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DIFFRACTIVE GEOMETRIC OPTICS FOR BLOCH WAVE PACKETSGRÉGOIRE ALLAIRE1, MARIAPIA PALOMBARO2, AND JEFFREY RAUCH3Abstrat. We study, for times of order 1/ε, solutions of wave equations whihare O(ε2) modulations of an ε periodi wave equation. The solutions are of slowlyvarying amplitude type built on Bloh plane waves with wavelength of order ε. Weonstrut aurate approximate solutions of three sale WKB type. The leadingpro�le is both transported at the group veloity and dispersed by a Shrödingerequation given by the quadrati approximation of the Bloh dispersion relationat the plane wave. A ray average hypothesis of small divisor type guaranteesstability. We introdue tehniques related to those developed in nonlinear geo-metri optis whih lead to new results even on times sales t = O(1). A pairof asymptoti solutions yield aurate approximate solutions of osillatory initialvalue problems. The leading term yields H1 asymptotis when the envelopes areonly H1.Key words: Geometri optis, di�rative geometri optis, Bloh waves, di�ra-tion, homogenization.2000 Mathematis Subjet Classi�ation: 35B40, 35B27, 35L30, 35B34,35J10.
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3 Department of Mathematis, University of Mihigan, Ann Arbor 48109 MI, USA.Email: rauh�umih.edu 1. IntrodutionThis paper studies the propagation of waves through a slightly perturbed periodimedium. The period ε is assumed to be small ompared to the size of the wave paketthat we take as O(1), ε << 1. The equations are hyperboli and the Cauhy problemis solvable for arbitrary initial data. The wavelength of solutions is determined by theinitial data. We study the deliate ase where the wavelength ℓ and period are small and ofomparable size. As disussed below, this saling is partiularly important in tehnology.The resonant ase ℓ ∼ ε ontrasts with the ase of waves with wavelength large om-pared to the period of the medium, ℓ >> ε. For suh long waves, the medium an, withsmall error, be replaed by a medium whih does not vary on the small sale (see e.g.1



2 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCH[8℄, [10℄). The homogenized limit is a wave equation with e�etive oe�ients that areomputed as in the stati ase. The pertinent dispersion relation and group veloities arethose of the homogenized equations. For a seond order salar equation, the dispersionrelation is quadrati in frequeny and wave number as is the dispersion relation of theoriginal problem.If ℓ << ε, then from the point of view of the wave, the medium is slowly varying andthe approximations of standard geometri optis are appropriate. The group veloities arethose de�ned by the harateristi variety of the equation with nearly periodi oe�ients.For seond order salar equations the dispersion relation is quadrati with oe�ientswhih vary on the short sale ε.In this paper we disuss the resonant ase when ℓ ∼ ε. A prinipal interest of thissaling is that the dispersion relation (1.6) is given in terms of Bloh eigenvalues, denotedbelow by λn. It an be very di�erent from the relations in the preeding regimes. Forexample, for salar seond order equations the group veloity has stritly positive norm,while in the resonant ase there an be zero speeds. Periodi strutures are the fousof intensive work on designer photoni materials. Sine for ℓ ∼ ε the dispersion relationan have form entirely di�erent from the original equations, this leaves open the door formaterials with radially di�erent properties than the periodi onstituents. Among goalsahieved by suh e�orts is to slow light ([21℄, [5℄, [37℄, [20℄, [4℄), and to ahieve preassignedband gap strutures. The use of the latter materials in optimized �bers is now ommonpratie (see [31℄). It is dreamed that the slow light tehnologies are a �rst step towardan all optial omputer.In the ase when ℓ ∼ ε and for times t ∼ 1, there is a geometri optis approximationwith propagation speeds given by group veloities de�ned from the Bloh spetral theory(see [11℄, [8℄, �2 and �3 below, and [18℄, [19℄ for a Wigner measure approah). Ourmain results onern the propagation of suh Bloh wave pakets on the long time sales
t ∼ ε−1 assoiated with di�rative geometri optis. For these long times, the supports ofsolutions extend beyond the tube of rays with feet in the support of the initial data. Thebehavior is desribed by Shrödinger equations whose dispersion is omputed from Blohspetral data and whose lower order (potential) term is obtained by an averaging of thesmall perturbations of the periodi medium. We give an in�nitely aurate analysis at thesale of geometri optis, and a mathematially solid foundation at the sale of di�rativegeometri optis.We onsider the following wave equation desribing an O(ε2) perturbation of a ε-periodi medium(1.1) P ε(t, x, ∂t,x) u

ε := ρε
∂2uε

∂t2
− div (Aε graduε) = 0 in [0,∞[×R

N
x .



3The oe�ients Aε and ρε are of the form(1.2) Aε(x) = A0

(x
ε

)
+ ε2A1

(
t, x,

x

ε

)
, ρε(x) = ρ0

(x
ε

)
+ ε2ρ1

(
t, x,

x

ε

)
.The unperturbed oe�ients A0(x/ε) and ρ0(x/ε) are periodi with period ε. We supposethat ρ0(y) and ρ1(t, x, y) are smooth real valued funtions on TN

y := RN/ZN (the �atunit torus) and R1+N × TN
y respetively. The funtions A0(y) and A1(t, x, y) are smoothsymmetri matrix valued funtions on TN

y and R1+N ×TN
y respetively. For eah α, j, weassume(1.3) {

∂αt,x,yρj , ∂
α
t,x,yAj

}
∈ L∞(R1+N

t,x × T
N
y ) .There is a onstant δ > 0 so that for all y,(1.4) ρ0(y) ≥ δ > 0 , A0(y) ≥ δ I > 0 .The saling in (1.2) is suh that the O(ε2) perturbations a�et the leading term of theapproximate solutions for t = O(1/ε). Smaller perturbations, that is with a higher powerof ε, would not a�et the leading order approximation for times of order 1/ε.Remark 1.1. The time derivative in (1.1) is not taken in the divergene form ∂t(ρ∂t). Thetwo forms are equivalent for time independent oe�ients. When there are modulationsin time the proofs of auray are a little easier in the divergene form ase. Our earlierartile [3℄ gives the formulas for the divergene form ase. The ∂2t (ρu) form is of di�ultyequal to the present ase requiring no ideas not already present. We hose to do one ofthe hard ases so as to make suh a statement.In the purely periodi ase, with ρ1 and A1 identially equal to zero, solutions are linearombinations of Bloh plane wave solutions (see �2.1),(1.5) e2πi(ω(θ)t+θ.x)/ε ψn(x/ε , θ) , θ ∈ [0, 1[N ,with ω satisfying the dispersion relation,(1.6) 4 π2ω2(θ) = λn(θ) .The Bloh eigenfuntion, ψn(y, θ), is 1-periodi in y and satis�es the eigenvalue equation,(1.7) −(divy + 2iπθ)

(
A0(y)(grady + 2iπθ)ψn

)
= λn(θ)ρ0(y)ψn in T

N
y ,orresponding to the n-th eigenvalue or energy level λn(θ). Equation (1.7) together with(1.6) is equivalent to the wave equation (1.1) for the plane wave solution (1.5). TheHilbert spae L2(TN

y ) is normed by
∥∥ψ

∥∥2

L2(TN )
:=

∫

TN

|ψ(y)|2 dy .



4 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe operator on the left in (1.7) is hermitian symmetri in the assoiated salar produt.The eigenfuntions orresponding to distint eigenvalues are orthogonal with respet tothe salar produt of the equivalent norm,
(∫

ρ0(y) |ψ(y)|
2 dy

)1/2

.De�nition 1.2. Fix θ0 and a simple eigenvalue λn(θ0) 6= 0 and ω one of the rootsof (1.6). Denote by K ⊂ L2(TN
y ) the one dimensional eigenspae, and by ψn(y, θ0) aneigenfuntion normalized with respet to the L2(TN

y , ρ0(y)dy) salar produt,(1.8) ∫
ρ0(y) |ψn(y, θ0)|

2 dy = 1 .Denote by Π the L2(TN
y , dy) orthogonal projetion onto K.In a neighborhood of θ0, λn(θ) is thus a well de�ned simple eigenvalue and λn, ω areanalyti funtions of θ. The group veloity is de�ned as,(1.9) V := −∇θω(θ0) .We onstrut approximate solutions of (1.1) whih have a linear phase,(1.10) S(t, x) := ω(θ0)t + θ0.x .Our main results show that the O(ε2) perturbations a�et the leading asymptotis fortimes t of order 1/ε while perturbations O(ε) a�et the leading behavior at times t oforder 1. The rule of thumb is that the time of in�uene of the perturbations is of order εdivided by the amplitude of the perturbations.We �rst desribe the geometri optis approximation for times t = O(1). In suh aase, it is possible to onsider larger perturbations of order O(ε), namely to replae (1.2)by

Aε(x) = A0

(x
ε

)
+ εA1

(
t, x,

x

ε

)
, ρε(x) = ρ0

(x
ε

)
+ ερ1

(
t, x,

x

ε

)
.In Setion 3 we onstrut in�nitely aurate approximate solutions vε for problem (1.1)whih are of Bloh wave type with slowly varying amplitude,(1.11) vε(t, x) := e2πiS/ε W (ε, t, x, x/ε) , W (ε, t, x, y) ∼ w0(t, x, y)+ε w1(t, x, y)+. . . ,where S is the linear phase (1.10). The ∼ is in the sense of Taylor expansion in ε,

wj =
1

j!

∂jW (0, t, x, y)

∂εj
.It is an asymptoti expansion as ε→ 0, not a onvergent in�nite series. For any m,

W (ε, t, x, y) −
m∑

j=0

εj wj(t, x, y) = O(εm+1), as ε→ 0 .



5The expansion (1.11) is inserted in P εvε and terms grouped by powers of ε. To make thelargest term vanish, the leading pro�le w0(t, x, ·) must be a K valued funtion of (t, x).Equivalently, the leading order term in the approximate solution (1.11) is of the form
e2πiS/ε a(t, x) ψn(x/ε, θ0) , a ∈ C∞ .It is a Bloh plane wave with slowly varying amplitude a(t, x). Equation (1.7) is writtenas Lw0 = 0. The equation at eah order in ε in the expansion of P εvε is projeted in turnonto the kernel and the range of the operator L whih is neither injetive nor surjetive.This yields equations whih determine the pro�les wj. For example, the pro�le w0 = aψnis determined from its initial data by the transport equation (see �3 or [8℄, [18℄),

(
∂t + V.∂x

)
w0 = 0 , equivalently

(
∂t + V.∂x

)
a = 0.Therefore the funtion w0 is onstant on the rays t 7→ (t, x+ Vt) so,

w0(t, x, y) = w̃0(x− Vt, y) , w̃0(x, y) = w0(0, x, y) .These lines moving at the group veloity are also alled group lines.The rays are parallel whih leads for times t = O(1) to approximate solutions sup-ported in the tube of rays with feet in the support of the initial data. As in the ase ofhomogeneous equations in nonperiodi media, for times t = O(1/ε) and linear phases, weprove that the support of the leading approximation extends beyond the tube of parallelrays. The spread of waves beyond this tube is desribed by a Shrödinger equation. Thisis alled di�rative geometri optis (see [14℄, [7℄, [23℄, [17℄, [2℄).We next desribe the di�rative geometri optis approximation for times t = O(1/ε).In Setion 4 we use an ansatz, similar to (1.11), but involving also a slow time, to desribeBloh wave pakets exhibiting di�rative e�ets. Formal disussion of suh e�ets an befound in the physial literature, for example in [33℄, [34℄. In order to have in�nite orderexpansions analogous to those for t = O(1) it is su�ient (and not far from neessary)that the O(ε2) modulations of the oe�ients satisfy the onstraint,(1.12) (
∂t + V.∂x

){
A1(t, x, y) , ρ1(t, x, y)

}
= 0 .This very strong onstraint is equivalent to the invariane of the modulations on the rays

(t, x+ Vt). De�ne(1.13) γ(t, x) :=

∫

TN
y

ψn(y)
(
ρ1(t, x, y)(2πiω)

2 − divy A1 (t, x, y) grady)ψn(y) dy .When (1.12) is satis�ed, γ(t, x) is onstant on rays so,
γ(t, x) = γ̃(x− Vt) , γ̃(x) := γ(0, x) .The leading term in the approximate solution is of the form(1.14) e2πiS/ε ã(εt, x− Vt)ψn(x/ε, θ0)



6 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHwhere ã(T , x) satis�es the Shrödinger equation
(
4πi∂T − ∇2

θω(∂x, ∂x) +
γ̃(x)

ω

)
ã = 0 ,with the slow time variable T = εt whih is of order 1 when t = O(1/ε). In our earlierpaper [3℄ the approximation (1.14) is justi�ed by weak onvergene methods when (1.12)is satis�ed. In the present paper we give sharp error estimates and in�nitely aurateasymptoti expansions.In addition, we prove that the same leading order term yields an approximation withrelative error O(ε1−β) under muh milder onditions than (1.12). The onditions involvethe average of γ(t, x) along rays. It is reasonable that an observer moving on group lineswill, over long times, be a�eted by the average of γ(t, x) on the line. To start with, wesuppose that the ray averages

γ̃(x) := lim
T→+∞

1

T

∫ T

0

γ(t, x+ Vt) dtexist. This is equivalent to the fat that the solution of the transport equation
(
∂t + V.∂x)g = γ(t, x)− γ̃(x− Vt),is sublinear in time. We make the ray average hypothesis from De�nition 5.2 whih ismuh weaker than (1.12). There is a 0 ≤ β < 1 so that for all α, the solution gα(t, x) of(

∂t + V.∂x

)
gα = ∂αt,x

(
γ(t, x)− γ̃(x− Vt)

)
, gα

∣∣
t=0

= 0,satis�es (1 + t)−β gα ∈ L∞([0,∞[×RN). This hypothesis is satis�ed with β = 0 if γ is
(t, x)-periodi with any period, and also for almost all quasiperiodi γ and group veloities
V. It is proved with possibly positive β for quite general smooth almost periodi γ in�5.1.2.So far we have disussed the onstrution of approximate solutions. We next give apreise result for the initial value problem for the wave equation (1.1). Consider theosillatory initial onditions(1.15) uε(0, x) = b(x) e2πix.θ0/ε ψn(x/ε, θ0) , ∂tu

ε(0, x) =
c(x)

ε
e2πix.θ0/ε ψn(x/ε, θ0) ,with b, c ∈ ∩s≥0H

s(RN) . Denote by ω± the two roots of (1.6), by S± = ω±t + θ0xthe orresponding phases, and by V± the two group veloities. De�ne w̃±
0 (T , x, y) :=

a±(T , x)ψn(y, θ0) with the salar valued a± determined by the Shrödinger equations
(
4πi∂T ∓ ∇2

θω
±(∂x, ∂x) +

γ̃±(x)

ω±

)
a± = 0with initial data,

a+|T =0 =
b(x)

2
+

c(x)

4πiω+
, a−|T=0 =

b(x)

2
−

c(x)

4πiω−
,



7hosen so that the Cauhy data of vε math those of uε as well as possible (see �5.3). Thefollowing result follows from Theorem 5.13.Theorem 1.3. Assume that γ̃ satis�es the ray average hypothesis with parameter 0 ≤

β < 1 for both group veloities ±V, and that w̃±
0 (T , x, y) are de�ned as above. De�ne

vε(t, x) :=
∑

±

e2πiS
±(t,x)/ε w̃±

0 (εt, x∓ Vt, x/ε) ,then vε is an approximate solution with relative error O(ε1−β). Preisely, for any T > 0the error and its �rst order derivatives satisfy,
sup

0≤t≤T/ε

sup
|α|≤1

∥∥(ε ∂t,x)α
(
uε(t) − vε(t)

)∥∥
L2(RN )

≤ C ε1−β ,while the norms of (ε∂t,x)
αuε and (ε∂t,x)

