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Abstract

We first present multicomponent flow models derived from the kinetic theory of gases. We

then investigate the symmetric hyperbolic-parabolic structure of the resulting system of partial

differential equations and discuss the Cauchy problem for smooth solutions. We also address the

existence of deflagration waves also termed anchored waves. We further indicate related mod-

els which have a similar hyperbolic-parabolic structure, notably the Saint-Venant system with a

temperature equation as well as the equations governing chemical equilibrium flows. We next in-

vestigate multicomponent ionized and magnetized flow models with anisotropic transport fluxes

which have a different mathematical structure. We finally discuss numerical algorithms specifically

devoted to complex chemistry flows, in particular the evaluation of multicomponent transport

properties, as well as the impact of multicomponent transport.

1 Introduction

Multicomponent reactive flows with complex chemistry and detailed transport phenomena arise in
various engineering applications such as atmospheric reentry [1, 2], crystal growth [3, 4], and combustion
[5, 6]. This is a strong motivation for investigating the corresponding governing equations and analyzing
their mathematical structure and properties [7].

We first present the governing equations for multicomponent reactive flows in Section 2. These
equations are derived from the kinetic theory of polyatomic reactive gas mixtures [7, 8, 9, 10, 11, 12, 13].
In particular, many symmetry properties of the corresponding fluid equations are direct consequences
of symmetry properties associated with the Boltzmann collision operator [7].

We next investigate in Section 3 the mathematical structure of the resulting system of partial
differential equations and the Cauchy problem [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31]. We discuss symmetrizability properties and present global existence theorems around
constant equilibrium states as well as asymptotic stability and decay estimates [20]. The method of
proof relies on the normal form of the governing equations, on entropic estimates, and on the local
dissipativity properties of the linearized equations [15, 20].

We then address the anchored wave problem with complex chemistry and detailed transport in
Section 4. Traveling waves in inert or reactive flows can indeed be classified into deflagration and
detonation waves. In the context of combustion, weak deflagration waves correspond to plane laminar
flames [32, 33, 34, 35, 36]. We investigate the anchored flame model using entropic estimates and the
Leray–Schauder topological degree theory [36].

We further discuss in Section 5 various flows whose governing equations share a similar structure
with that of multicomponent reactive flows investigated in Section 3. We address in particular the
Saint-Venant system [37, 38, 39, 40, 42] with a temperature equation [43] and the equations governing
chemical equilibrium flows [7, 44, 45, 46, 47, 48].

The equations governing multicomponent ionized and magnetized mixtures are then investigated
in Section 6. These equations are derived from the kinetic theory of weakly ionized plasmas and
the corresponding transport fluxes are non isotropic in strong magnetic fields [49, 50, 51, 52, 53].
The resulting mathematical structure is notably more complex than that investigated in Section 3.
A new definition of symmetrizability is introduced and local existence is obtained thanks to these
partial symmetrization results [51]. This is in constrast with the situation of ambipolar plasmas whose
structure is similar to that of isotropic multicomponent flows [24].

We finally discuss in Section 7 the numerical simulation of multicomponent flows with complex
chemistry and detailed transport [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]. We notably address the
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mathematical structure of the transport linear systems and fast accurate evaluation of the transport
coefficients [65, 66, 67, 68, 69, 70, 71]. We also present a typical numerical simulation of a complex
chemistry Bunsen laminar flames [5, 72, 73, 74] and discuss the impact of multicomponent transport
[75, 76, 77, 78, 79, 80] as well as possible extensions [81, 82, 83, 84, 85, 86, 87, 88].

2 Multicomponent reactive flow models

The equations governing multicomponent reactive flows are derived form the kinetic theory of poly-
atomic reactive gas mixtures [7, 8, 9, 10, 11, 12, 13]. These equations can be split between conservation
equations, thermochemistry, and transport fluxes.

2.1 Conservation equations

The equations for conservation of species mass, momentum and energy can be written in the form [7]

∂tρk + ∂x·(ρkv) + ∂x ·Fk = mkωk, k ∈ S, (2.1)

∂t(ρv) + ∂x ·(ρv⊗v + pI) + ∂x ·Π = ρg, (2.2)

∂t(E + 1
2ρv·v) + ∂x ·

(
(E + 1

2ρv·v + p)v
)
+ ∂x ·(Q+Π·v) = ρv·g, (2.3)

where ∂t denotes the time derivative, ∂x the space derivative operator, ρk the mass density of the
kth species, v the mass average flow velocity, Fk the diffusion flux of the kth species, mk the molar
mass of the kth species, ωk the molar production rate of the kth species, S = {1, . . . , n} the set of
species indices, n > 1 the number of species, ρ =

∑
k∈S ρk the total mass density, p the pressure, Π

the viscous tensor, g the gravity, E the internal energy per unit volume and Q the heat flux. These
equations have to be completed by the relations expressing the thermodynamic properties like p and
E , the chemical production rates ωk, k ∈ S, and the transport fluxes Π , Fk, k ∈ S, and Q.

2.2 Thermochemistry

Thermodynamics obtained in the framework of the kinetic theory of gases is valid out of equilibrium
and has, therefore, a wider range of validity than classical thermodynamics introduced for stationary
homogeneous equilibrium states. The internal energy per unit volume E and the pressure p can be
written in terms of the state variables T, ρ1, . . . , ρn as

E(T, ρ1, . . . , ρn) =
∑

k∈S

ρkek(T ), p(T, ρ1, . . . , ρn) =
∑

k∈S

RgT
ρk
mk

,

where T is the absolute temperature, ek the internal energy per unit mass of the kth species, and Rg

the gas constant. The internal energy ek of the kth species is given by

ek(T ) = estk +

∫ T

T st

cvk(τ) dτ, k ∈ S,

where estk is the standard formation energy of the kth species at the standard temperature T st and cvk
the constant volume specific heat of the kth species. It is also possible to use other variables than the
partial densities ρk, k ∈ S, to describe the mixture as for instance the species mass fractions Yk, k ∈ S,
partial pressures pk, k ∈ S, or mole fractions Xk, k ∈ S, given by

Yk =
ρk
ρ
, pk =

ρkRgT

mk

, Xk =
pk
p
, k ∈ S,

and a particular choice usually depends on the application under consideration. The (physical) entropy
per unit volume S can be written in the form

S(T, ρ1, . . . , ρn) =
∑

k∈S

ρksk(T, ρk),
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where sk is the entropy per unit mass of the kth species. This quantity is in the form

sk(T, ρk) = sstk +

∫ T

T st

cvk(T
′)

T ′
dT ′ − Rg

mk

log

(
ρk

γstmk

)
, k ∈ S,

where sstk is the formation entropy of the kth species at the standard temperature T st and standard
pressure pst = patm and γst = pst/RgT

st is the standard concentration. Similarly, one can introduce
the mixture enthalpy H =

∑
k∈S ρkhk(T ) with hk(T ) = ek(T ) + RgT/mk, k ∈ S, and the mixture

Gibbs function G =
∑

k∈S ρkgk(T, ρk), with gk(T, ρk) = hk(T )− Tsk(T, ρk), k ∈ S.
We further assume that there are chemical reactions between the species and we consider a system

of nr > 1 elementary reactions for n > 1 species which can be written formally

∑

k∈S

νfki Mk ⇄
∑

k∈S

νbki Mk, i ∈ R,

whereMk is the chemical symbol of the kth species, νfki and ν
b
ki the forward and backward stoichiometric

coefficients of the kth species in the ith reaction, R = {1, . . . , nr} the set of reaction indices, and
νki = νbki − νfki the overall stoichiometric coefficients. A typical chemical reaction mechanism for the
combustion of hydrogen in air is presented in Section 7.

The molar production rates that we consider are the Maxwellian production rates obtained from
the kinetic theory [7, 13] when the chemical characteristic times are larger than the mean free times
of the molecules and the characteristic times of internal energy relaxation. These rates ωk, k ∈ S, are
compatible with the law of mass action and are in the form

ωk =
m∑

i=1

(νbki − νfki)

(
Kf

i

∏

l∈S

( ρl
ml

)νf
li −Kb

i

∏

l∈S

( ρl
ml

)νb
li

)
, k ∈ S,

where Kf
i and Kb

i are the forward and backward rate constants of the ith reaction, respectively. The re-
action constants Kf

i and Kb
i are functions of temperature and are Maxwellian averaged values of molec-

ular chemical transition probabilities [13]. In particular, forward and backward chemical transition
probabilities are always proportional—as are nonreactive cross sections in any Boltzmann equation—
and this implies the reciprocity relations [7, 13]

Ke
i (T ) =

Kf
i(T )

Kb
i (T )

, logKe
i (T ) = −

∑

k∈S

νkimk

RgT
gk(T,mk), i ∈ R,

where Ke
i (T ) is the equilibrium constant of the ith reaction. On the other hand, the forward reaction

constants Kf
i , i ∈ R, are usually evaluated with Arrhenius law

Kf
i = AiT

bi exp
(
−Ei/RgT

)
, i ∈ R,

where Ai is the preexponential factor, bi the temperature exponent and Ei the activation energy of the
ith reaction.

