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NEUMANN BOUNDARY CONDITIONS

GREGOIRE ALLAIRE, YVES CAPDEBOSCQ, AND MARJOLAINE PUEL

ABsTrRACT. We study the asymptotic behavior of the first eigenvalue and eigenfunction of a
one-dimensional periodic elliptic operator with Neumann boundary conditions. The second
order elliptic equation is not self-adjoint and is singularly perturbed since, denoting by € the
period, each derivative is scaled by an e factor. The main difficulty is that the domain size
is not an integer multiple of the period. More precisely, for a domain of size 1 and a given
fractional part 0 < ¢ < 1, we consider a sequence of periods ¢, = 1/(n + ¢) with n € N.
In other words, the domain contains n entire periodic cells and a fraction § of a cell cut by
the domain boundary. According to the value of the fractional part §, different asymptotic
behaviors are possible: in some cases an homogenized limit is obtained, while in other cases
the first eigenfunction is exponentially localized at one of the extreme points of the domain.

1. INTRODUCTION

This paper is devoted to the homogenization of a spectral problem for a singularly perturbed
elliptic equation in a one-dimensional periodic medium with Neumann boundary conditions.
Without loss of generality we consider a bounded domain Q = (0,1) and we denote by € > 0
its period, or rather the period of the coefficients of the equation posed in €. Although we
shall sometime use the notations V and div for the gradient and the divergence operators, they
simply mean derivation with respect to the single spatial variable. We study the following
eigenvalue problem

—e2div (a (%) VUE) +eb (%) Vuf +c¢ (%) u® = A°p (%) u® in ),

(1)
a (%) Vuf = 0 on 0.

We assume that a, b, c and p are continuous periodic functions of period one, defined in the unit
cell Y = [0,1]. As usual z denotes the macroscopic variable in €2, while y is the microscopic
variable in Y, and they are related by the scaling y = x/e. We further assume that a and p
are strictly positive, more precisely there exists a positive constant C' such that

VyeY, 0<C<aly)<C™, 0<C<ply) <C.

By the Krein-Rutman theorem there exists, at least, a first eigenvalue and eigenvector of (1)
that we shall denote by A\* and u®. Furthermore, \* is real, simple and the smallest in modulus
of all other eigenvalues, and u® can be chosen to be positive in Q and is thus unique if it is
normalized, say by the choice of u®(0). Since (1) is actually an ordinary differential equation
in one space dimension, the eigenfunction u® belongs at least to C'*(Q).

We study the asymptotic behavior of the smallest eigenpair (A\°, %), when ¢ tends to zero.
In contrast to the case of Dirichlet boundary conditions, studied in [7], the behavior of the
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first eigencouple depends on the fractional part of 1/e. Furthermore, new asymptotic regimes,
corresponding to an exponential localization of the first eigenfunction at one of the extreme
points of the domain, are obtained for some values of this fractional part. Nevertheless, for
other values of the fractional part we still obtain an homogenized limit as was always the case
for Dirichlet boundary conditions. Our main results are Theorems 2.4 and 2.7 below. We
therefore choose the sequence € = ¢, to be of the form

(2) €= !

n+4’
where n is an integer and 0 < § < 1 is a constant which is the rescaled size of the fractional
part of the extremal periodic cell cut by the right domain boundary. In the sequel, when
€ = &, is said to go to 0, we mean that n goes to infinity with ¢ fixed.

The special case § = 0, corresponding to an entire number of cells in the domain, is already
known. It already appears in [14] for a similar system of two elliptic equations. In this later
case, the proof is a little more involved and uses an exponential change of unknowns together
with a viscosity solution approach to the resulting Hamilton-Jacobi equation. In the case of
(1) a simpler proof is available for the following proposition.

Proposition 1.1. Assume that 6 = 0 in (2). Let (An,un) be the first eigenpair of the
following Neumann cell problem

—divy (a(y)Vyun) + b(y)Vyun + c(y)un = Anp(y)un in'Y,
(3) a(0)Vyun(0) = a(1)V,yun(1) =0
UN(O) = 1.

Define Oy = log (un(1)). Then, the function wy(y) = e 'NYup(y) is 1-periodic and the first
eigenpair of (1) is exactly given by

OnT
A=Ay, us(x) =e B wyN (E> .
€
Proof. By the Krein-Rutman theorem wuy is positive, therefore Oy is well defined, and thus

OnT
we can define a 1-periodic function wy = e ?Yuy(y) on each period. Clearly, e wy (%) is

a positive C'! solution of (1) for the eigenvalue A\y. Another application of the Krein-Rutman
theorem, which implies that a positive eigenfunction can happen only for the first eigenvalue,

yields that Ay is indeed the smallest eigenvalue A\° and then u.(z) = eeNTIwN (f) O

The fact that we can get an explicit and exact formula (in terms of €) for the solution of
(1) is quite special to this case (even though it sometimes happens when § # 0). Nevertheless
this example shows that Neumann cell eigenvalue problems are key to the problem, and that
the solutions could be of exponential-periodic type.

2. MAIN RESULTS

Before we can state our main results, Theorems 2.4 and 2.7, we need to introduce some
notations and auxiliary problems. Since the case § = 0 is already covered by Proposition 1.1,
we assume from now on that 0 < 0 < 1in (2). Instead of the single Neumann cell problem (3)
there are now two such cell problems to consider, each of them corresponding to one endpoint
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of the domain €. For ¢ € [0,1] let us introduce the following Neumann cell problem on the
shifted cell (t —1,t): we call (uly, ), the first eigenpair of

{ —div, (a(y)Vyuﬁv) + b(y)Vyuly + c(y)uly = Nyp(y)uly in (¢ —1,¢),
a(t)Vyuly (t) = a(t — 1)Vyuly(t — 1) = 0,

normalized by u (¢t — 1) = 1. Another application of the Krein-Rutman theorem shows that
there exists a first eigenvalue A}, (which is real, simple and the smallest in modulus of all
other eigenvalues) and a corresponding eigenvector ul; which can be chosen to be positive in
Y. Only two values of the parameter ¢ matter: ¢ = 0 for the left end point x =0 and t = 9§
for the right end point z = 1 of Q2.

(4)

2.1. Exponential-periodic cell problems. We shall recognize (see Lemma 2.2 below) that
the auxiliary problem (4) is actually equivalent to the well-known exponential-periodic cell
problem (or shifted cell problem) introduced in [2, 6, 7, 14]. These spectral cell problems are
key ingredients in the homogenization of (1). Following the lead of |2, 6, 7, 14], for each § € R
we introduce an exponential-periodic cell problem which reads

—divy (a(y)Vye) + b(y)Vye + c(y)hg = Xop(y)ie  inY,
y — e Wig(y)  Y-periodic,

(5)

together with its associated adjoint problem, with respect to the L2(Y') scalar product,
o —div, (a(y)V,¥5) — by) V5 + (cly) — div,b(y)v5 = hop(y)d§  in Y,
y— 69y¢§(y) Y -periodic.

In the above equations (5) and (6) A\g stands for the first eigenvalue and g, for the first
eigenfunctions, which exist and are real-valued by virtue, once again, of the Krein-Rutman
theorem. It also implies that Ay is of algebraic and geometric multiplicity one, that we can
impose ¢ > 0, ¥* > 0 in Y and that there are the only eigenfunctions which are positive.
Of course, since (5), (6) and also (4) are just ordinary differential equations, their solutions
belong at least to C1(Y). We choose the following normalization: 5(0) = 1 = }(0). We
recall some properties of these problems, established in [2, 6, 7, 14].

Proposition 2.1. The following properties hold true.
o The map 0 — Mg 1s strictly concave, and limg_, 4 A\g = —00.
o At the unique O such that \g ts mazimal, the normalized eigenvectors Voo = Vg, and
o = Uy, satisfy
(7) a(y) (Voo Vytis (y) — 2 Viytbeo (¥)) + 0(y) 05 (¥) oo (y) = 0 in Y.
e Foreachy €Y, the map 0 — mvng(y) is strictly increasing and one-to-one from

R to R.
o The mazimizer O satisfies

1
(8) b = /0 ;;(Zj)dy.

Proof. We only prove the last point whose proof is not included in references [2, 6, 7, 14]. By
dividing (7) by 9otk , we obtain

- ~ b
—0oo + Vog(Vi,) — 0o — Viog(1eo) + P 0
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where 1o (y) = e Y1) (y) and *_(y) = eP>¥4p* (y) are Y-periodic functions. Integrating
with respect to y, we obtain (8). O

Actually the solution u}; of (4) is an exponential periodic function as shown by the following
result.

