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tive-Radiative Heat TransferProblem ∗Grégoire Allaire† and Zakaria Habibi ‡Abstra
tThis paper fo
uses on the 
ontribution of the so-
alled se
ond order
orre
tor in periodi
 homogenization applied to a 
ondu
tive-radiativeheat transfer problem. More pre
isely, heat is di�using in a periodi
allyperforated domain with a non-lo
al boundary 
ondition modelling the ra-diative transfer in ea
h hole. If the sour
e term is a periodi
ally os
illatingfun
tion (whi
h is the 
ase in our appli
ation to nu
lear rea
tor physi
s),a strong gradient of the temperature takes pla
e in ea
h periodi
ity 
ell,
orresponding to a large heat �ux between the sour
es and the perfo-rations. This e�e
t 
annot be taken into a

ount by the homogenizedmodel, neither by the �rst order 
orre
tor. We show that this lo
al gradi-ent e�e
t 
an be reprodu
ed if the se
ond order 
orre
tor is added to there
onstru
ted solution.Key words : periodi
 homogenization, 
orre
tors, heat transfer,radiative transfer.1 Introdu
tionWe study heat transfer in a very heterogeneous periodi
 porous medium. Sin
ethe ratio of the heterogeneities period with the 
hara
teristi
 length-s
ale of thedomain, denoted by ǫ, is very small in pra
ti
e, a dire
t numeri
al simulationof this phenomenon is either out of rea
h or very time 
onsuming on any 
om-puter. Therefore, the original heterogeneous problem should be repla
ed by anhomogeneous averaged (or e�e
tive, or homogenized) one. This approximation
an be further improved if one add to the homogenized solution so-
alled 
or-re
tor terms whi
h take into a

ount lo
al �u
tuations in ea
h periodi
ity 
ell.
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The goal of homogenization theory [6℄, [7℄, [15℄, [25℄, [27℄, [36℄, [37℄ is to providea systemati
 way of �nding su
h e�e
tive problems, of re
onstru
ting an a

u-rate solution by introdu
ing these 
orre
tors and of rigorously justifying su
h anapproximation by establishing 
onvergen
e theorems and error estimates. Thepurpose of this paper is to 
arry on this program for a model of 
ondu
tive-radiative heat transfer in a domain periodi
ally perforated by many in�nitelysmall holes and, more spe
i�
ally, to show that the se
ond order 
orre
tor is
ru
ial to a
hieve a good approximation in the present 
ontext.Although our model 
ould be applied to a large variety of physi
al prob-lems, our work is motivated by the study of gas-
ooled nu
lear rea
tors whi
hare one of the possible 
on
epts for the 4th generation of rea
tors, 
onsidered inthe nu
lear industry (see [16℄). The 
ore of these rea
tors is 
omposed by manyprismati
 blo
ks of graphite in whi
h are inserted the fuel 
ompa
ts (playing therole of thermal sour
es). Ea
h blo
k is also periodi
ally perforated by several
hannels where the 
oolant (Helium) �ows. For simpli
ity, we 
onsider a 
rossse
tion (orthogonal to the 
ylindri
al 
hannels) of su
h a periodi
 domain (werefer to our other paper [4℄ for a dis
ussion of the fully 3D 
ase). In a 
rossse
tion the gas 
hannels are just a periodi
 distribution of dis
onne
ted 
ir
ularholes (see Figure 1). The total number of holes is very large (of the order of
104) and their size is very small 
ompared to the size of the 
ore. Consequently,the dire
t numeri
al analysis of su
h a model requires a very �ne mesh of theperiodi
 domain. This indu
es a very expensive numeri
al resolution that be-
omes impossible for a real geometry of a rea
tor 
ore. Therefore, our obje
tiveis to de�ne a homogenized model, possibly 
orre
ted by several 
ell problems,in order to obtain an approximate solution, whi
h should be less expensive interm of CPU time and memory, and should 
onverge to the exa
t solution as ǫgoes to zero.The homogenization of the 
ondu
tive-radiative heat transfer model (8) wasalready 
arried out in [3℄ for the 2D 
ase and in [4℄ for a generalization to the3D 
ase. Thus, the originality of the present paper lies in the improvementof the homogenization approximation by taking into a

ount the se
ond order
orre
tor. To be more spe
i�
, the improvement is dramati
 when there is alarge os
illating sour
e term: then a strong temperature gradient appears inea
h 
ell between the sour
e support and the holes boundaries where heat �owsby ex
hange with the 
oolant. These lo
alized gradients do not appear in thehomogenized solution (whi
h is expe
ted), neither in the �rst order 
orre
tor(whi
h is more surprising at �rst sight). Indeed, the �rst order 
orre
tor, de�nedas a linear 
ombination of the 
ell solutions (19), 
an be interpreted as the lo
al�u
tuation of the ma
ros
opi
 temperature. However, it does not take intoa

ount the possible mi
ros
opi
 variations of the sour
e term. It is ratherthe se
ond order 
orre
tor whi
h is the �rst term in the two-s
ale asymptoti
expansion to admit a 
ontribution due to a varying sour
e term. Our numeri
alresults 
on�rm this asymptoti
 analysis.The se
ond order 
orre
tor is rarely studied in homogenization theory (seenevertheless the textbooks [6℄, [7℄, [36℄, or the paper [17℄) and even more seldomused in numeri
al homogenization algorithms. To our knowledge the only no-2



ti
eable ex
eption is the early numeri
al work of Bourgat [8℄, [9℄ where a similarphenomenon was emphasized. More pre
isely, Bourgat showed that the se
ondorder 
orre
tor was again the �rst term in the two-s
ale asymptoti
 expansionwhi
h is in�uen
ed by a strong variation of the di�usion 
oe�
ient. Althoughthese two phenomena (os
illating sour
e term and large amplitude of the di�u-sion tensor) are di�erent, in both 
ases the 
on
lusion is the same: in
ludingthe se
ond order 
orre
tor in the re
onstru
tion of an approximate solution im-proves a lot the 
omparison with the exa
t solution. One possible reason for theless systemati
 use of the se
ond order 
orre
tor is that, in theory, it brings a
orre
tion of order ǫ2, mu
h smaller than some negle
ted terms of order ǫ in the�rst order 
orre
tion (in
luding so-
alled boundary layers). We shall dis
uss atlength this issue below but let us simply 
laim that, for many simple (or sym-metri
) geometries like the one 
onsidered here, these negle
ted terms of order
ǫ turn out to very small, while the se
ond order term of order ǫ2 is mu
h largersin
e it is proportional to the sour
e term (whi
h is large in our situation). Inother words, the improvement is not obtained in the limit when ǫ goes to 0, butfor �xed values of ǫ whi
h, however small, are not negligible in front of otherparameters like the magnitude of the sour
e term.The paper is organized as follows. In Se
tion 2, we de�ne the geometry andthe heat transfer model (8). The main properties of the radiative operator arere
alled. It is an integral operator, the kernel of whi
h is 
alled the view fa
tor(it amounts to quantify how a point on the hole boundary is illuminated bythe other points on this surfa
e). Se
tion 3 is devoted to the formal methodof two-s
ale asymptoti
 expansions applied to our problem. Its main result isProposition 3.1 whi
h gives the pre
ise form of the homogenized problem and theso-
alled 
ell problems whi
h de�ne the �rst order 
orre
tor of the homogenizedsolution. Furthermore, Proposition 3.1 furnishes the se
ond order 
orre
torwhi
h 
an be de
omposed as a sum of solutions to auxiliary 
ell problems (seeCorollary 3.1). The rigorous mathemati
al justi�
ation of the homogenizationpro
ess and of the �rst order approximation (but not of the se
ond order im-provement) has already been done in [3℄ and [4℄ using the method of two-s
ale
onvergen
e [1℄, [34℄. We shall not reprodu
e this argument here and we 
ontentourselves in brie�y re
alling these results in Se
tion 4. Similarly we re
all theexpe
ted 
onvergen
e rates in ǫ powers of our homogenization method, withoutany proof. As is well known, the two-s
ale 
onvergen
e method does not justifythe se
ond order 
orre
tor. In truth, su
h a justi�
ation requires, as a prelimi-nary step, to �rst introdu
e the ǫ-order boundary layers and to 
hara
terize thenon-os
illating part of the �rst-order 
orre
tor (see (19) and Remark 3.2). Thispro
ess of 
onstru
ting boundary layers is, in pra
ti
e, restri
ted to re
tangulardomains and is quite intri
ate (see e.g. [2℄, [6℄, [30℄, [33℄). The determinationof the non-os
illating part of the �rst-order 
orre
tor is even more tri
ky and israrely done in numeri
al pra
ti
e (see [2℄, [6℄, [14℄). For the sake of brevity we donot reprodu
e these 
onstru
tions here and we 
ontent ourselves in mentioningthem in Se
tion 4. As a matter of fa
t we shall not attempt to rigorously jus-tify the improvement brought by the se
ond order 
orre
tor. We simply 
laimthat, in the geometri
al setting under study, the ǫ-order boundary layer and3