2.3 Transport fluxes

The transport fluxes Π, Fk, k ∈ S, and Q due to macroscopic variable gradients can be written in
the form [7, 8, 9, 11, 12, 13]

Π = − κ(∂x ·v)I − η
(
∂xv + ∂xv

t − 2
3 (∂x ·v)I

)
, (2.4)

Fk = −
∑

l∈S

Ckldl − ρYkθk∂x logT, k ∈ S, (2.5)

Q =
∑

k∈S

hkFk − λ̂∂xT − p
∑

k∈S

θkdk, (2.6)

with

dk =
∂xpk
p

, k ∈ S,
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where κ denotes the volume viscosity, η the shear viscosity, I the three dimensional identity tensor,
Ckl, k, l ∈ S, the multicomponent flux diffusion coefficients, dk, k ∈ S, the species diffusion driving
forces, θk, k ∈ S, the species thermal diffusion coefficients, λ̂ the partial thermal conductivity, and t the
transposition operator. When the mass fractions are nonzero, it is also possible to define the species
diffusion velocities V k, k ∈ S, by

V k =
Fk

ρYk
= −

∑

l∈S

Dkldl − θk∂x log T, k ∈ S,

where Dkl = Ckl/ρYk, k, l ∈ S, are the multicomponent diffusion coefficients.
One may also introduce the alternative formulation [7, 11, 12, 13]

Fk = −
∑

l∈S

Ckl(dl +Xlχ̃l∂x logT ), l ∈ S, (2.7)

q =
∑

k∈S

hkFk − λ∂xT +RgT
∑

k∈S

(χ̃k/mk)Fk. (2.8)

where χ̃k, k ∈ S, are the reduced thermal diffusion ratios and λ the thermal conductivity. The above
expressions are more practical for mathematical purposes or for numerical simulations than the usual
formulations (2.5) and (2.6).

The multicomponent transport coefficients κ, η, λ, λ̂, C = (Ckl)k,l∈S , D = (Dkl)k,l∈S , θ = (θk)k∈S ,
or χ̃ = (χ̃k)k∈S , are smooth functions of the state variables which are not explicitely given by the
kinetic theory. These transport coefficients have important symmetry properties inherited from the
underlying kinetic framework [7, 9, 13] and their evaluation requires solving linear systems as discussed
in Section 7. The matrices C and D are generally irreducible and the governing equations have thus
a complex structure [7]. The importance of the volume viscosity κ for compressible flows is further
discussed in Section 7.

2.4 Mathematical assumptions

The species of the mixture are assumed to be constituted by atoms, and we denote by ail the number
of lth atom in the ith species, A = {1, . . . , na} the set of atom indices, and na > 1 the number of
atoms—or elements—in the mixture. The assumptions on the coefficients are deduced form the kinetic
theory of gases and are typically in the following form [7].

(H1) The molar masses mk, k ∈ S, and the perfect gas constant Rg are positive constants. The
formation energies estk , k ∈ S, and entropies sstk , k ∈ S, are real constants. The specific heats
cvk, k ∈ S, are C∞ functions of T ∈ [0,∞). There exist positive constants cv and cv such that
0 < cv 6 cvk(T ) 6 cv for T ≥ 0 and k ∈ S.

(H2) The stoichiometric coefficients νfki and νbki, k ∈ S, i ∈ R, the atomic coefficients akl, k ∈ S,
l ∈ A, are nonnegative integers. The atom vectors al, l ∈ A, defined by al = (a1l, . . . , anl)

t,
and the reaction vectors νi, i ∈ R, defined by νi = (ν1i, . . . , νni)

t, where νki = νbki − νfki, satisfy
the mass conservation constraints 〈νi, al〉 = 0, i ∈ R, l ∈ A. The atom masses m̃l, l ∈ A, are
positive constants, and the species molar masses mk, k ∈ S, are given by mk =

∑
l∈A

m̃l akl.

(H3) The reaction constants Kf
i, and Kb

i , i ∈ R, are C∞ positive functions of T > 0 and satisfy the
reciprocity relations Kf

i(T ) = Kb
i (T )Ke

i (T ), i ∈ R.

(H4) The flux diffusion matrix C = (Ckl)k,l∈S , the reduced thermal diffusion ratios vector χ̃ =
(χ̃1, . . . , χ̃n)

t, the volume viscosity κ, the shear viscosity η, and the thermal conductivity λ are
C∞ functions of (T, ρ1, . . . , ρn) for T > 0 and ρi > 0, i ∈ S. These coefficients also satisfy the
mass conservation constraints N(C) = RY , R(C) = U⊥, χ̃ ∈ X⊥ where Y = (Y1, . . . , Yn)

t,
Yk = ρk/ρ, U = (1, . . . , 1)t and X = (X1, . . . , Xn)

t.

(H5) The thermal conductivity λ and the shear viscosity η are positive. The volume viscosity κ is
nonnegative. For Y > 0, the diffusion matrix D = (1/ρ)Y−1C is symmetric positive semi-
definite and its nullspace is N(D) = RY , where Y = diag(Y1, . . . , Yn).

Throughout these notes, for any matrix A, we denote by N(A) its nullspace and R(A) its range. The
assumptions for transport coefficients when some mass fractions are vanishing are more complex [7]
and are discussed in Section 4.
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2.5 Entropy production

From Gibbs’ relation T DS = DE −∑k∈S gk Dρk, where D denotes the total derivative, and the
properties of transport coefficients and chemical production rate, one may derive the following balance
equation for ρs = S in R

d where 1 6 d 6 3 [7, 84]

∂t(ρs) + ∂x ·(ρvs) + ∂x·
(Q
T

−
∑

k∈S

gk
T
Fk

)
=

3dκ+ 2η(3− d)

3dT
(∂x ·v)

2

+
η

2T

(
∂xv + ∂xv

t − 2
d
(∂x ·v) I

)
:
(
∂xv + ∂xv

t − 2
d
(∂x ·v) I

)

+
λ

T 2
∂xT ·∂xT +

p

T

∑

k,l∈S

Dkl

(
dk +Xkχ̃k∂x logT

)
·
(
dl +Xlχ̃l∂x logT

)

+
∑

i∈R

RgKs
i

(
〈µ, νfi 〉 − 〈µ, νbi 〉

) (
exp〈µ, νfi 〉 − exp〈µ, νbi 〉

)
, (2.9)

where νfi = (νf1i, . . . , ν
f
ni)

t, νbi = (νb1i, . . . , ν
b
ni)

t, i ∈ R, µk(T, ρk) = mkgk/RgT , k ∈ S, µ = (µ1, . . . , µn)
t,

and where the symmetric reaction constant Ks
i is defined from logKs

i = logKf
i − 〈Mνfi , µ

u〉 = logKb
i −

〈Mνbi , µ
u〉, with µu

k(T ) = µk(T,mk), k ∈ S. Entropy production therefore appears as a sum of non-
negative terms.

3 The Cauchy problem

The equations governing multicomponent reactive flows as derived from the kinetic theory of gases
have local regular solutions [21] and global regular solutions around constant equilibrium states [20].
The method of proof relies on the symmetric normal form of the governing equations, on entropic
estimates, and on the local dissipativity properties of the linearized equations. The smooth dependence
on a parameter is also investigated in [24].

3.1 Vector notation

The equations governing multicomponent flows can be rewritten in the compact vector form

∂tU +
∑

i∈C

∂iFi +
∑

i∈C

∂iF
dis
i = Ω, (3.1)

where U is the conservative variable, ∂i the spatial derivative operator in the ith direction, C =
{1, . . . , d} the indexing set of spatial directions, d ∈ {1, 2, 3} the spatial dimension, Fi the convective
flux in the ith direction, F dis

i the dissipative flux in the ith direction, and Ω the source term. The
conservative variable U is given by

U =
(
ρ1, . . . , ρn, ρv1, . . . , ρvd, E + 1

2ρv·v
)t
, (3.2)

wheras the convective and diffusive fluxes Fi and F
dis
i in the ith direction can be written

Fi =
(
ρ1vi, . . . , ρnvi, ρv1vi + δi1p, . . . , ρvdvi + δidp, (E + 1

2ρv·v + p)vi

)t
,

F dis
i =

(
F1i, . . . , Fni, Πi1, . . . , Πid, Qi +

∑

j∈C

Πijvj

)t
,

where δij denotes the Kronecker symbol, vi the velocity in the ith direction, Fki the diffusion flux of
the kth species in the ith direction, Qi the heat flux in the ith direction, Π = (Πij)i,j∈C the viscous
tensor so that v = (v1, . . . , vd)

t, Fk = (Fk1, . . . ,Fkd)
t, and Q = (Q1, . . . ,Qd)

t.
The map Z → U where Z = (ρ1, . . . ρn, v1, . . . , vd, T )

t is then a C∞ diffeomorphism from the open
set (0,∞)n×R

d×(0,∞) onto a convex open set OU of Rn where n = n+d+1. Denoting by Ai = ∂UFi,
i ∈ C, the convective flux Jacobian matrices, Bij , i, j ∈ C, the dissipation matrices defined in such a
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way that Fi = −∑j∈C Bij(U)∂jU the dissipative flux in the ith direction, and Ω the source term, we
obtain the qualinear system

∂tU +
∑

i∈C

Ai(U)∂iU =
∑

i,j∈C

∂i

(
Bij(U)∂jU

)
+Ω(U), (3.3)

and all the system coefficients Ai(U), i ∈ C, Bij(U), i, j ∈ C, and Ω(U), are smooth functions of U on
the open convex set OU .

