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Abstract

The mutational meltdown, in which demographic and genetic processes mutually reinforce
each other to accelerate the extinction of small populations, has been poorly quanti�ed despite
its paramount importance in conservation biology. Here, we present a model-based framework
to study and quantify the mutational meltdown in a �nite diploid population evolving contin-
uously in time and subject to resource competition. We model slightly deleterious mutations
a�ecting the population demographic parameters and we study how the rate of mutation �x-
ation increases as the genetic load increases, a process that we investigate at two time scales:
an ecological and a mutational scale. Unlike most previous studies we treat population size
as a random process in continuous time. We show that, as deleterious mutations accumulate,
the decrease in mean population size accelerates with time, relative to a null model with a
constant mean �xation time. Studying the evolution of the mean �xation time at each new
�xation allows us to quantify the mutational meltdown, which appears less severe than pre-
dicted by earlier theoretical work. We also emphasize the importance of measuring not only
mean population size, but also demographic parameters, to assess extinction risks.

1 Introduction
Many evolutionary and ecological processes operating in natural populations influence, and are influenced
by, population abundance or density (e.g. intraspecific and interspecific competition (Volterra, 1931;
Lotka, 1932; Verhulst, 1844), reproduction (Clay and Shaw, 1981), trait evolution (Lande, 1976; Cherry,
1998), or fixation of deleterious mutations (Crow and Kimura, 1970, pp.418-430)). These abundance
or density-dependent processes commonly affect population growth, leading to positive (as in the case
of cooperation) or negative (as in the case of intraspecific competition) correlations between population
growth and abundance/density. Allee effects refer to a positive relationship between population size and
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the population per capita deterministic growth rate (Stephens and Sutherland, 1999), at low density. Allee
effects limit population viability because the growth rate of populations with an Allee effect becomes
negative below a threshold abundance. This phenomenon alone can lead to extinction, but it may also be
associated with gradual genetic deterioration, which reinforces the decline in population abundance and
results in an extinction vortex (Gilpin and Soulé, 1986). The mutational meltdown (Lynch and Gabriel,
1990) is a particular form of extinction vortex in which demographic and genetic processes mutually
reinforce each other. Spontaneous mildly deleterious mutations (Drake et al., 1981; Lynch et al., 1999;
Haag-Liautard et al., 2007) can go to fixation and accumulate in small populations, leading to reduced
growth rate and reduced population size, which in turn speeds up mutation accumulation (Lynch and
Gabriel, 1990) and can precipitate population extinction.

The mutational meltdown has received much theoretical attention (Lynch et al., 1995; Theodorou
et al., 2009; Robert, 2011) and is one of the main justifications for incorporating genetics into quantita-
tive assessments of species or population viability (Traill et al., 2007), minimum viable population sizes
(Shaffer, 1981; Gilpin and Soulé, 1986), and conservation status (Mace and Purvis, 2008). However,
most existing theoretical treatments of the mutational meltdown remain qualitative, despite its paramount
importance in conservation biology (Spielman et al., 2004). There is thus a need for more quantitative
frameworks allowing to quantify the meltdown that results from the reciprocal interaction between de-
mography and genetics, i.e. to gauge the actual acceleration of mutation accumulation, as compared with
a null model assuming no effect of the current genetic load on the rate of future mutation accumula-
tion, and to examine how demographic parameters affect the strength of the mutational meltdown. In
this paper we present a new quantitative approach to analyzing mutational meltdown by computing the
probability of fixation of slightly deleterious mutations in diploid populations with stochastic population
dynamics. We are specifically interested in the reciprocal interaction between population size and fixation
of small-effect deleterious mutations (Lande, 1994) in small populations. Unlike most previous studies
(e.g. Lynch and Gabriel, 1990; Lande, 1994), we do not regard population size as a constant parameter,
but instead build on the pioneering work of Champagnat et al. (2006) and treat population size as a ran-
dom process in continuous time. The probability distribution of population size depends on individual
demographic parameters, which are themselves determined by the genotypes of individuals at a large
number of loci subject to recurrent deleterious mutation. Using this model of mutation accumulation in
diploid populations with stochastic population dynamics, we assess how the demography-genetics (here-
after demo-genetic) feedback accelerates mutation accumulation in comparison to a null model assuming
no effect of mutation accumulation on fixation time. We highlight that demographic parameters (birth
and death rates) sometimes provide a more accurate picture of extinction risk than the more widely used
average population size. For example, the sensitivity of the rate of fixation of mutations to changes in
demographic parameters (which themselves dependent on the current fixation load) can be used to quan-
tify the extent to which the overall demo-genetic feedback increases the risk of extinction. This allows
us to identify situations where the demographic properties of populations might be associated with strong
mutational meltdown.