the non-os
illating part of the �rst-order 
orre
tor are numeri
ally negligible.Thus, the se
ond order 
orre
tor brings a signi�
ant qualitative improvement inthe approximation of the true solution, at least from a pra
ti
al point of view.A formal generalization to the non-linear 
ase is brie�y sket
hed in Se
tion 5.Indeed, the true physi
al model of radiative transfer is non-linear sin
e the emit-ted radiations are following the Stefan-Boltzmann law of proportionality to the4th power of temperature. Taking into a

ount this non-linearity is not di�-
ult for the formal method of two-s
ale asymptoti
 expansions. Thus we givethe homogenized and 
ell problems in this 
ase too, all the more sin
e all ournumeri
al 
omputations are performed in this non-linear setting. EventuallySe
tion 6 is devoted to some 2D numeri
al results for data 
orresponding togas-
ooled rea
tors. For this pe
uliar model the se
ond order 
orre
tor is veryuseful to improve the qualitative behavior of the approximate solution obtainedby homogenization. The results of this paper are part of the PhD thesis of these
ond author [22℄ and were announ
ed in [21℄.2 Setting of the problemThe goal of this se
tion is to de�ne the geometry of the periodi
ally perforateddomain and to introdu
e the model of 
ondu
tive heat transfer problem. Formore details we refer to [22℄ and referen
es therein.2.1 GeometryLet Ω =
∏2

j=1(0, Lj) be a re
tangular open set of R2 with positive lengths
Lj > 0. It is periodi
ally divided in N(ǫ) small 
ells (Yǫ,i)i=1...N(ǫ), ea
h of thembeing equal, up to a translation and res
aling by a fa
tor ǫ, to the same unitperiodi
ity 
ell Y =

∏2
j=1(0, lj) with lj > 0. To avoid unne
essary 
ompli
ationswith boundary layers (and be
ause this is the 
ase in the physi
al problem whi
hmotivates this study) we assume that the sequen
e of small positive parameters

ǫ, going to zero, is su
h that Ω is made up of entire 
ells only, namely Lj/(ǫlj)is an integer for any j = 1, 2.We de�ne a referen
e solid 
ell Y S as the 
ell Y perforated by a smoothhole o

upied by a gas with a known temperature Tgas (see Figures 1 and 2).We denote by Γ the boundary between Y S and the hole (whi
h is assumedto be stri
tly in
luded in Y so that, upon periodi
 repetition, a 
olle
tion ofdis
onne
ted isolated holes is obtained). Note that, for notational simpli
ity,we 
onsider only one hole per 
ell, although there is no di�
ulty in treatingseveral disjoint holes per 
ell (as is the 
ase in our numeri
al tests where thereare two holes per 
ell). Then, we de�ne the domain Ωǫ as the union of Y S
ǫ,i, where

Y S
ǫ,i are the translated and res
aled version of Y S for i = 1, ..., N(ǫ) (similar tothe 
orresponden
e between Yǫ,i and Y ). On the same token we de�ne the entire

4



holes boundary Γǫ as the union of individual surfa
es Γǫ,i. In summary we have
Ωǫ =

N(ǫ)⋃

i=1

Y S
ǫ,i, Γǫ =

N(ǫ)⋃

i=1

Γǫ,i.We de�ne x0,i as the 
enter of mass of ea
h 
ell Yǫ,i su
h that
∫

Yǫ,i

(x − x0,i) dx = 0. (1)

Figure 1: The periodi
 domain Ω (or Ωǫ).
Figure 2: The referen
e 
ell Y .
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2.2 Governing equationsFirst, we re
all that the 
urrent study holds in a simpli�ed 2D setting where
onve
tion and di�usion are negle
ted in the gas. A more 
omplete 3D study,by homogenization, of stationary heat transfer in nu
lear rea
tor 
ores is under-taken in [4℄. In the present 2D setting, heat is transported by 
ondu
tion in thesolid part Ωǫ of the domain and by radiation in the holes Ω \ Ωǫ. A non-lo
alboundary 
ondition models the radiative transfer on the hole walls. There is avast literature on heat transfer and we refer the interested reader to [13℄, [32℄,[38℄ for an introdu
tion to the modelling of radiative transfer.We denote by Tǫ the temperature in the domain Ωǫ. The thermal di�usiontensor in Ωǫ is given by
Kǫ(x) = K(x,

x

ǫ
) (2)where K(x, y) ∈ C(Ω; L∞

# (Y ))2×2 is a periodi
 symmetri
 positive de�nite ten-sor, satisfying
∀v ∈ R2, ∀ y ∈ Y, ∀ x ∈ Ω, α|v|2 ≤

2∑

i,j=1

Ki,j(x, y)vivj ≤ β|v|2,for some 
onstants 0 < α ≤ β. The gas o

upying the holes, being almosttransparent, the radiative transfer 
ould be modelled by a non lo
al boundary
ondition on the boundary Γǫ between Ωǫ and the holes:
−Kǫ∇Tǫ · n =

σ

ǫ
Gǫ(Tǫ) on Γǫ, (3)where σ

ǫ > 0 is the Stefan-Boltzmann 
onstant, n is the unit outward normalon Γǫ and Gǫ is the radiative operator de�ned by
Gǫ(Tǫ)(s) = Tǫ(s) −

∫

Γǫ,i

Tǫ(x)F (s, x)dx = (Id − ζǫ)Tǫ(s) ∀ s ∈ Γǫ,i, (4)with
ζǫ(f)(s) =

∫

Γǫ,i

F (s, x)f(x)dx. (5)The s
aling ǫ−1 in front of the radiative operator Gǫ in (3) is 
hosen be
ause ityields a perfe
t balan
e, in the limit as ǫ goes to zero, between the bulk heat
ondu
tion and the surfa
e radiative transfer (this s
aling was �rst proposed in[3℄). In other words, if we perform the 
hange of variables y = x/ǫ, then theboundary 
ondition (3) appears at the mi
ros
opi
 s
ale without any ǫ s
aling.In (5) F is the so-
alled view fa
tor (see [32℄, [26℄, [23℄) whi
h is a geometri
alquantity between two di�erent points s and x of the same boundary Γǫ,i. Itsexpli
it formula for surfa
es en
losing 
onvex domains in 2D is
F (s, x) :=

nx · (s − x)ns · (x − s)