Note that we only investigate here the equations governing ideal mixture of perfect gases and we
refer to [23, 25, 26, 29, 30] for other models and global existence with large data.

3.2 Entropy and symmetrization

Symmetrization properties of second order dissipative systems [14, 15, 16, 17, 18, 20, 21, 24, 27, 31]
generalize classical results about hyperbolic systems [19, 22, 28] and can be applied to the equations
governing multicomponent flows [20].

Proposition 3.1. Consider the mathematical entropy −S and the corresponding entropic variable

V = −
(
∂US

)t
given by

V = (1/T )
(
g1 − 1

2v·v, . . . , gn−1
2v·v, v1, . . . , vd, −1

)t
. (3.4)

Then U → V is a C∞ diffeomorphism from the open set OU onto the open set OV = R
n+d × (−∞, 0).

Performing the change of variable U = U(V ), the system (3.3) is transformed into

Ã0(V )∂tV +
∑

i∈C

Ãi(V )∂iV =
∑

i,j∈C

∂i

(
B̃ij(V )∂jV

)
+ Ω̃(V ), (3.5)

where Ã0 = ∂VU , Ãi = AiÃ0, B̃ij = BijÃ0, Ω̃ = Ω, and Ã0(V ) is symmetric positive definite,

Ãi(V ), i ∈ C, are symmetric, we have the reciprocity relations B̃ij(V )t = B̃ji(V ), i, j ∈ C, and

B̃(V,w) =
∑

i,j∈C B̃ij(V )wiwj is symmetric positive semi-definite for w in the sphere Σd−1 and V ∈
OV .

The symmetrizability properties of second order systems of partial differential equations are closely
associated with the notion of entropy and we refer to [15, 18, 20] for more details. It is important to
note that such a symmetric structure is the consequence of the underlying kinetic framework, that is,
of symmetry properties deduced from that of the Boltzmann collision operator [7].

3.3 Normal forms

The symmetric system (3.5) may be rewritten into a normal form, that is, in the form of a symmetric
hyperbolic-parabolic composite system, where hyperbolic and parabolic variables are split [14, 15,
16, 17, 18, 20, 21, 27, 31]. We use in particular a characterization of all possible normal forms for

symmetrizable systems of partial differential equations such that the nullspace of B̃(V,w) is invariant
[20]. This characterization of normal variables, written here in the special situation of multicomponent
reactive flows, holds for general systems of conservation laws [20]. The parameter dependent case has
also been investigated [24].

Theorem 3.2. Consider a diffeomorphism V 7−→ W from OV onto an open set OW . Performing
the change of variable V = V (W ), and multiplying of the left by the transpose of the Jacobian matrix
∂WV

t, the system (3.5) is transformed into

A0(W )∂tW +
∑

i∈C

Ai(W )∂iW

=
∑

i,j∈C

∂i

(
Bij(W )∂jW

)
+ T (W,∂xW ) + Ω(W ), (3.6)

where
A0 = ∂WV

tÃ0∂WV, Bij = ∂WV
tB̃ij∂WV,

6



Ai = ∂WV
tÃi∂WV, T = −

∑

i,j∈C

∂i(∂WV
t)(B̃ij∂WV )∂jW, Ω = ∂WV

tΩ̃.

The system (3.6) is said to be in the normal form and W is said to be a normal variable when {1, . . . , n}
may be partitioned into the sets I = {1, . . . , n0} and II = {n0 + 1, . . . , n+ d+ 1}, such that

A0 =

(
A

I,I

0 0

0 A
II,II

0

)
, Bij =

(
0 0

0 B
II,II

ij

)
,

the matrix B
II,II

(W,w) =
∑

i,j∈C B
II,II

ij (W )wiwj is positive definite for W ∈ OW and w ∈ Σd−1, and

we have T (W,∂xW ) =
(
T I (W,∂xWII) , T II (W,∂xW )

)t
.

Then all normal forms of the system (3.5) are obtained with variables W in the form

W =

(
WI

(
ρ
)
,WII

(g2−g1
T

, . . . ,
gn−g1
T

,
v1
T
, . . . ,

vd
T
,
−1

T

))t

, (3.7)

where I corresponds to the hyperbolic component and II to the parabolic components. Moreover we have

T (W,∂xW ) =
(
0, T II(W,∂xWII)

)t
, and ifWII depends linearly on

(
g2−g1, . . . , gn−g1, v1, . . . , vd, −1

)
/T

then T (W,∂xW ) = 0.

Corollary 3.3. Consider the diffeomorphism V 7−→ W from OV onto the open set OW = (0,∞) ×
R

n−1 × R
d × (0,∞) given by

W =
(
ρ, log(ρr22 /ρ

r1
1 ), . . . , log(ρ

rn
n /ρr11 ), v1, . . . , vd, T

)t
, (3.8)

where rk = Rg/mk. Then W is a normal variable and the equations (3.6) are in normal form.

Various normal forms are computed explicitly in [20] in particular for the above variable (3.8) and
also for the ‘natural’ normal variable

W =
(
ρ ,
g2−g1
T

, . . . ,
gn−g1
T

,
v1
T
, . . . ,

vd
T
,
−1

T

)t
, (3.9)

which is useful in the context of chemical equilibrium flows.

3.4 Local dissipativity

We present in this section the dissipativity properties around equilibrium states that are needed in order
to establish global existence and asymptotic stability [15, 20]. The existence of equilibrium points is a
consequence of the structural properties of thermochemistry [7].

Proposition 3.4. For T e > 0 and (ρc1, . . . , ρ
c
n)

t ∈ (0,∞)n, there exists a unique equilibrium point U e

associated with Ze =
(
ρe1, . . . , ρ

e
n, v

e
1, . . . , v

e
d, T

e
)t

such that vei = 0, i ∈ C, and (ρe1 − ρc1, . . . , ρ
e
n − ρcn)

t ∈
Span{Mνi, i ∈ R } where M = diag(m1, . . . ,mn).

The system of partial differential equations governing multicomponent reactive flows written in
normal form is also strictly dissipative and the source terms are locally stable [15, 16, 18, 20, 24].

Proposition 3.5. The matrix A0(W
e) is symmetric positive definite, the matrices Ai(W

e), i ∈ C,
are symmetric, we have Bij(W

e)t = Bji(W
e), i, j ∈ C, and the linearized source terms L(W e) =

−∂
W
Ω(W e) are symmetric positive semi-definite. Moreover, the linearized normal form is strictly

dissipative in the sense that the eigenvalues λ(ζ, w) of the problem

λA0(W
e)φ+

(
ζ
∑

i∈C

Ai(W
e)wi − ζ2

∑

i,j∈C

Bij(W
e)wiwj + L(W e)

)
φ = 0,

for ζ ∈ iR\{0} and w ∈ Σd−1, have a negative real part.

Proposition 3.6. The smallest linear space containing the source term Ω̃(V ) = Ω
(
U(V )

)
for any

V ∈ OV in included in the range L̃(V e) = −(∂
V
Ω̃)(V e). Moreover, there exists a neighborhood of V e

in OV and a positive constant α such that for any V in this neighborhood we have

α
∣∣ Ω̃(V )

∣∣2 6 −
〈
V − V e, Ω̃(V )

〉
.
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3.5 Existence of solutions

The local dissipativity properties now imply global existence and asymptotic stability of equilibrium
states [15, 20, 24].

Theorem 3.7. Let d > 1, l > [d/2] + 2 and W 0(x) such that ‖W 0 −W e‖Hl is small enough. The

Cauchy problem with initial conditions W (0, x) =W 0(x) has a global solution such that

WI −W e
I
∈ C0

(
[0,∞);H l) ∩C1

(
[0,∞);H l−1), (3.10)

WII −W e
II
∈ C0

(
[0,∞);H l) ∩ C1

(
[0,∞);H l−2). (3.11)

Moreover we have the estimates

‖W (t)−W e‖2Hl +

∫ t

0

(
‖∂xWI(τ)‖2Hl−1 + ‖∂xWII(τ)‖2Hl

)
dτ 6 C‖W 0 −W e‖2Hl ,

and sup
Rd |W (t)−W e| goes to zero as t→ ∞.