Lemma 2.2. For each t € [0,1] there ewists 0% € R such that the solution u'; of (4) satisfies
t _ 0
uy(y) =e
Proof. We define the constant 6%, = log (uﬁ\,(t)) It is then easy to check that the function
u}t ( _ _gt Yot . ~ . .
N () = e 'NYul,(y) is 1-periodic. O

t ) . . .
NYwh (y) where w; is a 1-periodic function.

Lemma 2.2 shows that the solution u}; (y) of (4) coincides with that of (5), Vot (y)/zb% (t—1),
with the same eigenvalue Ay = Agt . In particular, it allows us to extend the function uly to
the whole R although it is originally defined only in (¢t — 1,¢). Depending on the respective

positions of 99\[ and 9;5\, with respect to 0., we will exhibit the different behaviors of the
sequence u. when € goes to zero.

2.2. Convergence. In this subsection, Theorems 2.4 and 2.7 describe completely all possible
asymptotic regimes of the spectral problem (1) using the auxiliary spectral problems (4) and
(5). However we start with a special case, similar to Proposition 1.1, which is simpler than
the general case that will follow. This special case occurs when the solutions u(l)\, and u‘]sv of
(4), for t = 0 and t = § respectively, are equal (up to a multiplicative factor).

é
Proposition 2.3. If the solutions u%, and u‘;\, of (4) satisfies u(y) = uqf;N((jq), then the first
N

eigenpair of (1) is exactly given by

(2)
(0)

vul(y), with 0% = log (u(]]v(O)), is the I-periodic function

=
o8

Goww
A=, ue(x) =e 5

ZO

w

where the function w(y) = e

defined in Lemma 2.2.

_99\]

The proof of Proposition 2.3 is given in Proposition 6.1.

ul ()
uy(=1)’
of ue can be of different nature. In some cases, described in Proposition 2.3, the solution of
(1) concentrates on the boundaries of the domain.

When Proposition 2.3 does not apply, i.e., when uQ(y) # the asymptotic behavior

Theorem 2.4. The first eigenpair of (1) is localized on one of the end points of Q in the
following two cases.

o For (99\, < O and 955\, < 000) or for (9?\, <Oy < {9?\, and )\9\[ < )\?V), then

A — AX | = e =0=)/E(1 4 o(1)),

and

09 » 20 (Z
ua(x) _ua(o)e X wN (a) <
wi(0)

N Lo (Q)

where o 4s a positive constant defined in Proposition 6.8, independent of €.

< QB0 1 ),
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o For (63 > 0uc and 0%, > 0. or for (6% < 6 < 0% and Ay > 2% ), then

V—AM:mé%f%Wu+dnx
and
Te < C
(@) —u ()< el ),
N €
ee w?v(é) L=(9)
where v1 45 a positive constant defined in Proposition 6.8, independent of €.
The first eigenpair of (1) localizes at one or two end points of Q in the following third case.

o For (6% < 0 < 03 and Xy =A%), that is 0% — g = g — 0% > 0, then

AT =2y = —yse 002 (1 + 0(1)),

and
Qe wl (L) 0%~ oo (§ — 1)69%71105 (%)
ut(z) —u(0)e = JX = — uf(0)csge™ = > 5 N e
w3 (0) Yoo (= 1w (0) )
< 96(9%79“)/51\105%1(9)7

€
where vs > 0 and cs are constants defined in Proposition 6.8, independent of €.

Remark 2.5. Throughout this paper, C denotes a positive constant independent of €.

Remark 2.6. The right hand sides of all estimates in Theorem 2.4 are exponentially small
with respect to . In the two first cases, the eigenfunction u. 1s approximately the product of
a periodic function and a scaled exponential, which clearly exhibits a localization effect on one
and only one end point of Q (at least when 9?\[ and 9%[, respectively, are not equal to zero).
The precise end point of Q where localization occurs is deduced from the sign of 9?\, or 0?\,,
respectively. In the third case, the eigenfunction u. localizes on one endpoint of Q if oo # 0
and on the two end points in the special case 0 = 0. Indeed, around x = 0, the ansatz says

u(z) mut(0)e s 5,
wi (0)
whereas around x = 1, we use the following equivalent form of the ansatz
0% ¢
0% —b00 woo(éfl)e%w‘s (
. - N
u(0)ese boe (DU (0)

wi(0)
0% wd (2) . 299 miﬁw(é_l)w?v(f)
— e e T T ©)

o |8

which implies
U ()~ (0)cge s e NI Yool — D ()
oo (= 1w (0)
Therefore, the localisation is determined by the drift factor 0. If 05 < 0, the localization is
mx =0, and if O > 0 the localization occurs in x = 1. In the special case where O = 0
which includes the self adjoint case (see Proposition 2.1), a double localization occurs, as the
solution localizes at both endpoints.
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Proof. 1t is a consequence of Corollary 6.9 which is expressed in terms of ¢°(x), a factorized
solution defined by the relation u®(z) = ¥ (£) ¢°(z), of the factorized cell eigenfunctions
@4 (y) = e %! (y) where ¢}, is the first eigenfunction of (16) and of the factorized Neumann
solutions ¢¢(y) given by (17). Introducing the correspondences that, on one hand,

60 (2) _ medh () o}
(9) 0(0) 29,(0) oo (2)ufy(0) oo (2) w

O = 0% — oo, ©(0) =°(0), o =AY — Ao,
and on the other hand

05 (2) _ €T (5) oo (D (2) oo (e uh (2)
(10) s () 695€<1) 9525(5) oo (£) uiy (2) Yoo (2) 6%10]5\;(5) ’

1
06 :H?V_Hom us(l) :1/100 <5> ¢€(1)7 Hs :A(JSV_)‘OO’

as well as
)

z %t 5 (= § (z INT 5
any ) et (2) | We(@-Dudy () voo(d — e = w} ()
¢0(0) ?5,(0) Yoo (£) Yoo(—1)uR(0)  Yoo(—1)heo (£) w}i(0)
the statements in Theorem 2.4 are equivalent to those in Corollary 6.9. A more precise
corrector result is stated in Proposition 6.8. ]

The last case, 99\, > O and 9?\, < 0, not covered by Theorem 2.4, corresponds to a ho-
mogenization regime. In such a case, the first eigensolution does not localize at the endpoints.
Its precise asymptotic form is given by the following result.

Theorem 2.7. For 0% > 0 and 05 < 0, the first eigenpair of (1) is of the form
x

W () & Yoo (g) u(@) and Ae = oo + £2(A} + 0(1)),

where Vo 15 a periodic function and (u, \j) is the first eigenpair of an homogenized problem

—d*Au = Aps™u in €,
u€ HY Q) and either u(0) =0 or u(l) =0, or both.

where d* and s* are positive constants. (See Theorem 4.4 for a more precise statement and
for the proof).

It is interesting to notice that, in the case of Dirichlet boundary conditions, Theorem 2.7
gives the only possible asymptotic behavior, for any €, i.e., for any 4, and in any space
dimension (see [7]). Therefore, the case of Neumann boundary conditions is much more
sensitive to the precise geometry.

To illustrate our main results, we provide numerical examples of each possible asymp-
totic behavior described in Theorem 2.4 and 2.7. We will show in the next section that
non-selfadjoint problems can be reduced to selfadjoint ones, thus we chose b(y) = 0 for our
numerical tests. For simplicity we also take p(y) = 1. Not all possible behavior can be
observed with only one pair of coefficient. We use two pairs (a(y),c1(y)) and (a(y), ca(y)),
represented in Figure 1 and 2.
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Y . | . | . | . | .
0 0.2 0.4 0.6 0.8 L0

Ficurg 1. The diffusion coefficient a over Y = (0,1).

2.0

I I I I I
) 0.2 0.4 0.6 0.8 1.0

FIGURE 2. The zero-order ¢; (left) and ¢ (right) over Y = (0,1).

The coefficients (chosen very arbitrarily) are given by

SAG)

c1(y)

1 1 1
—sin (2my) — 5 sin (4my) — 6 sin (67y) + 1 sin (87y) ,

p (—62%)2> + %

ca(y) = sin(2my) + cos (4my) + 3.

In all three Figures 3, 4 and 5 we plot the first eigenfunction of (1) for n = 30 (dashed line)
and n = 70 (solid line) to show the trend of convergence as € goes to zero. Figures 3 and 4 are
obtained using the first pair (a(y), c1(y)) and three different values of §, corresponding to the
three configurations identified in Theorem 2.4. In particular the first eigenfunction converges
pointwise to zero in the interior of the domain.

Figure 5 was obtained using the second pair (a(y),c2(y)) and § = 0.2: it illustrates the
homogenization effect characterized in Theorem 2.7. In particular the values of the first
eigenfunction at the two boundary points converge to zero.