2|x − s|3 (6)6



where nz denotes the unit normal at the point z.In truth, some 
onve
tion and di�usion takes pla
e in the holes due to thegas. It is further modelled by a �xed gas temperature Tgas ∈ H1(Ω) and a heatex
hange 
oe�
ient, given by
hǫ(x) = h(x,

x

ǫ
)with h(x, y) ∈ C(Ω; L∞

# (Y )) satisfying h(x, y) ≥ 0. Then, in absen
e of radiativetransfer, the heat �ux on the boundary is
−Kǫ∇Tǫ · n = ǫhǫ(Tǫ − Tgas) on Γǫ, (7)where the s
aling in ǫ is su
h that, again, there is a balan
e in the homogenizedlimit between di�usion and ex
hange with the gas. A
tually, we shall use a
ombination of (3) and (7).Eventually, the only heat sour
e is a bulk density of thermal sour
es in thesolid part whi
h, furthermore, is an os
illating fun
tion given by

fǫ(x) = f(x,
x

ǫ
),with f(x, y) ∈ L2(Ω × Y ) whi
h is Y -periodi
 and satis�es f ≥ 0 (see Figure 3for the geometri
al 
on�guration of the support of f). The external boundary
ondition is a simple Diri
hlet 
ondition. Thus, the governing equations of ourmodel are






−div(Kǫ∇Tǫ) = fǫ in Ωǫ

−Kǫ∇Tǫ · n = ǫhǫ(Tǫ − Tgas) +
σ

ǫ
Gǫ(Tǫ) on Γǫ

Tǫ = 0 on ∂Ω.

(8)Applying the Lax-Milgram lemma we easily obtain the following result (see [3℄for a proof, if ne
essary). The main point is that the operator Gǫ is self-adjointand non-negative (see Lemma 2.1).Proposition 2.1. The boundary value problem (8) admits a unique solution Tǫin H1(Ωǫ) ∩ H1
0 (Ω).We re
all in Lemma 2.1 some useful properties of the view fa
tor F and ofthe radiative operator Gǫ (see [22℄ [29, 38, 39℄ for further details).Lemma 2.1. For points x and s belonging to the same isolated hole boundary

Γǫ,i, the view fa
tor F (s, x) satis�es1.
F (s, x) ≥ 0, F (s, x) = F (x, s),

∫

Γǫ,i

F (s, x)ds = 1, (9)2. as an operator from L2(Γǫ,i) into itself,
‖ζǫ‖ ≤ 1, and ker(Gǫ) = ker(Id − ζǫ) = R, (10)7



3. the radiative operator Gǫ is self-adjoint on L2(Γǫ,i) and non-negative inthe sense that
∫

Γǫ,i

Gǫ(f) f ds ≥ 0 ∀ f ∈ L2(Γǫ,i). (11)The following lemma makes the 
onne
tion between the radiative operatorsat the ma
ros
opi
 and mi
ros
opi
 s
ales. It will be a key ingredient in thehomogenization pro
ess.Lemma 2.2. De�ne an integral operator G from L2(Γ) into L2(Γ) by
G(φ)(z) = φ(z) −

∫

Γ

φ(y)F (z, y)dy . (12)For any φ ∈ L2(Γ), introdu
ing φǫ(x) = φ(x
ǫ ), we have

Gǫ(φǫ)(x) = G(φ)(
x

ǫ
).Proof This is a simple 
hange of variable y = x/ǫ and z = s/ǫ using thespe
i�
 form (6) of the view fa
tor. �Remark 2.1. Lemma 2.2 applies to a purely periodi
 fun
tion φ(y) but it is nolonger true for a lo
ally periodi
 fun
tion φ(x, y). Namely, if φǫ(x) = φ(x, x

ǫ ),then usually
Gǫ(φǫ)(x) 6= G

(
φ(x, ·)

)
(y =

x

ǫ
).Remark 2.2. The radiation operator introdu
ed in (4) is a linear operator:this is 
learly a simplifying assumption. A
tually, the true physi
al radiationoperator is non-linear and de�ned, on ea
h Γǫ,i, 1 ≤ i ≤ N(ǫ), by

Gǫ(Tǫ) = e(Id − ζǫ)(Id − (1 − e)ζǫ)
−1(T 4

ǫ ). (13)where ζǫ is the operator de�ned by (5). To simplify the exposition, we fo
us onthe 
ase of so-
alled bla
k walls, i.e., we assume that the emissivity is e = 1 (we
an �nd in [5℄ a study of this kind of problems when the emissivity depends on theradiation frequen
y). However, our analysis 
an be extended straightforwardlyto the other 
ases 0 < e < 1 and non-linear operator, at the pri
e of more tedious
omputations. Therefore we 
ontent ourselves in exposing the homogenizationpro
ess for the linear 
ase. Nevertheless, in Se
tion 5 we indi
ate how our results
an be generalized to the above non-linear setting. Furthermore, our numeri
alresults in Se
tion 6 are obtained in the non-linear 
ase whi
h is more realisti
from a physi
al point of view.Remark 2.3. As already said in the introdu
tion, the main novelty of thepresent paper is the introdu
tion of the se
ond order 
orre
tor in the approx-imation of model (8). It is motivated by the appearan
e of strong gradients of8



the temperature, solution of (8), between the periodi
 support of the sour
e termand the holes where heat is ex
hanged with the exterior. The presen
e of a ra-diative term plays no role in this phenomenon whi
h 
ould appear with the mereex
hange boundary 
ondition (7). Nevertheless, in a high temperature regime,radiation be
omes dominant 
ompared to other means of heat transfer. There-fore, to be physi
ally 
orre
t in this study, we take into a

ount the radiativeheat transfer.3 HomogenizationThe homogenized problem 
an be formally obtained by the method of two-s
aleasymptoti
 expansion as explained in [6℄, [7℄, [15℄, [36℄. It 
onsists in introdu
ing�rstly two variables x and y = x
ǫ , where x is the ma
ros
opi
 variable and y isthe mi
ros
opi
 one. Se
ondly, the solution Tǫ of (8) is assumed to be given bythe following series

Tǫ = T0(x) + ǫ T1(x,
x

ǫ
) + ǫ2 T2(x,

x

ǫ
) + O(ǫ3) (14)where the fun
tions y → Ti(x, y), for i = 1, 2, are Y -periodi
. The fun
tion

T0 is the homogenized pro�le of Tǫ, while T1 is the �rst order 
orre
tor and T2the se
ond order 
orre
tor. Third, plugging this ansatz in the equations of themodel, a 
as
ade of equations are dedu
ed for ea
h term T0, T1, T2. Finally, thetrue solution Tǫ 
an be approximated either by T0, (T0+ǫT1) or (T0+ǫT1+ǫ2T2),depending on our needs for pre
ision.Introdu
ing (14) in the equations of model (8), we dedu
e the main resultof this se
tion.Proposition 3.1. Under assumption (14), the zero-order term T0 of the ex-pansion for the solution Tǫ of (8) is the solution of the homogenized problem
{

−div(K∗(x)∇T0(x)) + h∗(x)(T0(x) − Tgas(x)) = f∗(x) in Ω

T0(x) = 0 on ∂Ω
(15)with the homogenized thermal sour
e f∗ and homogenized ex
hange 
oe�
ient

h∗ given by simple averages
f∗(x) =

1

|Y |

∫

Y S

f(x, y)dy, h∗(x) =
1

|Y |

∫

Γ

h(x, y)dy, (16)and the homogenized 
ondu
tivity tensor K∗(x), given by its entries, for j, k =
1, 2,
K∗

j,k =
1

|Y |
[ ∫

Y S

K(ej + ∇yωj) · (ek + ∇yωk)dy + σ

∫

Γ

G(ωk + yk)(ωj + yj)dy
]
, (17)

