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Abstract

We prove new global Hölder-logarithmic stability estimates for the
Gel’fand inverse problem at fixed energy in dimension d ≥ 3. Our es-
timates are given in uniform norm for coefficient difference and related
stability efficiently increases with increasing energy and/or coefficient reg-
ularity. Comparisons with preceeding results in this direction are given.

1 Introduction
We consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ D, (1.1)

where
D is an open bounded domain in Rd, d ≥ 2,

with ∂D ∈ C2,
(1.2)

v ∈ L∞(D). (1.3)

Consider the map Φ̂ = Φ̂(E) such that

Φ̂(E)(ψ|∂D) =
∂ψ

∂ν
|∂D (1.4)

for all sufficiently regular solutions ψ of (1.1) in D̄ = D ∪ ∂D, where ν is the
outward normal to ∂D. Here we assume also that

E is not a Dirichlet eigenvalue for operator −∆ + v in D. (1.5)

The map Φ̂ = Φ̂(E) is called the Dirichlet-to-Neumann map and is considered
as boundary measurements.

We consider the following inverse boundary value problem for equation (1.1):

Problem 1.1. Given Φ̂ for some fixed E, find v.

This problem can be considered as the Gel’fand inverse boundary value prob-
lem for the Schrödinger equation at fixed energy (see [10], [23]). At zero energy
this problem can be considered also as a generalization of the Calderon problem
of the electrical impedance tomography (see [6], [23]). Problem 1.1 can be also
considered as an example of ill-posed problem: see [18], [4] for an introduction
to this theory.

Problem 1.1 includes, in particular, the following questions: (a) uniqueness,
(b) reconstruction, (c) stability.
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Global uniqueness results and global reconstruction methods for Problem 1.1
were given for the first time in [23] in dimension d ≥ 3 and in [5] in dimension
d = 2.

Global logarithmic stability estimates for Problem 1.1 were given for the
first time in [1] in dimension d ≥ 3 and in [30] in dimension d = 2. A principal
improvement of the result of [1] was given recently in [29] (for the zero energy
case): stability of [29] optimally increases with increasing regularity of v.

For the Calderon problem (of the electrical impedance tomography) in its
initial formulation the global uniqueness was firstly proved in [36] for d ≥ 3 and
in [21] for d = 2. Global logarithmic stability estimates for this problem were
given for the first time in [1] for d ≥ 3 and [19] for d = 2. Principal increasing
of global stability of [1], [19] for the regular coefficient case was found in [29] for
d ≥ 3 and [34] for d = 2.

In addition, for the case of piecewise constant or piecewise real analytic
conductivity the first uniqueness results for the Calderon problem in dimension
d ≥ 2 were given in [7], [16]. Lipschitz stability estimate for the case of piecewise
constant conductivity was proved in [2] and additional studies in this direction
were fulfilled in [33].

Due to [20] the logarithmic stability results of [1], [19] with their principal
effectivization of [29], [34] are optimal (up to the value of the exponent). An
extention of the instability estimates of [20] to the case of the non-zero energy
as well as to the case of Dirichlet-to-Neumann map given on the energy intervals
was given in [12].

On the other hand, it was found in [25], [26] (see also [28], [31]) that for
inverse problems for the Schrödinger equation at fixed energy E in dimension
d ≥ 2 (like Problem 1.1) there is a Hölder stability modulo an error term
rapidly decaying as E → +∞ (at least for the regular coefficient case). In
addition, for Problem 1.1 for d = 3, global energy dependent stability estimates
changing from logarithmic type to Hölder type for high energies were given in
[15]. However, there is no efficient stability increasing with respect to increasing
coefficient regularity in these results of [15]. An additional study, motivated
by [15], [29], was given in [22].

In the present work we give new global Hölder-logarithmic stability estimates
for Problem 1.1 in dimension d ≥ 3 for the regular coefficient case, see Theorem
2.1 and Remark 2.6. Our estimates are given in uniform norm for coefficient
difference and related stability efficiently increases with increasing energy and/or
coefficient regularity. In particular cases, our new estimates become coherent
(although less strong) with respect to results of [29], [26], see Remarks 2.2,
2.3. In general, our new estimates give some synthesis of several important
preceeding results.