Note that the influence of the é parameter on the first-order corrector to the eigenvalue of
a non singularly perturbed homogenization problem was already observed in [15], [12].
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FIGURE 3. Left: concentration at
x =0, for § = 0.9 (n = 30 dashed line,

1.0

0.6

0.4

0.2

().(](

0.6

| | | |
U'U( y 0.4 0.6 0.8 1.0

0.8 1.0

1, for 6 = 0.6. Right: concentration at
n = 70 solid line).

)

0.2 0.4 1.0

FIGURE 4. Concentration at both end points, for 6 = 0.2 (n = 30 dashed line,

n = 70 solid line).

0.8

0.4

0.6F,.

FIGURE 5. The homogenization regime (n = 30 dashed line, n = 70 solid line).

The purely periodic character of the coefficients in (1) is crucial for our results to hold
Actually, a completely different behavior can arise if the coefficients depend on the
macroscopic variable z too, namely localization inside Q can appear [4], [5].

true.
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The content of our paper is the following. In the next section, by using a factorization
principle (in the spirit of [16], [1, 2]) we reduce the original problem (1) to a selfadjoint
one. It thus allows us to write a variational characterization of the first eigenvalue. Of
course, this "miracle" is possible only in one space dimension. Then, Section 4 adresses
the homogenization regime of Theorem 2.7. Section 5 is concerned with the exponential
convergence of the eigenvalues in Theorem 2.4. Eventually Section 6 deals with the convergence
and localization of the eigenfunctions.

3. TRANSFORMATION INTO A SELF-ADJOINT PROBLEM

A remarkable feature of this eigenvalue problem is that it can be reformulated, after a
suitable change of unknowns, as a self-adjoint problem with compact resolvent. Among the
many advantages of working with self-adjoint problems, we shall use in the sequel the fact
that the first eigenvalue is characterized as the minimizer of a Rayleigh quotient, and that the
normalized eigenvectors span the space L?(£2). This change of unknowns will be made thanks
to the exponential-periodic functions introduced in (6), as in [6, 7, 14].

3.1. Factorization. To transform the problem into a self-adjoint one, we perform a change
of unknown and consider instead of u® the function ¢¢ defined by

u® ()
(12) ¢ (x) =
Voo (£)
where 1o, is the first cell eigenfunction defined in Proposition 2.1. Because r — ¥ (f) isa

solution of the equation (with different boundary conditions) it was proved in [1, 2] that (12)
is indeed a change of variable from H(Q2) to H(Q).

Proposition 3.1. If u® is a solution of the original problem (1), then the function ¢°, defined
by (12), is an eigensolution for the following self-adjoint problem

—div(d (£) Vo) = pfs () ¢° in Q,
d(2) Ve +Lg=m (2) =0 on 99

The new periodic coefficients are given by

(13)

Viheo
d(y) = a(y)Veo WV (Y):  5(¥) = PV VW)V (y), m(y) = d(y)w
and the eigenvalues e are related to the ones of (1) by
€ A — )‘oo
Ho= T

Remark 3.2. There are other transformations which map a non self-adjoint problem into a
self-adjoint one in the theory of Hill’s equation (see chapter 111 in [11]).

Proof. Asin [1, 7, 10, 16], replacing u®(z) by ¢°(2)te (£) in (1) gives
—2div (aoo V&) — ediv (ad°V o) + 0o VG + b3 V1o + oo d®
= Ao d®.

Using the fact that 1 is solution of a cell problem, we note that

b¢avywoo + Yoo = AotV d® — divy (avy¢m) o

(14)
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Therefore (14) becomes
—&?div (aos V§°) — £aV O Vythoo + ebihos VI = (A° — Ao )1hood®.
Multiplying this last identity by %, we obtain
—e2% div (athoo VO©) — £a1hi VE™Vythoo + EbU 100 VT = (X — Moo )b thoc°
which becomes
—8div(ay oo VO©) + € (—ar3 Vythoo + atheo Vit + bPitboc) V6©
= (A" = Aoo) Ui Poo "
Thanks to (7), the first order term cancels, and we obtain (12). O

Remark 3.3. Note that because of the regularity and positivity of Voo and V5, the coefficients
d, s and m are continuous and satisfy, for some constant C' > 0,

C<dy)<C ™ C<sy)<Cland —C <m(y) <C forallyc.

The coefficients d(y), s(y), m(y) are indeed Y -periodic functions. As ¥oo(y) = exp(Oooy)goo(y),
with goo Y -periodic, and ¥} (y) = exp(—0y)95.(y), with gl Y -periodic, we have Yoo, =
o005, and also

Vioo(y) _ N Voo (y)  Vioo(y +1)

boo(y) T geo(y)  Weo(y+ 1)
Remark 3.4. The above factorization principle can actually be applied in any space dimension.
However it yields an additional convective term in equation (18) with a periodic velocity which
18 divergence free and has zero average. It is only in the one-dimensional case that it implies
that the velocity is zero. This is the main reason why we restrict ourselves to a one-dimensional
setting.

We have transformed a non-selfadjoint problem into a selfadjoint one, at the cost of changing
the Neumann boundary condition into a Fourier or Robin boundary condition. Since we work
in one space dimension, we did not write the unit external normal vector in the Fourier
boundary condition which thus changes the usual sign convention for the boundary condition
at the left end of the interval Q. Remark that (13) is still singularly perturbed because of
the factor e~! in the boundary condition. Nevertheless, this transformation enables us to
characterize the first eigenpair as minimizers of a Rayleigh quotient.

Proposition 3.5. The first eigenvalue of problem (13) p® is given by
x 1
[ a(2) IV de+ 2 (m(5)6(1) - m(0)6*(0))
€ . 9] 9 I3
(15) u° = min

 geH\(Q) ({) 22 d
[+(®) @
Furthermore, the minimum in (15) is achieved by any multiple of the first eigenfunction of
(13).

The proof of Proposition 3.5 is obvious: simply note that, whatever the signs of m(0) and
m(d), the boundary terms cause no problems in the coercivity, for fixed ¢, of the Rayleigh
quotient since, for any small k > 0, there exists a constant C}; > 0 such that

$%(0) < K/ yv¢|2dx+cﬂ/ P*(z)dz Vo e HY(Q).
Q Q
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3.2. Cell Problems. After the factorization (12) we can again introduce exponential-periodic
cell problems, adapted to the new spectral problem (13). For each 6 € R, define ¢} as the
first eigenfunction of

(16) { —div(d(y)Veh) = wps(y)eh inY,

y — e %pl(y) Y — periodic,

normalized by ¢} (t —1) = 1. Since (16) is self-adjoint, there is no need to introduce an adjoint
problem. In the periodic case, i.e., § = 0, the explicit solution of (16) is v = 0 and ¢¢ = 1.

In the same spirit, we can perform a factorization, similar to (12), for the solution ul; of
(4) and define

t

an Bl0) = et~ 12 ((Z) and 1 = Ny — .

~—

Thus ¢, is the first eigenfunction of
—divy (d(y)Vydr) = ms(y)dr  in (t —1,1),
(18) d(t = V61t — 1) +mlt — u(t — 1) = 0,

d(t)Vyei(t) +m(t)e(t) = 0,

normalized by ¢;(t — 1) = 1. Alternatively, (18) can be motivated by a formal study of the
influence of the boundary condition in (13). As usual, the simplicity of the first eigenvalue as
well as the uniqueness and positivity of the first normalized eigenfunctions of (16) and (18)
follows from the Krein-Rutman theorem. The problems (16) and (18) play a role in the final
result.

We now show that the eigenvalue problem (18) can be interpreted as an exponential-periodic
problem.

Proposition 3.6. For each t € [0,1] there exists a unique 6; € R such that ¢ = ¢ and
vy, = . The sign of 0, is the opposite of that of m(t). Furthermore, py < 0 if m(t) # 0.
As a consequence, if m(0) > 0 then there exists 6y < 0 and C > 0 such that for all x,

_ 1 Vo(x) 1
0<C<efom < — and0>—C > > .
e %o () o an 20(2) G
If m(5) < 0 then there exists 05 > 0 and C > 0 such that for all x,
_ 1 Vos(z) 1
0<C<ePgs(x) < = and 0 < C < < —.
<& ¢s(z) ~ C
Proof. Recall from Remark 3.3 that d and m are periodic continuous functions. On the same
t
token, y — v@f‘zg)’) is also Y-periodic. Thanks to Proposition 2.1 (which can also be applied
[
Vb (t—1
to the spectral problem (16)) we know that there exists a unique 6; such that % =
0t
—?((ttjll)) = —%. Thus, ¢p, satisfies the boundary conditions of (18). Since @ (t —1) =

¢¢(t—1) = 1, the uniqueness of the positive normalized first eigenfunction of (18) implies that
vy, = bt-

Finally, note that the maximum of the map 0 — vy is attained at = 0, since the maximizer
is characterized by (7), which is clearly satisfied for ¢g = ¢ = 1. Therefore, for all §; # 0,
e =vp, <vg=0.
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We have proved that ¢g = 4,080 for some 6. Note that, thanks to Proposition 2.1, for
every x € [0,1], the map L(z,-) : 6; — Vgogt (m)/cpgt (x) is increasing. Since L(0,0) = 0 and
L(0,600) = —m(0)/d(0) < 0, we conclude that 6y < 0. Since z — exp (—6px)po(x) is a positive
continuous periodic function, it is bounded above and below by positive constants.