αvε are O(1).Remark 1.4. i. In the above theorem, as throughout this paper, C denotes a onstant thatdoes not depend on ε. ii. The onstrution of the �rst orretor in the proof of Theorem1.3 fails when the ray average hypothesis is not satis�ed.This result is surprising sine one might expet that traversing O(1/ε2) periods of thebakground medium might destroy the wave paket struture. There are three ounter-vailing in�uenes;i. The Bloh plane waves are solutions of the unperturbed equation for all time.ii. The perturbations ε2ρ1, ε2A1 are saled with ε so that their e�et is felt at timesof order 1/ε.iii. The term γ(t, x) from the perturbations has well de�ned averages along rays, and,its integral along long segments of group lines di�er little from the values predited bythe average.The Shrödinger approximation of di�rative geometri optis omes from a seondorder approximation of the dispersion relation. The di�rative e�et omes from thenonlinear harater of the e�etive dispersion relation of periodi materials (see [13℄, [32℄for other instanes of this e�et). The same is also true of the paraboli or paraxialapproximation for waves propagating in a privileged diretion (see [6℄, [29℄, [35℄).When the periodiity is on the atomi or even nano sale, it is impossible to performnumerial simulations of the di�erential equation to study propagations over marosopidistanes. The only hope is to replae the equations by others whose oe�ients do notvary on the mirosopi sale. The approximations of geometri optis and di�rativegeometri optis produe suh equations.When the group veloity V is zero (whih happens, at least, at the bottom and top ofeah Bloh band), the geometri optis saling shows that Bloh wave pakets (1.11) are



8 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHessentially stationary for times t ∼ 1. The di�rative saling shows that this trappingpersists for t ∼ 1/ε when the modulations areO(ε2) and satisfy the ray average hypothesis.Experimental exploitation of this phenomenon to slow light are ited above.Furthermore, there exists no solution of the type (1.11) with temporal frequeny ωwhen 4π2ω2 is in a gap of the Bloh spetrum, i.e., when for all n ≥ 0 and θ ∈ [0, 1[N ,
4π2ω2 6= λn(θ). Arbitrary initial data are resolved into waves whose temporal frequeniesnever lie in these forbidden zones. An asymptoti analysis like that of �3, shows thatwhen waves with forbidden frequenies arrive at the periodi medium from a mediumwhih supports suh frequenies, the waves are totally re�eted. These properties arefundamental features of photoni rystals (see [26℄).The analysis of this paper is for salar wave equations. The ase of �rst order systemswith ellipti spatial part is suseptible to an analogous analysis. There are ompliationsfrom the vetor nature and simpli�ations beause the subtle L2 estimates of �5.2 arenot required. The ase of Maxwell's equations poses additional di�ulties as the spatialpart is not ellipti. The ompatness of resolvents holds on funtions satisfying the ε-dependent and rapidly osillatory divergene free ondition div(ǫε(x)E) = 0 where ǫε isa sequene of dieletri permittivities. This is the subjet of a future projet.This paper is organized as follows. Setion 2 realls some fats about the Bloh spetraldeomposition. In the ase of purely periodi problems, with ρ1 = 0 and A1 = 0, the so-lutions have an exat representation using this deomposition. In�nite order asymptotisan be derived by performing an asymptoti analysis of the resulting integrals. Theseomputations yield our prinipal results in a very speial ase. And, they motivate theansatz for the geometri optis and di�rative geometri optis sales. They do not givea hint onerning the impat of the perturbations, ρ1, A1.Setion 3 presents the analysis at the sale t ∼ 1 of geometri optis and for largermodulations ερ1, εA1 instead of ε2ρ1, ε2A1. The onstrution of the approximations (1.11)introdues into the Bloh wave ontext projetion tehniques developed in nonlinear geo-metri optis, and, the fundamental identities of perturbation theory. The approximationsolves the di�erential equation (1.1) with in�nitely small residual. The standard energyestimate for P ε implies that the energy of the error is in�nitely small. However, theoperators (P ε)−1 are usually not uniformly bounded on higher Sobolev spaes. A nontriv-ial stability result in Setion 3.4 shows that (P ε)−1 ampli�es higher derivatives at mostpolynomially in 1/ε. Sine the expansions have residuals that are O(ε∞), this su�es toshow that high derivatives of the error are also O(ε∞). Though our main interest is indi�ration, these results on the sale t = O(1) are new. For these times sales the analysisould have been performed for nonlinear phases and their urved wave fronts. For thedi�rative time sale, it is important that the phases are linear.



9Setion 4 presents the analysis at the sale t ∼ 1/ε of di�rative geometri optis whenthe modulations are onstant on rays moving at the group veloity, that is satisfy (1.12).The hard new work is devoted to omputing the pro�le equations whih determine w0and the orretors wj in (1.11). Otherwise it follows the pattern of rigorous asymptotianalysis established in Setion 3;i. Construt pro�les.ii. Use Borel's theorem to onstrut the approximate solutions and estimate the resid-ual.iii. Use the stability estimate to prove auray.Setion 5 is devoted to produing leading order approximations when (1.12) is notsatis�ed but the ray average hypothesis is. In this ase one does not ahieve in�nite orderauray. We onstrut a three term expansion with residual O(ε2−β). We use all of thepreparatory work in the preeding setions. The gradient of the error is easily estimatedby the standard energy estimate. A subtle stability argument is required to obtain L2estimates for the error. The osillatory initial value problem is solved in Setion 5.3 usingtwo phases and orrespondingly two approximate solutions. In Setion 5.4 we show thatthe analysis for smooth envelopes is su�ient to yield strong onvergene for the leadingterm asymptotis in di�rative geometri optis for envelopes whih are only H1(RN ).Aknowledgements. The researh of G. Allaire and M. Palombaro is partially supportedby the Researh Training Network MULTIMAT MRTN-CT-2004-505226 funded by theEEC. The researh of G. Allaire is partially supported by the DEFI projet at INRIASalay Ile de Frane and by the Chair �Mathematial modelling and numerial simulation,F-EADS - Eole Polytehnique - INRIA�. The researh of J. Rauh is partially supportedby the U.S. National Siene Foundation under grant NSF-DMS-0104096. M. Palombaroand J. Rauh thank the CMAP at the Éole Polytehnique and its members for theirhospitality. 2. The purely periodi aseIn this setion we make the assumption that
A1 ≡ 0 and ρ1 ≡ 0,so the oe�ients of (1.1) are periodi.2.1. Bloh spetral deomposition. We brie�y reall the Bloh deomposition. See[9, 8, 12, 25, 30, 38℄ for more details. Write eah ξ ∈ Rn as n + θ with n ∈ ZN and
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θ ∈ [0, 1[N . Expressing u(y) in terms of its Fourier transform, û(ξ), yields(2.1) u(y) =

∫

[0,1[N
e2πiθ.y

( ∑

n∈ZN

e2πin.yû(θ + n)
)
dθ .The funtion in parentheses is periodi with respet to y. The integrand is a funtion gwhih is θ-periodi in the sense that y → e−2πiθ.y g(y) is periodi with period 1 in eah yj.This deomposes L2(RN) as the diret integral over θ of the Hilbert spae of θ-periodifuntions. The parameter θ is alled the Bloh frequeny.The partial derivatives of θ-periodi funtions are θ-periodi and the produt of a

θ-periodi funtion with a periodi funtion is θ-periodi. Therefore, the di�erential op-erators divy A0(y) grady and P ε (upon the hange of variable x = εy) map θ-periodifuntions to themselves. Therefore, the Bloh deomposition redues these operators.Thus, arbitrary solutions of (1.1) are integrals over θ of θ-periodi solutions.To analyse the θ-periodi solutions reason as follows. The unitary mapping v 7→

e2π i θ.y v on L2(TN ) intertwines divy A0 grady with domain equal to the θ-periodi ele-ments of H2 with the selfadjoint ellipti operator
A(θ)ψ := −(divy + 2iπθ)

(
A0(y)(grady + 2iπθ)ψ

)with domain equal to periodi H2.Standard ellipti theory implies that for all θ, the eigenvalue problem (1.7) has a ount-able nondereasing sequene of real eigenvalues {λn(θ)}n≥1 repeated aording to theirmultipliity and L2(TN , ρ0(y) dy) orthonormal eigenfuntions {ψn(y, θ)}n≥1, periodi in yand depending measurably on θ. The θ-periodi funtions are linear ombinations in n ofthe eigenfuntions
e2πiθ.y ψn(y, θ).The following lemma makes this preise.Lemma 2.1. Let u(y), v(y) ∈ L2(RN). De�ne their Bloh oe�ients for n ≥ 1 and

θ ∈ TN

αn(θ) :=

∫

RN

ρ0(y)u(y)ψn(y, θ)e
−2iπθ·y dy , βn(θ) :=

∫

RN

ρ0(y)v(y)ψn(y, θ)e
−2iπθ·y dy .Then, αn, βn belong to L2([0, 1[N) and

u(y) =
∑

n≥1

∫

[0,1[N
αn(θ)ψn(y, θ)e

2iπθ·ydθ , v(y) =
∑

n≥1

∫

[0,1[N
βn(θ)ψn(y, θ)e

2iπθ·ydθ ,and they satisfy the Parseval equality
∫

RN

ρ0(y)u(y)v(y) dy =
∑

n≥1

∫

[0,1[N
αn(θ)βn(θ) dθ.



11The Bloh transform u → {αn(θ)}n≥1 is an isometry from L2(RN) into ℓ2(L2([0, 1[N))that diagonalizes the ellipti operator in (1.1), in the sense that, for u, v in H1(RN),∫

RN

A0(y)∇u(y) · ∇v(y) dy =
∑

n≥1

∫

[0,1[N
λn(θ)αn(θ)βn(θ) dθ .Arbitrary solutions of the wave equation (1.1), are linear ombinations over θ and nof the Bloh plane waves (1.5), (1.6). In this setion we show that there exist spetrallyloalized solutions whih have an asymptoti expansion whose leading term has the formof a Bloh wave with slowly varying amplitude, that is

a(t, x) e2πi(ωt+θ.x)/ε ψn(x/ε, θ) .2.2. Expliit solutions. Throughout this paper we make the following assumption: fora �xed θ0 ∈ [0, 1[N and integer n ≥ 1,(2.2) λn(θ0) > 0 is a simple eigenvalue.Remark 2.2. Reall (see [8℄, [12℄, [25℄, [30℄) that the minimum of λ1(θ) is zero and isuniquely attained at θ = 0. This is a onsequene of the maximum priniple. The Hessianmatrix at θ = 0, ∇θ∇θλ1(0) is equal to the usual homogenized matrix for equation (1.1).Therefore ∃C > 0 suh that λ1(θ) ≥ C|θ|2. On the other hand, for n ≥ 2, there exists apositive onstant C > 0 so that minθ λn(θ) ≥ C > 0.Remark 2.2 implies that λn(θ0) > 0 exept if n = 1 and θ0 ≡ 0 mod ZN . Theimportant part of assumption (2.2) is the simpliity of the eigenvalue. If the eigenvaluehad multipliity independent of θ on a neighborhood of θ0 an analogous analysis ouldbe performed. We do not know any salar examples of this kind. For systems suh ageneralization would be natural. In our salar setting, simpliity is generi [1℄. Sine
A(θ) has ompat resolvent and depends analytially on θ, simpliity implies that the ntheigenouple of (1.7) is analyti in a neighborhood of θ0 (see e.g. [24℄). Choose ω(θ) ananalyti solution of the dispersion relation (1.6) de�ned near θ0.Under these onditions, if a ∈ C∞

0 (RN), then for ε small the expressions
uε(t, x) := ε−N

∫

[0,1[N
ψn

(x
ε
, θ
)
e2πiω(θ)t/ε e2πix.θ/ε a

(θ − θ0
ε

)
dθare superpositions of Bloh plane waves spetrally loalized near θ0 so are exat solution of(1.1). (To treat the exeptional ases where one of the oordinates of θ0 vanishes, swithto a fundamental domain [−c, 1 − c[N with 0 < c < 1 suh that θ0 lies in its interior.)Change variable letting ζ := (θ − θ0)/ε to �nd(2.3) uε = e2πix.θ0/ε

∫
ψn

(x
ε
, θ0 + εζ

)
e2πitω(θ0+εζ)/ε e2πix.ζ a(ζ) dζ ,an expression prepared for Taylor expansion.



12 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCH2.3. The geometri optis time sale t ∼ 1. Realling de�nition (1.9) of the groupveloity V, Taylor expansion in ε of in�nite and �nite orders respetively yield,(2.4) ψn(y, θ0 + εζ) ∼ ψn(y, θ0) +
∑

j≥1

εj gj(y, ζ) ,

ω(θ0 + εζ) = ω(θ0)− V.εζ + ε2k(ε, ζ) .Then,(2.5) e2πitω(θ0+εζ)/ε = e2πitω(θ0)/ε e−2πitV .ζ e2πi(εt)k(ε,ζ)

= e2πitω(θ0)/ε e−2πitV .ζ
(
1 +

∑

j≥1

(εt)jkj(ε, ζ)
)
,where the last line uses a Taylor expansion of s 7→ e2πisk(ε,ζ) about s = 0. De�ne

v(x) :=

∫
e2πix.ζ a(ζ) dζ .Injeting (2.4) and (2.5) into (2.3) yields the expansion(2.6) uε ∼ e2πiS/ε

(
w0(t, x, x/ε) + εw1(t, x, x/ε) + · · ·

)
, S := ω(θ0)t + x.θ0 ,with leading term,

w0(t, x, y) = v(x− Vt)ψn(y, θ0) .From this alulation we learn three things. First, rigidly translating waves at thegroup veloity is a reasonable approximation. Seond, an in�nite order expansion (2.6) isa reasonable ansatz to try in more ompliated problems. Finally, in (2.5), the expansionparameter is εt so when εt is not small, the approximation is not appropriate. For thedi�rative sale εt ∼ 1, one needs to modify the method.2.4. The di�rative time sale t ∼ 1/ε. The modi�ation is to take the next term inthe Taylor expansion in the exponent. Denote by q the symmetri quadrati expression(2.7) q(ζ, ζ) :=

N∑

i,j=1

∂2ω(θ0)

∂θi∂θj
ζi ζj .Then,

ω(θ0 + εζ) = ω(θ0) − εV.ζ + ε2q(ζ, ζ)/2 + ε3
∑

j≥0

εjℓj(ζ) ,and,
e2πiω(θ0+εζ)t/ε = e2πiω(θ0)t/ε e−2πitV .ζ e2πiεtq(ζ,ζ)/2 e2πiε(εt)

∑
j≥0 ε

jℓj(ζ) .If (εt) is bounded, expansion in ε is justi�ed in the last term. The exat solution has theform
e2πiS/ε W̃ (ε, εt, x− Vt, x/ε) , S = ω(θ0)t + θ0.x ,

W̃ (ε, T , x, y) :=

∫
ψn(y, θ0 + εζ) e2πiT q(ζ,ζ)/2 e2πiεT

∑
j≥0

εjℓj(ζ) e2πix.ζ a(ζ) dζ .



13Taylor expansion in ε yields(2.8) e2πiεT
∑

j≥0
εjℓj(ζ) =

(
1 +

∑

j≥1

εj hj(T , ζ)
)
.Injeting (2.4) and (2.8) in the de�nition of W̃ shows that(2.9) W̃ (ε, T , x, y) ∼

∑

j≥0

εj w̃j(T , x, y) ,with(2.10) w̃0(T , x, y) = ψn(y, θ0)

∫
e2πiT q(ζ,ζ)/2 e2πix.ζ a(ζ) dζ .This shows that the solution has an asymptoti expansion of the form

e2πiS/ε W̃ (ε, εt, x− Vt, x/ε) ,with W̃ satisfying (2.9).In our treatment of di�rative geometri optis in modulated media, we take a slightlymore permissive ansatz
e2πi(ωt+θ.x)/ε

(
w0(T , t, x, y) + ε w1(T , t, x, y) + · · ·

)
.with the idea that the added �exibility might be needed. Interestingly, it will follow thatthe expansion has the more restrited form found above.The operator q(∂x, ∂x) applied to w̃0 from (2.10) inserts a fator q(2πiζ, 2πiζ) =

−4π2q(ζ, ζ) inside the integrand. The operator ∂T applied to w̃0 inserts a fator πiq(ζ, ζ).Therefore w̃0 satis�es the Shrödinger equation,(2.11) (
4 π i ∂T − q(∂x, ∂x)

)
w̃0 = 0 .We will derive this equation in an entirely di�erent manner in Setion 4.In the ase of the onstant oe�ient wave equation, ω is homogeneous of degree 1in θ and q has rank N − 1. For the present problem q may have rank N . When qhas rank N , the Shrödinger equation has more rapid dispersion of waves. For example,in dimension N = 1 the onstant oe�ient wave equation is nondispersive, while aperiodi one dimensional medium will typially be dispersive for waves whose wave lengthis omparable to the period.3. Bloh wave pakets on a modulated bakground and t = O(1)3.1. The two sale onstrution. This setion onsiders solutions of the wave equation(3.1) P ε(t, x, ∂t,x) u

ε := ρε
∂2uε

∂t2
− divx (Aεgradx uε) = 0 .for times t = O(1). This time sale of ordinary geometri optis is an essential �rst stepin treating the di�rative ase.