Theorem 3.8. Let d > 1, l > [d/2] + 3 and assume that the initial condition W 0(x) is such that
W 0 −W e ∈ H l(Rd)∩Lp(Rd), where p = 1, if d = 1, and p ∈ [1, 2), if d > 2. Then if ‖W 0 −W e‖Hl +

‖W 0 −W e‖Lp is small enough, the global solution satisfy the dacay estimate

‖W (t)−W e‖Hl−2 6 β(1 + t)−γ
(
‖W 0 −W e‖Hl−2 + ‖W 0 −W e‖Lp

)
,

for t ∈ [0,∞), where β is a positive constant and γ = d× (1/2p− 1/4).

4 Anchored waves

Traveling waves in inert or reactive flows can be classified into deflagration and detonation waves [32].
In the context of combustion—which does not decrease the problem generality but makes things more
explicit—weak deflagrations correspond to plane laminar flames. The anchored flame problem has
been investigated with complex chemistry and detailed transport by using entropic estimates and the
Leray-Schauder topological degree theory[36].

A difficulty typically associated with waves in reactive media extending over (−∞,+∞) is that
limit points have to be equilibrium points where source terms vanish. However, chemical source terms
generally only have a unique equilibrium point in a given atom conservation manifold [7]. In the context
of combustion this is the cold boundary difficulty. For unsteady flows, the solution is to use unsteady
boundary conditions as suggested by Zeldovitch and investigated mathematically by Roquejoffre [33].
For steady waves, on the other hand, the proper physical model is the anchored wave model [36].

4.1 Plane flame equations

The equations governing plane flames can be derived from the general equations presented in Section 2
upon using the low Mach number limit, stationarity, and the one-dimensional geometry. Denoting by
x the coordinate normal to the flame, the conservation of species mass and energy are found in the
form

c Y ′
k + F ′

k = mkωk, k ∈ S, (4.1)

c h′ + q′ = 0, (4.2)

where c denotes the mass flow rate, ′ the spatial derivation with respect to x, Fk = (Fk, 0, 0)
t the

mass flux of the kth species, h = H/ρ the enthalpy per unit mass, and Q = (q, 0, 0)t the heat
flux. The unknowns are the mass flow rate c—which is a nonlinear eigenvalue—the mass fractions
Y = (Y1, . . . , Yn)

t and the enthalpy h, or equivalently the temperature T . The momentum equation
uncouples and may only be used to evaluate a pressure corrector [32, 36, 7].
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The mass fractions naturally appear in the governing equations (4.1) so that it is more convenient
to use these variables rather than the species partial densities. The enthalpy h is for instance written

in the form h =
∑

k∈S Ykhk(T ) where hk(T ) = hstk +
∫ T

T stcpk(t) dt where hstk denotes the formation
enthalpy of the kth species at temperature T st, cpk = cvk +Rg/mk the specific heat of the kth species
at constant pressure, and the specific entropy s = S/ρ is rewritten in a similar way [36]. It is also
more convenient and more elegant to consider all the mass fractions as independent unknowns and to
recover the relation

∑
k∈S Yk = 1 from the species equations and boundary conditions.

In the small Mach number limit, the transport fluxes Fk, k ∈ S, and q are simplified in the form

Fk = −
∑

l∈S

Ckl(X
′
l +Xlχ̃lT

′/T ), k ∈ S, (4.3)

q =
∑

k∈S

(hk +RgT χ̃k/mk)Fk − λT ′. (4.4)

All the species second derivatives are thus coupled through the flux matrix C and are coupled with the
temperature second derivative through the thermal diffusion coefficients χ̃.

Remark 4.1. The following temperature equation is obtained from (4.1)–(4.4)

c cpT
′ =

(
λT ′ −RgT

∑

l∈S

(χ̃l/ml)Fl

)′
−
∑

k∈S

cpkT
′Fk −

∑

k∈S

hkmkωk,

where cp =
∑

k∈S Ykcpk. This equation notably contain quadratic derivative terms
∑

k∈S cpkT
′Fk and a

priori unbounded source terms
∑

k∈S hkmkωk. The presence of thermal diffusion terms
∑

l∈S(χ̃l/ml)Fl

also prohibits the use of the maximum principle.

4.2 Boundary conditions for anchored flames

The boundary conditions at the origin are that of the anchored flame model

c(Yk(0)− Y f
k ) + Fk(0) = 0, k ∈ S, c(h(0)− hf) + q(0) = 0, T (0) = T i,

where (T f , Y f) is a state out of equilibrium and T i a temperature such that T f < T i. This model has
first been introduced by Hirschfelder, Curtiss and Campbell [34] and represents an adiabatic porous
burner located at the origin. The boundary conditions in the hot gases are

Yk(∞) = Y e
k , k ∈ S, T (∞) = T e,

where (T e, Y e) is an equilibrium state whose existence and uniqueness can be deduced form the struc-
ture of thermochemistry under natural assumptions on (T f , Y f) and it is also assumed that T i < T e

[35, 36]. We then look for smooth solutions (T, Y, c) of the anchored flame model such that T > 0,
Y > 0, Y 6= 0, and c > 0.

One may also replace the boundary conditions at the origin by T (−∞) = T f , Y (−∞) = Y f and
T (0) = T i. In this situation, it is necessary to replace the source term ω by Hω where H is the
Heavyside function. One may establish that this formulation over (−∞,∞) is equivalent to that of the
anchored flame over [0,∞). Any solution of the anchored flame model may be extended over (−∞, 0)
and satisfies T (−∞) = T f and Y (−∞) = Y f .

4.3 Further mathematical assumptions

Since we are now interested in solutions which are not in the neighborhood of an equilibrium solution,
it is necessary to specify the behavior of transport coefficients for vanishing mass fractions as well as
for large or small temperatures. The following assumptions have been derived from the properties of
transport linear systems [7, 13, 35, 36].

(H6) For Y > 0, Y 6= 0, we define the sets S+ = { k ∈ S, Yk > 0 } and S0 = { k ∈ S, Yk = 0 },
and we denote by Υ the permutation matrix associated with the reordering of S into (S+, S0).
We then have the block structure

ΥtCΥ =

(
C++ C+0

0 C00

)
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where C00 is a diagonal matrix with positive diagonal coefficients and where D++ defined by
ρD++

kl = C++
kl /Yk, k, l ∈ S+, is symmetric positive semi-definite with nullspace RY + where

Y + corresponds to the S+ mixture, that is, Y = Υ(Y +, 0)t.

(H7) There exists a positive function ϕ(T ) defined for T > 0 such that the reduced coefficients
C0(T, Y ) = C(T, Y )/ϕ(T ), λ0(T, Y ) = λ(T, Y )/ϕ(T ), and χ̃0(T, Y ) = χ̃(T, Y ) have continuous
extensions for T ∈ [0,∞], Y > 0, Y 6= 0, which satisfy (H4)–(H5).

The function ϕ depends on the interaction potentials between pairs of particles [35, 36] and for
rigid spheres we have for instance ϕ(T ) =

√
T [11, 12]. One of the main difficulties associated with the

model, which takes into account multicomponent transport, is to correlate the fluxes and the gradients.
This can only be done by using the entropy s thanks to the properties of the source terms and of the
transport coefficients [36].

Lemma 4.2. Denoting by s the specific entropy and ψ = (q−∑k∈S gkFk)/T the entropy flux, we have

c s′ + ψ′ =v = λ(T ′/T )2 +
p

T

∑

k,l∈S

Dkl

(
X ′

k +Xkχ̃kT
′/T
) (
X ′

l +Xlχ̃lT
′/T
)

+
∑

i∈R

RgKs
i

(
〈µ, νfi 〉 − 〈µ, νbi 〉

) (
exp〈µ, νfi 〉 − exp〈µ, νbi 〉

)
, (4.5)

where we use notation similar to that of Section 2.5.

In order to use (4.5) we must control λ and the quadratic form associated with D on the physical
hyperplane U⊥ where U = (1, . . . , 1)t. A comprehensive investigation of multicomponent transport
[35, 36] establishes that there exists a constant δ > 0 such that δϕ 6 λ 6 (1/δ)ϕ and

∀x ∈ U⊥ ⊂ R
n, δϕ

∑

k∈S

x2k
Yk

6
p

T

∑

k,l∈S

Dklxkxl 6 (1/δ)ϕ
∑

k∈S

x2k
Yk
.

This inequality reveals that the natural norm of multicoponent diffusion is not the usual Sobolev norm
but involve the mass fractions at the denominator of the mass fraction gradients squared [35, 36].

4.4 Existence on a bounded domain

In order to establish the existence of solutions, we first consider the anchored flame problem on a
bounded domain [0, a] we use a fixed point formulation. The boundary conditions at a are written
in the form T (a) = T e, Y (a) = Y e and we use the Leray-Schauder topological degree theory. The
main difficulty is to establish a priori estimates in order to show that the degree is well defined and to
evaluate this degree with suitable homotopy pathes [36].

In order to simplify the presentation, we only state a few estimates for the flame equations over
[0, a]. A first step is to establish that the species remain positive in order to be able to use the entropy
estimates (4.5).

