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Abstract. We prove a global logarithmic stability estimate for the

multi-channel Gel'fand-Calderón inverse problem on a two-dimensional

bounded domain, i.e., the inverse boundary value problem for the equa-

tion −∆ψ+ v ψ = 0 on D, where v is a smooth matrix-valued potential

de�ned on a bounded planar domain D.

1. Introduction

The Schrödinger equation at zero energy,

(1.1) −∆ψ + v(x)ψ = 0 on D ⊂ R2,

arises in quantum mechanics, acoustics and electrodynamics. The recon-

struction of the complex-valued potential v in equation (1.1) through the

Dirichlet-to-Neumann operator is one of the most studied inverse problems

(see [11], [10], [4], [12], [13], [14] and references therein).

In this article we consider the multi-channel two-dimensional Schrödinger

equation, i.e., equation (1.1) with matrix-valued potentials and solutions;

this case was already studied in [15, 14]. One of the motivations for studying

the multi-channel equation is that it comes up as a 2D-approximation for

the 3D equation (see [14, Sec. 2]).

The main purpose of this paper is to give a global stability estimate for

this inverse problem in the multi-channel case.

Let D be an open bounded domain in R2 with C2 boundary and v ∈
C1(D̄,Mn(C)), where Mn(C) is the set of the n × n complex-valued ma-

trices. The Dirichlet-to-Neumann map associated with v is the operator

Φ : C1(∂D,Mn(C)) → Lp(∂D,Mn(C)), p <∞, de�ned by

(1.2) Φ(f) =
∂ψ

∂ν

∣∣∣∣
∂D

,
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where f ∈ C1(∂D,Mn(C)), ν is the outer normal of ∂D and ψ is the

H1(D̄,Mn(C))-solution of the Dirichlet problem

(1.3) −∆ψ + v(x)ψ = 0 on D, ψ|∂D = f ;

here we assume that

(1.4) 0 is not a Dirichlet eigenvalue of the operator −∆ + v in D.

This construction gives rise to the following inverse boundary value problem:

given Φ, �nd v.
This problem can be considered as the Gel'fand inverse boundary value

problem for the multi-channel Schrödinger equation at zero energy (see [8],

[11]) and can also be seen as a generalization of the Calderón problem for

the electrical impedance tomography (see [5], [11]). Note also that we can

think of this problem as a model for monochromatic ocean tomography (e.g.,

see [2] for similar problems arising in this type of tomography).

In the case of complex-valued potentials the global injectivity of the map

v → Φ was �rst proved for D ⊂ Rd with d ≥ 3 in [11] and for d = 2 with

v ∈ Lp in [4]: in particular, these results were obtained by the use of global

reconstructions developed in the same papers. The �rst global uniqueness

result (along with an exact reconstruction method) for matrix-valued poten-

tials was given in [14], which deals with C1 matrix-valued potentials de�ned

on a domain in R2. A global stability estimate for the Gel'fand-Calderón

problem with d ≥ 3 was �rst found by Alessandrini in [1]; this result was re-

cently improved in [12]. In the two-dimensional case the �rst global stability

estimate was given in [13].

In this paper we extend the results of [13] to the matrix-valued case. We

do not discuss global results for special real-valued potentials arising from

conductivities: for this case the reader is referred to the references given in

[1], [4], [10], [11], [12], [13].

Our main result is the following:

Theorem 1.1. Let D ⊂ R2 be an open bounded domain with a C2 bound-

ary, v1, v2 ∈ C2(D̄,Mn(C)) two matrix-valued potentials which satisfy (1.4),

with ‖vj‖C2(D̄) ≤ N for j = 1, 2, and Φ1,Φ2 the corresponding Dirichlet-to-

Neumann operators. For simplicity we also assume that v1|∂D = v2|∂D and
∂
∂ν v1|∂D = ∂

∂ν v2|∂D. Then there exists a constant C = C(D,N, n) such that

(1.5)

‖v2−v1‖L∞(D) ≤ C
(
log(3 + ‖Φ2 − Φ1‖−1)

)− 3
4
(
log(3 log(3 + ‖Φ2 − Φ1‖−1))

)2
,
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where ‖·‖ is the induced operator norm on L∞(∂D,Mn(C)) and ‖v‖L∞(D) =
max1≤i,j≤n ‖vi,j‖L∞(D) (likewise for ‖v‖C2(D̄)) for a matrix-valued potential

v.

This is the �rst global stability result for the multi-channel (n ≥ 2)
Gel'fand-Calderón inverse problem in two dimensions. In addition, Theo-

rem 1.1 is new also for the scalar case, as the estimate obtained in [13] is

weaker. We remark, in particular, that this result is true in the special case

when v1 ≡ v2 ≡ Λ ∈ Mn(C) in a neighborhood of ∂D (situation which

appears in the approximation of the 3D equation, see [14, Remark 3 and

Section 2]).