14 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe oe�ients are assumed to be of the form(3.2) ρε = ρ0(x/ε) + ε ρ1(t, x, x/ε) , Aε = A0(x/ε) + εA1(t, x, x/ε) ,where the ρj , Aj satisfy (1.3), and, (1.4), from �1. For the geometri time sale, themodulations are taken to be O(ε) in plae of O(ε2) for the di�rative sale. After thenext paragraph a rude estimate suggests why suh perturbations are expeted to in�uenethe leading term asymptotis for times t of order 1.Motivated by the ase of smoothly varying media, and the speial ase of purely periodimedia in the Setion 2.3, the ansatz expeted to be valid for times t = O(1) is of two saleWKB type,
uε(t, x) ∼ e2iπS(t,x)/ε

(
w0

(
t, x,

x

ε

)
+ εw1

(
t, x,

x

ε

)
+ · · ·

)where the wj(t, x, y) are periodi funtions of y with period one. Equivalently, the wj arefuntions on the unit torus TN
y := RN/ZN .The ase when S is a linear funtion of (t, x) is our prinipal interest sine it is in thatase that the rays are parallel and one �nds Shrödinger type equations at the di�rativesale t = O(1/ε). Write

S(t, x) = ω t + θ.x , (ω, θ) ∈ R
1+N \ 0 .It su�es to onsider θ ∈ [0, 1[N . Other values an be onverted to these by inorporatinga periodi exponential, e2πin.x, in the pro�les wj. Given wj, Borel's Theorem allows us tohoose smooth W (ε, t, x, y), periodi in y with Taylor series in ε,

W (ε, t, x, y) ∼ w0 (t, x, y) + εw1 (t, x, y) + · · · .Approximate solutions are de�ned by,(3.3) vε(t, x) := e2 π i S(t,x)/ε W
(
ε, t, x,

x

ε

)
.Distint hoies of W yield approximate solutions whose di�erene is in�nitely small inthe limit ε→ 0. We hoose wj and then W so that P ε vε ∼ 0 in the sense of Taylor seriesin ε at ε = 0. Toward that end, use the identities

∂t

(
e2πiS/εW (ε, t, x, y)

)
= e2πiS/ε

(2πiω
ε

+ ∂t

)
W,

∂x

(
e2πiS/εW (ε, t, x, y)

)
= e2πiS/ε

(2πiθ
ε

+ ∂x

)
W,

(
∂y
ε

)(
e2πiS/εW (ε, t, x, y)

)
= e2πiS/ε

(∂y
ε

)
W,to show that

e−2πiS/ε P ε
(
e2πiS/εW (ε, t, x, x/ε)

)
= R(ε, t, x, x/ε) ,



15with
(3.4) R(ε, t, x, y) = e−2πiS/ε

[
ρε∂2t

−

(divx + divy
ε

)
Aε

(gradx + grady
ε

)](
e2πiS/εW (ε, t, x, y)

)

=

[(
ρ0 + ερ1)

(2πiω
ε

+ ∂t

)2

−
(divy + 2πiθ

ε
+ divx)(A0 + εA1

)(grady + 2πiθ

ε
+ gradx)]W.Equation (3.4) implies that R(ε, t, x, y) admits a Taylor series in ε at ε = 0 with uniquelydetermined y-periodi funtions rj suh that

R(ε, t, x, y) ∼
∞∑

j=−2

εj rj(t, x, y) .Sine one substitutes y = x/ε, it would su�e to satisfy rj = 0 on the subspae of (x, y)with x parallel to y. We ahieve the more ambitious goal of hoosing the wj so that rj = 0everywhere.3.2. The leading order term. Next analyse the asade of equations,
rj = 0, j = −2,−1, 0, 1, · · · .The operator in brakets on the right hand side of (3.4) is olleted aording to thepowers εj , j = −2,−1, 0, 1. The leading two orders are

ε−2
L(ω, θ, y, ∂y) + ε−1

M(ω, θ, y, ∂t, ∂x, ∂y) ,where(3.5) L(ω, θ, y, ∂y) := − 4 π2 ω2 ρ0 −
(divy + 2iπθ

)
A0(y)

(grady + 2iπθ
)
,and(3.6)

M(ω, θ, x, y, ∂t, ∂x, ∂y) := ρ04πiω∂t −
(
(2πiθ + divy)A0gradx + divxA0 (2πiθ + grady))

+
(
ρ1 (2πiω)

2 − (2πiθ + divy)A1(2πiθ + grady)) .The highest order term in the residual is(3.7) r−2 = L(ω, θ, y, ∂y)w0 .It omes from the terms of order ε−2 in the operator and the term of order ε0 in W . Inorder that r−2 = 0 have nontrivial solutions, it is neessary and su�ient that(3.8) kerL(ω, θ, y, ∂y) 6= {0} .



16 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHAording to Bloh wave theory, as desribed in setion 2.1, L(ω, θ, y, ∂y) has a nontrivialkernel on periodi funtions if and only ω and θ satisfy, for some integer n, the dispersionrelation (1.6). Equation (1.6) is equivalent to the eikonal equation(3.9) 4π2 (∂tS)
2 = λn(∂xS).When λn(θ) 6= 0, (1.6) has two roots ω = ±
√
λn(θ)/2π and there are two distint eikonalequations

2π∂tS = ±
√
λn(∂xS) ,orresponding to the two roots ω. Reall assumption (2.2) that λn(θ0) 6= 0 is a simpleeigenvalue. From now on we make this hoie of n and θ0 and ω is a solution of(3.10) 4 π2ω2 = λn(θ0) .De�nition 3.1. Denote by L, the self adjoint operator L(ω, θ0, y, ∂y) on L2(TN ; dy) withdomain equal to the periodi funtions in H2(TN
y ). Denote by Π the projetion operatoronto K := kerL(ω, θ0, y, ∂y) along the image of L. Π is orthogonal with respet to the salarprodut of L2(TN ; dy) and not with respet to the salar produt of L2(TN ; ρ0(y) dy).Denote by Q ∈ Hom

(
H−1(TN

y );H
1(TN

y )
) the partial inverse of L de�ned by

QΠ = ΠQ = 0 , QL = LQ = I − Π .Choose ψn(y) := ψn(y, θ0) an eigenfuntion spanning kerL(ω, θ0, y, ∂y) and normalizedby (1.8).The equation r−2 = 0 is equivalent to w0 ∈ K = kerL, that is(3.11) Πw0 = w0 .Summary. Equations (3.10) and (3.11) are equivalent to r−2 = 0.Equation (3.11) is equivalent to the fat that for eah (t, x), w0 is a multiple of ψn,(3.12) w0(t, x, y) = v(t, x)ψn(y) , vε(t, x) = v(t, x)ψn(x/ε) e
2πi(ωt+θ.x)/ε + · · · .Comparing with Bloh plane waves (1.5), (1.6), one sees that vε is a Bloh wave paket.Our preferred perspetive on (3.11) is to view K = kerL as a one dimensional vetorspae. Then (t, x) 7→ w0(t, x, ·) is a mapping from R1+N with values in K.Using the de�nitions of L and M, the term r−1 is given by,(3.13) r−1 = Lw1 + Mw0,so r−1 = 0 if and only if,(3.14) Lw1 +Mw0 = 0 .Equation (3.14) involves both w0 and w1. This is typial of multisale expansions. Equa-tions at a single order in ε involve pro�les from more than one order.



17The operator L is not surjetive. The information about w0 in (3.14) is thatMw0 ∈ RgL(Rg denotes the range). That information does not involve w1. To extrat this type ofinformation, eah equation rj = 0 with j ≥ −1, is split into its part in kerL and its partin RgL. In other words, it is written as the equivalent pair
Π rj = 0, Q rj = 0 .The systemati use of these projetions and partial inverses, inspired by the work ofJoly-Métivier-Rauh [22℄, [23℄ is an innovation of this artile.Using (3.13) and the relation ΠL = 0, Π r−1 = 0 yields an equation for w0 alone,(3.15) ΠMw0 = 0 .Taking into aount (3.11), this is equivalent to(3.16) ΠMΠw0 = 0 .De�ne γ ∈ C∞(RN

x ) by(3.17)
γ(t, x) :=

∫

TN
y

ψn(y)
(
ρ1(t, x, y) (2πiω)

2− (2πiθ+divy)A1(t, x, y) (2πiθ+grady))ψn(y) dy.Proposition 3.2. For any w(t, x, y) ∈ C∞,(3.18) ΠMΠw =
(
4 π i ω ∂t −

N∑

j=1

4 π i ω
∂ω

∂θj
(θ0)

∂

∂xj
+ γ(t, x)

)
Πw .Proof. From the de�nition of Π and M one automatially has for arbitrary w,(3.19) ΠMΠw =

(
i a0 ∂t +

N∑

j=1

i aj
∂

∂xj
+ c(t, x)

)
Πw ,with onstants aµ and a zero order term c(t, x). It su�es to ompute the values of theoe�ients. This is done by omputing the di�erential operator on the test funtions ψn,

t ψn, and xjψn to �nd,
c ψn(y) = ΠMΠψn(y), i a0 ψn = Π

(
4πi ω ρ0(y)ψn

)
, i aj ψn =

(
ΠM(xjψn)

)
xj=0

.The �rst relation shows that c = γ using the formula for M and the de�nition of γ. Thenormalization (1.8) of ψn together with the formula for ia0ψn yields(3.20) a0 = 4π ω .Injeting the de�nition of M yields(3.21) i aj ψn = −Π
(
(2πiθ + divy)(A0(y) ejψn

)
+ ejA0(y)(2πiθ + grady)ψn

)
.



18 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe identi�ation of aj requires �rst order perturbation theory as in (3.22) of the nextproposition. Seond order perturbation theory as in (3.23) is needed for di�rative geo-metri optis.Proposition 3.3. Suppose that θ0, λn(θ0), and ω are as above. Suppose that the o-e�ients ρ, A and θ depend smoothly on a parameter α with their unperturbed valuesattained at α0 Then, there is a uniquely determined smooth simple eigenvalue λn(α), root
ω(α) and orthogonal projetion Π(α) with their unperturbed values at α0. With ′ denotingdi�erentiation with respet to α, the following perturbation formulas hold,(3.22) ΠL

′ Π = 0 ,and(3.23) ΠL
′′ Π − 2ΠL

′QL
′ Π = 0 .Proof. The equations de�ning Π(α) are,(3.24) Π = Π∗ , Π2 = Π , LΠ = 0 .Sine L is selfadjoint,(3.25) ΠL = 0 .Di�erentiate the last equation in (3.24) to �nd(3.26) LΠ′ + L

′ Π = 0 .Multiply by Π on the left and use (3.25) to prove (3.22). Multiply (3.26) by Q to �nd,(3.27) (
I −Π

)
Π′ = −QL

′ Π .Di�erentiate (3.26) to �nd
LΠ′′ + 2L′ Π′ + L

′′ Π = 0 .Multiply by Π on the left, and use Π′ = ΠΠ′ + (I −Π)Π′, to �nd
2ΠL

′
(
ΠΠ′ + (I −Π)Π′

)
+ ΠL

′′ Π = 0 .Use (3.22) and (3.27) to �nd (3.23), ompleting the proof of Proposition 3.3. �Returning to the formula for aj , use (3.22) with α equal to the jth omponent of θ.Then, prime denotes ∂/∂θj , so,
L
′ = −8 π2 ρ0 ω

∂ω

∂θj
− 2πiej A0 (grady + 2πiθ)− (divy + 2πiθ)A0 2πiej ,



19where {ej}N

j=1
is the standard basis for RN

θ . Dividing this equation by 2π and ombiningwith (3.22), it follows that
Π

[
− 4 π ρ0 ω

∂ω

∂θj
− iej A0 (grady + 2πiθ) − (divy + 2πiθ)A0 iej

]
Π = 0 .Apply this identity to ψn and use (3.11) and (3.21) to �nd

aj ψn = −Π
(
4 π ρ0 ω

∂ω

∂θj
ψn

)
= −4 π ω

∂ω

∂θj
Π
(
ρ0 ψn

)
.The normalization (1.8) of ψn ompletes the proof of the Proposition 3.2. �Summary. If θ0, ω are hosen to satisfy the dispersion relation (3.10) at a simple eigen-value λn(θ0), V := −∇θω(θ0), and w0 is determined from its initial data whih is anarbitrary smooth funtion with values in K as the solution of the transport equation(3.28) (

∂t + V.∂x

)
w0 +

γ(t, x)

4 π i
w0 = 0 ,then (and only then) r−2 = 0 and Π r−1 = 0.3.3. Determination of the orretors. Indutively suppose that J ≥ 0 and the smoothpro�les wj, 0 ≤ j ≤ J , have been determined so that r−2, r−1, . . . rJ−2 and Π rJ−1 vanish.We show that the equations QrJ−1 = 0 and Π rJ = 0 yield a unique determination of

wJ+1 from arbitrary initial data ΠwJ+1

∣∣
t=0

. One has
rJ−1 = LwJ+1 + MwJ + FJ−1(w0, w1, . . . wJ−1) ,and
rJ = LwJ+2 + MwJ+1 + FJ(w0, w1, . . . wJ) ,where the last terms are smooth linear funtionals of the pro�les indiated.The de�nition of Q shows that the equation QrJ−1 = 0 is equivalent to(3.29) (I − Π)wJ+1 = −Q

(
MwJ + FJ−1(w0, w1, . . . wJ−1)

)
.This determines the left hand side in terms of already known pro�les.The equation Π rJ = 0 is equivalent to(3.30) Π

(
MwJ+1 + FJ(w0, w1, . . . wJ)

)
= 0 .Using (3.29) write,

wJ+1 = ΠwJ+1 − Q
(
MwJ + FJ−1(w0, w1, . . . wJ−1)

)
.Plug this into (3.30) to �nd

ΠMΠ (ΠwJ+1) + ΠGJ+1(w0, . . . , wJ) = 0 .