Lemma 4.3. Let (T, Y, c) be a solution of the anchored flame problem over [0, a] and let extend this
solution over (−∞, 0). Then one has Y > 0,

∑
k∈S Yk = 1, Y (−∞) = Y f , T (−∞) = T f and

∫ a

−∞

v dx = c(se − sf).

This entropic estimates allows to control the integrals of ϕ
∑

k∈S Y
′2
k /Yk and ϕ(T ′/T )2. The fun-

damental step is then the following L∞ estimate on temperature [36].

Lemma 4.4. Let (T, Y, c) be a solution of the anchored flame problem over the domain [0, a]. There
exists positive constants α and β independent of a such that α < T < β.

A priori estimates fo the eigenvalue c require similar techniques and it is next possible to estimate
the derivatives of T and Y at any order and to establish an existence theorem over [0, a] using the
homotopy invariance of the degree [36].
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4.5 Existence of solutions

In order to let a → ∞ it is important to derive estimates of the eigenvalue c independent of a. A
fundamental tool is the exponential decrease of entropy dissipation rate residuals

∫ a

x
v dx when (T, Y )

remains close to the equilibrum state (T e, Y e) [35, 36]. This exponential decrease is obtained by using
the entropy balance equation as well as a stability inequality due to Boillat and Pousin in the form

h(T, Y ) = he, Y − Y e ∈MR =⇒ δ
(
se − s(T, Y )

)
6 −

∑

k∈S

gkmkωk

T
,

whereR = Vect{νi, i ∈ R}. Such stability inequalities are established locally around equilibrium states
and then globally when the chemical reaction mechanism does not have spurious ‘boundary equilibrium
points’ in the atom conservation manifolds associated with (T e, Y e) [35, 36]. These exponential decrease
rates next allow to prove the asymptotic behavior of the solution at infinity.

Theorem 4.5. There exist constants ā, d and C independent of a such that

∀a > ā ∀x ∈ [0, a], |T (x)− T e|+ ‖Y (x)− Y e‖ 6 C exp(−dx),

Finally, passing to the limit a→ ∞ and using a priori estimates independent of a one may establish
the following result [7, 35, 36].

Theorem 4.6. There exists a C∞ solution to the anchored flame problem.

5 Related models

In this section, we address fluid models whose mathematical structure is similar to that investigated in
Section 3. We first discuss the Saint-Venant model and then chemical equilibrium flows. Other models
are notably full vibrational nonequilibrium flows [21] as well as ambipolar plasmas [24].

5.1 Saint-Venant Equations

The Saint-Venant system of partial differential equations models shallow water flows as well as thin
viscous sheets over fluid substrates like oil slicks, atlantic waters in the Strait of Gilbraltar or float
glasses. Numerous existence results can be found in the literature concerning this system, which does
not include an energy equation, in various functional settings. We refer the reader notably to Serre
[19] and Dafermos [22] for inviscid models and to Lions [41] and Wang and Xu [42] for viscous Saint-
Venant models with constant viscosity coefficients. Global weak solutions have also been investigated
by Bresch [37], Bresch and Desjardins [38], Bresch, Desjardins, and Métivier [39], and Li, Li, and Xin
[40] for the situation density dependent viscosities, using a gradient entropy [37], and Li, Li, and Xin
[40] also considered the vanishing of vacuum states.

On the other hand, the Saint-Venant model with an energy equation and with temperature de-
pendent transport coefficients has recently been investigated [43]. Modeling temperature variations is
important in various environmental and engineering applications like float glasses. The full derivation
of the model from the three dimensional incompressible Navier-Stokes equations has been conducted
and the resulting system of partial differential equations shares a similar stucture with that investigated
in Section 3. The correponding conservative variable is in the form

U =
(
h, hu, hv, E + 1

2h(u
2 + v2)

)t
, (5.1)

where h is the vertical height of the viscous sheet or of the shallow water flow playing the rôle of a
density, u, v are the horizontal components of the mass averaged flow velocity. The internal energy per
unit volume of the fluid sheet is given by E = he where the internal energy per unit mass e can be
written

e = est +

∫ T

T st

cv(τ) dτ + 1
2αh, (5.2)

where cv is the heat capacity at constant volume per unit mass of the fluid, T the absolute temperature,
est the formation energy of the fluid at the standard temperature T st, and α a parameter associated
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with gravity [43]. Note that, unlike for ideal gas mixtures, the specific internal energy e depends on
the ‘density’ h.

The Saint-Venant quasilinear system of partial differential equations with a temperature equation
admits an entropy and may be symmetrized. The resulting system is then shown to satisfy the nullspace
invariance property and is recast into a normal form. The symmetrizing variable is notably obtained
from the entropy and not the kinetic energy as is traditional in the isothermal case. Upon establishing
the local dissipative structure of the linearized normal form, global existence results and asymptotic
stability of equilibrium states are obtained [43].

5.2 Equilibrium flows

Chemical equilibrium flows are a limiting model which is of interest for various applications, such as
chemical vapor deposition reactors [46], flows around space vehicles [1, 47], or diverging nozzle rocket
flows [32]. These simplified models provide reasonable predictions when the characteristic chemical
times are small in comparison with the flow time, and the associated computational costs are signifi-
cantly reduced in comparison with chemical nonequilibrium models.

The equations governing chemical equilibrium flows may be derived by using two different methods.
A first possibility is to take into account chemical equilibrium directly at the molecular level, that is,
at the Boltzmann level. This model is the kinetic equilibrium regime introduced in [44] and further
investigated in [45]. In this regime, by using an Enskog expansion, the corresponding macroscopic
equations at chemical equilibrium are obtained. A second possibility is to start directly from the
macroscopic equations at chemical nonequilibrium presented in Section 2 and to superimpose chemical
equilibrium. It turns out, however, that both methods lead to the same conservations equations,
transport fluxes, thermodynamics, as well as qualitative properties of transport coefficients [45]. Still
note that these two methods yield different quantitative values for the transport coefficients [45]. We
summarize the second method in the following.

When chemical equilibrium is superimposed in the conservation equations investigated in Section 2,
it is then necessary to project the nonequilibrium equations onto the zero source term linear space and
to write the algebraic chemical equilibrium constraint. These chemical constraint are then used to
eliminate the reactive part of the conservative variable and to reduce the equilibrium flow equations to a
set of partial differential equations [7]. The species and thermal variables needed to describe chemical
equilibrium flows are found to be the atomic mass densities ρ̃l =

∑
k∈S m̃laklρk/mk, l ∈ A, and the

total energy per unit volume, which have to be completed by the momentum in each spatial direction.
The corresponding conservative variable for chemical equilibrium flows is thus in the form

U =
(
ρ̃1, . . . , ρ̃na , ρv1, . . . , ρvd, E + 1

2ρv·v
)t
.

The resulting system of partial differential equations is then symmetrizable and can be investigated as
for nonequilibrium multicomponent reactive flows [7]. Upon establishing the local dissipative structure
of the linearized normal form, global existence results and asymptotic stability of equilibrium states
are obtained [7]. These results have recently been extended to the more general situation of partial
equilibrium flows [48].

6 Magnetized flows

We investigate a system of partial differential equations modeling ionized magnetized reactive dissipa-
tive gas mixtures. In these models, the transport fluxes are anisotropic linear combinations of gradients
and also include zeroth order contributions due to electromagnetic forces. There are also source terms
depending on the solution gradients. A new definition of entropy is introduced and only partial sym-
metrization may be achieved as well as a partially normal form. Using a result of Vol’Pert and Hudjaev,
we prove local existence and uniqueness of a bounded smooth solution to the Cauchy problem [51].
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6.1 Governing equations

We consider the equations governing reactive ionized magnetized dissipative gas mixtures. These
equations are derived from the kinetic theory of weakly ionized polyatomic reactive gas mixtures
and can be split between conservation equations, transport fluxes, thermochemistry, and Maxwell’s
equations [49]. The resulting conservation equations are in the compact form

∂tU +
∑
i∈C

∂iFi +
∑
i∈C

∂iF
diss
i = Ωj , (6.1)

where ∂t is the time derivative operator, ∂i the space derivative operator in the ith direction, C =
{1, 2, 3} the indexing set of spatial coordinates, U the conservative variable, Ωj the full source term,
Fi the convective flux in the ith direction, and F diss

i the dissipative flux in the ith direction. The
conservative variable U is given by

U =
(
ρ1, . . . , ρn, ρv,E,B, E + 1

2ρv·v + ε0E·E + 1
µ0
B·B

)t
, (6.2)

where ρk, k ∈ S, are the species partial mass densities, S = {1, . . . , n} the species indexing set, n
the number of species, ρ =

∑
k∈S ρk the total mass density, v the mass average fluid velocity, E the

electric field, B the magnetic field, ε0 the dielectric constant in vacuum, µ0 the magnetic permeability in
vacuum, and E the internal energy per unit volume. For notational convenience, the three components
of the velocity vector v, the electric field E, and the magnetic field B, are written as three dimensional
vectors in U and this notational shortcut is used throughout this Section. The source term Ωj reads