Instability estimates complementing the stability estimates of [1], [12], [13]

and of the present work are given in [10], [9].

The proof of Theorem 1.1 is based on results obtained in [13], [14], which

take inspiration mostly from [4] and [1]. In particular, for z0 ∈ D we use the

existence and uniqueness of a family of solutions ψz0(z, λ) of equation (1.1)

where in particular ψz0 → eλ(z−z0)2I, for λ → ∞ (where I is the identity

matrix). Then, using an appropriate matrix-valued version of Alessandrini's

identity along with stationary phase techniques, we obtain the result. Note

that this matrix-valued identity is one of the new results of this paper.

A generalizations of Theorem 1.1 in the case where we do not assume that

v1|∂D = v2|∂D and ∂
∂ν v1|∂D = ∂

∂ν v2|∂D, is given in section 5.

This work was ful�lled in the framework of research under the direction

of R. G. Novikov.

2. Preliminaries

In this section we introduce and give details on the above-mentioned family

of solutions of equation (1.1), which will be used throughout the paper.

We identify R2 with C and use the coordinates z = x1 + ix2, z̄ = x1− ix2

where (x1, x2) ∈ R2. Let us de�ne the function spaces C1
z̄ (D̄) = {u : u, ∂u

∂z̄ ∈
C(D̄,Mn(C))} with the norm ‖u‖C1

z̄ (D̄) = max(‖u‖C(D̄), ‖∂u
∂z̄ ‖C(D̄)), where

‖u‖C(D̄) = supz∈D̄ |u| and |u| = max1≤i,j≤n |ui,j |; we also de�ne C1
z (D̄) =

{u : u, ∂u
∂z ∈ C(D̄,Mn(C))} with an analogous norm. Following [13], [14], we

consider the functions:

Gz0(z, ζ, λ) = eλ(z−z0)2gz0(z, ζ, λ)e−λ(ζ−z0)2 ,(2.1)

gz0(z, ζ, λ) =
eλ(ζ−z0)2−λ̄(ζ̄−z̄0)2

4π2

∫
D

e−λ(η−z0)2+λ̄(η̄−z̄0)2

(z − η)(η̄ − ζ̄)
dReη dImη,(2.2)

ψz0(z, λ) = eλ(z−z0)2µz0(z, λ),(2.3)
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µz0(z, λ) = I +
∫

D
gz0(z, ζ, λ)v(ζ)µz0(ζ, λ)dReζ dImζ,(2.4)

hz0(λ) =
∫

D
eλ(z−z0)2−λ̄(z̄−z̄0)2v(z)µz0(z, λ)dRez dImz,(2.5)

where z, z0, ζ ∈ D, λ ∈ C and I is the identity matrix. In addition, equa-

tion (2.4) at �xed z0 and λ, is considered as a linear integral equation for

µz0(·, λ) ∈ C1
z̄ (D̄). The functionsGz0(z, ζ, λ), gz0(z, ζ, λ), ψz0(z, λ), µz0(z, λ)

de�ned above, satisfy the following equations (see [13], [14]):

4
∂2

∂z∂z̄
Gz0(z, ζ, λ) = δ(z − ζ),(2.6)

4
∂2

∂ζ∂ζ̄
Gz0(z, ζ, λ) = δ(ζ − z),(2.7)

4
(
∂

∂z
+ 2λ(z − z0)

)
∂

∂z̄
gz0(z, ζ, λ) = δ(z − ζ),(2.8)

4
∂

∂ζ̄

(
∂

∂ζ
− 2λ(ζ − z0)

)
gz0(z, ζ, λ) = δ(ζ − z),(2.9)

−4
∂2

∂z∂z̄
ψz0(z, λ) + v(z)ψz0(z, λ) = 0,(2.10)

−4
(
∂

∂z
+ 2λ(z − z0)

)
∂

∂z̄
µz0(z, λ) + v(z)µz0(z, λ) = 0,(2.11)

where z, z0, ζ ∈ D, λ ∈ C, δ is the Dirac delta. (In addition, we assume that

(2.4) is uniquely solvable for µz0(·, λ) ∈ C1
z̄ (D̄) at �xed z0 and λ.)

We say that the functions Gz0 , gz0 , ψz0 , µz0 , hz0 are the Bukhgeim-type

analogues of the Faddeev functions (see [14]). We recall that the history of

these functions goes back to [7] and [3].

Now we state some fundamental lemmata. Let

(2.12) gz0,λu(z) =
∫

D
gz0(z, ζ, λ)u(ζ)dReζ dImζ, z ∈ D̄, z0, λ ∈ C,

where gz0(z, ζ, λ) is de�ned by (2.2) and u is a test function.