2 The Model
We consider a population of hermaphroditic, randomly mating diploid organisms, following a logistic
birth-and-death process. Mutation to slightly deleterious alleles follows an infinite site model, so that
each new mutation occurs at a new locus at genomic rate mK = 2m/K, where K is a scale parameter
that goes to infinity to model rare mutations, a classical assumption in evolutionary genetic studies (e.g.
Lande, 1994). We are interested in how the rate of fixation of deleterious mutations changes as mutations
accumulate, and in the resulting change in demographic parameters, which we model at two time scales:
an ecological and a mutational time scales. At the ecological time scale (i.e. in the limit when K goes
to infinity without rescaling of time), a given mutation is lost or fixed before the next occurs. Individuals
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are hence characterized by their genotype at the mutant locus, with two alleles (wild-type and deleterious
mutant), and we examine the fate of a single deleterious allele evolving in a genetically homogeneous
background (see section 2.1). In contrast, at the longer mutational time scale, new mutations are instantly
fixed or lost and we examine the process of mutation accumulation and subsequent mutational meltdown
in a population that is monomorphic at all times (see sections 2.2 and 3).

2.1 Evolution of a single biallelic locus at the ecological time scale
At the ecological time scale, we consider a single biallelic locus with a wild-type allele A and a mutant
deleterious allele a. At this time scale, in the limit when K goes to infinity, as the mutation rate mK =
2m/K goes to 0, no other mutation occurs before the current mutation is fixed or lost. The population
Zt := (it, jt, kt) is then defined at each time t by it, jt, and kt, the number of individuals with genotypes
AA, Aa, and aa respectively. The process (Zt)t>0 jumps from a point of N3 to one of its neighbors at
a rate given by the birth and death rates of each genotype. We assume density-independent per capita
fecundities b. In contrast, per capita death rates are density-dependent and combine intrinsic mortality
(d) with mortality caused by intraspecific competition (rate c for any pair of individuals). In the absence
of competition (c = 0), mean individual lifetime is thus 1/d and is decreased for c > 0. We assume
that the deleterious allele a affects intrinsic death rates only, such that d is increased by δ and δ′ in the
heterozygote and homozygote genotypes, respectively. For Z = (i, j, k) such that N := i + j + k > 3,
the individual death rates of genotypes AA, Aa, and aa are thus respectively:

dAA(Z) := d + c(N − 1),

dδ
Aa(Z) := d + δ + c(N − 1),

dδ′
aa(Z) := d + δ′ + c(N − 1).

(1)

In principle, the selection parameters δ and δ′ can be of either sign, but here we consider deleterious
mutations only (i.e. δ′ > 0; the sign of δ is discussed later). Individuals are hermaphroditic and self-
incompatible, all genotypes have identical fecundities b and we assume Mendelian reproduction, so that
the total birth rates of genotypes AA, Aa and aa are:

bAA(Z) := b

[
i(i− 1)

N − 1
+

ij

N − 1
+

j(j − 1)

4(N − 1)

]
,

bAa(Z) := b

[
ij

N − 1
+

j(j − 1)

2(N − 1)
+

jk

N − 1
+

2ik

N − 1

]
,

baa(Z) := b

[
k(k − 1)

N − 1
+

jk

N − 1
+

j(j − 1)

4(N − 1)

]
.

A key assumption of our model is that no death occurs when only two individuals are left in the population.
This prevents extinction, but does not hamper our study of the accumulation of deleterious mutations and
of the resulting decrease in mean population size. Without extinction, one of the two alleles eventually
goes to fixation; we are interested in the probability uδ,δ′

i,1,0 (which also depends on b, d, and c) that the
mutant allele a goes to fixation given an initial population (i, 1, 0), i.e. a population of i+1 AA individuals
in which a single mutation occurred. More generally we denote by uδ,δ′

i,j,k the probability that allele a goes
to fixation given an initial population (i, j, k). In the neutral case (δ = δ′ = 0), probability theory tells us
that u0,0

i,j,k is the initial frequency of allele a (see for example Crow and Kimura (1970), or Ewens (2004,
p. 21)): u0,0

i,j,k = (j + 2k)/2N, with N = i + j + k. In particular, u0,0
i,1,0 = 1/2N = 1/2(i + 1). Note

that this result does not hold if the population is allowed to go extinct: in this case, there is a non-zero
probability that no allele goes to fixation. Assuming weak selection (slightly deleterious effects δ and δ′),
we can approximate uδ,δ′

i,j,k by its Taylor expansion, i.e. we approximate the difference in the probability of
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fixation between slightly deleterious alleles and neutral alleles by a linear function of δ and δ′. We prove
that (δ, δ′) 7→ uδ,δ′

i,j,k is differentiable in (0, 0). Then we can write:

uδ,δ′
i,j,k =

j + 2k

2N
− δvi,j,k − δ′v′i,j,k + o(|δ|+ |δ′|),

where v and v′ are also functions of demographic parameters b, d, and c. Note that the fixation probability,
starting from state (i, 1, 0), is then:

uδ,δ′
i,1,0 =

1

2N
− δvi,1,0 − δ′v′i,1,0 + o(|δ|+ |δ′|).