2 Stability estimates
In this section we assume for simplicity that

v ∈Wm,1(Rd) for some m > d, supp v ⊂ D, (2.1)
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where
Wm,1(Rd) = {v : ∂Jv ∈ L1(Rd), |J | ≤ m}, m ∈ N ∪ 0, (2.2)

where

J ∈ (N ∪ 0)d, |J | =
d∑
i=1

Ji, ∂
Jv(x) =

∂|J|v(x)
∂xJ1

1 . . . ∂xJd

d

. (2.3)

Let
||v||m,1 = max

|J|≤m
||∂Jv||L1(Rd). (2.4)

Let
||A|| denote the norm of an operator

A : L∞(∂D)→ L∞(∂D).
(2.5)

We recall that if v1, v2 are potentials satisfying (1.3), (1.5) for some fixed E,
then

Φ̂2(E)− Φ̂1(E) is a compact operator in L∞(∂D), (2.6)

where Φ̂1, Φ̂2 are the DtN maps for v1, v2, respectively, see [23], [27]. Note also
that (2.1) ⇒ (1.3).

Let
s0 =

m− d
m

, s1 =
m− d
d

, s2 = m− d. (2.7)

Theorem 2.1. Let D satisfy (1.2), where d ≥ 3. Let v1, v2 satisfy (2.1) and
(1.5) for some fixed real E. Let ||vj ||m,1 ≤ N, j = 1, 2, for some N > 0. Let
Φ̂1(E) and Φ̂2(E) denote the DtN maps for v1 and v2, respectively. Then

||v2 − v1||L∞(D) ≤ C1

(
ln
(
3 + δ−1

))−s
, 0 < s ≤ s1, (2.8)

where C1 = C1(N,D,m, s,E) > 0, δ = ||Φ̂2(E) − Φ̂1(E)|| is defined according
to (2.5). In addition, for E ≥ 0, τ ∈ (0, 1) and any s ∈ [0, s1],

||v2 − v1||L∞(D) ≤ C2(1 +
√
E)δτ + C3(1 +

√
E)s−s1

(
ln
(
3 + δ−1

))−s
, (2.9)

where C2 = C2(N,D,m, τ) > 0 and C3 = C3(N,D,m, τ) > 0.

Remark 2.1. Estimate (2.8) for s = s0 is a variation of the result of [1] (see
also [29], [13]). One can see that estimate (2.8), s = s1, of Theorem 2.1 is more
strong (as much as s1 is greater than s0) than the aforementioned result going
back to [1].

Remark 2.2. Estimate (2.8) for s = s2, E = 0, d = 3 was proved in [29]. One
can see that this estimate of [29] is more strong (as much as s2 is greater than
s1) than estimate (2.8), s = s1, of Theorem 2.1 for E = 0, d = 3.

Remark 2.3. Using results of [26] one can obtain estimate (2.9) for s = 0,
d = 3, with s2 in place of s1, for sufficiently great E with respect to N . One
can see that for this particular case the aforementioned corollary of [26] is more
strong (as much as s2 is greater than s1) than estimate (2.9) of Theorem 2.1.
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Remark 2.4. In a similar way with results of [13], [14], estimates (2.8), (2.9)
can be extended to the case when we do not assume that condition (1.5) is
fulfiled and consider an appropriate impedance boundary map instead of the
Dirichlet-to-Neumann map.

Remark 2.5. Concerning two-dimensional analogs of results of Theorem 2.1,
see [25], [31], [34], [35].

Remark 2.6. Actually, in the proof of Theorem 2.1 we obtain the following
estimate (see formula (4.19)):

‖v1 − v2‖L∞(D) ≤ C4

√
E + ρ2 e2ρLδ + C5(E + ρ2)−s1/2, (2.10)

where L = max
x∈∂D

|x|, C4 = C4(N,D,m) > 0, C5 = C5(N,D,m) > 0 and

parameter ρ > 0 is such that E+ρ2 is sufficiently large: E+ρ2 ≥ C6(N,D,m).
Estimates of Theorem 2.1 follow from estimate (2.10).

The proof of Theorem 2.1 and estimate (2.10) is given in Section 4 and is
based on results recalled in Section 3. Actually, this proof is technically very
similar to the proof of estimate (2.8) for s = s0, see [1], [29], [13]. Possibility of
such a proof of estimate (2.8) for s = s1, E = 0 was mentioned, in particular,
in [32].