Lemma 2.1 ([13]). Let gz0,λu be de�ned by (2.12). Then, for z0, λ ∈ C, the

following estimates hold:

gz0,λu ∈ C1
z̄ (D̄), for u ∈ C(D̄),(2.13)

‖gz0,λu‖C1(D̄) ≤ c1(D,λ)‖u‖C(D̄), for u ∈ C(D̄),(2.14)

‖gz0,λu‖C1
z̄ (D̄) ≤

c2(D)

|λ|
1
2

‖u‖C1
z̄ (D̄), for u ∈ C1

z̄ (D̄), |λ| ≥ 1.(2.15)

Given a potential v ∈ C1
z̄ (D̄) we de�ne the operator gz0,λv simply as

(gz0,λv)u(z) = gz0,λw(z), w = vu, for a test function u. If u ∈ C1
z̄ (D̄), by
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Lemma 2.1 we have that gz0,λv : C1
z̄ (D̄) → C1

z̄ (D̄),

(2.16) ‖gz0,λv‖op
C1

z̄ (D̄)
≤ 2n‖gz0,λ‖op

C1
z̄ (D̄)

‖v‖C1
z̄ (D̄),

where ‖ · ‖op
C1

z̄ (D̄)
denotes the operator norm in C1

z̄ (D̄), z0, λ ∈ C. In addition,

‖gz0,λ‖op
C1

z̄ (D̄)
is estimated in Lemma 2.1. Inequality (2.16) and Lemma 2.1

imply the existence and uniqueness of µz0(z, λ) (and thus also of ψz0(z, λ))
for |λ| > ρ(D,K, n), where ‖v‖C1

z̄ (D̄) < K.

Let

µ(k)
z0

(z, λ) =
k∑

j=0

(gz0,λv)jI,

h(k)
z0

(λ) =
∫

D
eλ(z−z0)2−λ̄(z̄−z̄0)2v(z)µ(k)

z0
(z, λ)dRez dImz,

where z, z0 ∈ D, λ ∈ C, k ∈ N ∪ {0}.

Lemma 2.2 ([13]). For v ∈ C1
z̄ (D̄) such that v|∂D = 0 the following formula

holds:

(2.17) v(z0) =
2
π

lim
λ→∞

|λ|h(0)
z0

(λ), z0 ∈ D.

In addition, if v ∈ C2(D̄), v|∂D = 0 and ∂v
∂ν |∂D = 0 then

(2.18)

∣∣∣∣v(z0)− 2
π
|λ|h(0)

z0
(λ)
∣∣∣∣ ≤ c3(D,n)

log(3|λ|)
|λ|

‖v‖C2(D̄),

for z0 ∈ D, λ ∈ C, |λ| ≥ 1.

Let

Wz0(λ) =
∫

D
eλ(z−z0)2−λ̄(z̄−z̄0)2w(z)dRe zdIm z,

where z0 ∈ D̄, λ ∈ C and w is some Mn(C)-valued function on D̄. (One can

see that Wz0 = h
(0)
z0 for w = v.)

Lemma 2.3 ([13]). For w ∈ C1
z̄ (D̄) the following estimate holds:

|Wz0(λ)| ≤ c4(D)
log (3|λ|)

|λ|
‖w‖C1

z̄ (D̄), z0 ∈ D̄, |λ| ≥ 1.(2.19)

Lemma 2.4 ([14]). For v ∈ C1
z̄ (D̄) and for ‖gz0,λv‖op

C1
z̄ (D̄)

≤ δ < 1 we have

that

‖µz0(·, λ)− µ(k)
z0

(·, λ)‖C1
z̄ (D̄) ≤

δk+1

1− δ
,(2.20)

|hz0(λ)− h(k)
z0

(λ)| ≤ c5(D,n)
log(3|λ|)
|λ|

δk+1

1− δ
‖v‖C1

z̄ (D̄),(2.21)

where z0 ∈ D, λ ∈ C, |λ| ≥ 1, k ∈ N ∪ {0}.
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The proofs of Lemmata 2.1-2.4 can be found in the references given.

We will also need the following two new lemmata.

Lemma 2.5. Let gz0,λu be de�ned by (2.12), where u ∈ C1
z̄ (D̄), z0, λ ∈ C.

Then the following estimate holds:

‖gz0,λu‖C(D̄) ≤ c6(D)
log(3|λ|)
|λ|

‖u‖C1
z̄ (D̄), |λ| ≥ 1.(2.22)

Lemma 2.6. The expression

(2.23) W (u, v)(λ) =
∫

D
eλ(z−z0)2−λ̄(z̄−z̄0)2u(z)(gz0,λv)(z)dRez dImz,

de�ned for u, v ∈ C1
z̄ (D̄) with ‖u‖C1

z̄ (D̄), ‖v‖C1
z̄ (D̄) ≤ N1, λ ∈ C, z0 ∈ D,

satis�es the estimate

|W (u, v)(λ)| ≤ c7(D,N1, n)
(log(3|λ|))2

|λ|1+3/4
, |λ| ≥ 1.(2.24)

The proofs of Lemmata 2.5, 2.6 are given in section 4.