20 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThanks to Proposition 3.2, this is a simple transport equation whih determines ΠwJ+1from its arbitrary smooth initial data at t = 0 and the previous pro�les (w0, w1, . . . wJ).The transport is at the group veloity V = −∇θω(θ0).These omputations prove the following theorem.Theorem 3.4. Suppose that θ0 and ω satisfy the dispersion relation (3.10) at a sim-ple eigenvalue λn(θ0) 6= 0. Given smooth K valued funtions gj(x), there are uniquelydetermined smooth pro�les wj(t, x, y) periodi in y so that
w0|t=0 = g0 , Πwj|t=0 = gj , and ∀j, t, x, y , rj(t, x, y) = 0 .The value of wJ at (t, x) is in�uened only by the data g0, . . . gJ at x − Vt. The leadingterm w0 is K valued and is determined from (3.28).The next result shows that one the pro�les are onstruted as above they serve toonstrut an in�nitely aurate approximate solution in the sense that the residual andall of its derivatives are in�nitely small as ε→ 0.Theorem 3.5. Suppose that the gj have supports in a �xed ompat set and the wj are asin the preeding theorem. Suppose that W (ε, t, x, y) ∈ C∞([0, 1[×[0,∞[×RN × TN ) withsupport over the tube of rays with feet in the support of the gj has Taylor expansion in ε,

W (ε, t, x, y) ∼

∞∑

j=0

εj wj(t, x, y) .De�ne
vε(t, x) := e2πiS/ε W (ε, t, x, x/ε) .Then P ε vε = O(ε∞) in the sense that for any T > 0, α ∈ N1+N , and n ∈ N, there is a Cso that ∥∥∂αt,xP ε vε

∥∥
L∞([0,T ]×RN )

≤ C εn .Remark 3.6. In Theorem 3.5 the assumption of ompat support for the initial data gjan be replaed by a suitable uniform ontrol of the derivatives at in�nity.Proof. The residual R(ε, t, x, y), de�ned by (3.4), admits a Taylor expansion with terms
rj whih, by onstrution are identially equal to zero. The approximate solution, vεsatis�es

P ε vε = e2πiS/εR(ε, t, x, x/ε) .By onstrution, R ∈ C∞
(
[0, 1[ε×[0,∞[t×RN

x ×TN
y

) with ompat support in x and eahof its partial derivatives is in�nitely �at at ε = 0 uniformly on ompat subsets of (t, x, y).The result follows from Taylor's theorem. �



213.4. Stability. The stability estimate of this setion implies that exat solutions arein�nitely lose to the approximate solution. If uε is the exat solution with the sameCauhy data as vε then P ε(uε − vε) = O(ε∞) so the error is given by
uε − vε = (P ε)−1(O(ε∞)) .One needs estimates for (P ε)−1 whih grow at worst polynomially in 1/ε as ε → 0.As a map from L1([0, T ] ; L2(RN)) to C([0, T ] ; H1(RN )) ∩ C1([0, T ] ; L2(RN)) suh anestimate is immediate from the energy identity. We prove that the L2(RN) norm ofpartial derivatives of order s > 1 has growth no faster than 1/εk(s) on time intervals oflength of order 1/ε.The proof is subtle sine one annot simply di�erentiate the equation. Taking a partialderivative ∂ of P εu = 0 yields

P ε
(
∂u

)
=

[
P ε, ∂

]
u .The ommutator is a family, indexed by ε, of partial di�erential operators of degree 2. Theleading terms in the ommutator ome from the ommutator of ∂ with the unperturbedoperator. The unperturbed operator has oe�ients whih vary rapidly with x but theoe�ients do not vary rapidly in time. One �nds that in shorthand P ε∂xu = O(1/ε) ∂2uwhile P ε∂tu = O(1)∂2u. Injeting the �rst in a Gronwall argument yields growth in timelike ect/ε. Di�erentiating the equation with respet to x yields estimates whih grow toofast.The strategy is to di�erentiate with respet to t only. The missing x derivatives arereovered by an elliptiity argument. Control of ∂αt,xP εu and ∂jtu in L2 su�es to ontrolall derivatives. The proof uses estimates assoiated to the uniformly ellipti family ofoperators Gε(t) := divAε grad, 0 < ε ≤ ε0, t ∈ R.Lemma 3.7. For all 1 ≤ s ∈ N, there are onstants C = C(s) and m = m(s) ≥ 0 so thatfor all t ∈ R, ε ∈]0, ε0], φ ∈ Hs(Rn),(3.31) ‖φ‖Hs(RN ) ≤ C

(
‖Gε(t)φ‖Hs−2(RN ) +

1

εm
‖φ‖Hs−1(RN )

)
.Proof. The proof is by indution on s. The ase s = 1 is true with m = 0. This is animmediate onsequene of the uniform ellipti estimate,

‖∂xφ‖
2
L2(RN ) ≤ C

∫

RN

〈
Gεφ , φ

〉
dx ≤ C ‖φ‖H1(RN ) ‖G

εφ‖H−1(RN )

≤
1

2

(
‖∂xφ‖

2
L2(RN ) + ‖φ‖2L2(RN )

)
+ C ‖Gεφ‖2H−1(RN ) .It follows that for all ε, t,

‖φ‖H1(RN ) ≤ C
(
‖Gεφ‖H−1(RN ) + ‖φ‖L2(RN )

)
.



22 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHSuppose that (3.31) is proved for s ≥ 1. We derive the ase s + 1. It su�es to estimatethe L2 norm of ∂αxφ when |α| = s+1. Choose multiindies α′ and β with α = α′ + β and
|α′| = s. Then(3.32) ‖∂αxφ‖L2(RN ) ≤ ‖∂βxφ‖Hs(RN ) ≤ C

(
‖Gε∂βxφ‖Hs−2(RN ) +

1

εm(s)
‖∂βxφ‖Hs−1(RN )

)
,using (3.31). Write

Gε∂βxφ = ∂βxG
εφ + [∂βx , G

ε]φ .Sine |β| ≤ 1, the ommutator is a di�erential operator of order 2. The oe�ients andtheir partial derivatives grow at most as 1/ε2. Therefore,
‖Gε∂βxφ‖Hs−2(RN ) ≤ ‖Gεφ‖Hs−1(RN ) +

C

ε2
‖φ‖Hs(RN ) .Together with (3.32), this ompletes the indution. �The next important stability proposition is stated only in the ase of in�nitely smallsoure terms. It is equivalent to an estimate for (P ε)−1 whih grows polynomially in 1/ε.The result proves stability on time intervals of length O(1/ε). The long intervals areneeded for the di�rative ase.Proposition 3.8. Suppose that T > 0, and vε ∈ C∞([0, T/ε] × R

N) satis�es P εvε =

O(ε∞) with Cauhy data O(ε∞) in the sense that, for all α, β, k, there is a onstant
C = C(k, α, β) so that(3.33) ∥∥∂βx{vε, ∂tvε}|t=0

∥∥
L2(RN )

+ sup
0≤t≤T/ε

∥∥∂αt,xP εvε(t)
∥∥
L2(RN )

≤ C εk .Then, vε is in�nitely small in the sense that for any α, k there is another onstant C =

C(α, k, T ) so that(3.34) sup
0≤t≤T/ε

∥∥∂αt,xvε(t)
∥∥
L2(RN )

≤ C εk .Proof. The �rst step is to show that ‖∂jt ∂βx vε(0)‖L2(RN ) = O(ε∞). For j ≤ 2 this is impliedby (3.33). The proof is by indution on j. Suppose the assertion is proved for indies ≤ j.We prove the ase j + 1. Use the relation
P ε∂j−1

t ∂βxv
ε = ∂j−1

t ∂βx P
εvε +

[
P ε, ∂j−1

t ∂βx
]
vε = O(ε∞) +

[
P ε, ∂j−1

t ∂βx
]
vε .Dividing by ρ, this expresses the derivative ∂j+1

t ∂βxv
ε at time t = 0 as a sum of termswhih are O(ε∞) by the indutive hypothesis.Estimate (3.34) is proved for |α| ≤ n by indution on n. The ase n = 1 uses thestandard energy method. Considering the real and imaginary parts of vε, it su�es to



23onsider real solutions. Suppress the ε dependene of v. Multiply P εv by ∂tv and integratein spae to �nd,
∂t

(1
2

∫

RN

(
ρε (∂tv)

2 +
〈
Aε grad v , grad v〉) dx) =

∫

RN

∂tv(t) P
εv(t) dx +

ε

2

∫

RN

(
∂tρ1 (∂tv)

2 +
〈
∂tA1 grad v, grad v〉) dx .For the quantity

E(t) :=
(1
2

∫

RN

(
ρε (∂tv)

2 +
〈
Aε grad v , grad v〉) dx)1/2equivalent to the norm ‖∂t,xv(t)‖L2(RN ) this shows that

d

dt
E2(t) ≤ C E(t) ‖P εv(t)‖L2(RN ) + C εE2(t) .Gronwall's method implies that there is a onstant independent of v, ε, t so that(3.35) ∥∥∂t,xv(t)

∥∥
L2(RN )

≤ C eCεt
∥∥∂t,xv(0)

∥∥
L2(RN )

+ C

∫ t

0

eCε(t−s)
∥∥P εv(s)

∥∥
L2(RN )

ds .Using assumption (3.33) and the fat that εt is bounded, this implies the ase |α| = 1 of(3.34). Estimate L2(RN) norms as
‖v(t)‖L2(RN ) =

∥∥∥v(0) +
∫ t

0

∂tv(s) ds
∥∥∥
L2(RN )

≤ O(ε∞) +

∫ t

0

∥∥∂tv(s)
∥∥
L2(RN )

ds

≤ O(ε∞) + tO(ε∞) .The last estimate uses the ase |α| = 1. Sine t = O(1/ε) it follows that ‖v(t)‖L2 = O(ε∞)proving the ase |α| = 0. This proves the n = 1 ase of the indution.Suppose next that the result is known for |α| ≤ n. We prove the ase n + 1. The ideais to use (3.35) for the funtion ∂nt v. Toward that end ompute(3.36) P ε∂nt v = ∂nt P
εv + [P ε, ∂nt ]v = [P ε, ∂nt ]v + O(ε∞) .The ommutator is a di�erential operator of degree n+1. The derivatives that appearare at most of order 2 in x. The oe�ients are time derivatives of the oe�ients of P εso are O(ε). By indution the terms on the right of (3.36) involving derivatives of order

≤ n are O(ε∞). Therefore,
∥∥[P ε, ∂nt ]v

∥∥
L2(RN )

≤ Cε
∑

j+|β|=n+1

|β|≤2

∥∥∂βx∂jt v
∥∥
L2(RN )

+ O(ε∞) .Applying (3.35) to ∂nt v yields, for εt ≤ T ,(3.37) ∥∥∂t,x∂nt v(t)
∥∥
L2

≤ O(ε∞) +

∫ t

0

Cε
∑

j+|β|=n+1

|β|≤2

∥∥∂βx∂jt v(s)
∥∥
L2
ds .



24 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHRemark that in order to get (3.37) we used the fat that ∂t,x∂nt v is in�nitely small at timezero, whih follows from (3.33).The expression (3.37) is not ready for an appliation of Gronwall's inequality, sine theintegrand involves derivatives of order 2 in x whih are not present in the left hand side.Lemma 3.9. Suppose that P εvε = O(ε∞) and the Cauhy data of vε are O(ε∞) as inProposition 3.8. Assume in addition that, for all k, there is a onstant C = C(k) so that(3.38) sup
0≤t≤T/ε
|α|≤n

∥∥∂αt,xvε(t)
∥∥
L2(RN )

≤ C εk .Then there is a onstant C independent of ε, vε so that, for any 0 ≤ t ≤ T/ε, thederivatives of order n + 1 satisfy
sup

|α|≤n+1

∥∥∂αt,xvε(t)
∥∥
L2(RN )

≤ O(ε∞) + C
∑

j+|β|=n+1

|β|≤1

∥∥∂βx∂jt vε(t)
∥∥
L2(RN )

.Proof. For n+ 1 ≥ |γ| ≥ 2 we must estimate ∂γx∂n+1−|γ|
t vε. Write γ = γ′ + ζ with |ζ | = 2.The oerivity estimate (3.31) for s = 2 and φ = ∂γ

′

x ∂
n+1−|γ|
t vε shows that(3.39) ∥∥∂γx∂

n+1−|γ|
t vε

∥∥
L2(RN )

≤ C
(∥∥Gε∂γ

′

x ∂
n+1−|γ|
t vε

∥∥
L2(RN )

+
1

εm
∥∥∂γ′

x ∂
n+1−|γ|
t vε

∥∥
H1(RN )

)
.The seond term in the right-hand side of (3.39) involves derivatives of order at most nso, by hypothesis (3.38), is O(ε∞). Commutation yields

∥∥Gε∂γ
′

x ∂
n+1−|γ|
t vε

∥∥
L2(RN )

≤
∥∥∂γ′

x ∂
n+1−|γ|
t Gεvε

∥∥
L2(RN )

+
∥∥[Gε, ∂γ

′

x ∂
n+1−|γ|
t ]vε

∥∥
L2(RN )

.The ommutator is a di�erential operator of degree n with oe�ients no larger than
O(ε−|γ′|). By the indutive hypothesis the norm of the ommutator is O(ε∞).Write Gε = −P ε + ρε∂2t so

∂γ
′

x ∂
n+1−|γ|
t Gεvε = − ∂γ

′

x ∂
n+1−|γ|
t P εvε + ∂γ

′

x ∂
n+1−|γ|
t ρε∂2t v

ε .The �rst term on the right is O(ε∞) by hypothesis. Expanding the seond term there isone term with a derivative of order 1 + n and the others involve derivatives of ρε timesderivatives of vε of order ≤ n. Sine the derivatives of ρε grow at most polynomially in
1/ε these lower order derivative terms are O(ε∞) by the indutive hypothesis. Therefore

∥∥Gε∂γ
′

x ∂
n+1−|γ|
t vε

∥∥
L2(RN )

≤ C
∥∥∂γ′

x ∂
n+1−|γ|
t ∂2t v

ε
∥∥
L2(RN )

+ O(ε∞) .Injeting this in (3.39) yields
∥∥∂γx∂

n+1−|γ|
t vε

∥∥
L2(RN )

≤ C
∥∥∂γ′

x ∂
n+1−|γ|
t vε

∥∥
L2(RN )

+ O(ε∞) .The order of the x derivative on the right is lower by 2. A �nite number of appliationsof this redution, proves the Lemma. �



25Lemma 3.9 shows that the left hand side of (3.37) dominates all derivatives of order
n+ 1 so one has

∑

|α|≤n+1

∥∥∂αt,xv(s)
∥∥
L2 ≤ O(ε∞) +

∫ t

0

Cε
∑

j+|β|=n+1

|β|≤2

∥∥∂βx∂jt v(s)
∥∥
L2 ds .The sum in the integrand is smaller than the sum on the left hand side. Gronwall'sLemma ompletes the proof of the indutive step. �Theorem 3.10. Let vε(t, x) be the approximate solution de�ned in Theorem 3.5 and

uε(t, x) be the unique solution of the initial value problem
P ε(t, x, ∂t,x)u

ε = 0 , ∂kt u
ε|t=0 = ∂kt v

ε|t=0 , for k = 0, 1 .Then for any T > 0, α ∈ N1+N , and n ∈ N, there is a onstant C > 0 so that(3.40) sup
|t|≤T

∥∥∥∂αt,x
(
uε − vε

)∥∥∥
L2(RN )

≤ C εn .Proof. This estimate follows from Proposition 3.8 sine the error
Eε := uε(t, x)− e2πiS/ε W (ε, t, x, x/ε)satis�es

∀n, ∀s,
∥∥P ε(t, x, ∂t,x)E

ε
∥∥
Hs([0,T ]×RN )

= O(εn),and, the Cauhy data of Eε vanish identially. �Remark 3.11. If one is interested in an O(εn) error estimate in (3.40) for a �xed integer
n, it su�es to trunate the approximate solution vε, de�ned in (3.3), at order n+ |α|.4. Diffrative geometri optis for Bloh wave pakets4.1. The long time ansatz. This setion is devoted to long times t of order 1/ε. Asin the ase of equations with onstant oe�ients and linear phases [14℄, this time saleleads to envelope equations of Shrödinger type. The support of the leading term in theasymptoti solution extends beyond the tube of rays with feet in the initial data. Forthat reason it is alled di�rative.In order for the modulations to a�et the leading order asymptotis at times of order
1/ε and not before onsider perturbations smaller than in the preeding setion.Hypotheses. The oe�ients are given by(4.1) ρε = ρ0(x/ε) + ε2 ρ1(t, x, x/ε) , Aε = A0(x/ε) + ε2A1(t, x, x/ε) ,with ρ1, A1 satisfying (1.3), (1.4). In addition the important invariane hypothesis (1.12)is satis�ed, as well as assumption (2.2) that λn(θ0) 6= 0 is a simple eigenvalue.