9



where G is the mi
ros
opi
 radiative operator de�ned by (12) and (ωj(x, y))1≤j≤2are the solutions of the 
ell problems





−divy

(
K(x, y)(ej + ∇yωj)

)
= 0 in Y S

−K(x, y)(ej + ∇yωj) · n = σG(ωj + yj) on Γ

y 7→ ωj(y) is Y -periodi
 (18)Furthermore, the �rst order 
orre
tor T1(x, y) 
an be written
T1(x, y) =

2∑

j=1

∂T0

∂xj
(x)ωj(x, y) + T̃1(x), (19)and the se
ond order 
orre
tor T2(x, y) is the solution of the se
ond order 
ellproblem






−divy

(
K(x, y) [∇yT2(x, y) + ∇xT1(x, y)]

)
= f(x, y)

+divx

(
K(x, y) [∇xT0(x) + ∇yT1(x, y)]

) in Y S

−K(x, y) [∇yT2(x, y) + ∇xT1(x, y)] · n = h(x, y)
(
T0(x) − Tgas(x)

)

+σG
(
T2 + ∇xT1 · y + 1

2∇x∇xT0 y · y
)

−σG
(
∇xT1 + ∇x∇xT0 y

)
· y on Γ

y 7→ T2(x, y)is Y -periodi
. (20)
Remark 3.1. It is proved in [3℄, [4℄ that the homogenized tensor K∗, de�nedby (17), is symmetri
 positive de�nite. Hen
e, the homogenized equation (15)admits a unique solution T0 ∈ H1

0 (Ω).Furthermore, the following Fredholm alternative is also proved in [3℄, [4℄:for p(y) ∈ L2
#(Y S) and q(y) ∈ L2(Γ), there exists a unique solution w(y) ∈

H1
#(Y S)/R (i.e., up to an additive 
onstant) of






−divy(K∇yw) = p in Y S,
−K∇yw · n = σG(w) − q on Γ,

y 7→ w(y) is Y -periodi
, (21)if and only if the data satisfy
∫

Y S

p(y) dy +

∫

Γ

q(y) ds(y) = 0. (22)Therefore, it implies that the 
ell problems (18) admit unique solutions in thesame spa
e. Similarly, the se
ond order 
ell problem (20) admits a unique so-lution too sin
e the homogenized equation for T0 is pre
isely the 
ompatibility
ondition (22) in the Fredholm alternative.10



Remark 3.2. The fun
tion T̃1(x) appearing in (19) is not spe
i�ed at thispoint. It is 
alled the non-os
illating part of the �rst-order 
orre
tor and itwill be 
hara
terized later in Remark 4.1. The fa
t that the solution of (21)is merely de�ned up to an additive 
onstant is the reason for introdu
ing thisunknown fun
tion T̃1(x) in (19).Remark 3.3. As usual in homogenization, the 
ell problems (18) and (20) arepartial di�erential equations with respe
t to the mi
ros
opi
 variable y while xplays the role of a parameter. Naively solving 
ell problems for ea
h value of thisparameter x may in
rease the 
ost of the homogenization method. Fortunately,there exist several methods to limit this 
omputational 
ost. For example, one
an use redu
ed bases methods as in [10℄, [31℄, or one 
an rely on sparse bases onthe tensorial produ
t Ω × Y as in [24℄. Nevertheless, if the 
ondu
tivity tensordepends only on y, namely K(x, y) ≡ K(y) (whi
h is the 
ase in our industrialappli
ation), the 
ell problems (18) are 
ompletely independent of the parameter
x. As an immediate 
orollary of Proposition 3.1, using the linearity of (20) weobtain the following result (see [22℄ for a proof, if ne
essary). Note that allse
ond-order 
ell problems (26), (27) and (28) below are well-posed sin
e theysatisfy the 
ompatibility 
ondition (22) of the Fredholm alternative.Corollary 3.1. Under the same hypotheses than in Proposition 3.1 and as-suming further that the 
ondu
tivity tensor K(x, y) ≡ K(y) depends only on themi
ros
opi
 variable and that the fun
tions f and h are given by

f(x, y) = F (x)f#(y) and h(x, y) = H(x)h#(y), (23)introdu
ing the averages
F ∗ =

1

|Y |

∫

Y S

f#(y)dy and H∗ =
1

|Y |

∫

Γ

h#(y)dy, (24)the se
ond order 
orre
tor T2(x, y) 
an be written
T2(x, y) = T F

2 (y)F (x) + T H
2 (y)H(x)(T0(x) − Tgas(x))

+

2∑

i,j=1

∂2T0

∂xi∂xj
(x) θi,j(y) + T̃2(x), (25)where T F

2 , T H
2 and θi,j are the solutions of the se
ond order 
ell problems






−divy

(
K(y)∇yT F

2 (y)
)

= f#(y) in Y S

−K(y)∇yT
F
2 (y) · n = |Y |

|Γ| F
∗ + σG(T F

2 (y)) on Γ

T F
2 (y) is Y -periodi
 (26)

11








−divy

(
K(y)∇yT H

2 (y)
)

= 0 in Y S

−K(y)∇yT H
2 (y) · n = (h#(y) − |Y |

|Γ| H
∗) + σG(T H

2 (y)) on Γ

T H
2 (y) is Y -periodi
 (27)and






−divy

(
K(y) [∇yθi,j(y) + ejωi(y)]

)
= Ki,j(y) + K(y)∇yωi(y) · ej in Y S

−K(y) [∇yθi,j(y) + ejωi(y)] · n = |Y |
|Γ| K

∗
i,j

+σG
(
θi,j(y) + ωi(y)yj + 1

2yiyj

)
− σG

(
ωi(y) + yi

)
yj on Γ

θi,j(y) is Y -periodi
 (28)Remark 3.4. The �rst order 
ell problem (18) does not depend at all on thethermal sour
e f and on the heat ex
hange 
oe�
ient h. On the 
ontrary, the
ell problem (20) for T2 does depend on f and h. More pre
isely, Corollary 3.1shows that the se
ond-order 
ell problems (26) and (27) depend on the sour
e
f(x, y) and of the 
oe�
ient h(x, y). Re
all that the homogenized problem (15)depends merely on the 
ell average of f and h. Therefore, the interest of these
ond order 
orre
tor T2 is obvious if one is 
on
erned with the in�uen
e ofthe lo
al variations of f and h. As we shall see in the numeri
al experiments,these mi
ros
opi
 variations are at the root of lo
al temperature gradients for Tǫwhi
h 
an be reprodu
ed only by T2.If there are no lo
al os
illations for the 
oe�
ient h, namely h(x, y) ≡ h(x),then the solution of (27) vanishes. Note however that, even if the sour
e term
f is 
onstant, i.e., f(x, y) ≡ f(x), the solution of (26) does not vanish.Remark 3.5. The fun
tion T̃2(x) appearing in (25) is not spe
i�ed at thispoint. It is similar to T̃1(x) in (19) and is due to the non-uniqueness of thesolution of (21) as explained in Remark 3.2.Proof (of Proposition 3.1) As explained in [3, 4℄, using the method of twos
ale asymptoti
 expansions in the strong formulation of problem (8) is 
um-bersome be
ause of the non-lo
al boundary 
ondition on the holes, arising fromthe radiative transfer operator. Rather, following an original idea of J.-L. Lions[30℄, it is simpler to perform this two-s
ale asymptoti
 expansion in the weakformulation of (8), thus taking advantage of its symmetry and minimizing theamount of 
omputations. The following proof is essentially an extension of thosein [3, 4℄ (whi
h stopped at �rst order), going one step further, up to the se
ondorder term.The variational formulation of (8) is: �nd Tǫ ∈ H1