3. Proof of Theorem 1.1

We begin with a technical lemma, which will prove useful when general-

ising Alessandrini's identity.

Lemma 3.1. Let v ∈ C1(D̄,Mn(C)) be a matrix-valued potential which

satis�es condition (1.4) (i.e., 0 is not a Dirichlet eigeinvalue for the operator

−∆ + v in D). Then tv, the transpose of v, also satis�es condition (1.4).

The proof of Lemma 3.1 is given in section 4.

We can now state and prove a matrix-valued version of Alessandrini's

identity (see [1] for the scalar case).

Lemma 3.2. Let v1, v2 ∈ C1(D̄,Mn(C)) be two matrix-valued potentials

which satisfy (1.4), Φ1,Φ2 their associated Dirichlet-to-Neumann operators,

respectively, and u1, u2 ∈ C2(D̄,Mn(C)) two matrix-valued functions such

that

(−∆ + v1)u1 = 0, (−∆ + tv2)u2 = 0 on D,

where tA stand for the transpose of A. Then we have the identity

(3.1)∫
∂D

tu2(z)(Φ2 − Φ1)u1(z)|dz| =
∫

D

tu2(z)(v2(z)− v1(z))u1(z)dRez dImz.
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Proof. If v ∈ C1(D̄,Mn(C)) is any matrix-valued potential (which satis�es

(1.4)) and f1, f2 ∈ C1(∂D,Mn(C)) then we have

(3.2)

∫
∂D

tf2Φf1|dz| =
∫

∂D

t
(
tf1Φ∗f2

)
|dz|,

where Φ and Φ∗ are the Dirichlet-to-Neumann operators associated with

v and tv, respectively (these operators are well-de�ned thanks to Lemma

3.1). Indeed, it is su�cient to extend f1 and f2 in D as the solutions of the

Dirichlet problems (−∆ + v)f̃1 = 0, (−∆ + tv)f̃2 = 0 on D and f̃j |∂D = fj ,

for j = 1, 2, so that one obtains∫
∂D

(
tf2Φf1 − t

(
tf1Φ∗f2

))
|dz|

=
∫

∂D

(
tf2

∂f̃1

∂ν
− t

(
∂f̃2

∂ν

)
f1

)
|dz|

=
∫

D

(
tf̃2 ∆f̃1 − t

(
∆f̃2

)
f̃1

)
dRez dImz

=
∫

D

(
tf̃2 v f̃1 − t

(
tv f̃2

)
f̃1

)
dRez dImz = 0,

where for the second equality we used the following matrix-valued version of

the classical scalar Green's formula:

(3.3)

∫
∂D

(
t

(
∂f

∂ν

)
g − tf

∂g

∂ν

)
|dz| =

∫
D

(
t(∆f) g − tf∆g

)
dRez dImz,

for any f, g ∈ C2(D,Mn(C)) ∩ C1(D̄,Mn(C)).
Identities (3.2) and (3.3) imply∫

∂D

tu2(z)(Φ2 − Φ1)u1(z)|dz|

=
∫

∂D

(
t
(
tu1(z)Φ∗2u2(z)

)
− tu2(z)Φ1u1(z)

)
|dz|

=
∫

∂D

(
t

(
∂u2(z)
∂ν

)
u1(z)− tu2(z)

∂u1(z)
∂ν

)
|dz|

=
∫

D

(
t(∆u2(z))u1(z)− tu2(z)∆u1(z)

)
dRez dImz

=
∫

D

(
t
(
tv2(z)u2(z)

)
u1(z)− tu2(z) v1(z)u1(z)

)
dRez dImz

=
∫

D

tu2(z)(v2(z)− v1(z))u1(z)dRez dImz. �

Now let µ̄z0 denote the complex conjugate of µz0 (the solution of (2.4)) for

a Mn(R)-valued potential v and, more generally, the solution of (2.4) with
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gz0(z, ζ, λ) replaced by gz0(z, ζ, λ) for a Mn(C)-valued potential v. In order

to make use of (3.1) we de�ne

u1(z) = ψ1,z0(z, λ) = eλ(z−z0)2µ1(z, λ),

u2(z) = ψ2,z0
(z,−λ) = e−λ̄(z̄−z̄0)2 µ̄2(z,−λ),

for z0 ∈ D, λ ∈ C, |λ| > ρ (ρ is mentioned in section 2), where we set

µ1 = µ1,z0 , µ2 = µ2,z0 for simplicity's sake and µ1,z0 , µ2,z0 are the solutions

of (2.4) with v replaced by v1,
tv2, respectively.

