ε, ||v||Cm(Rd) ≤ β}

with the metric induced by L∞. Then there is µ > 0 such that for any β > 0 and
ε ∈ (0, µβ), there is an ε-discrete set Z ⊂ Xmεβ with at least exp

(
2−d−1(µβ/ε)d/m

)
elements.

Lemma 4.2. For the interval I = [a, b] and γ > 0 consider the ellipseWI,γ ∈ C:

WI,γ = {a+ b

2
+
a− b

2
cos z | |Imz| ≤ γ}. (4.1)

Then there is a constant ν = ν(C, γ) > 0 such that for any δ ∈ (0, e−1) there
is a δ-net for the space of functions on I with L∞-norm, having holomorphic
continuation to WI,γ with module bounded above on WI,γ by the constant C,
with at most exp(ν(ln δ−1)2) elements.

Remark 4.1. In the case of a = b, taking

Y =
δ

2
Z
⋂

[−C,C] + i · δ
2

Z
⋂

[−C,C], (4.2)

we get δ-net with at most exp(ν ln δ−1) elements.
Lemma 4.1 and Lemma 4.2 were also formulated and proved in [10] and [8],

respectively.
For the interval I = [s1, s2] such that s1 > 0 and real σ1, σ2 we introduce

the Banach space

XI,σ1,σ2 =
{(

aj1p1j2p2(s)
)
|
∥∥∥(aj1p1j2p2(s)

)∥∥∥
XI,σ1,σ2

<∞
}
, (4.3)

where∥∥∥(aj1p1j2p2(s)
)∥∥∥

XI,σ1,σ2

= sup
s∈I

j1,p1,j2,p2

((
2j1 + 1
es

)j1+σ1
(

2j2 + 1
es

)j2+σ2

|aj1p1j2p2(s)|

)
.

(4.4)
We consider the scattering amplitude f for some potential v ∈ L∞(D) supported
in B(0, ρ), where 0 < ρ < 1. We identify in the sequel the scattering amplitude
f(s, θ, ω) with its matrix

(
aj1p1j2p2(s)

)
in the basis of the spherical harmonics

{Y p1j1 × Y
p2
j2
} . We have that

sup
s∈I
||f(·, ·, s)||σ1,σ2 ≤ c3

∥∥∥(aj1p1j2p2(s)
)∥∥∥

XI,σ̃1,σ̃2

, (4.5)
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where σ̃1−σ2 = σ̃2−σ2 = 3 and c3 = c3(I) > 1. We obtain (4.5) from definitions
(2.5), (4.4) and by taking c3 > 1 in a such a way that

∑
j1,p1,j2,p2

(
2j1 + 1
es

)−3(2j2 + 1
es

)−3

< c3. (4.6)

For h > 0 we denote by Ah the set of the matrices, corresponding to the
scattering amplitudes for the potentials v ∈ L∞(D) supported in B(0, 1/2)
such that condition (3.5) holds.

Lemma 4.3. For any h > 0 and any real σ1, σ2, the set Ah belongs to XI,σ1,σ2 .
In addition, there is a constant η = η(I, h, σ1, σ2) > 0 such that for any δ ∈
(0, e−1) there is a δ-net Y for Ah in XI,σ1,σ2 with at most exp

(
η
(
ln δ−1

)6 (1 + ln ln δ−1
)2)

elements.

Proof of Lemma 4.3. We can suppose that σ1, σ2 ≥ 0 as the assertion is stronger
in this case. If a function f is the scattering amplitude for some potential
v ∈ L∞(D) supported in B(0, 1/2), we have from (2.6) that(

2j1 + 1
es

)j1+σ1
(

2j2 + 1
es

)j2+σ2

|aj1p1j2p2(s)| ≤ c4
(2j1 + 1)σ1(2j2 + 1)σ2

2j1+j2
,

(4.7)
where c4 = c4(I, h) > 0. Hence, for any positive σ1 and σ2,∥∥∥(aj1p1j2p2(s)

)∥∥∥
XI,σ1,σ2

≤ sup
j1,j2

(
c4

(2j1 + 1)σ1(2j2 + 1)σ2

2j1+j2

)
<∞ (4.8)

and so the first assertion of the Lemma 4.3 is proved.
Let lδ,σ1,σ2 be the smallest natural number such that c4(2l+ 1)σ1+σ22−l < δ

for any l ≥ lδ,σ1,σ2 . Taking natural logarithm we have that

− ln c4 − (σ1 + σ2) ln(2l + 1) + l ln 2 > ln δ−1 for l ≥ lδ,σ1,σ2 . (4.9)

Using ln δ−1 > 1, we get that

lδ,σ1,σ2 ≤ C ′ ln δ−1, (4.10)

where the constant C ′ depends only on h, σ1, σ2 and I = [s1, s2]. We take
WI = WI,γ of (4.1), where the constant γ > 0 is such thatWI ⊂ {s | |Im s| ≤ h}.
If max(j1, j2) ≤ lδ,σ1,σ2 , then we denote by Yj1p1j2p2 some δj1p1j2p2-net from
Lemma 4.2 with the constant C = c2, where the constant c2 is from Lemma 3.1
and

δj1p1j2p2 =
(

es1
2j1 + 1

)j1+σ1
(

es1
2j2 + 1

)j2+σ2

δ. (4.11)