0 (Ωǫ) su
h that
aǫ(Tǫ, φǫ) = Lǫ(φǫ) for all fun
tion φǫ ∈ H1

0 (Ωǫ), (29)with
aǫ(Tǫ, φǫ) =

∫

Ωǫ

Kǫ∇Tǫ · ∇φǫdx +
σ

ǫ

∫

Γǫ

G(Tǫ)φǫdx + ǫ

∫

Γǫ

hǫ(Tǫ − Tgas)φǫdx12



and
Lǫ(φǫ) =

∫

Ωǫ

fǫφǫdx.We 
hoose φǫ of the same form than Tǫ in (14), without remainder term,
φǫ(x) = φ0(x) + ǫ φ1(x,

x

ǫ
) + ǫ2 φ2(x,

x

ǫ
), (32)with smooth fun
tions φ0(x) and φi(x, y), i = 1, 2, whi
h are Y -periodi
 in yand have 
ompa
t support in x ∈ Ω. Inserting the ansatz (14) and (32) in thevariational formulation (29) yields

a0(T0, T1, φ0, φ1) + ǫa1(T0, T1, T2, φ0, φ1, φ2) = L0(φ0, φ1) + ǫL1(φ0, φ1, φ2)

+ O(ǫ2). (33)Equating identi
al powers of ǫ we su

essively obtain:
a0(T0, T1, φ0, φ1) = L0(φ0, φ1)whi
h is the two-s
ale limit variational formulation (in the sense of [1℄), namelya 
ombination of the homogenized problem and of the (�rst order) 
ell problems,and

a1(T0, T1, T2, φ0, φ1, φ2) = L1(φ0, φ1, φ2)whi
h yields the se
ond order 
ell problem de�ning T2 (this is the new part
ompared to [3, 4℄).For the sake of 
larity we divide the proof in three steps. The �rst stepis devoted to the ansatz for the di�usion and thermal ex
hange terms. These
ond step fo
uses on the radiation term, while the third one 
ombines thesevarious terms to identify the limit equations. We write the bilinear form in thevariational formulation (29) as
aǫ(Tǫ, φǫ) = aC

ǫ (Tǫ, φǫ) + aR
ǫ (Tǫ, φǫ)with

aC
ǫ =

∫

Ωǫ

Kǫ∇Tǫ · ∇φǫdx + ǫ

∫

Γǫ

hǫ(Tǫ − Tgas)φǫdx,

aR
ǫ =

σ

ǫ

∫

Γǫ

Gǫ(Tǫ)φǫdx.Step 1 : Expansion of aC
ǫ − Lǫ

13



This is a standard 
al
ulation that we brie�y sket
h
aC

ǫ − Lǫ =

∫

Ωǫ

K(∇xT0 + ∇yT1) · (∇xφ0 + ∇yφ1)dx

+ ǫ

∫

Γǫ

h(T0 − Tgas)φ0dx

+ ǫ

∫

Ωǫ

K(∇xT1 + ∇yT2) · (∇xφ0 + ∇yφ1)dx

+ ǫ

∫

Ωǫ

K(∇xT0 + ∇yT1) · (∇xφ1 + ∇yφ2)dx

+ ǫ2
∫

Γǫ

h [(T0 − Tgas)φ1 + T1φ0] dx

−
∫

Ωǫ

f(φ0 + ǫφ1)dx + O(ǫ2)

(34)
where all fun
tions are evaluated at (x, x/ǫ). Using Lemma 3.1 below to 
onvertthe integrals on varying domains, we dedu
e
|Y |(aC

ǫ − Lǫ) =

∫

Ω

∫

Y S

K(x, y)(∇xT0(x) + ∇yT1(x, y) · (∇xφ0(x) + ∇yφ1(x, y))dydx

+

∫

Ω

∫

Γ

h(x, y)(T0(x) − Tgas(x))φ0(x)dydx −
∫

Ω

∫

Y S

f(x, y)φ0(x)dydx

+ǫ

{∫

Ω

∫

Y S

K(x, y)
[
(∇xT1(x, y) + ∇yT2(x, y)) · (∇xφ0(x) + ∇yφ1(x, y))

+(∇xT0(x) + ∇yT1(x, y)) · (∇xφ1(x, y) + ∇yφ2(x, y))
]
dydx

+

∫

Ω

∫

Γ

h(x, y)
[
(T0(x) − Tgas(x))φ1(x, y) + T1(x, y)φ0(x)

]
dydx

−
∫

Ω

∫

Y S

f(x, y)φ1(x, y)dydx

}
+ O(ǫ2).

(35)
Step 2 : Expansion of aR

ǫ = aR
0 + ǫaR

1 + O(ǫ2)This is the deli
ate term be
ause the radiative operator Gǫ is integral. Fol-lowing [3, 4℄, for both Tǫ and φǫ, we perform a Taylor expansion with respe
tto the ma
ros
opi
 variable x around ea
h 
enter of mass x0,i of ea
h 
ell Yǫ,i(the 
hoi
e of x0,i or of any other point in the 
ell Yǫ,i is irrelevant as we shallsee in the end). This has the e�e
t that the integral operator Gǫ will apply onlyto the mi
ros
opi
 variable. Then, a

ording to Lemma 2.2 we 
an res
ale itin the unit 
ell as G (in view of Remark 2.1 it is not possible to perform this14



res
aling if Gǫ applies to fun
tions depending on both x and x/ǫ). To simplifythe notations, we introdu
e
yǫ,i =

x − x0,i

ǫ
.Then we get

Tǫ(x) = T0(x0,i) + ǫ
(
∇xT0(x0,i) · yǫ,i + T1(x0,i,

x

ǫ
)
)

+ ǫ2
(
T2(x0,i,

x

ǫ
) + ∇xT1(x0,i,

x

ǫ
) · yǫ,i +

1

2
∇x∇xT0(x0,i)yǫ,i · yǫ,i

)

+ ǫ3T̂3,ǫ(x) + O(ǫ4)

(36)and
φǫ(x) = φ0(x0,i) + ǫ

(
∇xφ0(x0,i) · yǫ,i + φ1(x0,i,

x

ǫ
)
)

+ ǫ2
(
φ2(x0,i,

x

ǫ
) + ∇xφ1(x0,i,

x

ǫ
) · yǫ,i +

1

2
∇x∇xφ0(x0,i)yǫ,i · yǫ,i

)

+ ǫ3φ̂3,ǫ(x) + O(ǫ4)

(37)where the pre
ise form of the terms T̂3,ǫ and φ̂3,ǫ is not important sin
e the
O(ǫ3)-order terms will 
an
el by simpli�
ation as we shall soon see.Re
all from Lemma 2.1 that Gǫ is self-adjoint and ker(Gǫ) = R. Thus,
Gǫ(T0(x0,i)) = Gǫ(φ0(x0,i)) = 0 and it yields the following simpli�ed expression
σ

ǫ

∫

Γǫ,i

Gǫ(Tǫ)φǫdx =

σǫ

∫

Γǫ,i

Gǫ

(
∇xT0(x0,i) · yǫ,i + T1(x0,i,

x

ǫ
)
)(

∇xφ0(x0,i) · yǫ,i + φ1(x0,i,
x

ǫ
)
)
dx

+σǫ2
∫

Γǫ,i

Gǫ

(
∇xT0(x0,i) · yǫ,i + T1(x0,i,

x

ǫ
)
)(

φ2(x0,i,
x

ǫ
)