Equation (3.1), with the above-de�ned u1, u2, now reads∫
∂D

∫
∂D

e−λ̄(z̄−z̄0)2 tµ̄2(z,−λ)(Φ2 − Φ1)(z, ζ)eλ(ζ−z0)2µ1(ζ, λ)|dζ||dz|(3.4)

=
∫

D
eλ,z0(z)

tµ̄2(z,−λ)(v2 − v1)(z)µ1(z, λ)dRez dImz.

with eλ,z0(z) = eλ(z−z0)2−λ̄(z̄−z̄0)2 and (Φ2 −Φ1)(z, ζ) is the Schwartz kernel
of the operator Φ2 − Φ1.

The right side I(λ) of (3.4) can be written as the sum of four integrals,

namely

I1(λ) =
∫

D
eλ,z0(z)(v2 − v1)(z)dRez dImz,

I2(λ) =
∫

D
eλ,z0(z)

t(µ̄2 − I)(v2 − v1)(z)(µ1 − I)dRez dImz,

I3(λ) =
∫

D
eλ,z0(z)

t(µ̄2 − I)(v2 − v1)(z) dRez dImz,

I4(λ) =
∫

D
eλ,z0(z) (v2 − v1)(z)(µ1 − I)dRez dImz,

for z0 ∈ D.

Since (v2−v1)|∂D = ∂
∂ν (v2−v1)|∂D = 0, the �rst term, I1, can be estimated

using Lemma 2.2 as∣∣∣∣ 2π |λ|I1 − (v2(z0)− v1(z0))
∣∣∣∣ ≤ c3(D,n)

log(3|λ|)
|λ|

‖v2 − v1‖C2(D̄),(3.5)

for |λ| ≥ 1. The other terms, I2, I3, I4, satisfy, by Lemmata 2.1 and 2.4,

|I2| ≤
∣∣∣∣∫

D
eλ,z0(z)

t(gz0,λ
tv2)(v2 − v1)(z)(gz0,λv1)dRez dImz

∣∣∣∣(3.6)

+O

(
log(3|λ|)
|λ|2

)
c8(D,N, n),

|I3| ≤
∣∣∣∣∫

D
eλ,z0(z)

t(gz0,λ
tv2)(v2 − v1)(z)dRez dImz

∣∣∣∣(3.7)

+O

(
log(3|λ|)
|λ|2

)
c9(D,N, n),
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|I4| ≤
∣∣∣∣∫

D
eλ,z0(z) (v2 − v1)(z)(gz0,λv1)dRez dImz

∣∣∣∣(3.8)

+O

(
log(3|λ|)
|λ|2

)
c10(D,N, n),

whereN is the constant in the statement of Theorem 1.1 and |λ| is su�ciently

large, for example for λ such that

2n
c2(D)

|λ|
1
2

≤ 1
2
, |λ| ≥ 1.(3.9)

Lemmata 2.5, 2.6, applied to (3.6)-(3.8), give us

|I2| ≤ c11(D,N, n)
(log(3|λ|))2

|λ|2
,(3.10)

|I3| ≤ c12(D,N, n)
(log(3|λ|))2

|λ|1+3/4
,(3.11)

|I4| ≤ c13(D,N, n)
(log(3|λ|))2

|λ|1+3/4
.(3.12)

The left side J(λ) of (3.4) can be estimated as follows:

|λ||J(λ)| ≤ c14(D,n)e(2L2+1)|λ|‖Φ2 − Φ1‖,(3.13)

for λ which satis�es (3.9), and L = maxz∈∂D, z0∈D |z − z0|.
Putting together estimates (3.5)-(3.13) we obtain

|v2(z0)− v1(z0)| ≤ c15(D,N, n)
(log(3|λ|))2

|λ|3/4
+

2
π
c14(D,n)e(2L2+1)|λ|‖Φ2 − Φ1‖

(3.14)

for any z0 ∈ D. We call ε = ‖Φ2 − Φ1‖ and impose |λ| = γ log(3 + ε−1),
where 0 < γ < (2L2 + 1)−1 so that (3.14) reads

|v2(z0)− v1(z0)| ≤ c15(D,N, n)(γ log(3 + ε−1))−
3
4
(
log(3γ log(3 + ε−1))

)2(3.15)

+
2
π
c14(D,n)(3 + ε−1)(2L2+1)γε,

for every z0 ∈ D, with

(3.16) 0 < ε ≤ ε1(D,N, γ, n),

where ε1 is su�ciently small or, more precisely, where (3.16) implies that

|λ| = γ log(3 + ε−1) satis�es (3.9).
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As (3 + ε−1)(2L2+1)γε → 0 for ε → 0 more rapidly then the other term,

we obtain that

‖v2 − v1‖L∞(D) ≤ c16(D,N, γ, n)