Next, notice that, L(z,0) = 0 for all € [0, 1], therefore L(x,0y) < 0 since 6y < 0. Finally,
since L(+,6p) is a negative continuous Y-periodic function, it is therefore bounded above and
below by negative constants. The second statement involving 65 is proved in a similar way. [

4. THE HOMOGENIZATION REGIME

In this section we show that the assumption m(0) < 0 < m(J) implies that the spectral
problem (13) admits a homogenized limit.

Remark 4.1. The equality m(0) = m(0) = 0 is a very special case which is easy to analyze.
In this case, the minimum of the Rayleigh quotient (15) is zero, attained by ¢ = pog = 1, and

we deduce that
x
_ £(m) — x
Ae = Moo and u® () = Voo (5) .
From now on we shall further assume that m(5) # m(0) since m(0) = m(J) together with the

assumption m(0) < 0 < m(d) implies that both term vanish.

Proposition 4.2. Assume m(0) <0 < m(9). The eigenvalue p. satisfies

0<p: < MT‘-Q.

min(s)

Proof. Since H}(Q) C HY(Q),

AV
He = ¢enf}ilr(1(z) /Qd <€2: ’V(:‘ Y = Hnljj((j)) ™.
@[

When m(d) > 0 > m(0) all terms in the numerator of the Rayleigh quotient (15) are non-
negative, and therefore u. > 0. O

This shows that the sequence p. is bounded independently of €. In this case, following a
well-established strategy (see e.g. [1, 2, 3, 13]) we consider the operator S¢ defined as follows

Proposition 4.3. Assume m(0) <0 < m(5), and m(5) # m(0). Let S : L2(Q) — L?(QQ) be
the self-adjoint operator defined, for f € L*(Q), by S¢f = w® which is the unique solution in
HY(Q) of

19 [ a(Z) VerVede + = m(@u ()60~ mO)w (0)6(0) = [ fda

for all ¢ € HY(Q). Then, for each & > 0, S¢ is a compact operator in L?(Q). Furthermore, as
€ tends to zero, S¢ converges uniformly to the operator S which to f associates w € H given
by

—d*Aw = [ in Q,

where d* = ([, dil(y)dy)*1 and H = {u € H'(Q) s.t. uw(0)m(0) = u(1)m(s) =0}.
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Proof. This is a classical homogenization result [1, 2, 3, 13], which stems from the following a
priori estimate

IV |72y + & m(0)] (w*(1))* +e~Hm(0)] (w*(0))* < CllfI72(q)-

We will therefore only estabhsh this estimate. Choosing w® as a test function in (19) we obtain

/Qd (g) Vs Pda + - (m(a) (wF(1))2 — m(0) ( / futdz.

Since each term on the left hand side is non-negative, d(y) > C > 0, m(d) and m(0) are not
both zero, the estimate follows from the Poincaré inequality, for any ¢ € H(Q)

€132 < € (IO + (L= COPE + [V (e
where o =0 or 1. O
Theorem 4.4. Assume m(0) <0 < m(d), and m(d) # m(0). Then
U (1) = Yoo (g) (u(z) +75(2)) and Ae = Ao + €20 + 0(2),
where ¢ tends to zero weakly in H(QY) and (u, \}) is the first eigenpair of the problem
—d*Au = Ajstu in €,
{ ue HYQ) and m(0)u(0) = m(8)u(l) =0,
with s* = [, s(y)dy.
Proof. We write (13) as .
(s ()9)

Since pfs (£) is bounded in L>(Q), and ¢¢ is normalized in L?(Q2), we can extract a weakly
converging subsequence. Since S¢ is compact, ¢° converges strongly in L?(Q) to a limit u. Thus

Uss ( )(ﬁs converges weakly to us*u in L?(Q). The conclusion follows from Proposition 4.3.
0

5. THE LOCALIZATION RECIME: CONVERGENCE OF THE EIGENVALUES

We now turn to the other cases, that is, either m(0) > 0 or m(d) < 0, or both. We shall
use two auxiliary cell problems. We introduce ps and g as the first normalized eigenfunctions
(and [,, 1, their corresponding first eigenvalues) of the following problems, posed on partial
cells,

—div(d(y )Vpé) lps(y)Pa in (0,9)
(20) d(0)Vps(0) +m(0)ps(0) =
d(8)Vps(6 ) m(d)ps(0) = 0, and ps(0) =1,

and
—div(d(y)Vas) = lgs(y )% in (6,1)
(21) d(6)Vas(d ) m(d)qs(0) =
d(1)Vgs(1) +m(1)gs(1) = 0, and ¢5(5) = 1.

Note that both ps and g5 are C* functlons, and satisfy the uniform bounds
0<C<ps<Cland0<C<gqs<C L.
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Proposition 5.1. The first eigenvalues g, pus of (18) for t =0, satisfy
min(ly,ly) < po < max(ly,ly), min(l,,l;) < ps < max(ly,ly),
and the inequalities are strict except when [, = 4.

Proof. Define a test function w(y) = ps(y) for 0 < y < § and w(y) = ps(d)gs(y) for 6 <y < 1.
It is easy to see that this function is C'. We have

1

1
Jy s@)w?(y) ( /0 d(y)(Vw)*(y) + w? (1)m(0) — w2(0)m(0)>

o <

1
Iy s()w?(y)

(
b (Ald(y)(Vw)z(y) +w?(1)m(0) _w2(5)m(5)>
(

Ip /0(5 s(y)w’(y) + lq/; S(y)wQ(y)>

)
A¢mmvm%m+w%®m@—uﬂmmmﬁ

[u—

Jy s@)w?(y)
< max(lp,lq).

Alternatively

1
_ 2 21V m(0) — 62(0)m
w0 = T ) A Tare) + mo - domo )

d@ﬂV%f@y+%wmu&—¢amme

o\’_‘ﬁ

d@MV%P@y+%uwmm—¢a&mwﬁ

M (lp /oés(y)@%(y) +lq/51 S(y)ab%(y))
l

> min(lp, lg).

Vv

Furthermore, the inequalities above show that pg is bounded from above and below by two
strictly convex combinations of [, and l,. It implies that any inequality becomes an equality
if and only if [, = ;. Indeed, if, for example, [, = o, the previous inequalities imply po = lg,
then if an inequality is not strict, we get immediately [, = [,.

The proof for ug is similar. O

The goal of this section is to prove that e2u. converges to a limit which is either min (o, js)
or max(po, it5) depending on the sign of 1, — I,.

Proposition 5.2. Assume either m(0) > 0 or m(3) < 0, or both. Then, if l, > l,, €2uc is a
decreasing sequence converging to a limit L given by

: 2
L = inf e*pe = max(po, p15),
e>0
whereas, if g > 1, then €212 is an increasing sequence converging to

L = supe’p. = min(uo, ps)-
e>0
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Furthermore,
C
|52u5 — L‘ < Cexp (—€> .

Proposition 5.2 involves four parameters, namely the sign of m(0), the sign of m(J), the
sign of 1, — Iy, and the sign of pug — 5. Not all combinations of signs are possible, and in fact
the sign of one of the parameters can be determined by the others. We now give a variant of
Proposition 5.2, which gives the convergence of the eigenvalues without referring to [, or l,.

Proposition 5.3. If m(0) > 0, or m(8) <0, or both, then £2u. converges monotonically to a
limit L, and

e — L] < Cexp (—S) .

If m(0) > 0 and m(6) > 0, then L = po.
If m(0) <0 and m(6) <0, then L = ps.
If both m(0) > 0 and m(8) < 0, then 2. increases monotonically to min(uo, fis)-

To prove Proposition 5.2, we rely on several lemmas, that will be proved at the end of this
section.
First, we derive an upper bound when [, > [,,, and a lower bound when [, > ;.

Lemma 5.4. Suppose m(0) > 0, or m(d) < 0, or both.
Then for € small enough, e?p. < —C < 0.
If lg = lp, then e < min (o, fs)-
[fly > Iy, then €p. > max(jio, ps).