The ratio
∣∣∣∣∣
uδ,δ′

i,1,0 − u0,0
i,1,0

u0,0
i,1,0

∣∣∣∣∣ = 2N
∣∣δvi,1,0 + δ′v′i,1,0

∣∣ + o(|δ|+ |δ′|) (2)

is the deviation in the fixation probability between neutral alleles and deleterious mutations character-
ized by (1), and quantifies the strength of selection. To compute vi,j,k and v′i,j,k and study their depen-
dence on the initial population (i, j, k) and on the population demographic parameters (b, d, c), we use
the Kolmogorov-forward equation, which consists in decomposing ui,j,k according to the first event oc-
curring in the population. Taking the first order in δ and δ′ separately, we obtain that (vi,j,k)i,j,k verifies a
second-order recurrence equation (see online appendix A). We find that

(i)
vi,j,k =

j(i− k)

N
xN + (i− k)

N2 − (i− k)2

N2
yN , (3)

where N = i + j + k, and the sequence of vectors (zN)N>2 :=

(
xN

yN

)

N>2

is the unique bounded

solution of a system of equations detailed in online appendix A.

(ii)
v′i,j,k =

kY

N
xN + jx′N + Y (2N − Y )

(
y′N
N
− Y

2N2
yN

)
, (4)

where Y = 2i + j is the number of A alleles, the sequences (xN) and (yN) are the same sequences

as in (3), and the sequence of vectors (z′N)N>2 :=

(
x′N
y′N

)

N>2

is the unique bounded solution of a

system of equations detailed in online appendix A.

We now know that the fixation probability of a deleterious mutation, starting from (i, 1, 0) is:

uδ,δ′
i,1,0 =

1

2N

− δ

(
N − 1

N
xN + (N − 1)

2N − 1

N2
yN

)

− δ′
(

x′N + (2N − 1)

(
y′N
N
− 2N − 1

2N2
yN

))

+ o(|δ|+ |δ′|)

(5)

where N = i+1. Using stochastic calculus we also prove that v′i,j,k > 0 for every (i, j, k) and that vi,j,k is
of the sign of i−k. The biological interpretation of the effect of δ′ is straightforward: if δ′ > 0 and δ = 0,
allele a has an overall detrimental effect, because aa individuals only are affected by δ′. The effect of δ is
more intricate because it affects heterozygous individuals, with the same apparent effect on both alleles.
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We prove that when a is initially the most frequent allele (i < k), allele a is favored when δ > 0 (i.e.
vi,j,k > 0), relative to the neutral case (δ = 0), all else being equal; the opposite is true when A is the most
frequent allele initially (i > k). In particular, starting from a population (i, 1, 0), allele a is deleterious if
δ > 0 and δ′ = 0, i.e. a typical case of underdominance. This result is consistent with Fisher (1922).

2.2 The mutational time scale
We move to the evolution of a population subject to recurrent deleterious mutations at multiple loci,
which, under the assumption of rare mutations, requires a broader time scale. At the mutational scale,
we thus scale time t by K, the parameter we used to model rare mutation (rate mK = 2m/K). This
allows emergence of new mutations and we prove, as in the haploid case (Champagnat and Lambert,
2007), that when K goes to infinity, new alleles go to fixation or disappear instantaneously, due to faster
invasion than emergence of mutations. Hence in the limit, an initially monomorphic population stays
monomorphic at every time t. We assume that all mutations have the same effect on intrinsic death rate
as described earlier and that individual birth and competition rates b and c remain constant. We can
therefore track consecutive fixations of deleterious mutations via the change in the intrinsic death rate
Dt common to all Nt individuals in the population. At each time t, the population size Nt is a random
variable following the stationary law of a logistic birth-and-death process with parameters b, Dt, and c.
By solving a stationary system (see Grimmett and Stirzaker (2001, p.260) and online appendix B), we
find the probability p(N, b, d, c) := P(Nt = N) that the population size at time t is equal to N given that
Dt, the individual death rate at time t, is equal to d:

p(N, b, d, c) :=

1

N

N−1∏

k=2

b

d + kc

∞∑
i=2

1

i

i−1∏
j=2

b

d + jc

. (6)

Hence the probability distribution of the population size is directly controlled by its demographic param-
eters, which contrasts with previous approaches regarding population size as a constant parameter (e.g.
Lande, 1994). A small population size therefore results from small values of the birth rate or large values
of death rates. In this model, each new mutation gets either lost, with no effect on the death rate, or
fixed instantaneously. In the latter case, the population death rate is increased by δ′, since the population
changes directly from being monomorphic with type AA to being monomorphic of type aa. (Dt)t>0 is
thus a jump process that jumps from a value d to d + δ′ at rate τ(b, d, c, δ, δ′) i.e. the rate of fixation of a
deleterious mutation, which we compute later on. When a new deleterious mutation goes to fixation, the
stationary law of the population size changes, due to an increase in the death rate of all individuals (from
d to d + δ′) causing a decrease in the mean population size. We can define and compute numerically the
expected size of a population with demographic parameters b, d, and c:

N(b, d, c) :=
∞∑

N=2

Np(N, b, d, c).