Ωj =
(
m1ω1, . . . ,mnωn, ρg + q(E + v∧B) + j∧B,−(qv + j)/ε0,0, ρg·v

)t
, (6.3)

where mkωk, k ∈ S, denote the species chemical production rates, g the gravity vector, 0 the three
dimensional zero vector, q =

∑
k∈S qk the total charge per unit volume, qk, k ∈ S, the species charge

per unit volume, and the vector j denotes the conduction current j =
∑

k∈S qkV k.
The convective fluxes Fi, i ∈ C, are in the form

Fi =
(
viρ1, . . . , viρn, ρviv + pei,−ei∧B/(ε0µ0), e

i
∧E, (ρet + p)vi + Pi

)t
, (6.4)

where ei, i ∈ C, is the ie canonical base vector ofR3, p the thermodynamic pressure, and P = E∧B/µ0

the Poynting vector. The diffusive fluxes F diss
i , i ∈ C, are in the form

F diss
i =

(
ρ1V1i, . . . , ρnVni, Πi•,0,0,Qi +

∑

j∈C

Πijvj
)t
, (6.5)

where Vk, k ∈ S, are the species diffusion velocities, Πi• = (Π1i, Π2i, Π3i)
t the ith column of the

viscous tensor, and Q the heat flux.
A remarkable feature of dissipative plasmas is the anisotropy of the transport fluxes under strong

magnetic fields [12, 49]. We denote by B the unitary vector B = B/B, where B = ‖B‖, and for any
vector x of R3, we may consider the three associated vectors x‖ = (B·x)B, x⊥ = x− x‖ and x⊙ = B∧x,
which are orthogonal. The species diffusion velocities Vk, k ∈ S, can then be written

Vk = −
∑

l∈S

(
D

‖
kld

‖
l +D⊥

kld
⊥
l +D⊙

kld
⊙
l

)

−
(
θ
‖
k(∂xlogT )

‖ + θ⊥k (∂xlogT )
⊥ + θ⊙k (∂xlogT )

⊙
)
, (6.6)

where the diffusion driving forces dk, k ∈ S, are given by

dk = 1
p

(
∂xpk − qk(E + v∧B)

)
, (6.7)

and D
‖
kl, D

⊥
kl, and D

⊙
kl, k, l ∈ S, are the multicomponent diffusion coefficients, θ

‖
k, θ

⊥
k , and θ

⊙
k , k ∈ S,

the thermal diffusion coefficients, T the absolute temperature, pk, k ∈ S, the species partial pressures.
The heat flux Q can be written

Q = −λ̂‖(∂xT )‖ − λ̂⊥(∂xT )
⊥ − λ̂⊙(∂xT )

⊙

− p
∑

k∈S

(
θ
‖
kd

‖
k + θ⊥k d

⊥
k + θ⊙k d

⊙
k

)
+
∑

k∈S

ρkhkVk, (6.8)
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where hk, k ∈ S, are the species enthalpy per unit mass, and λ̂‖, λ̂⊥, and λ̂⊙ the partial thermal
conductivities. Finally, the viscous tensor Π is given by

Π = −κ(∂x·v)I − η1S− η2(M
⊙S− SM⊙)− η3(−M⊙SM⊙ +M‖ SM‖)

− η4(SM‖ +M‖ S− 2M‖ SM‖)− η5(M
‖ SM⊙ −M⊙ SM‖), (6.9)

where κ is the volume viscosity, η1, η2, η3, η4, and η5, the shear viscosities. We have denoted by S the
symmetric traceless deformation rate tensor

S = ∂xv + ∂xv
t − 2

3 (∂x·v)I,

by M‖ the matrix M‖ = B⊗B and by M⊙ the antisymmetric rotation matrix associated with the
vector B

M⊙ =




0 −B3 B2
B3 0 −B1
−B2 B1 0


 .

These fluxes V k, k ∈ S, Π , and Q are smooth functions of B thanks to the structural properties of
the multicomponent transport coefficients parallel, orthogonal, and transverse to the magnetic field B

deduced from the kinetic theory [24].
The convective fluxes Fi(U), i ∈ C, are C∞ functions of the variable U ∈ OU , where OU is a convex

open set of Rn where n = n+10, and the dissipative fluxes F diss
i (U, ∂xU), i ∈ C, can be written in the

form
F diss
i (U, ∂xU) = − ∑

j∈C

Bij(U)
(
∂jU +Gj(U)

)
, i ∈ C, (6.10)

where the dissipation matrices Bij(U), i, j ∈ C, and the zeroth order contributions Gi(U), i ∈ C, are
C∞ functions of U ∈ OU . In addition, the source term Ωj(U, ∂xU) can be written in the form

Ωj(U, ∂xU) =
∑
i∈C

Mi(U)t F diss
i (U, ∂xU) + Ω0(U), (6.11)

where the matricesMi(U), i ∈ C, and the zeroth order source term Ω0(U) are C∞ functions of U ∈ OU .
The dissipative terms F diss

i , i ∈ C, notably contain the zeroth-order contributions Gi, i ∈ C, arising
from the direct action of electromagnetic forces. Another difference with nonionized mixtures is that
the source term Ωj also depends on the gradient ∂xU through the current j appearing in Maxwell’s
equations and these terms are related through entropy. Finally, denoting by Ai(U) = ∂UFi, i ∈ C, the
Jacobian matrices, which are C∞ functions of U ∈ OU , and the system (6.1) can be rewritten in the
form

∂tU +
∑

i∈C

Ai(U)∂iU =
∑

i,j∈C

∂i

(
Bij(U)

(
∂jU +Gj(U)

))

−
∑

i,j∈C

Mi(U)tBij(U)
(
∂jU +Gj(U)

)
+Ω0(U). (6.12)

Remark 6.1. Denoting by me the electron mass, the singular limit me → 0 is not addressed in these
notes. In the limit me → 0, anisotropy is lost excepted for electrons, and we refer to [52] for more
details.

6.2 Symmetrization and normal form

The mathematical entropy σ is taken to be the opposite of the physical entropy per unit volume
σ = −S and is a C∞ strictly convex function of U ∈ OU . The corresponding vector of entropic
variables V = (∂Uσ)

t is given by

V = 1
T

(
g1 − 1

2v·v, . . . , gn − 1
2v·v, v, ε0E, B/µ0, −1

)t
, (6.13)

where gk, k ∈ S, are the species Gibbs functions.
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Theorem 6.2. Performing the change of variable U = U(V ), the system (6.12) is transformed into

Ã0(V ) ∂tV +
∑

i∈C

Ãi(V )∂iV =
∑

i,j∈C

∂i

(
B̃ij(V )

(
∂jV + G̃j(V )

))

−
∑

i,j∈C

M̃i(V )t B̃ij(V )
(
∂jV + G̃j(V )

)
+ Ω̃0(V ), (6.14)

with Ã0 = ∂V U , Ãi = Ai∂V U , B̃ij = B̃s
ij + B̃a

ij = Bij∂V U , G̃i = (∂V U)
−1
Gi, M̃i =Mi and Ω̃0 = Ω0,

where the matrices Ã0(V ), Ãi(V ), M̃i(V ), i ∈ C, B̃s
ij(V ), B̃a

ij(V ), i, j ∈ C, and the vectors G̃i(V ),

i ∈ C, Ω̃0(V ) are C∞ functions of V ∈ OV , where OV is a convex open of Rn.

Furthermore, the system (6.14) is in partially the symmetric form, that is, the matrix Ã0(V ) is

symmetric positive definite, the matrices Ãi(V ), i ∈ C, are symmetric, we have the relations B̃s
ij(V )t =

B̃s
ji(V ), B̃a

ij(V )t = −B̃a
ji(V ), i, j ∈ C, the matrix B̃(V, ξ) =

∑
i,j∈C B̃

s
ij(V )ξiξj is symmetric positive

semi-definite for ξ ∈ Σ2, where Σ2 is the unit sphere of R3, and V ∈ OV . For x in the nullspace of
N(B̃), we have B̃s

ijx = 0 and B̃a
ijx = 0, i, j ∈ C, and the compatibility relations G̃i(V ) = M̃i(V )V ,

i ∈ C, are satisfied.

The corresponding new definition of entropy is given in [51] with the associated equivalence theorem.
The equation governing the entropy is easily obtained upon multiplying on the left equation (6.14) by
V t and can be written

∂tσ +
∑
i∈C

∂iqi +
∑
i∈C

∂ipi = − ∑
i,j∈C

〈∂iV + M̃iV, B̃
s
ij(∂iV + M̃iV )〉+ 〈Ω̃0, V 〉, (6.15)

where qi, i ∈ C, are the convective entropy fluxes, pi, i ∈ C, the dissipative entropy fluxes associated
to dissipative effects in the ie direction, pi = 〈V, F diss

i 〉. It is important to observe that the zeroth order
contributions are included in the entropy production term [49, 51] and that only the symmetric parts

of the dissipation matrices B̃s
ij play a rôle in this source term.