Second, we make use of the dependence on n of the sequence €. Specifically, in the following
lemma we denote €, = (n +0)"!, and p, = pe,, for all n. We derive lower and upper bounds
for differences between two consecutive terms of the sequence (2 uy,).

Lemma 5.5. The following two lower bounds hold:

(22) 5721+1Mn+1 > €2 fin (1 - K;Hl) + K;HHM,
and
(23) €%+1MTL+1 Z 8721/'1/” (1 - Hgn_g_l) + /‘ign+1[l/0,
where
1 x 5 2 € 2
s(Z x)“dx s (%) ¢f(x)°d
(24) 0<@:Jffh)¢() <Lam0<@:1§(9¢()y<L
Jo s (%) ¢°(z)%dx Jo s (%) ¢¢(x)%dx

The following two upper bounds hold:
(25) Enpibntt < enpin (1= X2,) + HoXE, s
and

(26) 5%+1ﬂn+1 < 531,Un (1 - X(e)n) + ,U()Xgnv
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where
$°(0\* !
L) ¢€(x)2dx+(zzg(1);> [ 500 ) a
and
(1) \* [°
o . <¢5(5_1)> /6_18(y)¢5(y)2dy .

1/1 (55) €02 ( ¢°(1) >2/5 2

- slz)o@)de+ | —— s(y)ps(y) dy

eJo \e (@) ¢5(0 — 1) 5_1() )

Finally, we show that lower bounds on the weights k2! and XSJ can be obtained depending

on the boundary conditions m(0) and m(9).

Lemma 5.6. The following relations hold
1

1
Rg/o s (g) ¢ (x)%dx > eC¢°(0)* and H;/O s (g) ¢ (x)%dx > eC¢(1)>.
If m(0) > 0 and m(6) >0,

c [t sz
€ 2 ~ e € 2
(29) 6(0)2 > 5/0 s(2) ¢ ).
As a consequence, kK > C > 0 and X2 > C > 0.
If m(0) <0 and m(6) <0,
c [t oz
€ 2 ~ d 5 2
(30) 6 (12 > &_/0 5 () 6 (eyan.
As a consequence, Kkt > C >0 and x! > C > 0.
If m(0) > 0 and m(d) <0,
c [t oz
3 2 £ 2 ~ d € 2
(31) FOP+ o> S [ 5 (2) (e
as a consequence, min (Hg,/ﬁ;) > C > 0, min (Xg,xi) >C > 0.

We are now in a position to prove Proposition 5.2.

Proof of Proposition 5.2. Suppose l, > l,. Then, Lemma 5.4 shows that 2. > max(po, f1s)-
Using the upper bound po < max(po, ps) < €24, in (26) yields

Eniibint1 < Epfin,
therefore the sequence 2. is decreasing. Now rewrite (26) under the form
0<eh it —po < (1=x2) (E2un — o) -

This geometric relation implies, for n > 1, noting that p,—o = I,

n
0 < eppin — po < (1 — min Xgm> (Ip — 1o),
m<n



HOMOGENIZATION OF A NEUMANN SPECTRAL PROBLEM 17
or in other words,
(32) 0< e — pp < Ce™=  Minezexe,
Similarly, using (25) instead, we obtain
(33) 0<eu.—ps < Ce¢  mingze X
Now, Lemma 5.6 says that when m(0) > 0, or m(J) < 0, or both, then

max(r[_:n>ig1 Xg,r5n>i61 XL > C>0.
So at least one of inequalities (32) and (33) implies convergence of €2y, to either g or us,
and since €21, > max(juo, it5), this in fact shows
0 < e2pe — max(pg, ps) < Cexp(—CJe),

as announced.
Suppose now l; > l,. Then, Lemma 5.4 shows that e?u. < min(po, p5). Using the upper
bound po > min(puo, p1s) > €21, in (23) yields

2 2
Entri1lnt1l > Epfhn,

therefore the sequence g2y, is increasing. Now rewrite (23) under the form

0> oy iptnst — po = (1—£2) (€2 pn — o) -

As above this geometric relation implies
(34) 0< pip — 2pe < Ce™®  Minezere,
Similarly, using (22) instead of (23), we obtain
(35) 0 < g — 2pe < Ce™=  MinezeRE
And, again, Lemma 5.6 says that when m(0) > 0, or m(d) < 0, or both, at least one of the
two terms ming~g Y and min.~g &} is positive. So at least one of inequalities (34) and (35)
implies
0 < min(pug, ts) — e2pte < Cexp(—C/e),
as announced. O

We now turn to the proof of the different Lemmas.

Proof of Lemma 5.5. Let us prove the two lower bounds (22) and (23). Take two successive
small positive parameters €,,1 < &,. Let us denote by ¢"t! = ¢*n+1 the first eigenfunction
of (13) or the minimizer of (15). We make the change of variables y = x/e,,41 and we define
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¢"(y) = ¢"t(epg1y). Recalling that e, = (n+ 1+ 6)"!, we get
) 5121+1Mn+1 =
Ly JadGE) (V) (@)de + L (m(8)6" (1) = m(0)¢" 1 (0)?)
= En—i-l fQ 5n+1 ¢n+1( )le-
Jo dy) (V1) )y + m(8)F (5 1)? — m(0)(0)?
I s)ar )y
Sy d(y) (V6m1) )y + m(2)6H (0 +6) = m(0)§+ (0)?
Sy s(y)gnt (y)2dy
s ) (931 )y + m(5) (W(n +1+067 =6 (n+9)°)
Jo T s()gm i (y)2dy |

From the minimizing properties of pu,, we get

f0n+5 d(y) (ngn+1)2 (y)dy + m(8)" L (n + 6)% — m(0)¢"+1(0)2
Jo T s(y)n () 2dy
n+4§ S(y)qgn+l(y)2dy

> e iy o :
S0 s(y) gt (y)2dy

On the other hand, the segment [n + 6,7 + 1+ ] is a translation of [§ — 1,6] and from the
minimizing property of pus we deduce

fnj-(sl-‘r(sd <v&n+1)2dy i m((s) <q§n+1(n +14 5)2 o ¢;n+1 (TL + 5)2)

[ s gt (y)2dy

+1+6 7
f:+5 S¢n+1 (y)Qdy

= s po .

Thus we obtain the lower bound (22),
E?L+1/'Ln+1 > S%Nn(l - H;n+1) + ’i;n“ﬂéa

where . .1 18 defined by (24). By a symmetric argument, exchanging the two endpoints, we
obtain in a similar way (23).

Let us now turn to the upper bounds. Since e€,11 < €y, we define a test function

d)n( en ) on [0,&n+1/€n],

wn+1 — En+l
T 1
= 5( )1)(]5 ( _1—$> on [ent1/en, 1],

which is clearly continuous on € (it is even C''(Q) by further inspection). Taking w"*! as a
test function in the Rayleigh quotient for pi,1, and arguing as above, we deduce (25), namely,

531+1Mn+1 < 5%/%(1 - X;n) + :“5X;n’
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where

1
" (1) 2
vy s (o27) htade

En41
X;n = fn+1 -
o z epz )2 l¢™ (1) : £(1)2
J s(5) o (25) de+ 58 e s (57) 5(a)2da

&n

with ¢5(2) = 65 (5
XL, is indeed given by (28).

To prove the other upper bound (26), the argument is similar, using in this case the test
function

+0—-1-— —) By the change of variables y = x/e,+1, we obtain that

nt1 g0 ¢T(0)1> o (efﬂ) on (0,1 — epq1/en),
W' =

€n+1  En

¢"(5” +1—a,%) on [1 —eny1/en, 1.

En+1

O

Proof of Lemma 5.6. If either m(d) < 0 or m(0) > 0, or both, Lemma 5.4 shows that p. <
—£72C < 0. Integrating directly (13) we obtain, for ¢ € (0, 1),

d <i> Ve (t) + ém( Oj ) ¢°da

Dividing by d (é) and integrating again

o0 -0+ | [a (D) ar | mow)
(30) ,
_ _Maofd—l (g) O/s (g) ¢ dzdu.

The right-hand-side of (36) is positive because pe < —e72C < 0 and ¢° > 0. If m(0) < 0, this
implies that, for 0 <t <1,
¢=(t) = ¢°(0).
On the other hand, if m(0) > 0, we write
t

w0260 (1= [a () au ) m)) 2 70 (1- 120,

€ emind
0

which implies, for 0 < ¢ < § min(Z m(0) 1), that

Consequently, in either case
1 €

Hg/s (g) ¢ (x)%dx = /s (£> ¢ (z)2dx > emij(s) ¢°(0)2.