+∇xφ1(x0,i,
x

ǫ
) · yǫ,i +

1

2
∇x∇xφ0(x0,i)yǫ,i · yǫ,i

)
dx

+σǫ2
∫

Γǫ,i

Gǫ

(
∇xφ0(x0,i) · yǫ,i + φ1(x0,i,

x

ǫ
)
)(

T2(x0,i,
x

ǫ
)

+∇xT1(x0,i,
x

ǫ
) · yǫ,i +

1

2
∇x∇xT0(x0,i)yǫ,i · yǫ,i

)
dx

+O(ǫ4),

(38)
where we used |Γǫ,i| = ǫ|Γ| in the remainder term. We 
an now make the 
hangeof variables y − y0 = (x − x0,i)/ǫ in (38), with y0 the 
enter of mass of Y , and15



apply Lemma 2.2 to get
σ

ǫ

∫

Γǫ,i

Gǫ(Tǫ)φǫdx = σǫ2
∫

Γ

G
(
∇xT0(x0,i) · (y − y0) + T1(x0,i, y)

)(
φ1(x0,i, y)

+∇xφ0(x0,i) · (y − y0)
)
dy

+σǫ3
∫

Γ

G
(
∇xT0(x0,i) · (y − y0) + T1(x0,i, y)

)(
φ2(x0,i, y)

+∇xφ1(x0,i, y) · (y − y0) +
1

2
∇x∇xφ0(x0,i)(y − y0) · (y − y0)

)
dy

+σǫ3
∫

Γ

G
(
∇xφ0(x0,i) · (y − y0) + φ1(x0,i, y)

)(
T2(x0,i, y)

+∇xT1(x0,i, y) · (y − y0) +
1

2
∇x∇xT0(x0,i)(y − y0) · (y − y0)

)
dy

+O(ǫ4).

(39)
Summing with respe
t to i and applying Lemma 3.1 shows that (39) is a Rie-mann sum approximating an integral over Ω, namely

aR
ǫ =

σ

ǫ

N(ǫ)∑

i=1

∫

Γǫ,i

Gǫ(Tǫ)φǫ dx = aR
0 + ǫaR

1 + O(ǫ2),with
aR
0 =

σ

|Y |

∫

Ω

∫

Γ

G
(
∇xT0(x) · (y − y0) + T1(x, y)

)(
φ1(x0,i, y)

+∇xφ0(x0,i) · (y − y0)
)
dx dy

(40)and
aR
1 =

σ

|Y |

∫

Ω

∫

Γ

G
(
∇xT0(x) · (y − y0) + T1(x, y)

)(
φ2(x, y)

+∇xφ1(x, y) · (y − y0) +
1

2
∇x∇xφ0(x)(y − y0) · (y − y0)

)
dx dy

+
σ

|Y |

∫

Ω

∫

Γ

G
(
∇xφ0(x) · (y − y0) + φ1(x, y)

)(
T2(x, y)

+∇xT1(x, y) · (y − y0) +
1

2
∇x∇xT0(x)(y − y0) · (y − y0)

)
dx dy.

(41)
Step 3 : Identi�
ation of the limit variational formulationsThe zero-th order ǫ0-term of (33), namely a0(T0, T1, φ0, φ1) = L0(φ0, φ1) is

16



equivalent to
∫

Ω

∫

Y S

K(x, y)(∇xT0(x) + ∇yT1(x, y) · (∇xφ0(x) + ∇yφ1(x, y))dx dy

+

∫

Ω

∫

Γ

h(x, y)(T0(x) − Tgas(x))φ0(x)dx dy

+σ

∫

Ω

∫

Γ

G
(
∇xT0(x) · (y − y0) + T1(x, y)

)(
φ1(x, y)

+∇xφ0(x) · (y − y0)
)
dx dy

=

∫

Ω

∫

Y S

f(x, y)φ0(x)dx dy,

(42)
whi
h is just the variational formulation of the so-
alled two-s
ale limit problemwhi
h is a 
ombination of the homogenized and 
ell problems. Remark that,sin
e ker(G) = R, the terms 
ontaining y0 
an
el in (42) whi
h thus does notdepend on the 
hoi
e of referen
e point y0. We re
over the 
ell problem (18) andformula (19) for T1 by taking φ0 = 0 in (42). Then, to re
over the homogenizedproblem (15) we take φ1 = 0 in (42). It yields the variational formulation of(15), as well as the formula for K∗.The �rst order ǫ-term of (33), namely a1(T0, T1, T2, φ0, φ1, φ2) = L1(φ0, φ1, φ2)is equivalent to

∫

Ω

∫

Y S

K
[
(∇xT1 + ∇yT2) · (∇xφ0 + ∇yφ1)

+(∇xT0 + ∇yT1) · (∇xφ1 + ∇yφ2)
]
dy dx

+

∫

Ω

∫

Γ

h
[
(T0 − Tgas)φ1 + T1φ0

]
dy dx + aR

1 =

∫

Ω

∫

Y S

f φ1 dy dx.

(43)We re
over the se
ond order 
ell problem (20) for T2 by 
hoosing φ0 = 0 and
φ2 = 0 in (43)
∫

Ω

∫

Y S

K
[
(∇xT1 + ∇yT2) · ∇yφ1 + (∇xT0 + ∇yT1) · ∇xφ1

]
dx dy

+

∫

Ω

∫

Γ

h(T0 − Tgas)φ1dx dy

+σ

∫

Ω

∫

Γ

G
(
∇xT0 · (y − y0) + T1

)
∇xφ1 · (y − y0)dx dy

+σ

∫

Ω

∫

Γ

φ1 G
(
T2 + ∇xT1 · (y − y0) +

1

2
∇x∇xT0(y − y0) · (y − y0)

)
dx dy

=

∫

Ω

∫

Y S

f(x, y)φ1(x, y)dx dy.

(44)
17



Sin
e φ1 belongs to H1
0 (Ω), we 
an perform an integration by part with respe
tto x in the third line of (44) and, using again ker(G) = R, we get

∫

Ω

∫

Γ

G
(
∇xT0 · (y − y0) + T1

)
∇xφ1 · (y − y0)dx dy =

−
∫

Ω

∫

Γ

G
(
∇x∇xT0 · y + ∇xT1

)
· (y − y0)φ1dx dy.Thus, all terms 
ontaining y0 
an
el in (44) and we exa
tly obtain the variationalformulation of (20). This �nishes the proof of Proposition 3.1. �Remark 3.6. In the proof of Proposition 3.1 we obtain the variational formu-lation (44) for T2 by making a spe
ial 
hoi
e, φ0 = 0 and φ2 = 0, in (43).One may wonder what 
ould be dedu
ed from (43) by another 
hoi
e. It turnsout that 
hoosing φ2 6= 0 yields again the �rst-order 
ell problem for T1. Onthe 
ontrary, 
hoosing φ0 6= 0 leads to a new ma
ros
opi
 equation for the nonos
illating �rst-order 
orre
tor T̃1(x) (see Remark 4.1 below).On the other hand, the proof of Proposition 3.1 
annot possibly dete
t anyboundary layers involved in the asymptoti
 behavior of Tǫ. The reason is thatthe test fun
tion is assumed to have 
ompa
t support in Ω (a 
ru
ial assumptionwhi
h is used in Lemma 3.1 below). In other words, the results of Proposition3.1 holds true in the interior of the domain, not on its boundary.We re
all a 
lassi
al lemma used in the proof of Proposition 3.1.Lemma 3.1. Let g(x, y) be a Y -periodi
 fun
tion in L1

#(Y ; C2(Ω)), with 
om-pa
t support in x ∈ Ω. It satis�es
i.