As the death rate Dt increases, we prove that the mean population size decreases gradually and approaches
the minimum value of 2 (see figure 1 and table 1). Note that when all parameters are multiplied by a
constant, the frequency of birth-and-death events is modified, but the distribution of the population size
is unaffected (see equation (6)). In the following, we therefore keep the competition parameter constant
and study the influence of other demographic parameters. Finally we examine the temporal dynamics of
the mean population size by iterating the effect of mutation fixation on population size. In a population
with initial demographic parameters b, d, and c, the mean time to fixation of a deleterious mutation is
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T (b, d, c, δ, δ′) := 1/τ(b, d, c, δ, δ′); at time t = T (b, d, c, δ, δ′), we change the intrinsic death rate from d
to d + δ′ and the mean population size from N(b, d, c) to N(b, d + δ′, c). This is repeated through time to
obtain the temporal dynamics of population size (see subsection 3.2).

Figure 1: Distribution of the population size under di�erent intrinsic death rates d. In this �gure
b = 10 and c = 0.1.

3 Computations and numerical results
3.1 Dynamics of a single deleterious allele at the ecological time scale
The probability of fixation of deleterious mutations, and its deviation from neutrality, depends on zN and
z′N (equations (3) and (4)): although we cannot detail these formulae of as functions of N , b, d, and c much
more, we can compute them numerically (see figure 9) to obtain fixation probabilities (figure 2A). The
probability of fixation of slightly deleterious mutations decreases as the population size increases (figure
2A), but the strength of selection, i.e. the relative difference in fixation probability between a deleterious
and a neutral mutation (equation (2)), is an increasing function of the initial population size (figure 2B),
which is consistent with classical results in evolutionary genetics (see Ohta, 1973, for example).

3.2 The mutational time scale
The genetic load accelerates the rate of fixation of deleterious mutations - Our eventual goal is first to
prove the existence of a mutational meltdown and second to study how demographic parameters influence
the strength of this meltdown. In a population of N individuals, the rate of fixation is
2mNuδ,δ′

N−1,1,0, which can be averaged over all population sizes N to obtain an overall rate of fixation of
deleterious mutations τ(b, d, c, δ, δ′), when the demographic parameters are b, d, and c:

τ(b, d, c, δ, δ′) : = 2m
+∞∑
N=2

N uδ,δ′
N−1,1,0 p(N, b, d, c)

= m− 2m
+∞∑
N=2

N p(N, b, d, c)

× (δ vN−1,1,0 + δ′ v′N−1,1,0)

+ o(|δ|+ |δ′|)
We use this formula to examine how the mean time T to fixation depends on population size, demographic
parameters, and dominance relationship among alleles, which yields three important results. First, the

6



(A) (B)

Figure 2: Fixation probability (A) and strength of selection (B) of an additive (δ = δ′/2, closed
diamonds) or recessive (δ = 0, open diamonds) deleterious allele, as a function of the initial pop-
ulation size N . Squares in (A) represent the neutral �xation probability, i.e, 1/2N . The strength
of selection (B) is measured as the relative di�erence in �xation probability between a deleterious
and a neutral mutation (equation (2)). Demographic parameters are b = 10, d = 1, c = 0.1, and
δ′ = 0.2.

mean time to fixation is a decreasing function of the death rate d (figure 3A), which suggests an increase of
the rate of fixations of deleterious mutations, i.e. a mutational meltdown: fixation of deleterious mutations
increases the intrinsic death rate, thereby causing faster fixation of new deleterious alleles, and so on.
When the intrinsic death rate d becomes large (effectively infinite), the mean fixation time T (b, d, c, δ, δ′)

(A) (B)

Figure 3: (A): Relationship between T , the mean time to �xation of a deleterious mutation, and the
population intrinsic death rate d as a function of selection and dominance. Open symbols: recessive
mutation (δ = 0); closed symbols: additive mutation (δ = δ′/2); circles: δ′ = 0.1; diamonds:
δ′ = 0.2. Other demographic parameters are b = 10, c = 0.1, and m = 1.(B): Relationship
between the mean time to �xation of a deleterious mutation T and parameters b and d. Each curve
corresponds to a �xed value of b. Other parameters are δ = 0.05, δ′ = 0.1, c = 0.1 and m = 1.

converges the mean fixation time of a neutral mutation, (1/m, where m is the unscaled mutation rate),
due to a small population size and dominant effects of drift over selection (see Ohta (1973) and Kimura
(1979) for analog results in other models). As expected, the birth rate b has an opposite effect on the
mean fixation time T (b, d, c, δ, δ′) (see figure 10 and figure 3B), which is an increasing function of b due
to higher population sizes, thus better elimination of deleterious alleles, at higher birth rates. Second, the
time to fixation of a beneficial mutation with parameters−δ and−δ′ is the symmetrical, with respect to the
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neutral value 1/m, of the time to fixation of a deleterious mutation with parameters δ and δ′. Hence, the
mean time to fixation of a beneficial mutation is an increasing function of d, implying that the mutational
meltdown may also be caused by lower fixation probabilities of beneficial mutations at higher intrinsic
death rates. Third, and maybe most importantly, our results show no particular relationship between the
mean population size and the mean time to fixation of deleterious mutations. In particular, unlike existing
results with other models (see Crow and Kimura, 1970), the mean fixation time of deleterious mutations
is not an increasing function of the mean population size N . This can be seen for instance on figure
3B: if we compare two populations with the following demographic parameters (Population 1: b = 8,
d = 1, c = 0.1; Population 2: b = 10, d = 2, c = 0.1), population 1 has a smaller average population
size (N(8, 1, 0.1) = 69; N(10, 12, 0.1) = 79), but a mean fixation time of deleterious mutations that is
greater than that of population 2 (T (8, 1, 0.1, 0.05, 0.1) = 1.771; T (10, 2, 0.1, 0.05, 0.1) = 1.6595). This
illustrates the interest of considering not only population size, but also demographic parameters when
studying population extinction risks.