26 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThese modulations are weaker by one power of ε than in the preeding setion. If theseweaker perturbations were onsidered for times t = O(1), they would not in�uene theleading order term in the asymptoti expansion. We onsider again a solution uε of (1.1).Motivated by the onstant oe�ient ase and the ase of purely periodi media in Setion2.4, onsider linear phases,
S(t, x) = ω t+ θ.x ,and a three sale ansatz of WKB type,(4.2) uε(t, x) ∼ e2πiS(t,x)/ε
(
w0

(
εt, t, x,

x

ε

)
+ εw1

(
εt, t, x,

x

ε

)
+ · · ·

)
,where the wj(T , t, x, y) are periodi funtions of y with period one. The key feature isthe slow time sale T = εt whih beomes relevant for t of order 1/ε. The problemaddressed here is to take modulations as in (4.1) and ask how the solutions onstrutedin the preeding setion behave on the longer time sale. At those times modulationssatisfying (4.1) an a�et the leading term in the expansions.For t ∼ 1/ε one expets solutions to reah x ∼ 1/ε. The ordering of the terms in (4.2)is measured by their rate of deay as ε→ 0. In order for that ordering to be respeted fortimes t ∼ 1/ε we require that the wj grow sublinearly in (t, x). For example, if w1 grewlinearly in t, x, then for times t ∼ 1/ε the term εw1 would be O(1) so might not have sizesmaller than the leading term. To avoid this we suppose that for all j, T ,(4.3) lim

|t,x|→∞
sup

0≤T ≤T, y∈TN

|wj(T , t, x, y)|

|t, x|
= 0 .The pro�les that we onstrut will satisfy the stronger ondition that the wj are bounded.This phenomenon is already present in the onstant oe�ient ase [14℄.Given wj , Borel's Theorem allows us to hoose smooth W (ε, T , t, x, y), periodi in ywith Taylor expansion in ε,(4.4) W (ε, T , t, x, y) ∼ w0 (T , t, x, y) + ε w1 (T , t, x, y) + · · · .Approximate solutions are de�ned by

vε(t, x) := e2π i S/ε W (ε, ε t , t , x , x/ε) .Then
e−2πiS/ε P ε vε = e−2πiS/ε P ε

(
e2πiS/εW (ε, εt, t, x, x/ε)

)
= R(ε, εt, t, x, x/ε) ,



27with
(4.5) R(ε, T , t, x, y) = e−2πiS/ε

[
ρε
(
∂t + ε∂T

)2

−

(divx + divy
ε

)
Aε

(gradx + grady
ε

)](
e2πiS/εW (ε, T , t, x, y)

)

=

[(
ρ0 + ε2ρ1)

(2πiω
ε

+ ∂t + ε∂T

)2

−
(divy + 2πiθ

ε
+ divx)(A0 + ε2A1

)(grady + 2πiθ

ε
+ gradx)]W.Equation (4.5) implies that there are uniquely determined rj so that

R(ε, T , t, x, y) ∼

∞∑

j=−2

εjrj(T , t, x, y) .Compared to the preeding setion there are two di�erenes. The perturbation of theoe�ients is O(ε2) rather than O(ε), and there is the ε∂T term.4.2. The leading pro�le. We expand the operator on the right in (4.5) in powers of ε,and keep the leading three orders
ε−2

L + ε−1
M + ε0N .The term L is as in (3.5),(4.6) M(y, ∂t, ∂x, ∂y) := 4 π i ρ0 ω ∂t − (2πiθ + divy)A0 gradx − divxA0 (2πiθ + grady) ,and,(4.7) N(t, x, y, ∂T , ∂t, ∂x, ∂y) := 4 π i ρ0 ω ∂T +

(
ρ0

∂2

∂t2
− divxA0 gradx) +

(
ρ1 (2πiω)

2 − (divy + 2πiθ)A1(grady + 2πiθ)
)
.The operator M is simpler than in the preeding setion. Here it involves only ρ0 and A0.The modulations ρ1, A1 appear in N. At the symbol level one has,(4.8) M(y, ∂t, h, ∂y) := 4 π i ρ0(y)ω ∂t − (divy + 2πiθ)A0(y) h− hA0(y) (grady + 2πiθ),where h replaes ∂x. The leading terms in the residual are,(4.9) r−2 = Lw0 , r−1 = Lw1 +Mw0, , r0 = Lw2 + Mw1 + Nw0 .The relation r−2 = 0 leads to (3.8), the dispersion relation (3.10), the De�nition 3.1 of K,

Π, Q, and (3.11), as in the preeding setion. Fix ω, θ0,V as before.Sine r−2 is in the image of L, one automatially has Π r−2 = 0. The equation r−2 = 0is equivalent to Qr−2 = 0. For j ≥ −1, eah equation rj = 0 is split into two equations,
Π rj = 0 and Qrj = 0.



28 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe equation r−1 = 0 is,
Lw1 + Mw0 = 0 .Sine w0 = Πw0 and ΠL = 0, the equation Π r−1 = 0 is equivalent to
ΠMΠw0 = 0 .With the simpler form of M in (4.6) (without the perturbations ρ1, A1), Proposition 3.2shows that,(4.10) ΠMΠw = 4 π i

(
∂t + V.∂x

)
Πw , V := −∇θω(θ0) ,so(4.11) (

∂t + V.∂x

)
w0 = 0 .Thus there is a redued K valued pro�le w̃0(T , x) so that(4.12) w0(T , t, x) = w̃0(T , x− Vt) .It remains to determine the K valued funtion w̃0(T , x) of 1 +N variables. One needs adynami equation in T . The reader is reminded that w̃0 is K valued and K onsists offuntions of y, so w̃0 is atually a funtion of (t, x, y).The equation Qr−1 = 0 yields(4.13) (

I − Π
)
w1 = −QMw0 .Equation (4.11) together with the fat that the oe�ients of M depend only on y implythat the right hand side is a funtion of (T , x− Vt, y). The same is therefore true of theleft hand side, so(4.14) (∂t + V.∂x)
(
(I − Π)w1

)
= 0 .This exhausts the information from r−2, r−1. The equations (4.13) and (4.14) are impor-tant steps toward determining the �rst orretor w1, and are also needed to derive theequations determining the leading pro�le w0.The equation Π r0 = 0 yields the Shrödinger equation determining the dynamis of

w̃0. The fat that the leading pro�le w0 is determined from three orders in the residual isa re�etion of the three sale struture of the asymptotis.Multiply r0 by Π and deompose w0, w1 along K⊕K⊥ using (3.11) and (4.13) to �nd(4.15) ΠM (Πw1 −QMw0) + ΠNΠw0 = 0 .This yields two equations. Multiply by ∂t + V.∂x and use (4.10), (4.11), and most impor-tantly the invariane of the oe�ients, (1.12), to eliminate the w0 terms leaving,
(
∂t + V.∂x

)2(
Πw1

)
= 0 .



29This shows that the restrition of Πw1 to eah ray, t 7→ (t, x+ Vt), is a linear funtion of
t. Sine by assumption (4.3) eah pro�le is required to have sublinear growth, the linearfuntion must be onstant, so,(4.16) (

∂t + V.∂x
)(
Πw1

)
= 0 .Thus, the single equation (4.15) implies two equations, (4.16), and(4.17) ΠNΠw0 − ΠMQMΠw0 = 0 .Combining (4.16) and (4.14) yields(4.18) (

∂t + V.∂x
)
w1 = 0 .Thus, there is a redued pro�le w̃1(T , x, y) so that w1(T , t, x, y) = w̃1(T , x−Vt, y). Thisorretor is not in general K valued. (I − Π)w̃1 is determined in (4.13). The remainingpart Πw̃1 will be determined after we �nd w̃0.Proposition 4.1. On smooth funtions w(T , t, x, y) whih satisfy (∂t + V.∂x)w = 0,(4.19) (

ΠNΠ − ΠMQMΠ
)
w =

(
4πi ω ∂T − ω∇2

θω(∂x , ∂x) + γ(t, x)
)
Πw ,where γ is de�ned in (3.17).Proof. The de�nitions of Π in Subsetion 3.2, of N in (4.7), and the normalization (1.8)imply that the ∂T term on the left in (4.19) is equal to

Π4πiωρ0∂T Πw = 4πiω ∂T (Πw) ..Similarly the zero order term (with respet to t and x) from ΠNΠw is equal to γ(t, x)w.Use ∂tw = −V.∂xw to onlude that(4.20) (
ΠNΠ − ΠMQMΠ

)
w =

(
4πiω ∂T +Π

(
ρ0

(
V.∂x

)2
− divxA0 gradx −MQM

)
Π + γ(t, x)

)
Πw .The seond order terms in x ome from the (V.∂x)

2, the two fators of M, eah of whihis �rst order in ∂t,x, and, the divxA0 gradx term. They simplify thanks to the identitiesof Proposition 3.3 as we now explain.With h = (h1, h2, . . . , hN) ∈ R
N �xed, apply (3.22) for θ := hα, α ∈ R. Then thederivative with respet to α is ′ = h.∂θ =

∑
hj∂/∂θj , and,(4.21) L

′ = −4 π2 ρ0 (h.∂θ)(ω
2) − 2πihA0 (grady + 2πiθ) − (divy + 2πiθ)A0 2πih .From (4.8) one has

−2πihA0 (grady + 2πiθ)− (divy + 2πiθ)A0 2πih = 2πiM(y, ∂t, h, ∂y) + 2πi
(
− 4πiωρ0∂t

)
.Use this in (4.21) to �nd(4.22) L

′ = −4 π2 ρ0 (h.∂θ)(ω
2) + 2 π iM(y, ∂t, h, ∂y) + 8 π2 ω ρ0 ∂t .



30 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHDi�erentiate (4.21) to �nd,(4.23) L
′′ = −4 π2ρ0 (h.∂θ)

2(ω2) − 8 πihA0 πih = −4 π2ρ0∇
2
θ(ω

2)(h, h) + 8 π2hA0 h ,where,
∇2

θ(ω
2)(h, k) :=

N∑

i=1

N∑

j=1

∂2(ω2)

∂θi∂θj
hi kj .Plug (4.22) into (3.23). Sine ΠQ = QΠ = 0, eah of the terms involving

−4 π2 ρ0 (h.∂θ)(ω
2) + 8 π2 ω ρ0 ∂tvanishes. Therefore,

ΠL
′QL

′ Π = −4π2ΠM(y, ∂t, h, ∂y)QM(y, ∂t, h, ∂y) Π .Using this and (4.23) in (3.23) yields,
Π

(
8 π2 hA0 h−4 π2 ρ0 ∇

2
θ(ω

2)(h, h)
)
Π + 8 π2ΠM(y, ∂t, h, ∂y)Q M(y, ∂t, h, ∂y) Π = 0 .Polarization implies equality of the assoiated symmetri bilinear forms,

Π
(
8 π2 hA0 k−4 π2 ρ0 ∇

2
θ(ω

2)(h, k)
)
Π + 8 π2ΠM(y, ∂t, h, ∂y)Q M(y, ∂t, k, ∂y) Π = 0 .Dividing by 8π2 and replaing h and k by ∂x yields

ΠM(y, ∂t, ∂x, ∂y)Q M(y, ∂t, ∂x, ∂y) Π = Π
(ρ0
2
∇2

θ(ω
2)(∂x , ∂x)− divxA0(y) gradx)Π .Use this in (4.20) to �nd that (ΠNΠ− ΠMQMΠ

)
w is equal to

(
4πiω∂T + Π

(
ρ0

(
V.∂x

)2
−

ρ0
2
∇2

θ(ω
2)(∂x , ∂x)

)
Π + γ(t, x)

)
Πw .Taking aount of the K valued harater of Πw, the de�nition of Π and the normalization(1.8), this is equal to

(
4πiω∂T +

(
V.∂x

)2
−

1

2
∇2

θ(ω
2)(∂x , ∂x) + γ(t, x)

)
Πw .Using,

∇2
θ(ω

2)(∂x , ∂x) = 2ω∇2
θω(∂x , ∂x) + 2

(
∇θω.∂x

)2
= 2ω∇2

θω(∂x , ∂x) + 2
(
V.∂x

)2
,yields, (

4πiω ∂T − ω∇2
θω(∂x , ∂x) + γ(t, x)

)
Πw .This proves Proposition 4.1. �



31The leading pro�le must satisfy (4.11) and ombining (4.11), (4.17), and (4.19) yieldsthe Shrödinger equation(4.24) (
4πiω ∂T − ω∇2

θω(∂x , ∂x) + γ(t, x)

)
w0 = 0.Applying the operator ∂t + V.∂x to (4.24) and using (4.11) yields ((∂t + V.∂x)γ

)
w0 = 0so that solvability requires that (∂t + V.∂x)γ = 0 on the support of w0.Conversely, when γ satis�es (1.12), introduing γ̃ suh that γ(t, x) = γ̃(x−Vt), equation(4.24) is equivalent to(4.25) Πw0 = w0 = w̃0(T , x− Vt) ,

(
4πiω ∂T − ω∇2

θω(∂x , ∂x) + γ̃(x)

)
w̃0 = 0.The leading pro�le w̃0(T , x) is uniquely determined from its initial data as a temperedsolution of (4.25)Example 4.2. In the ase of purely periodi oe�ients one reovers the Shrödingerequation,(4.26) 4πi ∂T w̃0 − ∇2

θω(∂x , ∂x)w̃0 = 0 ,whih agrees with (2.11).Example 4.3. Even more speial is the ase of the speed one onstant oe�ient waveequation on RN where (4.26) is the standard Shrödinger approximation with ∇2
θω equalto ± the partial laplaian orthogonal to the diretion θ0.The results of this setion are summarized by the following proposition.Proposition 4.4. The leading pro�le is a K valued funtion w̃0(T , x − Vt) where w̃0 isdetermined from its initial data at T = 0 as the unique tempered solution of (4.25). The�rst orretor w1 satis�es (4.18) and its projetion w1 orthogonal to K is given by (4.13).These presriptions are equivalent to the equations r−2 = r−1 = Π r0 = 0.4.3. Determination of the orretors. The hard work for problems satisfying (1.12) isover. We show how the omputation ontinues by determining the �rst orretor w1. Theprojetion (I−Π)w1 is already determined. We show that Πw1 and Qw2 are determinedfrom the pair of equations Qr0 = 0 and Π r1 = 0. Indutively, ΠwJ and QwJ+1 aredetermined in the same way from the pair of equations QrJ−1 = 0 and Π rJ = 0 and thevalues of the w0, . . . , wJ−1, (I − Π)wJ .Using (4.9), the equation Qr0 = 0 holds if and only if(4.27) (

I − Π
)
w2 = −QMw1 −QNw0 ,In partiular using (1.12) and the invariane of w0, w1 along rays yields(4.28) (∂t + V.∂x)

(
(I − Π)w2

)
= 0 .



32 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe residual r1 is given by
r1 = Lw3 + Mw2 + Nw1 + F1(w0) ,where the term F1 is determined entirely from w0 and its partial derivatives. Multiply by

Π and deompose w1, w2 along K⊕K⊥ to �nd, using (4.13) and Qr0 = 0,(4.29) ΠM
(
Πw2 −QM(Πw1 −QMw0)−QNw0

)
+ ΠN

(
Πw1 −QMw0

)
= −ΠF1(w0) .Multiply by ∂t + V.∂x to �nd using the hypothesis (1.12),

(∂t + V.∂x)
2Πw2 = 0 .By assumption (4.3) (sublinearity along rays) it follows that

(∂t + V.∂x)Πw2 = 0 .Combined with (4.28) this implies that (∂t + V.∂x)w2 = 0 . Thus, in view of (4.10), the
ΠMΠw2 term vanishes and there is a redued pro�le, w̃2(T , x, y), so that

w2(T , t, x, y) = w̃2(T , x− Vt, y) .Then, (4.29) beomes(4.30) (
ΠNΠ−ΠMQMΠ

)
w1 = −ΠF2(w0) ,with F2 determined from w0 and its derivatives. When γ satis�es (1.12), Proposition 4.1shows that (4.30) holds if and only if(4.31) (

4πiω ∂T − ω∇2
θω(∂x , ∂x) + γ̃(x)

)(
Π w̃1

)
= −ΠF2(w̃0) .This equation along with (4.13) ompletely determines w1 from the initial values w̃1

∣∣
T =0

.In addition, (4.27) determines (I−Π)w2. These determinations together with the earlierones are equivalent to the equations r−2 = r−1 = r0 = Πr1 = 0. The new equations are
Qr0 = Πr1 = 0. This ompletes the seond step of the indutive determination of thepro�les wj from the initial values of Πw̃j . When they are all so determined, all theresiduals rj vanish.Remark 4.5. In homogenization problems one often uses (I −Π)w1 as part of test fun-tions. The ommon expressions are ompliated involving θ derivatives of ψn(x, θ) (seefor example [3℄). If one writes out our formula in detail one reovers those formulas. Thepresent formulation is well adapted to a systemati indutive argument.These omputations yield the �rst of the following Theorems. We use the Shwartzlass S(RN

x × TN
y ) de�ned by

∀α, β sup
RN
x ×TN

y

∣∣∣xβ ∂αx,y w(x, y)
∣∣∣ < ∞ .