3 Faddeev functions
We consider the Faddeev functions G, ψ, h (see [8], [9], [11], [23]):

G(x, k) = eikxg(x, k), g(x, k) = −(2π)−d
∫
Rd

eiξxdξ

ξ2 + 2kξ
, (3.1)

ψ(x, k) = eikx +
∫
Rd

G(x− y, k)v(y)ψ(y, k)dy, (3.2)

where x ∈ Rd, k ∈ Cd, Im k 6= 0, d ≥ 3,

h(k, l) = (2π)−d
∫
Rd

e−ilxv(x)ψ(x, k)dx, (3.3)

where
k, l ∈ Cd, k2 = l2, Im k = Im l 6= 0. (3.4)

One can consider (3.2), (3.3) assuming that

v is a sufficiently regular function on Rd

with suffucient decay at infinity.
(3.5)
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For example, in connection with Problem 1.1, one can consider (3.2), (3.3)
assuming that

v ∈ L∞(D), v ≡ 0 on R \D. (3.6)

We recall that (see [8], [9], [11], [23]):

• The function G satisfies the equation

(∆ + k2)G(x, k) = δ(x), x ∈ Rd, k ∈ Cd \ Rd; (3.7)

• Formula (3.2) at fixed k is considered as an equation for

ψ = eikxµ(x, k), (3.8)

where µ is sought in L∞(Rd);

• As a corollary of (3.2), (3.1), (3.7), ψ satisfies (1.1) for E = k2;

• The Faddeev functions G, ψ, h are (non-analytic) continuation to the
complex domain of functions of the classical scattering theory for the
Schrödinger equation (in particular, h is a generalized "‘scattering"’ am-
plitude).

In addition, G, ψ, h in their zero energy restriction, that is for E = 0, were
considered for the first time in [3]. The Faddeev functions G, ψ, h were, actually,
rediscovered in [3].

Let
ΣE =

{
k ∈ Cd : k2 = k2

1 + . . .+ k2
d = E

}
,

ΘE = {k ∈ ΣE , l ∈ ΣE : Im k = Im l} ,
|k| = (|Re k|2 + |Im k|2)1/2.

(3.9)

Under the assumptions of Theorem 2.1, we have that:

µ(x, k)→ 1 as |k| → ∞ (3.10)

and, for any σ > 1,

|µ(x, k)| ≤ σ for |k| ≥ r1(N,D,m, σ), (3.11)

where x ∈ Rd, k ∈ ΣE ;

v̂(p) = lim
(k, l) ∈ ΘE , k − l = p
|Im k| = |Im l| → ∞

h(k, l) for any p ∈ Rd, (3.12)

|v̂(p)− h(k, l)| ≤ c1(D,m)N2

(E + ρ2)1/2
for (k, l) ∈ ΘE , p = k − l,

|Im k| = |Im l| = ρ, E + ρ2 ≥ r2(N,D,m),

p2 ≤ 4(E + ρ2),

(3.13)
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where
v̂(p) = (2π)−d

∫
Rd

eipxv(x)dx, p ∈ Rd. (3.14)

Results of the type (3.10), (3.11) go back to [3]. For more information
concerning (3.11) see estimate (4.11) of [13]. Results of the type (3.12), (3.13)
(with less precise right-hand side in (3.13)) go back to [11]. Estimate (3.13)
follows, for example, from formulas (3.2), (3.3) and the estimate

‖Λ−sg(k)Λ−s‖L2(Rd)→L2(Rd) = O(|k|−1)

as |k| → ∞, k ∈ Cd \ Rd,
(3.15)

for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel
g(x−y, k) and Λ denotes the multiplication operator by the function (1+|x|2)1/2.
Estimate (3.15) was formulated, first, in [17] for d ≥ 3. Concerning proof of
(3.15), see [37].

In addition, we have that:

h2(k, l)− h1(k, l) = (2π)−d
∫
Rd

ψ1(x,−l)(v2(x)− v1(x))ψ2(x, k)dx

for (k, l) ∈ ΘE , |Im k| = |Im l| 6= 0,
and v1, v2 satisfying (3.5),

(3.16)

h2(k, l)− h1(k, l) = (2π)−d
∫
∂D

ψ1(x,−l)
[(

Φ̂2 − Φ̂1

)
ψ2(·, k)

]
(x)dx

for (k, l) ∈ ΘE , |Im k| = |Im l| 6= 0,
and v1, v2 satisfying (1.5), (3.6),

(3.17)

and, under assumtions of Theorem 2.1,

|v̂1(p)− v̂2(p)− h1(k, l) + h2(k, l)| ≤
c2(D,m)N‖v1 − v2‖L∞(D)

(E + ρ2)1/2

for (k, l) ∈ ΘE , p = k − l, |Im k| = |Im l| = ρ,

E + ρ2 ≥ r3(N,D,m), p2 ≤ 4(E + ρ2),

(3.18)

where hj , ψj denote h and ψ of (3.3) and (3.2) for v = vj , and Φ̂j denotes the
Dirichlet-to-Neumann map for v = vj , where j = 1, 2.