Population dynamics under a mutational meltdown - As deleterious mutations accumulate, the
mean population size decreases more and more rapidly relative to a null model with a constant mean
fixation time T (b,D0, c, δ, δ

′) (figure 4), which is caused by the acceleration of mutation fixations. As
expected, the overall decrease in population size with additive mutations is slower than with recessive
mutations, which go to fixation more rapidly. However we can hardly compare the influence of the
acceleration of mutation fixations (mutational meltdown) in these two populations because they have
different initial mean fixation times. Hence, the dynamics of population size across different mutation
models are caused both by (1) different initial mean fixation times and (2) different accelerations of the
fixations of deleterious mutations (the mutational meltdown per se). Similarly, although the acceleration
in population decline may seem stronger for higher selection coefficient δ′ (figure 4), this difference is
also due to (1) differences in the accelerations of mutation fixations, (2) differences in the initial mean
fixation times and (3) larger influence of mutation fixations on the mean population size for larger δ′.
The extinction risk of populations subject to accumulation of deleterious mutations can thus be quantified
first by the corresponding null model of extinction risk, providing a baseline for the rate of fixation of
deleterious mutations, and second by the acceleration of mutation fixations, i.e. the mutational meltdown.
From a conservation perspective, it is therefore crucial to quantify the part of the extinction risk that is
due to the acceleration of mutation fixations, in order to define whether the meltdown can be neglected or
not.

(A) (B)

Figure 4: Temporal decrease in the mean population size. In this �gure, b = 10, c = 0.1, m = 1,
and the initial intrinsic death rate is 1. For (A), δ′ = 0.1 whereas for (B), δ′ = 0.2. We plot additive
and recessive cases. For each case, we also plot the temporal dynamics of the mean population size
in the corresponding null model.
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Quantifying the extinction risk and the acceleration of fixations - We suggest that the extinction
risk of a population is controlled by two quantities: first the time to fixation of the first deleterious mutation
(see figure 3) which quantifies the risk of extinction in the null model, and second the positive real number:

S(b, d, c, δ, δ′) :=
T (b, d, c, δ, δ′)− T (b, d + δ′, c, δ, δ′)

T (b, d, c, δ, δ′)
,

which represents the acceleration of fixations between the first and the second mutation and quantifies
the part of the extinction risk due to the mutational meltdown (see figure 5). S is a function of birth and
death rates (figure 5A) which can be used to define threshold values of the demographic parameters b
and D0 (initial intrinsic death rate) above or below which the mutational meltdown is small enough to
be neglected. The strength of the mutational meltdown goes to 0 as the intrinsic death rate d goes to
infinity: as mutations get fixed, the population goes more rapidly to extinction, due to a lower mean time
to fixation of deleterious mutations, but the population tends to be less subject to mutational meltdown.
Besides, when comparing populations with the same initial fixation time (figure 3B), we show that the
strength of the extinction vortex is a decreasing function of the mean population size (figure 5B), so that
a threshold mean population size, above which the mutational meltdown is small enough, can still be
defined (see Lande, 1994).

(A) (B)

Figure 5: (A): Relationship between the strength of the mutational meltdown and demographic
parameters b and d. Each curve corresponds to a �xed value of b. (B): Relationship between the
strength of the mutational meltdown and the mean population size, when the initial �xation time
is set to 2. Here, d = 0 and b was varied between 2 and 10 to obtain this curve (see �gure 3B). In
both �gures, c = 0.1, δ = 0.05, δ′ = 0.1, and m = 1.

4 Comparison with other models of the mutational meltdown
Our approach is novel in that we combine for the first time in an analytical model two traditions: pop-
ulation genetics approaches, which frequently assume infinite (or at best finite, but constant) population
sizes, with demographic approaches, which are often based on simplified genetic processes. Our results
therefore reconcile these two approaches to generate novel results. Below we illustrate this by compar-
ing our results to those obtained with classical population genetics models (the Wright-Fisher model in
particular) and demo-genetic models in haploid populations.
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4.1 Comparison with the Wright-Fisher model
Crow and Kimura (see Crow and Kimura, 1970, p. 345) proved that the probability of fixation of a
deleterious additive mutation in a population with large, constant size N is:

e2sNe/N − 1

e4sNe − 1
, (7)

where s is the selection coefficient of deleterious mutations and Ne is the effective population size, which
is here a parameter of the model. We can use this formula to compare the temporal dynamics of the mean
population size in the Wright-Fisher (Ne = N ) vs. our model, which requires variable population size
in the Wright-Fisher model. To obtain this, we use equation (4) of Clarke (1973) describing the change
∆N in population size N of a Wright-Fisher model as a function of the change in the mean fitness ∆W
(= −2s here): ∆N = N ×∆W . We finally rescale time and fitness in the Wright-Fisher model so that
the first mutation that goes to fixation has same mean fixation time and the same impact on the mean
population size in both models. We show that the mutational meltdown is stronger in the Wright-Fisher
model (figure 6), i.e. the mean population size collapses more rapidly. This can be understood examining
the Taylor expansion of (7) when Ne = N :