33This lass is hosen as it gives the most strutured of solutions. A result with the milderlass ∩sH
s(RN × TN) is stated in the introdution.Theorem 4.6. Suppose that θ0 and ω satisfy the dispersion relation (3.10) at a sim-ple eigenvalue λn(θ0) 6= 0. Given Shwartz lass K valued funtions gj(x, y), there areuniquely determined wj(T , t, x, y) = w̃j(T , x−Vt, y) with w̃j ∈ C∞

(
[0,∞[T ;S(R

N
x ×TN

y )
)so that

w̃0|t=0 = g0 , ∀ j ≥ 1 Π w̃j|t=0 = gj , and ∀j, t, x, y , rj(t, x, y) = 0 .The leading term w̃0 is K valued and is determined from the Shrödinger equation (4.25).Theorem 4.7. Suppose that gj(x, y) are Shwartz lass K valued funtions. Let wj be thepro�les onstruted in the preeding theorem. Choose W̃ (ε, T , x, y) ∈ C∞([0, 1[×[0,∞[×RN×

TN) with Taylor series in ε,̃
W (ε, T , x, y) ∼

∞∑

j=0

εj w̃j(T , x, y) ,suh that, for any α ∈ N1+N , β ∈ NN , m ∈ N, T > 0, there exists a onstant C > 0satisfying, ∀ε > 0,(4.32) sup
{0≤T ≤T}×RN×TN

∣∣∣xβ ∂αT ,x

(
W̃ −

m∑

j=0

εj w̃j

)∣∣∣ ≤ C εm+1 .De�ne
vε(t, x) := e2πiS/ε W̃ (ε, εt, x− Vt, x/ε) .Then P εvε = O(ε∞) in the sense that, for all α ∈ N1+N , β ∈ NN , m ∈ N, T > 0, thereexists a onstant C > 0 satisfying, ∀ε > 0,

sup
{0≤t≤T/ε}×RN×TN

∣∣∣xβ ∂αt,x
(
P ε vε

)∣∣∣ ≤ C εn .Proof. The proof is like that of Theorem 3.5. �Theorem 4.8. With notation and hypotheses of the preeding theorem, let uε(t, x) be theunique solution of the initial value problem
P ε(t, x, ∂t,x)u

ε = 0 , ∂kt u
ε|t=0 = ∂kt v

ε|t=0 , for k = 0, 1 .Then for any T > 0, α ∈ N1+N , and, n ∈ N, there is a onstant C > 0 so that
sup

|t|≤T/ε

∥∥∥∂αt,x
(
uε − vε

)∥∥∥
L2(RN

x )
≤ C εn .



34 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHProof. As in the proof of Proposition 3.8, one �rst establishes that
∥∥∥∂αt,x

(
uε − vε

)∣∣
t=0

∥∥∥
L2(RN

x )
≤ C εn .Then the Theorem is an immediate onsequene of the residual estimate in the preedingTheorem and the stability estimate (3.34). The latter estimate was proved for strongerperturbations and is true without modi�ation in the present ontext. �5. Modulations that are not onstant on group linesThis setion treats modulations ρ1(t, x, y), A1(t, x, y) that are not onstant on grouplines. The oe�ients are given by(5.1) ρε = ρ0(x/ε) + ε2 ρ1(t, x, x/ε) , Aε = A0(x/ε) + ε2A1(t, x, x/ε) ,with ρ1, A1 satisfying (1.3), (1.4), but not the invariane hypothesis (1.12).For (1.12) to hold for several distint group veloities is a very strong ondition. Forexample, if Vµ is a family of suh veloities so that ∂t + Vµ.∂x span R

1+N , then the only
ρ1, A1 whih satisfy (1.12) for all these veloities are periodi funtions of y whih do notdepend on (t, x). The onditions imposed in this setion do not have this sort of defet.5.1. Ray averages. Wave pakets move with the group veloity V. An observer movingat this speed sees the oe�ients along the rays (t, x+Vt). On suh a ray, γ = γ(t, x+Vt).In this setion the hypothesis that γ is onstant on rays is replaed by a weaker hypothesisonerning the average of γ on rays.Begin by assuming that the averages on rays,(5.2) lim

T→+∞

1

T

∫ T

0

γ(t, x+ Vt) dt := γ̃(x) , exists uniformly in x.The quantity on the left is a trivial ase of the average projetors in geometri optis (seepage 124 of [27℄). We need more than (5.2). The funtion γ̃(x) is the average on the rayinterseting t = 0 at x. The ray passing through the point (t, x) intersets t = 0 at x−Vt.The funtion whih assigns to (t, x) the average value of γ on the ray through (t, x) isequal to γ̃(x − Vt). The funtion whih subtrats from γ(t, x) its average on the groupline through (t, x) is equal to γ(t, x)− γ̃(x− Vt).Consider the solution g of the salar transport equation(5.3) (
∂t + V.∂x

)
g = γ(t, x)− γ̃(x− Vt) , g

∣∣
t=0

= 0 .Then
g(t, x) =

∫ t

0

(
γ(s, x− Vt + Vs)− γ̃(x− Vt)

)
ds .



35Thus,
g(t, x)

t
=

1

t

∫ t

0

γ(s, x̃+ Vs) ds − γ̃(x̃), x̃ := x− Vt .Assumption (5.2) is equivalent to the fat that this is o(1) as t→ +∞,(5.4) lim
t→+∞

sup
x∈RN

|g(t, x)|

t
= 0 .Equivalently, g = o(t) as t→ +∞.Lemma 5.1. If γ satis�es hypotheses (1.3) and (5.2) then,i. eah partial derivative ∂jt ∂βxγ also satis�es the hypotheses,ii. γ̃ ∈ C∞(RN), and,iii. for all (j, β) ∈ N× NN(5.5) lim

T→+∞

∥∥∥ 1

T

∫ T

0

∂jt ∂
β
xγ(t, x+ Vt) dt − (−V.∂x)

j∂βx γ̃(x)
∥∥∥
L∞(RN )

= 0 .Proof. First treat the ase of x derivatives. De�ne
Gn(x) :=

1

n

∫ n

0

γ(t, x+ Vt) dt .Di�erentiating under the integral yields
∂βxGn(x) =

1

n

∫ n

0

∂βxγ(t, x+ Vt) dt .Hypothesis (1.3) implies that for eah β, the family {∂βxGn} is bounded in L∞(RN).Hypothesis (5.2) implies that Gn onverges uniformly to γ̃ on RN . It follows that ∂βx γ̃ ∈

L∞(RN) and
lim
n→∞

∥∥∂βx
(
Gn − γ̃

)∥∥
L∞(RN )

= 0 .For T > 1 hoose n to be the integer part of T . Then,
∥∥∥
( 1

T

∫ T

0

∂βxγ(t, x+ Vt) dt − ∂βxGn

)∥∥∥
L∞(RN )

= O(1/T ) .Formula (5.5) for j = 0 follows.It remains to prove iii for j > 0. This follows by indution from the ase j = 1. Toprove the ase j = 1 use ∂tγ =
(
∂t + V.∂x

)
γ − V.∂xγ to �nd

(
∂tγ

)
(t, x+ Vt) =

( d
dt

)
γ(t, x+ Vt) −

(
V.∂xγ

)
(t, x+ Vt) .Integrating this equation on rays and using the ase j = 0 for the last term proves thease j = 1. �We impose the following strengthening of (5.2) replaing the o(t) by O(tβ) for some

0 ≤ β < 1.



36 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHDe�nition 5.2. The funtion γ satis�es the ray average hypothesis when (5.2) holdsand there is a 0 ≤ β < 1 so that for all α ∈ N× NN the solution gα(t, x) of
(
∂t + V.∂x

)
gα = ∂αt,x

(
γ(t, x)− γ̃(x− Vt)

)
, gα(0, x) = 0satis�es 〈t〉−βgα ∈ L∞([0,∞[×RN) where 〈t〉 := (1 + t2)1/2.Remark 5.3. i. For α = 0, we reover g0 = g, the solution of the transport equation(5.3). ii. The proof of Lemma 5.1 shows that if γ satis�es the ray average hypothesis thenso do its derivatives with the same value of β. iii. The proof of Lemma 5.1 shows thatit su�es to treat the ase α = 0. iv. The hypothesis is quite general. It takes a littleingenuity to onstrut examples that do not satisfy the hypothesis. For suh an examplethe ideas of �5.1.2 are helpful. v. For random perturbations of periodi media one wouldexpet analogous ray average hypotheses to hold with β > 0.5.1.1. Examples of the ray average hypothesis with β = 0.Proposition 5.4. i. The set of γ satisfying the ray average hypothesis is a real vetorspae. It ontains the funtions satisfying (1.12).ii. If γ(t, x) = f(ℓ(t, x)) where f(θ) is a smooth periodi funtion of arbitrary periodand ℓ is a linear funtional then the ray average hypothesis is satis�ed.iii. If M : R1+N → R

M is linear and satis�es the small divisor hypothesis
∃C > 0, m ∈ N, ∀n ∈ N

M , n.M(1,V) 6= 0 ⇒ |(n.M(1,V)| ≥ C |n|−m ,then, for h(θ1, . . . , θM ) ∈ C∞(TM) the quasiperiodi funtion γ(t, x) = h(M(t, x)) satis�esthe hypothesis.Proof. i. Self evident.ii. Write the linear funtional as α.(t, x) with α ∈ R1+N . Let γ = f ◦ ℓ. Then,
γ(t, x+ Vt) = f(α.(t, x+ Vt)) = f(α.(0, x) + tα.(1,V)) .There is a dihotomy. When α.(1,V) = 0, γ is onstant on group lines so γ = γ̃ and g = 0so the hypothesis is satis�ed.When α.(1,V) 6= 0, the restrition of γ to group lines is periodi with period p/|α.(1,V)|where p is the period of f . Then γ − γ̃ is periodi on group lines with the same periodand has mean equal to zero. For any t > 0 there is an m ∈ N so that

m
p

|α.(1,V)|
< t ≤ (m+ 1)

p

|α.(1,V)|
.



37The interval [0, mp/|α.(1,V)|] is exatly equal to m periods. Sine the mean over oneperiod is equal to zero, the integral over this interval ofm periods vanishes too. Therefore,
∣∣∣∣
∫ t

0

γ(s, x̃+ Vs)− γ̃(x̃) ds

∣∣∣∣ =

∣∣∣∣
∫ t

mp/|α.(1,V)|

γ(s, x̃+ Vs)− γ̃(x̃) ds

∣∣∣∣

≤
∥∥γ − γ̃

∥∥
L∞

p

|α.(1,V)|
≤ 2

∥∥f
∥∥
L∞

p

|α.(1,V)|
.(5.6)This proves the boundedness of g. To prove the boundedness of derivatives, apply theabove argument to the di�erentiated equation.iii. For θ = (θ1, . . . , θM) ∈ TM , express

h =
∑

n∈NM

hn e
in.θ , γ = h ◦M

(
t, x

)
=

∑

n∈NM

hn e
in.M(t,x) :=

∑

n∈NM

γn(t, x) .Along the ray (t, x+ Vt), γn is given by
γn(t, x+ Vt) = hn e

in.M(0,x) ein.M(1,V)t .As in part i, there is a dihotomy. If n.M(1,V) = 0, then γn is onstant on rays so
γn − γ̃n = 0. Thus,

∫ t

0

γ(s, x̃+ Vs)− γ̃(x̃) ds =
∑

n.M(1,V)6=0

∫ t

0

γn(s, x̃+ Vs)− γ̃n(x̃) ds .As in (5.6), (γn − γ̃n) with n.M(1,V) 6= 0 is periodi with mean zero so,
∫ t

0

γn(s, x̃+ Vs)− γ̃n(x̃) ds ≤ ‖γn − γ̃n‖L∞

2π

|n.M(1,V)|

≤ 2 |hn|
2π

|n.M(1,V)|

≤ CK |n|−K |n|m ,the last using rapid derease and the small divisor hypothesis. Summing over n.M(1,V) 6=

0 yields ∣∣∣∣
∫ t

0

γ(s, x̃+ Vs)− γ̃(x̃) ds

∣∣∣∣ ≤
∑

n 6=0

CK |n|−K |n|m .Choosing K > N + 1 −m yields the L∞(R1+N) bound for g. The bound for derivativesfollows by applying the above argument to the di�erentiated equation using Lemma 5.1.
�Proposition 5.5. i. If the omponents of M(1,V) have rational ratio, then the smalldivisor hypothesis is satis�ed.ii. If the dimension is M = 1 + N and M = I, then the small divisor hypothesis issatis�ed for Lebesgue almost all V.



38 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHiii. If V and the dimension M are �xed, then the small divisor hypothesis is satis�edfor Lebesgue almost all M.iv. If the dimensionM is �xed, then the small divisor hypothesis is satis�ed for Lebesguealmost all M,V.Proof. i. The rational ratio is equivalent to the existene of an r ∈]0,∞[ so that
rM(1,V) = (q0, q1, . . . , qM) ∈ Z

1+M .Then,
(n0, n1, . . . , nM).M(1,V) = (n0, n1, . . . , nM).

1

r
(q0, q1, . . . , qM) ∈

1

r
Z.When it is nonzero, it is equal to an integer divided by r so is bounded below in absolutevalue by 1/r. This veri�es the small divisor hypothesis with C = 1/r and m = 0.ii. A vetor W satis�es the small divisor hypothesis if and only if

∃m ∈ N, ∀n ∈ N
N+1, n.W 6= 0 ⇒ |n.W | ≥

1

m |n|m
.The set of vetors orthogonal to one of the n is a null set. So it su�es to show that theomplement of the set de�ned by

∃m ≥ 0 ∀n 6= 0, |n.W | ≥
1

m |n|m
.is a null set. A vetor W belongs to the omplement if and only if

∀m ≥ 0, ∃n 6= 0, |n.W | <
|n|−m

m
.This is the set ⋂

m≥0

⋃

n 6=0

{
W : |n.W | <

|n|−m

m

}
.We show that the Lebesgue measure of this set is equal to zero, by showing that itsintersetion with {|W | ≤ R} is a null set. Toward that end, for eah n, we rotateoordinates so that in the new oordinates, n = (|n|, 0, 0, . . . , 0). Then

{
W : |n.W | <

|n|−m

m

}
=

{
|n .W |

|n|
<

1

m |n|m+1

}
⊂

{
|n .W |

|n|
<

1

m

}The intersetion of this set with the ball of radius R has Lebesgue measure ≤ C(R)/m.Sine our set is the intersetion on m of suh sets, it is a null set.iii. Denote by E ∈ RN the set of full Lebesgue measure so that the small divisorhypothesis is satis�ed when M = I and V ∈ E. Then, for V �xed, the pair M,V satis�esthe small divisor hypothesis whenever
M(1,V) ∈ E .This is satis�ed for almost all M.