Formulas (3.16), (3.17) were given in [24], [27]. Estimate (3.18) follows from
(3.2), (3.15), (3.16) in a similar way as estimate (3.13) follows from (3.2), (3.3),
(3.15).

4 Proof of Theorem 2.1
Let

L∞µ (Rd) = {u ∈ L∞(Rd) : ‖u‖µ < +∞},
‖u‖µ = ess sup

p∈Rd

(1 + |p|)µ|u(p)|, µ > 0. (4.1)
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Note that
w ∈Wm,1(Rd) =⇒ ŵ ∈ L∞µ (Rd) ∩ C(Rd),
‖ŵ‖µ ≤ c3(m, d)‖w‖m,1 for µ = m,

(4.2)

where Wm,1, L∞µ are the spaces of (2.2), (4.1),

ŵ(p) = (2π)−d
∫
Rd

eipxw(x)dx, p ∈ Rd. (4.3)

Using the inverse Fourier transform formula

w(x) =
∫
Rd

e−ipxŵ(p)dp, x ∈ Rd, (4.4)

we have that

‖v1 − v2‖L∞(D) ≤ sup
x∈D̄
|
∫
Rd

e−ipx (v̂2(p)− v̂1(p)) dp| ≤

≤ I1(r) + I2(r) for any r > 0,

(4.5)

where
I1(r) =

∫
|p|≤r

|v̂2(p)− v̂1(p)|dp,

I2(r) =
∫
|p|≥r

|v̂2(p)− v̂1(p)|dp.
(4.6)

Using (4.2), we obtain that

|v̂2(p)− v̂1(p)| ≤ 2c3(m, d)N(1 + |p|)−m, p ∈ Rd. (4.7)

Due to (3.18), we have that

|v̂2(p)− v̂1(p)| ≤ |h2(k, l)− h1(k, l)|+
c2(D,m)N‖v1 − v2‖L∞(D)

(E + ρ2)1/2
,

for (k, l) ∈ ΘE , p = k − l, |Im k| = |Im l| = ρ,

E + ρ2 ≥ r3(N,D,m), p2 ≤ 4(E + ρ2).

(4.8)

Let
c4 = (2π)−d

∫
∂D

dx, L = max
x∈∂D

|x|,

δ = ‖Φ̂2(E)− Φ̂1(E)‖,

(4.9)

where ‖Φ̂2(E)− Φ̂1(E)‖ is defined according to (2.5).
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Due to (3.17), we have that

|h2(k, l)− h1(k, l)| ≤ c4‖ψ1(·,−l)‖L∞(∂D) δ ‖ψ2(·, k)‖L∞(∂D),

(k, l) ∈ ΘE , |Im k| = |Im l| 6= 0.
(4.10)

Using (3.11), we find that

‖ψ(·, k)‖L∞(∂D) ≤ σ exp
(
|Im k|L

)
,

k ∈ ΣE , |k| ≥ r1(N,D,m, σ).
(4.11)

Here and bellow in this section the constant σ is the same that in (3.11).
Combining (4.10) and (4.11), we obtain that

|h2(k, l)− h1(k, l)| ≤ c4σ2e2ρLδ, for (k, l) ∈ ΘE ,

ρ = |Im k| = |Im l|,
E + ρ2 ≥ r2

1(N,D,m, σ).

(4.12)

Using (4.8), (4.12), we get that

|v̂2(p)− v̂1(p)| ≤ c4σ2e2ρLδ +
c2(D,m)N‖v1 − v2‖L∞(D)

(E + ρ2)1/2
,

p ∈ Rd, p2 ≤ 4(E + ρ2), E + ρ2 ≥ max{r2
1, r3}.