∫

Ωǫ

g(x,
x

ǫ
)dx =

1

|Y |

∫

Ω

∫

Y S

g(x, y)dydx + O(ǫ2),

ii. ǫ

∫

Γǫ

g(x,
x

ǫ
) dx =

1

|Y |

∫

Ω

∫

Γ

g(x, y) dx dy + O(ǫ2),

iii. ǫ2
N(ǫ)∑

i=1

∫

Γ

g(x0,i, y) dy =
1

|Y |

∫

Ω

∫

Γ

g(x, y) dx dy + O(ǫ2).4 Mathemati
al 
onvergen
eThe mathemati
ally rigorous justi�
ation of that part of Proposition 3.1 
on-
erning the two �rst terms T0 and ǫT1 in the expansion (14) has been donein [3℄ and [4℄ (with a slightly modi�ed model) using the two s
ale 
onvergen
emethod [1℄, [34℄. We shall not reprodu
e this argument and we 
ontent ourselvesin re
alling their main theorem. 18



Theorem 4.1 ([3℄, [4℄). Let Tǫ ∈ H1(Ωǫ)∩H1
0 (Ω) be the sequen
e of solutionsof (8). There exists a positive 
onstant C, whi
h does not depend on ǫ, su
hthat

‖Tǫ‖H1(Ωǫ) ≤ C. (45)Furthermore, Tǫ two-s
ale 
onverges to T0(x) and ∇Tǫ two-s
ale 
onverges to
∇xT0(x) + ∇yT1(x, y), where T0 ∈ H1

0 (Ω) is the solution of the homogenizedproblem (15) and T1(x, y) ∈ L2(Ω; H1
#(Y S)) is the �rst order 
orre
tor de�nedby (19).The main novelty of the present work is the se
ond-order 
orre
tor T2 whi
himproves the approximation by homogenization of problem (8) in the presen
eof an os
illating heat sour
e. Unfortunately, the two-s
ale 
onvergen
e method
annot justify it. The usual approa
h to justify T2 is to write the equationsatis�ed by the remainder term

rǫ = Tǫ −
(
T0(x) + ǫT1(x,

x

ǫ
) + ǫ2T2(x,

x

ǫ
) + ǫ3T3(x,

x

ǫ
)
) (46)(note the ne
essary presen
e of the next order term T3) and to get uniform apriori estimate showing that rǫ is small in some norm [6℄, [7℄. Solving for T3requires a 
ompatibility 
ondition (see the Fredholm alternative in Remark 3.1)whi
h delivers a ma
ros
opi
 equation for the (so far unknown) non os
illating�rst-order 
orre
tor T̃1(x) appearing in (19) (for more details, see Remark 4.1).However, there is one (serious) additional hurdle in the justi�
ation of T2 whi
his that (14) is not a 
orre
t ansatz for Tǫ (or equivalently (46) is not a

urate)sin
e it is missing boundary layers. The reason is that ea
h 
orre
tor, T1, T2,

T3, does not verify the Diri
hlet boundary 
ondition on ∂Ω. Be
ause of this,it is impossible to prove that rǫ, de�ned by (46), is small. To 
ir
umvent thisdi�
ulty, boundary layers have to be taken into a

ount. It amounts to repla
ethe former ansatz (14) by the new one
Tǫ(x) = T0(x) + ǫ

[
T1(x,

x

ǫ
) + T bl,ǫ

1 (x)
]

+ ǫ2
[
T2(x,

x

ǫ
) + T bl,ǫ

2 (x)
]

+ ..., (47)where ea
h fun
tion T bl,ǫ
i (x), 
alled a boundary layer, satis�es






−div(Kǫ∇T bl,ǫ
i ) = 0 in Ω,

−Kǫ∇T bl,ǫ
i · n = ǫhǫT

bl,ǫ
i +

σ

ǫ
Gǫ(T

bl,ǫ
i ) on Γǫ,

T bl,ǫ
i (x) = −Ti(x,

x

ǫ
) on ∂Ω.

(48)The advantage of the new ansatz (47) is that ea
h term Ti + T bl,ǫ
i satis�es ahomogeneous Diri
hlet boundary 
ondition. On the other hand, it is 
lear thatin (47) the �rst boundary layer T bl,ǫ

1 is more important than the se
ond order
orre
tor T2. 19



The asymptoti
 analysis of (48) is deli
ate sin
e T bl,ǫ
i (x) is not uniformlybounded in the usual energy spa
es (the Diri
hlet boundary data is not boundedin H1/2(∂Ω)). It has merely been 
arried out for re
tangular domains havingboundaries parallel to the unit 
ell axes. In su
h a 
ase, it is proved that T bl,ǫ

i (x)is of order 1 in the vi
inity of the boundary ∂Ω and de
ays exponentially fast to 0inside Ω (upon a suitable 
hoi
e of the additive fun
tion T̃i(x) in the de�nition of
Ti(x, y)) ; hen
e its name of boundary layers (see [2℄, [6℄, [7℄, [11℄, [18℄, [19℄, [20℄,[28℄, [30℄, [33℄, [35℄ for more details in the 
ase of a pure 
ondu
tion problem).In general, boundary layers should satisfy the following a priori estimates
‖T bl

i ‖H1(Ω) = O(
1√
ǫ
), ‖T bl

i ‖L2(Ω) = O(1), ‖T bl
i ‖H1(ω) = O(1) for all ω ⊂⊂ Ω.Remark 4.1. The non os
illating �rst-order 
orre
tor T̃1, introdu
ed in (19), isdetermined by the 
ompatibility 
ondition of the equation for T3(x, y) in the unit
ell: this is a standard 
omputation (see [2℄, [6℄ [7℄, [14℄ for simpler models). It
an also be obtained by taking a test fun
tion φ0 6= 0 in (43), at the end of theproof of Proposition 3.1 (see Remark 3.6). More pre
isely, we obtain

−div
(
K∗(x)∇T̃1(x)

)
=

2∑

i,j,k=1

cijk
∂3T0(x)

∂xi∂xj∂xk

+

2∑

i=1

(
mi

∂T0(x)

∂xi
+ di

∂F (x)

∂xi
+ gi

∂H(x)(T0(x) − Tgas(x))

∂xi

) (49)with
cijk =

∫

Y S

[
2∑

l=1

Kkl(y)
∂θij

∂yl
(y) − Kij(y)ωk(y)

]
dy −

∫

Γ

G(yk)
(
θi,j + ωiyj

)
dy,

mi =

∫

Γ

h(y)ωi(y)dy,

di =

∫

Y S

2∑

j=1

Kij(y)
∂T F

2

∂yj
(y)dy −

∫

Γ

G(yi)T
F
2 dy,

gi =

∫

Y S

2∑

j=1

Kij(y)
∂T H

2

∂yj
(y)dy −

∫

Γ

G(yi)T
H
2 dy.The fun
tion T̃1 is not yet uniquely de�ned sin
e we do not have any boundary
ondition for equation (49). It is 
ustomary to impose the same boundary 
on-ditions for T̃1 as for the homogenized solution T0. However, we 
learly see fromthe de�nition (48) of the boundary layer problem that 
hanging the boundary
ondition for T̃1 is equivalent to 
hanging the boundary 
ondition for T bl,ǫ

i .For the numeri
al 
omputations 
on
erning our industrial appli
ation, weshall simply ignore T̃1 and T bl,ǫ
i , namely take them equal to 0. On the other20



hand we 
hoose T1(x, y) being of zero average with respe
t to y. Note that,
T̃1 ≡ 0 is a 
onsequen
e of 
ubi
 symmetry assumptions for the 
oe�
ientsin the periodi
ity 
ell Y (whi
h imply that all parameters ci,jk, mi, gi and divanish). We do not have 
ubi
 symmetry of our referen
e 
ell (see Figure 2)but our numeri
al 
omputations indi
ated that all values of these parameter arealmost zero.Based on the study of the �rst order boundary layer it was proved [7℄ fora pure 
ondu
tion problem that one 
an get expli
it 
onvergen
e errors for the�rst order approximation of Tǫ. It is thus reasonable to 
onje
ture that thesame holds true in our 
ontext.Conje
ture 4.1. The �rst order approximation of the solution Tǫ of (8) satis-�es