1

2N
− s

2

[
2− 1

N

]
+ o(s)

which yields a strength of selection of Ns[2 − 1/N ], to be compared with equation (2) and figure 2B of
our model: for large population sizes, the strength of selection is equivalent to 2Ns in the Wright-Fisher
model whereas it is bounded in our model. As a result, the strength of selection and the time to fixation
decrease more rapidly in the Wright-Fisher model as the population size decreases. This suggests that the
mutational meltdown is overestimated with the Wright-Fisher model, assuming constant population size,
compared to our model.

(A) (B)

Figure 6: Temporal dynamics of the mean population size with time, in our additive diploid model
(D) and the Wright-Fisher model (WF). In these �gures, b = 10, c = 0.1, m = 1 and the initial
intrinsic death rate d = 1. For (A), δ′ = 0.01, whereas for (B), δ′ = 0.02.

4.2 Comparison with the haploid model of Champagnat and Lambert
(2007)

In a more realistic demographic model, Champagnat and Lambert (2007) studied the fixation of small
mutations in a haploid population. Comparing haploid vs. diploid populations is however not straightfor-
ward, particularly because the latter produce twice as many alleles in one birth and contain twice as much
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genetic material for the same population size. We can nonetheless rely on the expectation that, under
Hardy-Weinberg equilibrium and large population sizes, a diploid population under additive selection can
be approximated by a haploid population. We choose to compare haploid vs. diploid models by consider-
ing populations with the same rate of fixation of neutral mutations, the same effect of mutations, and the
same initial demographic parameters. Under these conditions, the temporal decrease in mean population
sizes is in fact comparable in both models when deleterious mutations have additive effects in diploid
organisms (figure 7). The only differences appear for really small populations, which is at least partly due
to the fact that the minimum diploid population size is 2 whereas the minimum haploid population size
is 1. Our model however allows us to examine non additive mutations, which cannot be studied in hap-
loid models. This is particularly relevant in diploid organisms, in which most deleterious mutations have
partly to fully recessive effects (García-Dorado et al., 2004). We show that the mutational meltdown is
stronger with additive mutations than with recessive ones (figure 8): its strength increases with the effect
of mutations in heterozygotes δ, when δ′, the effect of mutations in homozygotes, is kept constant.

Figure 7: Temporal dynamics in the mean population size, in haploid vs. diploid populations. The
lower curve (DR) is reproduced from the curve 2b of Fig. 4B, i.e. the temporal dynamics of the
mean population size in the recessive case, when δ = 0. The upper curves are the change in the
mean population size with time in a haploid population, derived from Champagnat and Lambert
(2007) (H), and in a diploid population with additive mutations (DA, reproduced from the curve
1b of Fig. 4B). Parameter values are b = 10, c = 0.1, m = 1, δ′ = 0.2 and the initial intrinsic death
rate is d = 1.

Figure 8: The strength of the mutational meltdown as a function of selection coe�cients δ and δ′.
In this �gure, b = 10, d = 1, c = 0.1, and m = 1.
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5 Discussion
In this paper, we provided a more quantitative framework for the study of mutational meltdown than previ-
ous theoretical treatments, and modeled the stochastic dynamics of population size in diploid organisms.
As in several previous models, we demonstrated the existence of a mutational meltdown by showing that,
as deleterious mutations accumulate, the population size decreases more and more rapidly relative to a
null model with constant mean fixation time of deleterious mutations. We showed that this fixation time is
a decreasing function of the intrinsic death rate, an increasing function of the fecundity, and converges to-
wards the mean fixation time of neutral mutations as the intrinsic death rate goes to infinity. Our approach
takes the study of mutational meltdown a step further by demonstrating that mean population size is not
always the best indicator of extinction risk for populations subject to fixation of deleterious mutations.
We also used our results to suggest a new quantification of the mutational meltdown (i.e. the acceleration
of mutation fixations) and to define a threshold in the mean population size above which the mutational
meltdown is small enough to be neglected. Our results finally suggest that the mutational meltdown per
se may not be as severe as predicted by earlier population genetics models assuming constant population
size or haploid models. In the following, we discuss the implications of our results for conservation and
the limitations of our approach.