39iv. Follows from iii and Fubini's Theorem. �5.1.2. Examples of the ray average hypothesis with 0 < β < 1. The preeding setionshowed that quasiperiodi γ satisfy the ray average hypothesis with β = 0 under a smalldivisor hypothesis. In this setion we show that muh more general almost periodi γsatisfy the hypothesis with β > 0 under a weaker divisor hypothesis. The smooth almostperiodi γ are assumed to be of the form(5.7) γ(t, x) =
∑

η∈R1+N

aη e
iη.(t,x) ,where aη vanish for all but a ountable family of η and satisfy(5.8) ∀n ∈ N,

∑

η

〈η〉n
∣∣aη

∣∣ < ∞ 〈η〉 := (1 + |η|2)1/2 .Then
(∂t + V∂x)γ =

∑

η∈R1+N

η.(1,V) aη e
iη.(t,x) , γ̃ =

∑

η.(1,V)=0

aη e
iη.(t,x) .Then

γ(t, x) − γ̃(x− Vt) =
∑

η.(1,V)6=0

aη e
iη.(t,x) .The ray average of this di�erene vanishes but the onvergene is slow for terms with

η.(1,V) small. Lebesgue's theorem implies that
∑

0<|η.(1,V)|<δ

aη e
iη.(t,x) = o(1) as δ → 0 .Our hypothesis strengthens this to O(δα) for some 0 < α.Proposition 5.6. Suppose that γ is as in (5.7), (5.8) and there is an α > 0 so that forall n(5.9) ∑

0<|η.(1,V)|<δ

〈η〉n
∣∣aη

∣∣ = O(δα), δ → 0 .Then the ray average hypothesis of De�nition 5.2 holds with β = α/(α + 1).Proof. Consider the solution of (∂t+V ∂x)g = γ(t, x)−γ̃(x−Vt) with vanishing initial data.Part iii of Remark 5.3 shows that it su�es to onsider only g and not its derivatives.Write
γ(t, x)− γ̃(x− Vt) =

∑

|η.(1,V)|<δ

aη e
iη.(t,x) +

∑

|η.(1,V)|>δ

aηe
iη.(t,x)with orresponding solutions g1 and g2 with vanishing initial data. Estimate (5.9) showsthat(5.10) ‖g1‖C0(RN ) ≤ C δα .



40 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe solution g2 is given by
g2 =

∑

|η.(1,V)|>δ

1

iη.(1, V )t

(
aη e

iη.(t,x) − aη e
iη.(0,x−Vt)

)
.The ray average hypothesis onerns only t ≥ 1 and one has,(5.11) ‖g2(t)‖C0(RN ) ≤

C

t δ
.Choose δ so that δα = 1/(t δ), that is δ = t−1/(1+α) to �nd that

‖g1(t)‖C0(RN ) + ‖g2‖C0(RN ) ≤
C

tα/(α+1)
.

�5.2. The approximate solution. When the ray average hypothesis holds we onstruta three term approximate solution(5.12) vε := e2πiS/εW ε(εt, t, x, x/ε) ,(5.13) W ε(T , t, x, y) := w0(T , t, x, y) + ε w1(T , t, x, y) + ε2w2(T , t, x, y) ,with pro�les wj smooth and y-periodi. The orretors w1 and w2 in this onstrutionwill not in general be bounded in t. The orreted solution does not have the formof in�nitely aurate expansions onstruted when (1.12) holds. The derivation of theleading approximation and the orretors follows the lines established in Setion 4. Theinformation gleaned from the leading residuals r−2, r−1 up to equation (4.14) is unhanged.Equation (4.15) is treated di�erently. In the ase of oe�ients satisfying the invariane(1.12), the equation was multiplied by ∂t + V.∂x to eliminate w0 and then to arrive at
(∂t + V.∂x)Πw1 = 0. In the present ase, we isolate the w1 terms as

(
ΠNΠ − ΠMQMΠ

)
w0 = −ΠMΠw1 .Propositions 4.1 and 3.2 (the latter modi�ed for the di�rative ase so that there is no γterm) show that this is equivalent to,(5.14) (

4πiω ∂T − ω∇2
θω(∂x , ∂x) + γ(t, x)

)
w0 = − (∂t + V.∂x)Πw1 .Split

γ(t, x) = γ̃(x− Vt) + (γ(t, x)− γ̃(x− Vt))to write (5.14) as,
(
4πiω ∂T − ω∇2

θω(∂x , ∂x)+γ̃(x− Vt)
)
w0 =

−
(
∂t + V.∂x

)
Πw1 −

(
γ(t, x)− γ̃(x− Vt)

)
w0 .(5.15)



41The equation (5.15) is satis�ed by �rst hoosing w0(T , t, x) = w̃0(T , x−Vt) where w̃0(T , x)is a K-valued funtion satisfying the Shrödinger equation(5.16) (
4πiω ∂T − ω∇2

θω(∂x , ∂x) + γ̃(x)
)
w̃0 = 0 ,whih implies that the left-hand side of (5.15) vanishes. The initial value, w̃0(0, x) ∈

S(RN ; K) is arbitrary. One hosen, the unique solution satis�es for all α,(5.17) (x, ∂T ,t,x)
αw0 ∈ L∞([0, T ]T × [0,∞[t×R

N
x ) .The K valued funtion Πw1(t, x) is hosen as a solution of(5.18) (

∂t + V.∂x

)
Πw1 = −

(
γ(t, x)− γ̃(x− Vt)

)
w0 ,so the right-hand side of (5.15) vanishes too. Sine w0(T , t, x) = w̃0(T , x−Vt) is onstanton group lines, the solution of the transport equation (5.18) an be hosen as,

Πw1(T , t, x) = g(t, x)w0(T , t, x) ,where the salar valued funtion g is the solution of (5.3). The ray average hypothesiswith parameter 0 ≤ β < 1 yields estimates for the derivatives of g and therefore those of
Πw1,

〈t〉−β (x, ∂t,x)
α(Πw1) ∈ L∞([0, T ]× [0, t]× R

N ; K) .The omponent (I − Π)w1 is given by (4.13) in terms of w0 so (5.17) implies,
(x, ∂T,t,x,y)

α(I −Π)w1 ∈ L∞([0, T ]× [0, t]× R
N
x × R

N
y ) ,with w1 is periodi in y. This ompletes the determination of w0 and w1. At this stageone has r−2 = r−1 = Πr0 = 0.We hoose w2 to that (I − Π)r0 = 0. As earlier, the equation (I − Π)r0 = 0 holds ifand only if (4.27) is satis�ed. This determines (I − Π)w2. On the other hand, Πw2 doesnot a�et the pro�les r2, r1, r0. It is hosen equal to zero,(5.19) Πw2 = 0 .The estimates for w0, w1 imply that the y-periodi w2 satis�es estimates analogous tothose of w1 so,(5.20) 〈t〉−β (x, ∂T,t,x,y)

αwj ∈ L∞([0, T ]× [0, t]× R
N
x × R

N
y ), j = 1, 2 .This ompletes the determination of the pro�les so that r−2 = r−1 = r0 = 0.Theorem 5.7. Suppose that the ray average hypothesis of De�nition 5.2 is satis�ed with

0 ≤ β < 1 and that w̃0(0, x) = Πw̃0(0, x) ∈ S(RN ; K) is hosen. The leading pro�le
w0(T , t, x) = w̃0(T , x−Vt) satisfying (5.17) is determined from the Shrödinger equation



42 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCH(5.16). Furthermore w1, w2 are determined from (5.18), (4.13), (4.27), (5.19), and satisfy(5.20). Then the approximate solution (5.12), (5.13) satis�es(5.21) P ε(t, x, ∂t,x) v
ε = ε e2πiS/ε Rε(εt, t, x, x/ε) ,where Rε(T, t, x, y) is periodi in y and for all α ∈ N

3N+2, T ∈]0,∞],(5.22) ∥∥〈t〉−β (x, ∂T,t,x,y)
αRε(T , t, x, y)

∥∥
L∞([0,T ]×[0,∞[×RN

x ×RN
y )

≤ C(α) ,independent of ε.The energy of the initial data of vε is O(1/ε) sine the partial derivatives of �rst orderare O(1/ε). Denote by uε the exat solution of the Cauhy problem (1.1) with the sameinitial data as vε,(5.23) P ε(t, x, ∂t,x) u
ε = 0 , uε

∣∣
t=0

= vε
∣∣
t=0

, ∂tu
ε
∣∣
t=0

= ∂tv
ε
∣∣
t=0

.Theorem 5.8. The funtions vε from Theorem 5.7 approximate the exat solutions uε in(5.23) with relative error O(ε1−β) in the sense that(5.24) ∃C > 0, sup
0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)α
(
uε − vε

)∥∥
L2(RN )

≤ C ε1−β , ε → 0 .Remark 5.9. The error in derivatives of higher order is not estimated. The previousases had residual O(ε∞). Here the residual is O(ε1−β) and no better. The possibleunboundedness of the family (P ε)−1 as maps in higher Sobolev spaes (see �3.4) presentsa serious obstrution.Proof. Denote wε := uε − vε. The error wε is the solution of the Cauhy problem(5.25) P εwε = −ε e2πiS/ε Rε(εt, t, x, x/ε) , wε
∣∣
t=0

= ∂tw
ε
∣∣
t=0

= 0 .The error estimate (5.24) with |α| = 1 is an immediate onsequene of the lassial energyestimate: ∀T > 0, ∃C > 0, ∀0 < ε < 1, ∀0 ≤ t ≤ T/ε,

∀ w ∈ C
(
[0, T/ε] ; H1(RN)

)
∩ C1

(
[0, T/ε] ; L2(RN )

)
,with P εw ∈ L1

(
[0, T/ε] ; L2(RN)

),
∑

|α|=1

∥∥∂αt,xw(t)
∥∥
L2(RN )

≤ C

( ∑

|α|=1

∥∥∂αt,xw(0)
∥∥
L2(RN )

+

∫ t

0

∥∥P εw(s)
∥∥
L2(RN )

ds

)
.Using (5.21), (5.22) the last term on the right is bounded by O(〈t〉−βε) = O(ε1−β). Thisis the desired estimate for |α| = 1.The error estimate (5.24) for α = 0 is subtle and oupies the remainder of this sub-setion. In ontrast with the ase |α| = 1, it uses in an essential way the osillations in

t of the right hand side of (5.25). In the ase of �3.4 estimates for uε are reovered fromestimates for uεt by integrating in time. In the present ontext the integration is over an



43interval of length ∼ 1/ε and osillations in time are used to show that the integral is notlarge.The proof of Lemma 5.12 below uses an important symmetry. Suppress the ε in theoperator P ε(t, x, ∂t, ∂x). The transposed operator P † is given by,
P †(∂t, ∂x)w := ∂2t (ρw) − divx(A gradxw) .Introdue the linear map P−1 : C∞

0 (R1+N) → C∞(R1+N ) by u = P−1(f) is the uniquesolution of Pu = f suh that if f vanishes for t < t then so does u. The funtion u isthe solution of the forward wave problem with soure f . Similarly, for g ∈ C∞
0 (R1+N),

w = (P †)−1g is the unique solution of P †w = g so that if g vanishes for t > t, then sodoes w. The funtion w solves the bakward radiation problem for P † with soure g.Denote by K(t, x, s, y) and K†(t, x, s, y) the Shwartz kernels of the operators P−1 and
(P †)−1 respetively so that with the usual abuse of notation,
(
P−1f

)
(t, x) =

∫

R1+N

K(t, x, s, y) f(s, y) ds dy, (P †)−1g(t, x) =

∫

R1+N

K†(t, x, s, y) g(s, y) ds dy.The preise version is that for all f, g ∈ C∞
0 (R1+N)

∫
g(s, y) (P−1f)(s, y) dt dx ds dy =

〈
K , f(t, x)g(s, y)

〉
,with an analogous expression for (P †)−1 and K†. Here 〈 , 〉 denotes the pairing be-tween ompatly supported test funtions and the distributions on R

1+N
t,x × R1+N

s,y . Thedistribution K and K† are for N > 2 not loally integrable funtions.The kernel K is determined by the following reipe. For s, y �xed
P (t, x, ∂t, ∂x)K(t, x, s, y) = δs,y , K = 0 when t < s .Similarly, the kernel K† is determined as follows. For t, x �xed
P †(s, y, ∂s, ∂y)K

†(t, x, s, y) = δt,x , K† = 0 when s < t .The next reiproity lemma is analogous to the fat that for a matrix, the inverse of thetranspose is equal to the transpose of the inverse. The proof of the lemma is modelled onthe matrix ase.Lemma 5.10. The kernels K(t, x, s, y) and K†(t, x, s, y) satisfy the reiproity relation,(5.26) K(t, x, s, y) = K†(s, y, t, x) .Proof. The assertion is equivalent to the identity, ∀f, g ∈ C∞
0 (R1+N ),(5.27) 〈

K , g(t, x) f(s, y)
〉
R1+N×R1+N =

〈
K† , g(s, y) f(t, x)

〉
R1+N×R1+N .The left hand side of (5.27) is equal to

l.h.s. = 〈P−1f , g〉R1+N = 〈P−1f , P †w〉R1+N .



44 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHIntegrating by parts yields
l.h.s. = 〈P P−1f , w〉R1+N = 〈f , w〉R1+N = 〈f , (P †)−1g〉R1+N .The last expression is equal to the right hand side of (5.27). �Duhamel's formula gives the following expression for K(t, x, s, y). De�ne G(t, x, s, y)to be the unique solution of

P (t, x, ∂t, ∂x)G = 0, G
∣∣
t=s

= 0, (∂tG)
∣∣
t=s

=
1

ρ
δy .Then

K(t, x, s, y) =

{
G when t ≥ s
0 when t ≤ s.At the transition points where {t = s}, G = 0. Therefore,

∂sK(t, x, s, y) =

{
∂sG when t ≥ s
0 when t ≤ s.We need an estimate for ‖ ∫ ∂sK(t, x, s, y)φ(y) dy‖L2(RN ). The estimate uses a prelim-inary lemma asserting that the evolution de�ned by the transposed operator is boundedon time intervals of length O(1/ε).Lemma 5.11. For any T > 0, there is a onstant C > 0 so that for all t, s, ε satisfying

|t− s| < T/ε and
w ∈ C

(
[min(t, s),max(t, s)] ; H1(RN)

)
∩ C1

(
[min(t, s),max(t, s)] ; L2(RN)

)with
P †w ∈ L1

(
[min(t, s),max(t, s)] ; L2(RN)

)
,one has(5.28) ∥∥∂t,xw(t)

∥∥
L2(RN )

+ ε
∥∥w(t)

∥∥
L2(RN )

≤

C
(
‖∂t,xw(s)

∥∥
L2(RN )

+ ε
∥∥w(s)

∥∥
L2(RN )

+
∣∣
∫ t

s

∥∥P †w(σ)
∥∥
L2(RN )

dσ
∣∣
)
.Proof. Replaing w by a uto� and smoothed wε then passing to the limit ε → 0 showsthat it su�es to onsider real solutions whih are smooth and rapidly dereasing as

x→ ∞. For suh solutions ompute,
∫

RN

∂tw P †w dx =

∫

RN

∂tw∂
2
t (ρw) +

〈
∂x∂tw,A∂xw

〉
dx ,

∫

RN

〈
∂x∂tw , A∂xw

〉
dx =

1

2

d

dt

∫

RN

〈
∂xw , A∂xw

〉
dx −

1

2

∫

RN

〈
∂xw , ∂tA∂xw

〉
dx,

∂t

(ρ(∂tw)2
2

)
=

1

2
∂tρ(∂tw)

2 + ρ ∂tw ∂
2
tw,



45where ∂x denotes the operator grad, and,
∂tw ∂

2
t (ρw) = ∂tw

(
w∂2t ρ+ 2∂tρ ∂tw + ρ ∂2tw

)

= ∂t

(ρ(∂tw)2
2

)
+

3

2
∂tρ(∂tw)

2 + w∂2t ρ∂tw .Sine the unperturbed periodi medium is time independent, the oe�ients ∂tA, ∂tρ, ∂2t ρinvolve only the O(ε2) perturbations so are O(ε2).Introdue the energy
E2(t) :=

1

2

∫

RN

(
ρ(∂tw)

2(t) +
〈
∂xw(t) , A ∂xw(t)

〉)
dx .The preeding omputations show that

∣∣∣∂tE2 −

∫

RN

∂twP
†w dx

∣∣∣ ≤ C
(
ε2E2 + ε2E ‖w‖L2(RN )