Otherwise we take Yj1p1j2p2 = {0}. We set

Y =
{(
aj1p1j2p2(s)

)
| aj1p1j2p2(s) ∈ Yj1p1j2p2

}
. (4.12)
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For any
(
aj1p1j2p2(s)

)
∈ Ah there is an element

(
bj1p1j2p2(s)

)
∈ Y such that

(
2j1 + 1
es

)j1+σ1
(

2j2 + 1
es

)j2+σ2

|aj1p1j2p2(s)− bj1p1j2p2(s)| ≤

≤
(

2j1 + 1
es

)j1+σ1
(

2j2 + 1
es

)j2+σ2

δj1p1j2p2 ≤ δ
(4.13)

in the case of max(j1, j2) ≤ lδ,σ1,σ2 and(
2j1 + 1
es

)j1+σ1
(

2j2 + 1
es

)j2+σ2

|aj1p1j2p2(s)− bj1p1j2p2(s)| ≤

≤ c4
(2j1 + 1)σ1(2j2 + 1)σ2

2j1+j2
≤ c4

(2 max(j1, j2) + 1)σ1+σ2

2max(j1,j2)
< δ,

(4.14)

otherwise.
It remains to count the elements of Y . We recall that |Yj1p1j2p2 | = 1 in the

case of max(j1, j2) > lδ,σ1,σ2 . Using again the fact that ln δ−1 ≥ 1 and (4.10)
we get in the case of max(j1, j2) ≤ lδ,σ1,σ2 :

|Yj1p1j2p2 | ≤ exp(ν(ln δ−1
j1p1j2p2

)2) ≤ exp
(
ν′
(
ln δ−1

)2 (
1 + ln ln δ−1

)2)
. (4.15)

We have that nδ,σ1,σ2 ≤ l2δ,σ1,σ2
(2lδ,σ1,σ2 + 1)2 ≤ (2lδ,σ1,σ2 + 1)4, where nδ,σ1,σ2

is the number of four-tuples (j1, p1, j2, p2) with max(j1, j2) ≤ lδ,σ1,σ2 . Taking η
to be big enough we get that

|Y | ≤
(

exp
(
ν′
(
ln δ−1

)2 (
1 + ln ln δ−1

)2))nδ,σ1,σ2
≤ exp

(
ν′
(
ln δ−1

)2 (
1 + ln ln δ−1

)2
(1 + 2C ′ ln δ−1)4

)
≤ exp

(
η
(
ln δ−1

)6 (
1 + ln ln δ−1

)2)
.

(4.16)

�

Remark 4.2. In the case of s1 = s2, taking into account Remark 4.1 and using
it in (4.15) and (4.16), we get δ-net Y with at most exp

(
η
(
ln δ−1

)5 (1 + ln ln δ−1
))

elements.

5 Proof of Theorem 2.2
We take N such that condition (3.5) holds for any ||v||L∞(D) ≤ 2N for some
h > 0. By Lemma 4.1, the set v0 +Xmεβ has an ε-discrete subset v0 +Z. Since
ε ∈ (0, N) we have that the set Y constructed in Lemma 4.3 is also δ-net for the
set of the matrices, corresponding to the scattering amplitudes for the potentials
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v ∈ v0 + Xmεβ . We take δ such that 2c3δ = exp
(
−ε− 1

α

)
, see (4.5). Note that

inequalities of (2.8) follow from

|v0 + Z| > |Y |, (5.1)

where the set Y is constructed in Lemma 4.3 with σ̃1 = σ1 + 3 and σ̃2 = σ2 + 3.
In fact, if |v0 + Z| > |Y |, then there are two potentials v1, v2 ∈ v0 + Z with
the matrices

(
aj1p1j2p2(s)

)
and

(
bj1p1j2p2(s)

)
, corresponding to the scattering

amplitudes for them, being in the same XI,σ1,σ2 -ball radius δ centered at a point
of Y . Hence, using (4.5) we get that

sup
s∈I
||f1(·, ·, s)− f2(·, ·, s)||σ1,σ2 ≤ c3

∥∥∥(aj1p1j2p2(s)
)
−
(
bj1p1j2p2(s)

)∥∥∥
XI,σ̃1,σ̃2

≤

≤ 2c3δ = exp
(
−ε− 1

α

)
.

(5.2)
It remains to find β such that (5.1) is fullfiled. By Lemma 4.3 for some ηα =
ηα(I, σ1, σ2, α) > 0

|Y | ≤ exp
(
η
(

ln(2c3) + ε−
1
α

)6 (
1 + ln

(
ln(2c3) + ε−

1
α

))2
)
≤ exp

(
ηαε
− 3
m

)
.

(5.3)
Now we take

β > µ−1 max
(
N, ηm/3α 22m

)
. (5.4)

This fulfils requirement ε < µβ in Lemma 4.1, which gives

|v0 + Z| = |Z| ≥ exp
(

2−4(µβ/ε)3/m
) (5.4)

>

> exp
(

2−4(ηm/3α 22m/ε)3/m
) (5.3)

≥ |Y |.
(5.5)

This completes the proof of Theorem 2.2.
In the case of fixed energy s1 = s2, using Remark 4.2 in (5.3), we can replace

the condition α > 2m in Theorem 2.2 by α > 5m/3.
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