(4.13)

Let

ε =
(

1
2c2(D,m)Nc5

)1/d

, c5 =
∫

p∈Rd,|p|≤1

dp, (4.14)

and r4(N,D,m, σ) > 0 be such that

E + ρ2 ≥ r4(N,D,m, σ) =⇒


E + ρ2 ≥ r2

1(N,D,m, σ),

E + ρ2 ≥ r3(N,D,m),(
ε(E + ρ2)

1
2d

)2

≤ 4(E + ρ2).

(4.15)

Let
c6 =

∫
p∈Rd,|p|=1

dp. (4.16)

Using (4.6), (4.13), we get that

I1(r) ≤ c5rd
(
c4σ

2e2ρLδ +
c2(D,m)N‖v1 − v2‖L∞(D)

(E + ρ2)1/2

)
,

r > 0, r2 ≤ 4(E + ρ2),

E + ρ2 ≥ r4(N,D,m, σ).

(4.17)
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Using (4.6), (4.7), we find that, for any r > 0,

I2(r) ≤ 2c3(m, d)Nc6

+∞∫
r

dt

tm−d+1
≤ 2c3(m,D)Nc6

m− d
1

rm−d
. (4.18)

Combining (4.5), (4.17), (4.18) for r = ε(E + ρ2)
1
2d and (4.15), we get that

‖v1 − v2‖L∞(D) ≤ c7(N,D,m, σ)
√
E + ρ2 e2ρLδ+

+c8(N,D,m)(E + ρ2)−
m−d
2d +

1
2
‖v1 − v2‖L∞(D),

E + ρ2 ≥ r4(N,D,m, σ).

(4.19)

Let τ ′ ∈ (0, 1) and

β =
1− τ ′

2L
, ρ = β ln

(
3 + δ−1

)
, (4.20)

where δ is so small that E + ρ2 ≥ r4(N,D,m, σ). Then due to (4.19), we have
that

1
2
‖v1 − v2‖L∞(D) ≤

≤ c7(N,D,m, σ)
(
E +

(
β ln

(
3 + δ−1

))2)1/2 (
3 + δ−1

)2βL
δ+

+ c8(N,D,m)
(
E +

(
β ln

(
3 + δ−1

))2)−m−d
2d

=

= c7(N,D,m, σ)
(
E +

(
β ln

(
3 + δ−1

))2)1/2

(1 + 3δ)1−τ ′
δτ
′
+

+ c8(N,D,m)
(
E +

(
β ln

(
3 + δ−1

))2)−m−d
2d

,

(4.21)

where τ ′, β and δ are the same as in (4.20).
Using (4.21), we obtain that

‖v1 − v2‖L∞(D) ≤ c9(N,D,E,m, σ, τ ′)
(
ln
(
3 + δ−1

))−m−d
d (4.22)

for δ = ‖Φ̂2−Φ̂1‖ ≤ δ1(N,D,E,m, σ, τ ′), where δ1 is a sufficiently small positive
constant. Estimate (4.22) in the general case (with modified c9) follows from
(4.22) for δ ≤ δ1(N,D,E,m, σ, τ ′) and the property that

‖vj‖L∞(D) ≤ c10(D,m)N. (4.23)

This completes the proof of (2.8).
If E ≥ 0 then there is a constant δ2 = δ2(N,D,m, σ, τ ′) > 0 such that

δ ∈ (0, δ2) =⇒


E +

(
β ln

(
3 + δ−1

))2 ≥ r4(N,D,m, σ),

E +
(
β ln

(
3 + δ−1

))2 ≤ ((1 +
√
E)β ln

(
3 + δ−1

))2

,

β ln
(
3 + δ−1

)
≥ 1,

(4.24)
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where β is the same as in (4.20). Combining (4.21), (4.24), we obtain that for
s ∈ [0, (m− d)/d], τ ∈ (0, τ ′) and δ ∈ (0, δ2) the following estimate holds:

||v2−v1||L∞(D) ≤ c11(1+
√
E)δτ +c12(1+

√
E)s−

m−d
d

(
ln
(
3 + δ−1

))−s
, (4.25)

where constants c11, c12 > 0 depend only on N , D, m, σ, τ ′ and τ .
Estimate (4.25) in the general case (with modified c11 and c12) follows from

(4.25) for δ ≤ δ2(N,D,m, σ, τ ′) and (4.23).
This completes the proof of (2.9)
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