)
.Estimating the integral by the Cauhy-Shwarz inequality yields,

∣∣∣∂tE2
∣∣∣ ≤ C

(
E ‖P †w‖L2(RN ) + ε2E2 + ε2E ‖w‖L2(RN )

)
.Sine ∂tE2 = 2E ∂tE this yields

∣∣∣∂tE
∣∣∣ ≤ C

(
‖P †w‖L2(RN ) + ε2E + ε2‖w‖L2(RN )

)
.Complementing this estimate is

∣∣∣∂t
(
‖w(t)‖2L2(RN )

)∣∣∣ =
∣∣2
∫

RN

∂tww dx
∣∣ ≤ 2 ‖∂tw(t)‖L2(RN ) ‖w(t)‖L2(RN ) ≤ C E ‖w(t)‖L2(RN ) .Sine ∂t(‖w(t)‖2L2(RN )

)
= 2 ‖w(t)‖L2(RN ) ∂t‖w(t)‖L2(RN ), this implies,

∣∣∂t‖w(t)‖L2(RN )

∣∣ ≤ C E .Adding yields
∣∣∂t

(
E + ε ‖w(t)‖L2(RN )

)∣∣ ≤ C
(
‖P †w‖L2(RN ) + ε

(
E + ε ‖w(t)‖L2(RN )

))
.Integrating this yields

E(t)+ε ‖w(t)‖L2(RN ) ≤ CeCε|t−s|
(
E(s)+ε‖w(s)‖L2(RN )) + CeCε|t−s|

∣∣∣
∫ t

s

‖P †w(σ)‖L2(RN ) dσ
∣∣∣.Sine E(t) + ε ‖w(t)‖L2(RN ) is a family of norms uniformly equivalent to the norms

‖∂t,xw‖L2(RN )+ ε ‖w(t)‖L2(RN ), this ompletes the proof of (5.28) and therefore of Lemma5.11. �



46 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHFor t ≥ s introdue the operator K(t, s) whose kernel is K(t, x, s, y). With the usualabusive use of an integral sign for the operator with a given distribution kernel, for
φ ∈ C∞

0 (RN),
(
K(t, s)φ

)
(x) :=

∫

RN

K(t, x, s, y) φ(y) dy ,as well as its derivative with respet to s
(
∂sK(t, s)φ

)
(x) :=

∫

RN

∂sK(t, x, s, y) φ(y) dy .The preise version is that for ψ, φ ∈ C∞
0 (R1+N ),

∫
ψ(x)(K(t, s)φ)(x) dx =

〈
K(t, x, s, y) , ψ(x)φ(y)

〉
RN
x ×Rn

y

.Lemma 5.12. For all T and s ≤ t with t − s ≤ T/ε there is a onstant C so that thefollowing operator estimates hold,(5.29) ∥∥∥K(t, s)φ
∥∥∥
L2(RN )

≤ C (t− s)
∥∥φ

∥∥
L2(RN )

,(5.30) ∥∥∥∂sK(t, s)φ
∥∥∥
L2(RN )

≤ C
∥∥φ

∥∥
L2(RN )

.Proof. With s �xed, the funtion z(t, x) = ∫
RN K(t, x, s, y)φ(y) dy is uniquely determinedfor t ≥ s by

P (t, x, ∂t, ∂x) z = 0, z
∣∣
t=s

= 0, ∂tz
∣∣
t=s

= φ/ρ .The energy estimate shows that
‖∂tz‖L2(RN ) ≤ C ‖φ‖L2(RN ) provided t− s < T/ε .Writing z(t) = ∫ t

s
∂tz(σ) dσ yields

‖z(t)‖L2(RN ) ≤ C(t− s) ‖φ‖L2(RN ) .This is exatly (5.29).To prove (5.30) reason by duality. Inequality (5.30) is equivalent to(5.31) ∣∣∣
〈
∂sK(t, x, s, y) φ(y) ψ(x)

〉
RN
x ×RN

y

∣∣∣ ≤ C
∥∥φ

∥∥
L2(RN )

∥∥ψ
∥∥
L2(RN )

.With t �xed, de�ne by the formal expression ζ(s, y) :=
∫
K(t, x, s, y)ψ(x) dx. Preisely

〈
ζ(t, y) , φ(x)

〉
:=

〈
K(t, x, s, y) , φ(x)ψ(y)

〉
.Lemma 5.10 implies that for s ≤ t the funtion ζ is the solution of,

P †(s, y, ∂s, ∂y)ζ = 0, ζ
∣∣
s=t

= 0, ∂sζ
∣∣
s=t

=
ψ(y)

ρ(s, y)
.



47Sine t− s ≤ T/ε, the energy estimate for P † proved in Lemma 5.11 yields the followingestimate for ∂sζ(s),(5.32) ∥∥∂sζ(s)
∥∥
L2(RN )

≤ C
∥∥ψ

∥∥
L2(RN )

.The Cauhy-Shwartz inequality implies
∣∣〈∂sK(t, x, s, y) , φ(x)ψ(y)

〉∣∣ =
∣∣〈∂sζ, φ

〉∣∣ ≤
∥∥∂sζ(s)

∥∥
L2(RN )

∥∥φ
∥∥
L2(RN )

≤ C
∥∥ψ

∥∥
L2(RN )

∥∥φ
∥∥
L2(RN )

.This proves (5.31) and therefore the equivalent (5.30). �Lemma 5.12 is now used to prove the L2 estimate orresponding to the ase α = 0 in(5.24) and therefore omplete the proof of Theorem 5.8. The solution of (5.25) is
wε(t, x) = −ε

∫ t

0

K(t, s) e2πi(ωs+θ0.x)/ε Rε(εs, s, x, x/ε) ds .For ease of reading introdue
rε(T , t, x, y) := e2πiθ0.y Rε(T , t, x, y) .whih is θ0-periodi in y. It inherits from Rε the bounds (5.22)

∥∥〈t〉−β (x, ∂T ,t,x,y)
αrε(T , t, x, y)

∥∥
L∞([0,T ]×[0,∞[×RN

x ×RN
y )

≤ C ,independent of ε. Preparing for an integration by parts write,
wε =

−ε2

2πiω

∫ t

0

K(t, s) rε(εs, s, x, x/ε) ∂se
2πiωs/ε ds .Integration by parts yields,

wε =
ε2

2πiω

∫ t

0

(
∂sK(t, s)rε(εs, s, x, x/ε) +K(t, s)

(
ε∂T r

ε + ∂tr
ε
)
(εs, s, x, x/ε)

)
e2πiωs/ε ds

−
ε2

2πiω
K(t, s)rε(εs, s, x, x/ε)e2πωis/ε

∣∣∣
s=t

s=0
.We must show that ‖wε(t)‖L2(RN ) ≤ Cε1−β independent of 0 < t < T/ε and ε. There aretwo summands in the integral and two boundary terms.Begin with the boundary terms. Sine K(t, t) = 0, one of the terms vanishes. Beauseof (5.29), the L2 norm of the other is bounded by C ε2−β |t| . Sine |t| ≤ T/ε this yieldsthe desired O(ε1−β) bound.For the ∂sK summand, (5.30) su�es to give the O(ε1−β) estimate.There remains only one term to estimate,

ε2

2πiω

∫ t

0

K(t, s)
(
ε∂T r

ε + ∂tr
ε
)
(εs, s, x, x/ε) e2πiωs/ε ds.



48 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThis term is dangerous beause K(t, s) an be of size ∼ T/ε on an interval of size ∼ T/εwhih might ompensate the prefator of ε2. To get a better estimate, integrate by partsone more to �nd,
ε2

2πiω

∫ t

0

K(t, s)
(
ε∂T + ∂t

)
rε(εs, s, x, x/ε)

ε

2πiω

d

ds
e2πiωs/ε ds

=
−ε3

(2πiω)2

∫ t

0

d

ds

(
K(t, s)

(
ε∂T + ∂t

)
rε(εs, s, x, x/ε)

)
e2πiωs/ε ds

+
ε3

(2πiω)2
K(t, s)

(
ε∂T + ∂t

)
rε(εs, s, x, x/ε) e2πiωs/ε

∣∣∣
s=t

s=0
.The integrand of the �rst term on the right is equal to

∂sK(t, s)
(
ε∂T + ∂t

)
rε e2πiωs/ε +K(t, s)

(
ε∂T + ∂t

)2
rε e2πiωs/ε.Using (5.22), the �rst term has L2 normO(tβ) while the seond term has L2 norm boundedby O(tβ |t − s|). So the L2 norm of the sum, when integrated with respet to s over aninterval no longer than T/ε, is bounded by CT 2/ε2+β. The prefator ε3 yields the desired

O(ε1−β) bound. The boundary term at s = t vanishes and that at s = 0 has L2 norm lessthan C ε2−β sine ‖K(t, 0)‖ ≤ C T/ε from (5.29). This ompletes the proof of Theorem5.8. �5.3. The osillatory initial value problem. Using two approximate solutions fromSetion 5.2, we �nd an approximate solution of the osillatory initial value problem,(5.33) P ε uε = 0 ,

uε(0, x) = b(x) e2πix.θ0/ε ψn(x/ε) ,

∂tu
ε(0, x) =

c(x)

ε
e2πix.θ0/ε ψn(x/ε) ,with b, c ∈ S(RN ) . There are two linear phases S± with S±(0, x) = θ0.x at t = 0,

S+(t, x) = θ0 · x+ ω t and S−(t, x) = θ0 · x− ω t,with assoiated group veloities ±V. Similarly we denote by γ̃± the two averaged zero-order (potential) terms in the limit Shrödinger equation (5.16) orresponding to the twoveloities ±V.Theorem 5.13. Assume that the ray average hypothesis in De�nition 5.2 with parameter
0 ≤ β < 1 is satis�ed for both group veloities ±V. The solution uε(t, x) of the initialvalue problem (5.33) admits the following approximation

∑

±

vε,± :=
∑

±

e2πiS
±/ε W̃ ε,±(εt, x∓ Vt, x/ε) ,



49with(5.34) W̃ ε,±(T , x, y) =

2∑

j=0

εj w̃±
j (T , x, y) w̃±

0 (T , x, y) = ã±0 (T , x)ψn(y).The initial data w̃±
0 (0, x) are determined by

ã+0 (0, x) + ã−0 (0, x) = b(x), ã+0 (0, x) − ã−0 (0, x) =
c(x)

2πiω
,so that the initial data of the exat and approximate solutions di�er by O(ε) in the sensethat (5.35) holds for T = 0. The pro�les w̃±

j (T , x, y) are determined from the equationsof setion 5.2 (with the orresponding zero-order term γ̃±). Then for any T > 0, there isa onstant C > 0 so that(5.35) sup
0≤t≤T/ε

sup
|α|≤1

∥∥∥(ε∂t,x)α
(
uε −

(
vε,+ + vε,−

))∥∥∥
L2(RN )

≤ Cε1−β .Proof. The proof is like that of Theorem 5.8. �Remark 5.14. In both Theorems 5.8 and 5.13 one an replae the three term approximatesolutions vε,± by their leading term e2πiS/εw̃0(εt, x−Vt, x/ε) or e2πiS±/εw̃±
0 (εt, x∓Vt, x/ε).Indeed, the two other terms involving w1 and w2 are smaller by a fator of ε1−β in thenorms of (5.35). This simpli�ation is made in the statement of Theorem 1.3. Theorretor terms are ruial in the proof, as is usual in asymptoti analysis.5.4. Di�rative geometri optis with H1 amplitudes. The leading term of theapproximate solutions of di�rative geometri optis is given by(5.36) vεapprox = e2πiS/ε ψn(x/ε, θ0) a(εt, x− Vt)with a(T , x) satisfying the Shrödinger equation(5.37) (

4πiω ∂T − ω∇2
θω(∂x , ∂x) + γ̃(x)

)
a = 0.The Cauhy data of vεapprox are equal to

vεapprox(0, x) = e2πiθ0.x/εψn(x/ε, θ0) a(0, x) ,

∂tv
ε
approx(0, x) =

2πiω

ε
e2πiθ0.x/ε ψn(x/ε, θ0) a(0, x) +O(1) .In this setion we explain how the analysis when a(0, ·) ∈ S(RN) su�es to justify theapproximation of di�rative geometri optis when a(0, ·) ∈ H1(RN).The main result, Theorem 5.16, shows that the relative error in energy of the di�rativegeometri optis approximation tends to zero as ε → 0 for amplitudes a ∈ H1. The proofrequires stability in energy for P ε expressed in the proof of Theorem 5.8 and a simpleestimate for the Shrödinger equation. Its proof is left to the reader.



50 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHProposition 5.15. There is a onstant C > 0 so that the approximate solutions (5.36)with a ∈ C
(
[0,∞[ ; H1(RN)

), a solution of (5.37), satisfy
sup

0≤t<∞
sup
|α|≤1

∥∥(ε∂t,x)αvεapprox(t)
∥∥
L2(RN )

≤ C sup
|α|≤1

∥∥(ε∂t,x)αvεapprox(0)
∥∥
L2(RN )

.The operators ε∂t,x in the main result enode the length sale of the osillations.Theorem 5.16. Assume the ray average hypothesis in De�nition 5.2 is satis�ed. For
a0 ∈ H1(RN), with a0 6= 0, de�ne uε to be the solution of P εuε = 0 with initial data
uε(0, x) = e2πiθ0.x/ε a0(x)ψn(x/ε, θ0) , ∂tu

ε(0, x) =
2πiω

ε
e2πiθ0.x/ε ψn(x/ε, θ0) a0(x) .Then, for any T > 0, there exists C > 0 suh that, for any 0 < ε ≤ 1, the exat solutionsatis�es

0 < C < sup
0≤t≤T/ε

∥∥ε∂t,xuε(t)
∥∥
L2(RN )

≤ 1/C .Suppose a satis�es (5.37) with a(0, ·) = a0, and vεapprox is de�ned by (5.36). Then
lim
ε→0

sup
0≤t≤T/ε

sup
|α|≤1

∥∥∥(ε∂t,x)α
(
uε(t) − vεapprox(t)

)∥∥∥
L2(RN )

= 0 .Proof. For any hallenge number δ > 0, hoose aδ0 ∈ C∞
0 (RN) so that

‖a0 − aδ0‖H1(RN ) < δ .For the assoiated exat and approximate solutions uεδ and vεδ,approx we have proved that
sup

0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)α
(
uεδ(t) − vεδ,approx(t)

)∥∥
L2(RN )

≤ C(δ) ε1−β .Applying (3.35) to uε − uεδ shows that
sup

0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)α
(
uε(t) − uεδ(t)

)∥∥
L2(RN )

≤ C δ .Similarly, Proposition 5.15 shows that
sup

0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)α
(
vεapprox(t) − vεδ,approx(t)

)∥∥
L2(RN )

≤ C δ .The three last estimates together with the triangle inequality imply that
sup

0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)α
(
uε(t) − vεapprox(t)

)∥∥
L2(RN )

≤ C(δ) ε1−β + C2 δ ,with C2 independent of ε, δ. Letting ε→ 0 yields
lim
ε→0

sup
0≤t≤T/ε

∥∥ε∂t,x
(
uε(t) − vεapprox(t)

)∥∥
L2(RN )

≤ C2 δ .Sine δ > 0 is arbitrary, this ompletes the proof. �



51Example 5.17. Using Theorem 5.16, one �nds approximate solutions to the osillatoryinitial value problem (5.33) with rough amplitudes
b, c ∈ H1(RN) ,and error o(1) in energy as ε → 0. It su�es to take as approximate solution

∑

±

e2πiS
±/ε ψn(x/ε, θ0) a

±(εt, x∓ Vt) ,where a± are the unique solutions of the Shrödinger equation
(
± 4πiω ∂T ∓ ω∇2

θω(∂x , ∂x) + γ̃±(x)
)
a± = 0,with initial values a±(0, ·) ∈ H1(RN) determined from,

a+(0, ·) + a−(0, ·) = b, a+(0, ·) − a−(0, ·) =
c

2πiω
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