We next rewrite the symmetric system (6.14) by regrouping all the zeroth order terms as a source
and next all first order derivatives arising from the zeroth order contributions of dissipative fluxes as
well as from the gradient dependent source terms with the convective terms. To this aim, we define
the new matrices Ãa

i , i ∈ C, and the new source Ω̃ by

Ãa
i (V) =

∑

j∈C

(
M̃ t

j B̃ji − B̃ijM̃j − ∂V (B̃ijM̃j)V
)
,

Ω̃(V) = −
∑

i,j∈C

M̃ t
i B̃ijM̃jV + Ω̃0(V ).

The resulting symmetric system is still intermediate between a symmetric hyperbolic system and a
symmetric strongly parabolic system. In order to rewrite this system into a partially normal form, we
investigate the nullspace invariance property.

Proposition 6.3. The nullspace N of the symmetric matrix

B̃(V, ξ) =
∑

i,j∈C

B̃s
ij(V )ξiξj ,

does not depends on V ∈ OV or ξ ∈ Σ2. This nullspace of dimension 7 is spanned by the column
vectors (1, . . . , 1, 01,10)

t and e
n+k, k = 1, . . . , 6, where (ek)k=1,...,n+10 is the canonical basis of Rn+10.

In order to separate hyperbolic and parabolic variables, we introduce the partially normal variables
W = (WI ,WII)

t where WI corresponds to the hyperbolic variables and WII to the parabolic variables

WI =
(
ρ,E,B

)t
, WII =

(
log(ρr22 /ρ

r1
1 ), . . . , log(ρrnn /ρr11 ),v, T

)t
. (6.16)

The system of dissipative plasmas can now be recast into a partially normal form, that is to say into
a partially symmetric hyperbolic-parabolic composite form. We use the term partially symmetric since
the resulting effective first order differential operators involve nonsymmetric matrices in contrast with
the nonionized case [7, 15, 18, 21]. However, the bloc structure of the additional first order differential
operators insures that the symmetric properties concerning the hyperbolic subsystem are conserved
[51].
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Proposition 6.4. Performing the change of variable V = V (W ), the system (6.14) is transformed
into

A0(W )∂tW +
∑

i∈C

(
Ai(W )+A

a

i (W )
)
∂iW =

∑

i,j∈C

∂i

(
Bij(W )∂jW

)
+ T (W,∂xW ) + Ω(W ), (6.17)

where we have defined A0 = (∂WV )t Ã0 (∂WV ), Ai = (∂WV )t Ãi (∂WV ) and A
a

i = (∂WV )t Ãa
i (∂WV ),

i ∈ C, Bij = (∂WV )t B̃ij (∂WV ), i, j ∈ C, Ω = (∂WV )t Ω̃, T = −∑i,j∈C ∂i(∂WV )t B̃ij (∂WV ) ∂jW ,

and where the matrices A0(W ), Ai(W ), A
a

i (W ), i ∈ C, Bij(W ), i, j ∈ C, and the vectors Ω(W ),
T (W,∂xW ) are C∞ functions of W ∈ OW and ∂xW ∈ R

3n. Moreover, the system (6.17) is in
partially normal form, that is, the matrix A0(W ) is symmetric positive definite, the matrices Ai(W )
are symmetric, the matrices A0, A

a

i , i ∈ C, and Bij, i, j ∈ C, have the block structure

A0 =

(
A

i,i

0 0

0 A
ii,ii

0

)
, A

a

i =

(
0 A

ai,ii

i

A
aii,i

i A
aii,ii

i

)
, Bij =

(
0 0

0 B
ii,ii

ij

)
,

the matrix B
ii,ii

(W, ξ) =
∑

i,j∈C B
ii,ii

ij (W )ξiξj is such that Xt B(W, ξ) X > 0, for X ∈ R
n−7, X 6= 0,

ξ ∈ Σ2 and W ∈ OW and we have T (W,∂xW ) =
(
Ti(W,∂xWII), Tii(W,∂xW )

)t
.

6.3 Local existence theorem

We may now investigate the well posedness of the Cauchy problem by using a simplified quasilinear
version of an existence theorem due to Vol’pert and Hudjaev [14, 21, 51] concerning partially symmetric
hyperbolic-parabolic systems.

We introduce the Vol’Pert’s functional spaces Vl(R
3) with norm

||φ||2Vl
=

∑
i∈[[1,n]]

||φi||2Vl
, ||φi||Vl

= ‖φi‖L∞ +
∑

k∈[[1,l]]

|φi|Hk , (6.18)

where φ = (φ1, . . . , φn)
t and |φi|Hk = ‖∂kxφi‖L2 denotes the usual seminorm associated with the

Sobolev space Hk. The solutions are investigated in the space Vl(R
3) where l is an integer greater than

9/2.
Using the partially normal form obtained previously, we may now prove local existence and unique-

ness in the space Vl(R
3) for the Cauchy problem (6.17) with an initial condition W 0 ∈ Vl(R

3) such
that infR3 ρ0 > 0 and infR3 T 0 > 0. Moreover, the solution is continuous with its derivatives of first
order in t and second order in x.

Theorem 6.5. Consider the Cauchy problem for the system (6.17) in R
3 with initial conditions

W (0, x) = W 0(x), x ∈ R
3, where W 0 ∈ Vl(R

3), l > 9/2, infR3 ρ0 > 0 and infR3 T 0 > 0. There exists
t0 > 0, such that the Cauchy problem admits a unique solution W = (WI ,WII)

t with W (t, x) ∈ OW ,
defined on the domain Qt0

= [0, t0]×R
3, which is continuous in Qt0

as well as its derivatives of first
order in t and second order in x and the following quantities remain finite

sup
06t6t0

||(WI(t),WII(t))||Vl
, sup

Qt0

(1/ρ+1/T ), sup
06t6t0

||∂tWI(t)||Vl−1
,

∫ t0

0

(
||∂tWII(τ)||2Vl−1

+||WII(τ)||2Vl+1

)
dτ.

In addition, either t0 can be taken arbitrary large, or there exists t1 such that the theorem is true for
t0 < t1 but as t0 → t−1 , at least one of the quantities ||WI(t0)||W 1,∞ + ||WII(t0)||W 2,∞ and supQt0

1/T is

unbounded.

Note that the partially normal form obtained for dissipative plasmas is insufficient in order to
establish global existence results around constant equilibrium states [7, 15, 20]. More specifically,
consider an equilibrium state W e such Ee = Be = ve = 0. One can establish that the matrices A

ae

i ,
i ∈ C, are antisymmetric and never vanish, so that we cannot apply the existence theorem established
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in [15, 20, 7]. These theorems may still be used in the ambipolar limit. The ambipolar approximation is
a model for ionized reactive gas mixtures obtained for vanishing Debye length for which the asymptotic
stability around constant equilibrium states is established in [24]. The ambipolar model is also stable
when the electron mass goes to zero [24].

7 Numerical simulation

Numerical simulation of multicomponent reactive flows with complex chemistry and detailed transport
phenomena is of fundamental important for many engineering applications. We briefly discuss in this
section some numerical algorithms specially devoted to multicomponent flows.

7.1 Numerical Methods

Numerical simulation of compressible flows is a very difficult task that has been the subject of numer-
ous textbooks and requires a solid background in fluid mechanics and numerical analysis [55, 57, 59].
The nature of compressible flows may be very complex, with features such as shock fronts, boundary
layers, turbulence, acoustic waves, or instabilities. Taking into account chemical reactions dramati-
cally increases the difficulties, especially when detailed chemical and transport models are considered.
Interactions between chemistry and fluid mechanics are especially complex in reentry problems [1],
combustion phenomena [5, 60, 62], or chemical vapor deposition reactors [3, 4].

An important aspect of complex chemistry flows is the presence of multiple time scales. For com-
pressible flows, we already know that the presence of acoustic waves introduces small characteristic
times for small Mach number flows. However, chemical characteristic times can range typically from
10−10 s up to several seconds. In the presence of multiple time scales, implicit methods are advanta-
geous, since otherwise explicit schemes are limited by the smallest time scale [7, 55].

A second potential difficulty associated with the multicomponent aspect is the presence of multiple
space scales. In combustion applications, for instance, the flame fronts are very thin and typically
require space steps of 10−3 cm at atmospheric pressure, and even 10−5 cm at 100 atm, whereas
a typical flow scale may be of 10 cm or even 100 cm. The multiple scales can only be solved by
using adaptive grids obtained by successive refinements or by moving grids for unsteady problems
[54, 55, 57, 58, 59, 60, 62].

Nonlinear discrete equations can be solved by using Newton’s method or any generalization. The
resulting large sparse linear systems must then be solved by using a Krylov-type method, such as
GMRES [56]. More sophisticated methods involve coupled Newton–Krylov techniques [58]. Evaluating
aerothermochemistry quantities is computationally expensive since they involve multiple sums and
products. Optimal evaluation requires a low-level parallelization depending on the problem granularity.