5.1 Quantifying the mutational meltdown
While the ultimate causes of most species extinctions are environmental (Brooks et al., 2002), various
environmental constraints can have various secondary consequences on ecological and genetic processes.
This implies that, depending on the situation faced by populations, the relative weights of non-genetic
(e.g., ecological factors associated with highly variable and/or low average growth rate), genetic (e.g.,
inbreeding depression, accumulation of deleterious mutations) components and of their interaction (e.g.,
the mutational meltdown in the strict sense) may strongly vary. Here, we developed a framework that
allows accounting for all three components. Although we focused on quantifying the interaction compo-
nent (i.e., the demographically mediated effect of the load of fixed mutations on the rate of future mutation
fixations), we also provided results on the “pure” genetic component (i.e., the rate of mutation fixation,
independent from the load of fixed mutations) and revealed that the extinction risk for populations subject
to recurrent deleterious mutation fixations can be quantified both with the initial mean fixation time of
a deleterious mutation, and with the acceleration of mutation fixations; which quantifies the strength of
the mutational meltdown. We also found out that the quantification of the extinction risk in terms of de-
mographic parameters rather than population sizes can provide a more accurate vision of the population
temporal dynamics. Indeed, populations with similar population sizes can have different initial times to
fixation of deleterious mutations, therefore different risks of extinction. However, in populations with the
same initial time to fixation, the strength of the mutational meltdown is a decreasing function of the initial
mean population size, so that one can define a threshold population size above which the mutational melt-
down can be neglected. Our results demonstrate that the magnitude of the mutational meltdown is highly
dependent on the underlying demo-genetic model, but also on demographic and mutational parameters
(e.g., level of dominance). Numerical applications indicate for instance that genetic models simpler than
ours may strongly overestimate the magnitude of the mutational meltdown (see e.g. the Wright-Fisher
model, figure 6). On the other hand, neglecting the mutational meltdown might lead to strong underesti-
mation of the final/overall speed of mutation accumulation, and subsequently to overestimate the time to
extinction (figure 4B).

5.2 Limitations
One major limitation of our model is that a population cannot get extinct. If extinction can occur, the
probability of fixation of neutral alleles is modified, particularly because the population can go extinct
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before an allele gets fixed. This could be accounted for by computing the expected number of mutations
that will get fixed before the population goes extinct, but this would require another time scale because
the population would instantaneously go extinct at the mutational time scale of our present model. We
also assumed no epistasis and free recombination of all loci (no linkage). Population genetic theory (Hill
and Robertson, 1966; Felsenstein, 1974) and empirical results (Betancourt and Presgraves, 1990) suggest
that the efficacy of natural selection is generally limited by linkage. The consideration of linkage is not
expected to qualitatively modify our results regarding the occurrence of the mutational meltdown and the
effects of demographic parameters on its magnitude, but it may engender a more detrimental effect of
mutation accumulation in all cases. Similarly, synergistic or antagonistic epistasis is likely to influence
the strength of selection. In particular, if deleterious mutations interact synergistically, they may be more
efficiently removed by selection, which may result in a reduced load (Charlesworth, 1990). However,
no clear pattern of epistasis (synergistic or antagonistic) is apparent from empirical studies (Elena and
Lenski, 1997).

5.3 Implications and forthcoming works
Our results have critical implications in the field of conservation biology, in which the projected viabil-
ity of endangered populations is generally derived from demographic models (based on specific demo-
graphic components, Beissinger and McCullough (2002)) and/or genetic models (based on population
size, Franklin and Frankham (1998)). While mere juxtapositions of these two kinds of estimates might
provide reasonable estimates of the extinction risk in some cases (Robert, 2011), our and other works
(Lynch et al., 1995) indicate that the demo-genetic interaction may strongly affect both the dynamics
of mutations (i.e., fixation rate) and population viability. However, proper consideration of this interac-
tion requires the use of advanced concepts and sophisticated tools, which challenges its use as a stan-
dard/operational method in conservation. In this context, we hope that our framework will be useful in
outlining a conceptual basis to differentiate situations in which the mutational meltdown has minor ef-
fects on the risk of extinction from those in which it cannot be neglected. Our choice of considering finite
diploid populations of variable sizes and evolving continuously in time was motivated by the urgent need
for theoretical models with strong practical implications in the field of biodiversity conservation. Most
species of conservation concerns are diploid, iteroparous organisms (Seddon et al., 2005) and endangered
populations generally exhibit high year-to-year variance in population size, either due to sampling or to
process variation (Lande et al., 2003). Our overlapping generations framework allows not only to assume
varying population sizes over long time scales but also to relax the assumption of constant population size
within generations (as, e.g., in the modified Wright-Fisher model presented above). This is of particu-
lar interest to assess the viability of small populations of long-lived species (typically, bird and mammal
species), in which population sizes may vary by orders of magnitude within a single generation, for both
intrinsic (e.g. the mutational meltdown itself) or environmental reasons. Further, by incorporating explicit
descriptions of birth and death processes, our framework also allows adding deterministic or stochastic
variation in demographic parameters, which would allow us to model environmental stochasticity. An
interesting perspective is to compare the weights of environmental stochasticity and deleterious mutation
accumulation on the extinction risk of populations (Lande, 1993; Spielman et al., 2004).
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Polytechnique - Museum National d’Histoire Naturelle - Fondation X.
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Online appendix A: Matrices
Taking then the first order in δ and δ′ separately in the Kolmogorov-Forward equation (see Champagnat
and Lambert, 2007), we obtain that (vi,j,k)i,j,k verifies the following second-order recurrence equation
(with three indices, i, j, and k) and four initial conditions:





(∆v)i,j,k =
j(i− k)