(
log(3 log(3 + ‖Φ2 − Φ1‖−1))

)2
(log(3 + ‖Φ2 − Φ1‖−1))

3
4

(3.17)

for any ε = ‖Φ2 − Φ1‖ ≤ ε1(D,N, γ, n).
Estimate (3.17) for general ε (with modi�ed c16) follows from (3.17) for

ε ≤ ε1(D,N, γ, n) and the assumption that ‖vj‖L∞(D) ≤ N, j = 1, 2. This

completes the proof of Theorem 1.1. �

4. Proofs of Lemmata 2.5, 2.6, 3.1.

Proof of Lemma 2.5. We decompose the operator gz0,λ, de�ned in (2.12), as

the product 1
4Tz0,λT̄z0,λ, where

Tz0,λu(z) =
1
π

∫
D

e−λ(ζ−z0)2+λ̄(ζ̄−z̄0)2

z − ζ
u(ζ)dReζ dImζ,(4.1)

T̄z0,λu(z) =
1
π

∫
D

eλ(ζ−z0)2−λ̄(ζ̄−z̄0)2

z̄ − ζ̄
u(ζ)dReζ dImζ,(4.2)

for z0, λ ∈ C. From the proof of [13, Lemma 3.1] we have the estimate

‖T̄z0,λu‖C(D̄) ≤
η1(D)
|λ|1/2

‖u‖C(D̄) + η2(D)
log(3|λ|)
|λ|

∥∥∥∥∂u∂z̄
∥∥∥∥

C(D̄)

,(4.3)

for u ∈ C1
z̄ (D̄), z0 ∈ D, |λ| ≥ 1. As the kernels of Tz0,λ and T̄z0,λ are

conjugates of each other we deduce immediately that

‖Tz0,λu‖C(D̄) ≤
η1(D)
|λ|1/2

‖u‖C(D̄) + η2(D)
log(3|λ|)
|λ|

∥∥∥∥∂u∂z
∥∥∥∥

C(D̄)

, |λ| ≥ 1,(4.4)

for u ∈ C1
z (D̄). Combining the two estimates we obtain

‖gλ,z0u‖C(D̄) =
1
4
‖Tz0,λT̄z0,λu‖C(D̄)

≤ 1
4

(
η1(D)

‖T̄z0,λu‖C(D̄)

|λ|1/2
+ η2(D)

log(3|λ|)
|λ|

∥∥∥∥ ∂∂z T̄z0,λu

∥∥∥∥
C(D̄)

)

≤ η3(D)

(
‖u‖C(D̄)

|λ|
+

log(3|λ|)
|λ|3/2

∥∥∥∥∂u∂z̄
∥∥∥∥

C(D̄)

+
log(3|λ|)
|λ|

‖u‖C(D̄)

)

≤ η4(D)
log(3|λ|)
|λ|

‖u‖C1
z̄ (D̄), |λ| ≥ 1,

where we use the fact that ‖ ∂
∂z T̄z0,λu‖C(D) = ‖u‖C(D). �
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Proof of Lemma 2.6. For 0 < ε ≤ 1, z0 ∈ D, let Bz0,ε = {z ∈ C : |z − z0| ≤
ε}. We write W (u, v)(λ) = W 1(λ) +W 2(λ), where

W 1(λ) =
∫

D∩Bz0,ε

eλ(z−z0)2−λ̄(z̄−z̄0)2u(z)gz0,λv(z)dRez dImz,

W 2(λ) =
∫

D\Bz0,ε

eλ(z−z0)2−λ̄(z̄−z̄0)2u(z)gz0,λv(z)dRez dImz.

The �rst term, W 1, can be estimated as follows:

|W 1(λ)| ≤ σ1(D,n)‖u‖C(D̄)‖v‖C1
z (D̄)

ε2 log(3|λ|)
|λ|

, |λ| ≥ 1,(4.5)

where we use estimates (2.16) and (2.22).

For the second term, W 2, we proceed using integration by parts, in order

to obtain

W 2(λ) =
1

4iλ̄

∫
∂(D\Bz0,ε)

eλ(z−z0)2−λ̄(z̄−z̄0)2 u(z)gz0,λv(z)
z̄ − z̄0

dz

− 1
2λ̄

∫
D\Bz0,ε

eλ(z−z0)2−λ̄(z̄−z̄0)2 ∂

∂z̄

(
u(z)gz0,λv(z)

z̄ − z̄0

)
dRez dImz.