0 0
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1
The proof of [ s (%) ¢°(z)%dz > Ce¢®(1)? is similar.
1—¢

Let us now prove the lower bounds (29-31). The variational formulation of (13) with ¢ as
a test function yields

1 1
- [a(Z) (vedn = Zm(@e (1 + Zm(©)0 (07 =~ [ 5 () (¢
0 0

Since the first term is negative and p. < —e 2C < 0, we deduce
1

mw@ﬂ&ﬂwm@wm%z-f?/qﬂwwm

(37) 1
¢

€
0

s qba 2dz.

If m(6) > 0, and m(0) > 0 the maximum is m(0)¢(0)?, which proves (29). Conversely, if
m(§) < 0, and m(0) < 0, the maximum is —m(3)¢(1)2, which proves (30). If m(d) < 0, and
m(0) > 0, the maximum is attained by at least one of the points, or both, which proves (31).
Finally, notice that for ¢ = 0, 1,

1 -1

[{s (%) ¢ (x)?dx

Xe = ()2 ¢ +1 )

where ¢; is a positive constant, therefore the bound (37) implies the desired lower bound on
min(x?, x%) > C > 0.
Finally, note that

. €¢E(.)2 < Clﬁé,
fs(2) o2
0

therefore min(x?, x!) > C > 0 implies min(x?, k!) > C > 0. O

XL <C

Lemma 5.4 will be a consequence of the following Lemma.
Lemma 5.7. There exist two parameters 0 < 70 < 1 and 0 < &} < k! < 1 such that
(38) ug(l—n)+ln < e < po (1—70) + 1,720
Stmilarly, there exist two parameters 0 < 7‘ <1land0< i <k <1 such that
(39) ps (1= K2) + Ikl <€ua<,u5(1—7')+lp7'
This allows to prove Lemma 5.4.

Proof of Lemma 5.4. Proposition 5.1 implies that min(lp,l;) < po, s < max(lp,ly).
If I, < l,, then the upper bound in (38) shows that e2u. < g, whereas the upper bound in
(39) shows that e2pu. < ps. Thus, e2pu. < min(pug, us) < 0 by virtue of Proposition 3.6.
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Symmetrically if I, > [, using the lower bounds in (38) and (39) we obtain £?u. >
max(ji, ps).

Finally, let us show that e2u. < —C < 0 for € small enough. Suppose m(0) > 0. Choosing
as a test function exp(—ax/e) with a > 0, in the Rayleigh quotient (15) defining p., we obtain

™

1
/d exp(—2azx/e)dx — ém(O) + %m((s) exp(—2a/e)
0

IN

)

e -
Ofs( ) exp(—2ax/e)dx

1 amax(d)/2 —m(0) + m() exp(—2a/e)
g2 min(s)(1 — exp(—2a/e)) ’

Pick for example o = m(0)/ max(d), to obtain u. < 2827”7(0)(1 + Cexp(—C/e)), which shows

min(s)
that e2u. < —C < 0 for € small enough. The argument is similar for m(§) < 0, choosing
instead a test function exp(—a(1 — x)/e) with a > 0. O

Proof of Lemma 5.7. Let us focus on the proof of the first bound (38). To obtain an upper
bound, we construct a continuous (actually C1) test function for the Rayleigh quotient (15)
as follows. Recall that e ' =n+§,sothat e ! =1 <n<elandne<z<1e0<
(x —ne)e™! < 0. We define w® as

{ do (2) for 0 < x < ne,
w(z) =

do(n)ps (£22)  for ne < < 1.

Recall that, by virtue of Proposition 3.6, ¢¢ is equal to an exponential-periodic function g,
and thus is defined everywhere in R and not only on the interval (0,1). By construction, w®
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is continuous and we can use it as a test function in (15) to obtain

peo< 2 -
/s (g) w®(x)*dx
0
1
/d (9 Vw2 da + é (m(5) lws(1)[% — m(0) \w€<ne)|2)
+ = -
/s (g) w®(z)?dx
0
ne 1 L
) 52u00/s (E) oo <>2dw+52lp¢o(n)2ls <—> s < E E) dx
= 1
/5 (g) w®(z)%dx
< e 2ug (1 - Tg) + 5_2lp7'80?

where, using the change of variables y = (z — ne) /e, we defined

e [ s(y)ps(y)*dy

C—o

TEO = ¢0(n)2 .
s (Z) we(z)%dw

o

Let us now turn to the lower bound in (38). The idea is to get a lower bound in the
Rayleigh quotient (15), using the fact that po and [, are themselves given as minima of
Rayleigh quotients. In (38) the coefficient ! is going to be defined by
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Indeed,

1
Ja(2) 196 o+ 2 (m(®) (0°(1))* = m(©) (5°(0))
0

= [a(Z) Ivode+ 2 (m(0) (6 (ne))? - m(0) (6°(0))?)

3

0
ne+-0e
+ / d (%) 1vePda+ é (m(8) (¢ (ne + 82))* = m(0) (6" (n2))?)
ne ne+-de
> e 2 / s (g) ¢° (z)2dx + 721, / s (g) ¢ (z)2dz,
0 ne

thanks to the minimizing properties of 119 and [,. So, altogether,

1

[ (2)196Pde+ 2 (m(6) (09)2 (1)~ m(0) (6°)* 0))

[e=]

> e 2(1— R + illy).
The proof of the inequalities (39), involving us, is similar. We use instead

)= P (%) for 0 <z < de,
ps(8)ds (22)  for de <z < 1.
O

Proof of Proposition 5.8. The fact that the convergence is exponential in all cases is already
established in Proposition 5.2. When m(0) > 0 and m(d) > 0, let us check that the limit of
e is always po. In the course of the proof of Proposition 5.2, we have established (32) and
(34) which prove that the limit is g if either min.~ox2 or min.~q x? is positive. Lemma 5.6
provides such a result when m(0) > 0 and m(J) > 0.

The case m(0) < 0 and m(d) < 0 is handled by similar arguments using (33) and (35).

If m(0) > 0 and m(d) < 0, we have

5f1d<y>|v¢|2dy + (mO)$(1)? — m(5)6(6)?)

= iy ! =0
€ ,1
[ s(y)d?dy
1)

From Proposition 5.1, min(lp,l;) < po < 0, therefore [, < 0 < l;. Then Proposition 5.2 shows
that €2y, is an increasing sequence converging to min(uo, fis). O
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6. THE LOCALIZATION REGIME: A CORRECTOR RESULT

In this section, we show that, in the self adjoint case, the first eigenfunction must localize
at one of the end-points when, either m(0) > 0 or m(d) < 0, or both. More precisely, if
1o 7 ps, then localization occurs at only one end point. On the other hand, if pg = ug, then
two cases can happen: when m(0)m(J) < 0 localization takes place at both endpoints, while,
when m(0)m(d) > 0 the first eigenfunction can be computed exactly and localization occurs
at only one end point.

We start with this last case which is peculiar because it is equivalent to ¢g = ¢s5 — up to a
renormalization.

Proposition 6.1. If uo = ps and m(6)m(0) > 0, then ¢y = ﬁ and we have the ezact

,1);
= = () 205

£
Conversely, if ¢po = ﬁ then o = ps and m(5)m(0) > 0.

relation

Remark 6.2. Proposition 6.1 is very similar to Proposition 2.3 when the two Neumann eigen-

functions coincide u?v = L.
uN(—l)

Proof. Recall that, in view of Proposition 3.6, ¢g and ¢ are exponential-periodic functions,
namely ¢g = 9020 and ¢5 = apga. Since pg = ugs they are also solutions of the same equation,

—divy (d(y)Vy9) = pos(y)¢ in R.
If m(6) and m(0) have the same sign, then the exponent 6y and 6s have the same sign too.
But the maps 6 — ¢} and 6 — vjp, where (vg, ¢p) is the solution of the spectral problem (16)
are one-to-one when restricted to # € R™ or § € R™. Thus, it implies that ¢g = ﬁ This
implies in turn that z — ¢ (%) is positive, and satisfies both V¢o(0) = —1m(0)¢o(0) and
Vo(1/e) = —Lm(8)po(1/e), i-e., it is the first eigensolution of problem (13) and then is equal
to ¢° after a renormalization. O

To handle the other cases, we shall now make full use of the one-dimensional nature of the
problem. Notice that problem (13) can be viewed as a linear second order ordinary differential
equation, thus ¢° is a combination of any two other linear independent solutions of (13) with
different boundary conditions.

We first need the following lemmas.

Lemma 6.3. Assume m(0) > 0 or m(5) < 0, or both. Then, there exists 6. # 0 such that
pe = vy, = v_g_ where vy is the first eigenvalue of (16).