2N(N − 1)
∀(i, j, k)|N = i + j + k > 3

v0,0,2 = v2,0,0 = 0
v1,1,0 = 1

2
v2,1,0 + 1

2
v1,2,0

v0,1,1 = 1
2
v0,1,2 + 1

2
v0,2,1

v0,2,0 = 1
4
v1,2,0 + 1

4
v0,2,1 + 1

2
v0,3,0

v1,0,1 = v1,1,1

(8)

where

(∆v)i,j,k =
3∑

i=1

(bN + dN + cN(N − 1))vi,j,k

− [bAA(Z)vi+1,m,k + bAa(Z)vi,j+1,k + baa(Z)vi,j,k+1

+ (d + c(N − 1))[ivi−1,j,k + jvi,j−1,k + kvi,j,k−1]

with Z = (i, j, k). We find that v′ satisfies similar equations. After some computations to find a sublinear
solution (see Champagnat and Lambert, 2007) for this system of equations, we establish that v and v′ can
be written as follows:

(i)
vi,j,k =

j(i− k)

N
xN + (i− k)

N2 − (i− k)2

N2
yN ,

where N = i + j + k and the sequence of vectors (zN)N>2 :=

(
xN

yN

)

N>2

is the unique bounded

solution of the following system of equations composed of a second-order recurrence equation and
an initial condition:

{
BNzN+1 = CNzN + DNzN−1 + fN ∀N > 4,

B3z4 = C̃3z3 + f3

where the matrices BN , CN , C̃3, DN and the vectors fN can be computed by replacing v by Formula
(3) in Equation (8) and are given further.

(ii)
v′i,j,k =

kY

N
xN + jx′N + Y (2N − Y )

(
y′N
N
− Y

2N2
yN

)
,

where Y = 2i + j is the number of A alleles, the sequences (xN) and (yN) are given in the first

point and the sequence of vectors (z′N)N>2 :=

(
x′N
y′N

)

N>2

is the unique bounded solution of

the following system of equations composed of a second-order recurrence equation and an initial
condition:

{
B′

Nz′N+1 = C ′
Nz′N + D′

Nz′N−1 + f ′N ∀N > 3,

B̃′
2z
′
3 = C̃ ′

2z
′
2 + f̃ ′2.

The matrices B′
N , C ′

N , C̃ ′
2, D′

N and the vectors f ′N are given further.
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We find:

BN :=
b

2(N − 1)(N + 1)

(
1 2N2+4N−3

N+1

2N2 − 3 −3
N+1

)
,

CN := (b + d + c(N − 1))

(
0 1

N

1 0

)
,

C̃3 :=

(
0 b+d+2c

3

b + d+2c
3

−(d + 2c)

)
,

DN := −d + c(N − 1)

N − 1

(
0 N−3

N−1

N − 2 3
N−1

)
,

fN :=

(
0
−1

2N(N−1)

)
,

B′
N :=

b

N − 1

(
2N2 − 2N − 1 −1

N+1
1
2

N2+N−3/2
N+1

)
,

B̃′
2 :=

(
1 9
3
2

13
2

)
,

C ′
N := (bN + dN + cN(N − 1))

(
2 0
0 1

N

)
,

C̃ ′
2 :=

(
0 4
1 3

)
= C3 −




0 0

2
3
(d + 2c) (d + 2c)




D′
N := −(d + c(N − 1))

(
2N − 2 2

N−1

0 N−2
N−1

)
,

f ′N :=




b

N − 1
(2N − 1)

yN+1

2(N + 1)2

− (d + c(N − 1))(4N + 2)
yN−1

2(N − 1)2

b

N − 1

(
2N3 + 3N2 − 4N − 3

2

)
yN+1

2(N + 1)2

− (bN + dN + cN(N − 1))(2N − 1)
yN

2N2

+ (d + c(N − 1))(2N2 − 7N + 8)
yN−1

2(N − 1)2




,

f̃ ′2 :=

(
x2 − y2 − x3 + 3

2
y3

57
56

y3 − 9
8
y2

)
.

Online appendix B: The population size
We find the formula of the stationary distribution of the population size by solving the stationary system
(see Grimmett and Stirzaker, 2001, p. 260):





b(N − 1)p(N − 1, b, d, c)
+ (d + cN)(N + 1)p(N + 1, b, d, c)

= N(b + d + c(N − 1))p(N, b, d, c) ∀N > 3

2bp(2, b, d, c) = 3(d + 2c)p(3, b, d, c)
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We obtain Table 1 for the decrease of the mean population size N when d increases.

d N(b, d, c)
0 100
2 80
4 59
6 38
8 16
10 6

Table 1: Correspondence between the death rate and the mean population size, for b = 10 and
c = 0.1.

Online appendix C: v and v′

We obtain Figure 9 for the partial derivatives of the fixation probability, vN−1,1,0 and v′N−1,1,0, as functions
of N .

(A) (B)

Figure 9: vN−1,1,0 (A) and v′N−1,1,0 (B) as functions of the initial population size N . The demo-
graphic parameters are b = 10, d = 1, c = 0.1.

Online appendix D: T as a function of b

We obtain figure 10 for the mean fixation time T as a function of b.
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