This implies that

|W 2(λ)| ≤ 1
4|λ|

∫
∂(D\Bz0,ε)

‖u(z)gz0,λv(z)‖C(D̄)

|z̄ − z̄0|
|dz|(4.6)

+
1

2|λ|

∣∣∣∣∣
∫

D\Bz0,ε

eλ(z−z0)2−λ̄(z̄−z̄0)2 ∂

∂z̄

(
u(z)gz0,λv(z)

z̄ − z̄0

)
dRez dImz

∣∣∣∣∣ ,
for λ 6= 0. Again by estimates (2.16) and (2.22) we obtain

|W 2(λ)| ≤ σ2(D,n)‖u‖C1
z (D̄)‖v‖C1

z (D̄)

log(3ε−1) log(3|λ|)
|λ|2

(4.7)

+
1

8|λ|

∣∣∣∣∣
∫

D\Bz0,ε

u(z)
T̄z0,λv(z)
z̄ − z̄0

dRez dImz

∣∣∣∣∣ , |λ| ≥ 1,

where we used the fact that ∂
∂z̄gz0,λv(z) = 1

4e
−λ(z−z0)2+λ̄(z̄−z̄0)2 T̄z0,λv(z),

with T̄z0,λ de�ned in (4.2).

The last term in (4.7) can be estimated independently of ε by

(4.8) σ3(D,n)‖u‖C(D̄)‖v‖C1
z̄ (D̄)

log(3|λ|)
|λ|1+3/4

.

This is a consequence of (4.3) and of the estimate

(4.9) |T̄z0,λu(z)| ≤
log(3|λ|)(1 + |z − z0|)τ1(D)

|λ||z − z0|2
‖u‖C1

z̄ (D̄), |λ| ≥ 1,
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for u ∈ C1
z̄ (D̄), z, z0 ∈ D (a proof of (4.9) can be found in the proof of [13,

Lemma 3.1]).

Indeed, for 0 < δ ≤ 1
2 we have∣∣∣∣∫

D
u(z)

T̄z0,λv(z)
z̄ − z̄0

dRez dImz
∣∣∣∣

≤
∫

Bz0,δ∩D
|u(z)|

|T̄z0,λv(z)|
|z − z0|

dRez dImz +
∫

D\Bz0,δ

|u(z)|
|T̄z0,λv(z)|
|z − z0|

dRez dImz

≤ ‖u‖C(D̄)‖v‖C1
z̄ (D̄)

τ2(D,n)
|λ|1/2

∫
Bz0,δ∩D

dRez dImz
|z − z0|

+ ‖u‖C(D̄)‖v‖C1
z̄ (D̄)

log(3|λ|)
|λ|

τ3(D,n)
∫

D\Bz0,δ

dRez dImz
|z − z0|3

≤ 2π‖u‖C(D̄)‖v‖C1
z̄ (D̄)τ2(D,n)

δ

|λ|
1
2

+ ‖u‖C(D̄)‖v‖C1
z̄ (D̄)τ4(D,n)

log(3|λ|)
|λ|δ

,

for |λ| ≥ 1. Putting δ = 1
2 |λ|

−1/4 in the last inequality gives (4.8).

Finally, de�ning ε = |λ|−1/2 in (4.7), (4.5) and using (4.8), we obtain the

main estimate (2.24), which thus �nishes the proof of Lemma 2.6. �

Proof of Lemma 3.1. Take u ∈ H1(D,Mn(C)) such that (−∆ + tv)u = 0 on

D and u|∂D = 0. We want to prove that u ≡ 0 on D.

By our hypothesis, for any f ∈ C1(∂D,Mn(C)) there exists a unique

f̃ ∈ H1(D,Mn(C)) such that (−∆ + v)f̃ = 0 on D and f̃ |∂D = f . Thus we

have, using Green's formula (3.3),∫
∂D

t

(
∂u

∂ν

)
f |dz| =

∫
D

(
t(∆u) f̃ − tu∆f̃

)
dRez dImz

=
∫

D

(
t
(
tv u

)
f̃ − tu v f̃

)
dRez dImz = 0,

which yields ∂u
∂ν |∂D = 0. Now consider the following straightforward gener-

alization of Green's formula (3.3),

∫
∂D

(
t

(
∂f

∂ν

)
g − tf

∂g

∂ν

)
|dz| =

∫
D

t
(
(∆− tv)f

)
g − tf ((∆− v)g) dRez dImz,

(4.10)

which holds (weakly) for any f, g ∈ H1(D,Mn(C)). If we put f = u we

obtain

(4.11)

∫
D

tu (−∆ + v)g dRez dImz = 0,

for any g ∈ H1(D,Mn(C)). By Fredholm alternative (see [6, Sec. 6.2]), for

each h ∈ L2(D,Mn(C)) there exists a unique g ∈ H1
0 (D,Mn(C)) = {g ∈
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H1(D,Mn(C)) : g|∂D = 0} such that (−∆ + v)g = h. This yields u ≡ 0 on

D and thus Lemma 3.1 is proved. �

5. An extensions of Theorem 1.1

As an extension of Theorem 1.1 to the case where we do not assume that

v1|∂D = v2|∂D and ∂
∂ν v1|∂D = ∂

∂ν v2|∂D, we give the following proposition:

Proposition 5.1. Let D ⊂ R2 be an open bounded domain with a C2 bound-

ary, v1, v2 ∈ C2(D̄,Mn(C)) two matrix-valued potentials which satisfy (1.4),

with ‖vj‖C2(D̄) ≤ N for j = 1, 2, and Φ1,Φ2 the corresponding Dirichlet-

to-Neumann operators. Then, for any 0 < α < 1
5 , there exists a constant

C = C(D,N, n, α) such that

(5.1) ‖v2 − v1‖L∞(D) ≤ C
(
log(3 + ‖Φ2 − Φ1‖−1

1 )
)−α

,

where, for an operator A which acts on L∞(∂D,Mn(C)) with kernel A(x, y),
‖A‖1 is the norm de�ned as ‖A‖1 = supx,y∈∂D |A(x, y)|(log(3+ |x−y|−1))−1

and |A(x, y)| = max1≤i,j≤n |Ai,j(x, y)|.

The only properties of ‖ · ‖1 we will use are the following:

i) ‖A‖L∞(∂D)→L∞(∂D) ≤ const(D,n)‖A‖1;

ii) In a similar way as in formula (4.9) of [11] one can deduce

‖v‖L∞(∂D) ≤ const(n)‖Φv − Φ0‖1,

for a matrix-valued potential v, Φv its associated Dirichlet-to-Neu-

mann operator and Φ0 the Dirichlet-to-Neumann operator of the 0
potential.

We recall a lemma from [13], which generalizes Lemma 2.2 to the case of

potentials without boundary conditions. We then de�ne (∂D)δ = {z ∈ C :
dist(z, ∂D) < δ}.

Lemma 5.2. For v ∈ C2(D̄) we have that∣∣∣∣v(z0)− 2
π
|λ|h(0)

z0
(λ)
∣∣∣∣ ≤ κ1(D,n)δ−4 log(3|λ|)

|λ|
‖v‖C2(D̄)(5.2)

+ κ2(D,n) log(3 + δ−1)‖v‖C(∂D),

for z0 ∈ D \ (∂D)δ, 0 < δ < 1, λ ∈ C, |λ| ≥ 1.

The proof of Lemma 5.2 for the scalar case can be found in [13] and its

generalization to the matrix-valued case is straightforward.
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Proof of Proposition 5.1. Fix 0 < α < 1
5 and 0 < δ < 1. We then have the

following chain of inequalities

‖v2 − v1‖L∞(D)

= max(‖v2 − v1‖L∞(D∩(∂D)δ), ‖v2 − v1‖L∞(D\(∂D)δ))

≤ C1 max
(

2Nδ + ‖Φ2 − Φ1‖1,
log(3 log(3 + ‖Φ2 − Φ1‖−1))
δ4 log(3 + ‖Φ2 − Φ1‖−1)

+ log(3 +
1
δ
)‖Φ2 − Φ1‖1 +

(
log(3 log(3 + ‖Φ2 − Φ1‖−1))

)2
(log(3 + ‖Φ2 − Φ1‖−1))

3
4

)

≤ C2 max
(

2Nδ + ‖Φ2 − Φ1‖1,
1
δ4
(
log(3 + ‖Φ2 − Φ1‖−1

1 )
)−5α

+ log(3 +
1
δ
)‖Φ2 − Φ1‖1 +

(
log(3 log(3 + ‖Φ2 − Φ1‖−1

1 ))
)2

(log(3 + ‖Φ2 − Φ1‖−1
1 ))

3
4

)
,

where we followed the outline of the proof of Theorem 1.1 with the following

modi�cations: we made use of Lemma 5.2 instead of Lemma 2.2 and we also

used i)-ii); note that C1 = C1(D,N, n) and C2 = C2(D,N, n, α).
Putting δ =

(
log(3 + ‖Φ2 − Φ1‖−1

1 )
)−α

we obtain the desired inequality

‖v2 − v1‖L∞(D) ≤ C3

(
log(3 + ‖Φ2 − Φ1‖−1

1 )
)−α

,(5.3)

with C3 = C3(D,N, n, α), ‖Φ2 − Φ1‖1 = ε ≤ ε1(D,N, n, α) with ε1 su�-

ciently small or, more precisely when δ1 =
(
log(3 + ε−1

1 )
)−α

satis�es:

δ1 < 1, ε1 ≤ 2Nδ1, log(3 +
1
δ1

)ε1 ≤ δ1.

Estimate (5.3) for general ε (with modi�ed C3) follows from (5.3) for

ε ≤ ε1(D,N, n, α) and the assumption that ‖vj‖L∞(D̄) ≤ N for j = 1, 2.
This completes the proof of Proposition 5.1. �
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