Proof. According to Lemma 5.4 we have p. < 0 since either m(0) > 0 or m(d) < 0. Proposition
2.1, applied to the selfadjoint case (16), tells us that (maxgrp) = 1y = 0 and thus the range
of vy is R™. Therefore, there exists 6. # 0 such that p. = vy, =v_g,. ]

Lemma 6.4. Suppose m(0) > 0 or m(0) <0, or both. Then,

C
¢°(0) +¢°(1) < —llellrre)-

Remark 6.5. Note that in the case of constant coefficients, ¢o(-/¢) would be the form
exp(—B - /¢), and || exp(=B - /¢)|[11() < €/B, so in this sense this estimate is sharp.
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x
Proof. Integrating by part (13) against D.(z) = [d (g)_l dz shows that
0

1 1
/s )¢ dx = m(d)d)s(l)Dg(l)—i—a/Vd)Edw
0 0
= m(8)¢" (1) D(1) +&(¢°(1) — ¢°(0)),

since the left hand side is negative and since —C’ < €2, < —C by Proposition 5.2, we obtain

1

0< (mo) [a(2) " w0 ) +e6°0) < ol

0
thus, if m(6) < 0, ¢°(1) < §||¢5||L1(Q). Symmetrically, integrating by part (13) against
1
= [d (?)_1 dz we obtain

/15 x)p*dr = —m(0)¢p° (0 —€/V¢5d:v
0

s, if m(0) > 0, we deduce ¢(0) < € = ||#<ll L1 (). Therefore, when either m(0) > 0 or m(J) < 0,
or both, we obtain

C
¢°(0) + ¢°(1) < ;”CﬁsHLl(Q),
]

Lemma 6.6. The first eigencouple (vg,p4) of (16) is real analytic as function of 6 € R with
values in R x L?(Y). If the sequence 0., defined in Lemma 6.3, converges to a limit 0y, then
the etgenfunction @25 can be expanded as follows

(41) 106, () — ¢b,(y) — (8= — 61 v, (Y)l| o= vy = O((6= — 61)%)
where the function vy, € L*(Y) is defined by (44), and
(42) d(t —1)Vup,(t — 1) +m(t — 1)vg, (t — 1) # 0.

Remark 6.7. Recall that, according to Proposition 3.6, ¢ = ‘Pet

Proof. The analyticity property is well-known by changing the unknown ¢}, into @} = e =%},
which is a 1-periodic function, defined in a space independent of 6, satisfying an elliptic
equation with coefficients that depend quadratically on 6. The variational formulation for 952
is
(13) [ w755+ 055 (V6 08) = [ s)ho,

Y Y

for any 1-periodic test function ¢ € H'(Y). We conclude using Kato’s Theorem [9] to prove
the analyticity of the eigenvector @j. Since ¢} = eaygég, (41) holds in the L* norm by Sobolev
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embedding. To characterize the function vy, we differentiate (43) with respect to 6 and obtain
for the value 6,

/ d(y)(Vig, + 0:00,)(V — 0:0) + / [d(y)@h, (Vo — 0:0) — d(y)(V 5, + 0:5, )]

Y Y
_dv

=500 [ swhd+m, [ s

Y Y

Introducing the test function ¢ = e~%¥¢ and defining vy, = e~ ¥y, we deduce

@) [dwTu o+ [ldw)eh Vo - du)Vehol = 56 [swieho+ . [swuo.

Y Y Y Y
To prove (42), we argue by contradiction. Assume d(t—1)Vug, (t—1)+m(t—1)vg, (t—1) = 0.
Since vy, (t —1) = 0, it implies that Vg, (¢t —1) = 0. As a consequence, the 1-periodic function
= e %yj, satisfies the following boundary conditions

0g,(t —1) =10y, (t) =0 and Vg, (t—1)= Vuy(t) =0.

Vg, =
Returning back to the function vy, we deduce
vg,(t —1) =vp,(t) =0 and Vwg, (t—1)= Vg, (t)=0.

In other words, vy, is solution of the over-determined boundary value problem

—divy (d(y)Vyve,) — ve,5(y)ve, = divy(d(y)eh,) + dy)Vyeh, + 5 (0)s(y)eh,

'Ugt(t —-1)= ’Ugt(t) =0

Vyvgt (t - 1) = Vy’l)gt (t) =0
Multiplying the above equation by gogt, integrating two times by parts (without any boundary
contribution) and using the spectral equation satisfied by gpgt, we deduce

dv : dv
00 [sleh P =0, thatis, 60 =0

Y

which leads to a contradiction since § — v(6) is strictly concave and the only root of %(G) =0
is 0 = 0. u

We are now in a position to evaluate how close the solution ¢° is to a linear combination
of ¢1g.. Recall that Proposition 5.3 implies that the only possible limits of the sequence 6. is
90 or 95.

Proposition 6.8. Suppose m(0) > 0, or m(d) < 0, or both.
(1) If po # ps and 0. — 0y, we have

- (G- G0, ()

and

(45) lte — pol = 0*/%(1 + 0(1)),

c e
< g”‘befHLl(Q)e%O/
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with

. <K(5)) d(0)V¢ 4, (0)60(0) + m(0)¢2 5 () (0)
) |

k(0) S s(y)boe?y,
Y

(2) If po # ps and 0. — s, we have

c ¢°(1) 5 (@ ¢°(1) s (T ¢ —205 /<
v <wz€ e (0) = o KOt (J) < S loeluxene ",
and
(47) e — psl = 1 2%/5(1 + o(1)).
with

_ (K(O)) d(8)V? o (8)d5(8) +m(8)° 5, (8)¢5(0)
o I s(v) s, '

Y
(3) If po = ps, we have

o= (G0 (2) + G enite (2))

0 Oe

C
< ;”¢8||L1(Q)€00/67

with

I d(O)VUQO (0) + m(o)v% (0) d<5)v¢0 (5
1) “ \/ (d(5)v’095 (0) + m(6) vy, (5)> (

~—
+
3
N
s
=
~—

and

(50) e — o] = v5e%/5(1 4 o(1)),
with

k() d(0)V¢s(0)¢po(0) +m(0)ps(0)po(0)
k(0) Js(y)%% '

(51) Y5 = (4] —

We used the following notations
d(8)Veo (6) + m(d)¢o (9)
d(8)V? 5, (8) +m(8)@? g (8)

d(0)Ves (0) + m(0)¢s (0)
d(0)Vg? 4 (0) +m(0)¢° 5 (0)’

K(5) = K(0) =

and
d(0)Vvg, (0) + m(0)ve, (0) - d(5)VE 4, (8) +m(8)¢ 4. (5)
d(0)Ve_g, (0) + m(0)p—_g, (0)  d(8)V_g, (8) +m(8)v_g, (6)

Proposition 6.8 provides a detailed description of the first order correctors for the first
eigenpair. The following corollary limit the results of Proposition 6.8 to the leading order
term. This highlights the main trend of the first eigenvectors, at the cost of an exponentially
small loss of accuracy. The case when a double localization occurs is a limit case when zero
and first order terms are of the same strength. In that case, characterizing the main trend
means calculating first order correctors.

k(0) =
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Corollary 6.9. Suppose 0y > 0, or 05 < 0, or both. Let @l be the positive, bounded and
Y -periodic function given by g = e*(’y(pf, where oy is the first eigenfunction of (16).

(1) If po # ws, the first eigenvector localize in one of the endpoints. Indeed when 6y < 0
and either 05 <0, or 85 > 0 and py < ps, we have L = pg,

and |pe — po| = 70e?%0/5(1 4 o(1)) where g is defined by (46).
Alternatively when 05 > 0 and either 69 > 0, or 8y < 0 and us < po, we have
L= ps,

and |pe — ps| = y1e 205/5(1 4 0(1)) where v, is defined by (48).
(2) If po = ps, then the eigenvector could mix both boundary layers. We obtain

) (0 o (2)
o)~ 0 G

C
< zego/gﬂéba”y(ﬂ)
Leo(Q)

051 Bh. (£)

#@) - SO T

C _
< e %5/%)| 6| L1 ()

L(Q)

¢°(0) o= o s ¢°(0) 6 8o 5 (x
P°(z) — —5—~e = o, (=) — = csee€ = Yo, |~
S0 () gt )]
¢6(0) 9071 ~0 X ¢€(O> 05(1*” ~5 X
= ||0°(@) — g€ Po, | =) — Zgavcee = Py (<
@80(0) 0 (5) @30(0) J (5) L)
690/6
< C 1911 (@)

3

and |pe — po| = v5€%/5 (14 0(1)) where 5 is defined by (51) and cs is defined by (49).
Note that in this last case Oy = —05 < 0.