Finally, it is preferable, when writing numerical software, to clearly separate the numerical tools
from the special type of equations that are under concern. In the context of multicomponent flows,
it is therefore a good idea to write codes for general mixtures and use libraries that automatically
evaluate thermochemistry properties and transport properties. The evaluation of transport coefficients
in multicomponent mixtures is discussed in the next section.

7.2 Transport coefficients

In order to evaluate the multicomponent transport coefficients given by the kinetic theory of gases,
it is necessary to solve transport linear systems arising from the Chapman-Enskog procedure. The
Chapman-Enskog method indeed requires solving systems of linearized integral Boltzmann equations
with constraints through a Galerkin variational procedure. Various variational approximation spaces
can be used as reduced spaces [13] or spaces for a direct evaluation of the thermal conductivity and the
thermal diffusion ratios [66] and lead to different linear systems. The resulting transport linear systems
are also naturally obtained in their symmetric form [8, 9, 11, 12, 13]. The linear system associated
with any coefficient µ then take on either a regular form or a singular form [13, 7]. The singular form
can be written in the general form {

Gα = β,

〈G, α〉 = 0,
(7.1)
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where G ∈ R
ω,ω, α, β,G ∈ R

ω , ω is the dimension of the variational space and the coefficient is
obtained with a scalar product µ = 〈α, β′〉 [12, 13]. The matrixG is symmetric positive semi-definite, its
nullspace is one dimensionalN(G) = RN , β ∈ R(G), and the well posedness conditionN(G)⊕G⊥ = R

ω

holds [13]. The sparse transport matrix db(G) is a submatrix [13] composed of diagonals of blocks of
G, and 2db(G) − G and db(G) are symmetric positive definite for n ≥ 3. All these properties can
rigorously be deduced from the properties of the Boltzmann linearized collision operator and that of
the variational approximation spaces [13].

The solution of the transport linear system can then be obtained either from the symmetric positive
definite system (G + G ⊗ G)α = β or from iterative techniques. The iterative techniques are either
generalized conjugate gradients or stationary techniques associated with a splitting G = M − W ,
M = db(G), and yield

α =
∑

0≤j<∞

(PT )jPM−1P tβ, (7.2)

where T = M−1W and P = I − N⊗G/〈N ,G〉. The matrix M + W = 2db(G) − G must be pos-
itive definite but this is a consequence from Boltzmann linearized equations. These stationary and
generalized conjugate gradients methods have been found to be efficient for mixture of neutral gases
[5, 65, 66, 67, 68, 69].

The situation of ionized mixtures is more complex since the convergence rate of stationary iterative
techniques deteriorate as the ionization level increases as discovered by Garćıa Muñoz [70]. On the
contrary, the convergence properties of generalized conjugate gradient algorithms do not depend on the
ionization level. New algorithms have been thus been introduced with more singular versions of the
transport linear systems. These algorithms have led to fast convergence rates for all ionization levels
and magnetic field intensities [71].

7.3 Impact of multicomponent transport

Recent numerical investigations have brought further support for the importance of accurate trans-
port property in various multicomponent reactive flows. Thermal diffusion effects have been shown
to be important in the study of vortex-flame interaction [75], catalytic effects near walls, interfacial
phenomena, gaseous or spray diffusion flames [76, 79, 80], and chemical vapor deposition reactors [4].
The impact of multicomponent diffusion has also been shown to be important in multidimensional
hydrogen/air and methane/air Bunsen flames [5], in freely propagating flames—especially with oxygen
as pure oxydizer—as well as in direct numerical simulation of turbulent flames [77]

As a typical exemple, we consider a lean hydrogen-air Bunsen flame obtained by flowing a lean
mixture of 20% hydrogen in air at 300 K and at atmospheric pressure through a cylindrical tube [7].
When the exit velocity exceeds the planar flame speed, these flames are of conical shape and sit at the
mouth of the cylindrical burner. The tube inner diameter is ri = 4 mm, the tube width is w = 0.5 mm,
and the burner temperature is kept at 300 K. The flow is of plug type, and the flame is surrounded by
a coflow of air. The maximum velocity in both flows is vinj = 300 cm/sec and we refer to [7] for more
details. The computational domain is [0,1.5]×[0,30] in centimeters and approximately 200 points are
adaptively distributed in each direction. The governing equations are obtained from the fundamental
equations presented in Section 2 specialized to the steady axisymmetric setting.

We have used the chemical reaction mechanism is presented in Table 1. This reaction mechanism
describe the combustion of hydrogen in air and involves the n = 9 species H, O, H2, O2, N2, OH,
HO2, H2O, and H2O2. Taking into account the shortcut of using the third body M, which denotes any
species of the mixture, this reaction mechanism involve nr = 57 elementary reversible reactions.

Figure 1 presents the atomic oxygen radical O mole fraction distribution around the tube rim and
the plotting domain is [0.5, 0.5]×[0, 1] in cm. The right-hand side of the plot presents the numerical
solution with thermal diffusion neglected and the left-hand side the corresponding values obtained with
thermal diffusion effects. In Figure 1 the light species O tends to stay in hotter zones when thermal
diffusion effects are taken into account.

Finally, theoretical calculations and experimental measurements have also shown that the ratio κ/η
is not small for polyatomic gases. Volume viscosity also arises in dense gases and in liquids, and its
absence in dilute monatomic gases is an exception rather than a rule. Despite its potential importance,
volume or bulk viscosity has seldom been included in computational models of multidimensional reactive
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Table 1: Warnatz kinetics scheme for hydrogen combustion [72]
i Reaction Ai bi Ei

1 H + O2 ⇆ OH+O 2.00E+14 0.00 16802.

2 O + H2 ⇆ OH+H 5.06E+04 2.67 6286.

3 OH + H2 ⇆ H2O+H 1.00E+08 1.60 3298.

4 2OH ⇆ O+H2O 1.50E+09 1.14 100.

5 H + H +M ⇆ H2 +Ma 6.30E+17 -1.00 0.

6 H + OH+M ⇆ H2O+Ma 7.70E+21 -2.00 0.

7 O + O+M ⇆ O2 +Ma 1.00E+17 -1.00 0.

8 H + O2 +M ⇆ HO2 +Ma 8.05E+17 -0.80 0.

9 H + HO2 ⇆ 2OH 1.50E+14 0.00 1004.

10 H + HO2 ⇆ H2 +O2 2.50E+13 0.00 693.

11 H + HO2 ⇆ H2O+O 3.00E+13 0.00 1721.

12 O + HO2 ⇆ O2 +OH 1.80E+13 0.00 -406.

13 OH + HO2 ⇆ H2O+O2 6.00E+13 0.00 0.

14 HO2 +HO2 ⇆ H2O2 +O2 2.50E+11 0.00 -1242.

15 OH +OH+M ⇆ H2O2 +Ma 1.14E+22 -2.00 0.

16 H2O2 +H ⇆ HO2 +H2 1.70E+12 0.00 3752.

17 H2O2 +H ⇆ H2O+OH 1.00E+13 0.00 3585.

18 H2O2 +O ⇆ HO2 +OH 2.80E+13 0.00 6405.

19 H2O2 +OH ⇆ H2O+HO2 5.40E+12 0.00 1004.

a Third body efficiency H2 = 2.86, N2 = 1.43, H2O = 18.6

Units are moles, centimeters, seconds, calories, and Kelvins

flows. For small Mach number flows, however, the whole term ∂x ·
(
κ(∂x ·v)I

)
has a weak influence

because of its structure, even though both the ratio κ/η and the dilatation ∂x ·v may not be small [7].
However, it has been shown that volume viscosity has an important impact during a shock/hydrogen
bubble interaction [78].

8 Conclusion and future directions

The models developed in the previous sections may be used to describe gas mixtures in full vibrational
nonequilibrium when each vibrational quantum level is treated as a separate“chemical species”allowing
detailed state-to-state relaxation models [21]. When the vibrational quantum levels are partially at
equilibrium between them but not at equilibrium with the translational/rotational states—allowing
the definition of a vibrational temperature—a different structure is obtained.

The mathematical analysis of chemical equilibrium flows has recently be extended to the situation
of partial chemical equilibrium [48]. However, the mathematical structure of numerous simplified chem-
istry methods is still obscure from a mathematical point of view at variance with partial equilibrium.

Various extensions could also consider initial-boundary value problems [81] with the possibility of
inflow or outflow conditions, heat losses, or surface reactions with complex heterogeneous chemistry.
Multicomponent reactive flows with radiative transfer [32] should also be investigated [27]. Various
numerical analysis theoretical results could also be extended to the case of mixtures like convergence
results of Petrov-Galerkin ‘Streamline–Diffusion’ finite element techniques [63, 82].

The notion of higher order entropy may also be generalized to the situation of multicomponent flows
[83, 84, 85] as well as the singular limit of small Mach number flow [86, 87]. Multiphase flows with
sprays governed by Boltzmann type equations [32], or derived multifluid sectional models for droplets
[88], may also be investigated mathematically.
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