Proof of Corollary 6.9. To prove this corollary starting from Proposition 6.8, we notice that,
when by Proposition 5.3, if 6y < 0 and 65 < 0, or if 6y < 0, 85 > 0 and po < ps, we have
L = pp, 0. tends to 6y < 0 and that . — 6y = O(e?%/). This implies that

9028 (g) = ¢o (g) —1-0(6290/5), 8009_51 _ ¢0_1 +O(690/5)
and 6205”K(6)@998 <x> =

- O(e%/?). Since

(52)

we have proved the first estimate.
In a same way, when either 8y > 0 and 65 > 0, or 0y < 0, 05 > 0 and us < o, by
Proposition 5.3, L = ps, 6 tends to 65 > 0, and 6. — 65 = O(e2%5/%). We then obtain

05 = s+ 0(e™20/%) | 1 = g5 O(e /e
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K(0
and #@5 (£> — 0(6_95/5). As before, we write

eh ()77 \e
(53) 03 (2) _ men @, () _ wen 84, (5)
%5 (2) 5, (2) 25 (6)

Finally, when po = ps, m(0) > 0 and m(8) < 0, 6. tends to 6y < 0 and 6. — 8y = O(e?/%).
This implies that exp (6-n) = exp (fon) (1 + o(1)), and therefore that

. (2) =00 (2) +0@P) and ¢y (2) =05 (2) +O(Pr2).

Together with the observation that

©9.(0) = $o(0)(1 + O(e*/%)),

this shows that . )
= + 0(2/9).
@p.(0)  ¢0(0)

This allows us to conclude. O

Proof of Proposition 6.8. Since 90205 (y) and gpt_zee (y) are linearly independent solutions of (13),

we have .
i (2) o798, ().
Inserting the boundary conditions of problem (13), the existence of of a non trivial pair (o, §%)
implies
d(0)Vey. (0) +m(0)¢y. (0) d(0) Vi, (0) +m(0)¢%, (0)

(€754 (0)+m@els (9) ZE) (@0)V4%, (5) + mi)e, ) S5 |70

€

This identity can also be written as
d(0)Veyt (0) +m(0)gg. (0)
d(O)v@t_Qgs (0) + m(o)‘)@tfgs (0)
d(0)Veg: (8) + m(0)ep. (0) ¢g. () ¢, (9)
d(O)Ve?,, (8) +m(8)0 () @yl (8) ¢ (¢71)
A0)V4 () ms (0) L,
d(o )Vsotze () +m(8)p?, (8)
the second relation being a consequence of the relation
e (1) W8 0) el (nt0) o (6) 4,
AL0) 92 (D) eR () B (n+d)
At x = 0, we obtain the following additional relation
g (0) + 379"%_(0) = 6°(0).
The key point of the proof will be the computation of o and (5°.

We will now consider three cases. In the first one, 6. tends to 0y, with 6y < 0, and pg # us-
In the second one, 6. tends to s, with 05 > 0, and ug # ps. Finally, we will consider the limit

(54)
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case when 6. tends to 6y, with 6y < 0, and pg = ps. Proposition 5.3 shows that these are the
only possible cases when concentration occurs.

Case 1. Assume that pg # pug and 6. tends to 0y, with 6y < 0. This implies that gpge tends
to ¢g. Define n := 6. — 6y. Thanks to Lemma 6.6, the following first order expansions in 7
hold

vo.(y) = o(y) +nve,(y) + O(n)

0o (y) = w_g,(y)+O(n).
Inserting this ansatz in (54), we obtain

1 (d(0)Vvg, (0) +m(0)vg, (0)) + O(1°) d(0)Vo (9) +m(0)¢o (9) + O)  2g.n

d(0)V¢? g (0) +m(0)¢2,, (0) +O(n) — d(8)VLy (8) +m(8)e2y, (8) +O(n)
Note that d(5)V<,0(190 (0) + m(&)«pggo (0) # 0, as this would imply pp = ps, which we assume
does not hold. Thanks to Lemma 6.6 we know that, d(0)Vug, (0) +m(0)vg, (0) # 0, therefore

we can write

_ d(9)Vo (8) +m(8)¢o (8)  d0)Vely, (0) +m(0)g, (0)
1 A0V, (0) + m(0)e%,, (6)  d(0)Vug, (0) + m(0)vg, (0)

This provides a first order correction (in exponential terms) for 6.. This value of 7 allows us
to compute of and 8%, namely

(55) e20=n 4 o(e20em).

e d(0)Vvg, (0) + m(0)vg, (0)

e _ a as 2
P T 0w, (0) T m(0)gl,, () T )
L)
= S0 o000

Turning now to the solution ¢°, we have obtained
T x
¢ = 0459038 (*) +ﬁ€90995 (*) )
€ €

$(0) (2) - ¢°(0) _d(9)Veo (8) +m(3)d0 (0)  2p.n o ()
9. (0) 77 2. (0) OV, (6)+m@)e", 0)° T \E

€
+ ¢7(0)0 (¢Xn).

Using Lemma 6.4, the proof of the asymptotic formula for the eigenvector is complete. Let us

now turn to the eigenvalue. Testing (44) against ¢y = @990, we obtain

y:@
Y Y

(56) / (d(9) 60V g, — d(y)Vdoe s,) dy = 2 (60) / S()o0e .

Note that the wronskian dqbngp(leO — quﬁogo(leo is a constant, therefore

[ @) (4070, ~ To02,,) dy = d(O)T4,(0) + m(0)24,(0)
Y
Thanks to Lemma 6.6, v is analytic, with vp, = po and v5. = p.. We write

d
He = fo + UCTZ(QO) +O0(n?).
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and inserting (55) and (56) we obtain

K(6) d(0)Vp?, (0) +m(0)¢? 4 (0) o200/

He =10 0 I 501007,

(1+0(1))

which is (45).
Case 2. If ug # ps and 6. tends to s, then gpgs tends to ¢5. The same strategy and similar
arguments shows that
_ d(0)V5 (0) + m(0)¢s (0) d®>V¢i%(6)+vn0ﬂ¢i%(5hfa%n
d(0)Ve® 5 (0) +m(0)¢?,, (0)  d(d)Vug, (9) +m(d)vy; (0)

(
%) + ﬂggofs_ea (1) we obtain,

£

+o(e7),

and, in turn, using ¢°(1) = o

€ _ _pafe2fen d(é)vv‘% (6) + m(é)v% (6) e20em € 2
O I Vet y, (6) - m()ety, () O )

and

o = ?sg((lg) +¢°(1)O[M).

L.

This implies
oo W (r) ) A0V 0) 06 0) L, ()
‘ng (%) S \E SOgE (%) d(O)VSOi% (O) + m(O)SOi(% (O) o
+ (00 (7)),
which is the announced result. The proof of (47) follows that of the first case.
Case 3. If pg = ps, then ¢5 = gp‘s_eo and we can rewrite the expansion as follows

©p. = do+nvg, + O
o = é5—nug +ON?).

In this case @80 = ¢¢ satisfies the boundary condition at 0 whereas 905,90 = ¢s satisfies the
boundary conditions at J, and equation (54) shows that

7 (d(0)Vvg, (0) + m(0)vg, (0) + O(n)) d(6)Vo (9) +m(8)¢o (8) + O(1) 29.n

3

d(0)Vs (0) +m(0)ps (0) +O(y) — d(8) Vg, (8) +m(d)ve, (6) + O(n)

Thus

efen 4 0(695").

_ [ d(0)V¢o (6) +m(0)¢o () d(0)Vs (0) +m(0)¢s (0)
d(0)Vvg, (8) + m(d)vg, (8) d(0)Vvg, (0) + m(0)vg, (0)

Following the same steps as in the first case, we obtain

_ 9°0) o (ﬂf) _ 9°(0) d(0)Vug, (0) + m(0)vg, (0)

P = 0y 7 o) T o80) d(0)V s (0) + m(0)ds (0)

Ao (2) + 0™,

and finally
(> 0 & 0
0 = G () e () + 0o,
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with
o = .| dO)Veo () +m(d)o (d) d(0)Ve;(0)+m(0)¢s(0)
' ~d(0)Vvg, (6) + m(8)va, (8) d(0) Vg, (0) + m(0)vig, (0)
d(0) Vv, (0) +m(0)vg, (0)
d(0)V s (0) +m(0)¢s (0)
_ | d(0)Vug, (0) + m(0)vg, (0) d(6) Ve (6) + m(d)¢o (6)
d(6)Vvgs (8) + m(8)ve, (9) d(0)Ves (0) +m(0)¢s (0)
as claimed. The proof of (50) follows that of the first case. O
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