‖Tǫ − (T0 + ǫT1)‖L2(Ωǫ) ≤ Cǫ, ‖Tǫ − (T0 + ǫT1)‖H1(Ωǫ) ≤ C
√

ǫ,where the 
onstant C does not depend on ǫ.Note that, be
ause of boundary layers, the 
onvergen
e speed in Conje
ture4.1 is not ǫ2 and ǫ, respe
tively, as 
ould be expe
ted from the (wrong) ansatz(14). On the same token, the 
onvergen
e speed in Conje
ture 4.1 is independentof the 
hoi
e of the additive fun
tion T̃1(x) in (19).Remark 4.2. Conje
ture 4.1 is most probably valid for any geometry of thedomain Ω whi
h may yield non trivial boundary layers. For the spe
i�
 re
tan-gular geometry under study, we are going to obtain in Se
tion 6 a mu
h betternumeri
al 
onvergen
e, typi
ally
‖Tǫ − (T0 + ǫT1)‖L2(Ωǫ) = O(ǫ2),whi
h means that the boundary layer T bl,ǫ

1 is negligible. Be
ause of this a
tualfa
t, it makes sense to look at the next term in the ansatz and to 
onsider these
ond order 
orre
tor.As we shall see in Se
tion 6, introdu
ing T2 improves the qualitative behaviorof the approximation but does not 
hange the speed of 
onvergen
e whi
h is still
‖Tǫ − (T0 + ǫT1 + ǫ2)T2‖L2(Ωǫ) = O(ǫ2).In any 
ase, it is 
lear that any mathemati
al justi�
ation of T2, based onan error estimate similar to that in Conje
ture 4.1, must rely on a preliminaryasymptoti
 analysis of the non-os
illating �rst order 
orre
tor T̃1 and of the �rstorder boundary layer T bl,ǫ

1 (x), a formidable task in whi
h we do not want toendeavour. Therefore, we will merely numeri
ally 
he
k that adding the se
ondorder 
orre
tor de
reases signi�
antly the error but not that the 
onvergen
espeed is improved. 21



5 Non-linear 
aseAs already dis
ussed in Remark 2.2, the true physi
al problem involves a non-linear radiation operator, de�ned by formula (13) instead of (4). The study ofthe linear 
ase was a simplifying assumption. However, the formal method oftwo-s
ale asymptoti
 expansion is perfe
tly valid in the non-linear 
ase too (see[3℄). In this se
tion we give, without proof, the homogenization result in the non-linear 
ase when Stefan-Boltzmann law applies, namely the emitted radiationsare proportional to the 4th power of the temperature. More pre
isely, instead ofusing the linear formula (4) for Gǫ we use rather (13) with the emissivity e = 1,i.e.,
Gǫ(Tǫ)(s) = T 4

ǫ (s) −
∫

Γǫ,i

T 4
ǫ (x)F (s, x)dx ∀ s ∈ Γǫ,i.The non-linear equivalent of Proposition 3.1 is the following.Proposition 5.1. Under assumption (14), the zero-order term T0 of the ex-pansion for the solution Tǫ of (8) is the solution of the nonlinear homogenizedproblem

{
−div

(
K∗(T 3

0 )∇T0(x)
)

+ h∗(x)(T0(x) − Tgas(x)) = f∗(x) in Ω,

T0(x) = 0 on ∂Ω,
(50)with the homogenized sour
e f∗ and ex
hange 
oe�
ient h∗ given by (16). Thehomogenized 
ondu
tivity tensor K∗ depends on (T0)

3 and is given by its entries,for j, k = 1, 2,
K∗

j,k =
1

|Y |
[ ∫

Y S

K(ej + ∇yωj) · (ek + ∇yωk)dy + 4σT 3
0

∫

Γ

G(ωk + yk)(ωj + yj)dy
]
,where G is the linear radiative operator de�ned by (12) and (ωk(x, y))1≤k≤2 arethe solutions of the (linear) 
ell problems






−divy

(
K(x, y)(ej + ∇yωj)

)
= 0 in Y S ,

K(x, y)(ej + ∇yωj) · n = 4σT0(x)3G(ωj + yj) on Γ,

y 7→ ωj(x, y) is Y -periodi
. (51)Furthermore, the �rst order 
orre
tor T1(x, y) is still given by (19) and the
22



se
ond order 
orre
tor T2(x, y) is the solution of





−divy

(
K(x, y) [∇yT2(x, y) + ∇xT1(x, y)]

)
= f(x, y)

+divx

(
K(x, y) [∇xT0(x) + ∇yT1(x, y)]

) in Y S ,

−K(x, y) [∇yT2(x, y) + ∇xT1(x, y)] · n = h(x, y)
(
T0(x) − Tgas(x)

)

+4σT0(x)3G
(
T2 + ∇xT1 · y + 1

2∇x∇xT0 y · y
)

−4σT0(x)3G
(
∇xT1 + ∇x∇xT0 y

)
· y on Γ,

y 7→ T2(x, y) is Y -periodi
.Corollary 3.1 be
omes, in the non-linear 
ase :Corollary 5.1. If we assume that the fun
tions f and h satisfy (23) and thatthe 
ondu
tivity tensor depends only on the mi
ros
opi
 variable, i.e., K(x, y) ≡
K(y), then, de�ning F ∗ and H∗ by (24), T2(x, y) 
an be written

T2(x, y) = T F
2 (x, y)F (x) + T H

2 (x, y)H(x)(T0(x) − Tgas(x))

+

2∑

i,j=1

∂2T0

∂xi∂xj
(x) θi,j(x, y) + T̃2(x),where T F

2 , T H
2 and θi,j depend on x only through the value of T0(x)3 and aresolutions of the 
ell problems






−divy(K(y)∇yT F
2 (y)) = f#(y) in Y S ,

−K(y)∇yT
F
2 (y) · n =

|Y |
|Γ| F

∗ + 4σT0(x)3G(T F
2 (y)) on Γ,

T F
2 (y) is Y -periodi
, (52)






−divy(K(y)∇yT H
2 (y)) = 0 in Y S ,

−K(y)∇yT
H
2 (y) · n = (h(y) − |Y |

|Γ| H
∗) + 4σT0(x)3G(T H

2 (y)) on Γ,

T H
2 (y) is Y -periodi
, (53)and






−divy (K(y) [∇yθi,j(y) + ejωi(y)]) = Ki,j(y) + K(y)∇yωi(y) · ej in Y S ,

−K(y) [∇yθi,j(y) + ejωi(y)] · n = |Y |
|Γ| K

∗
i,j

+4σT0(x)3G
(
θi,j(y) + ωi(y)yj + 1

2yiyj

)
− 4σT0(x)3G

(
ωi(y) + yi

)
yj on Γ,

θi,j(y) is Y -periodi
. (54)
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Con
erning the 
ell problems (of �rst or se
ond order) the only di�eren
ewith the linear 
ase is that the 
onstant σ, appearing in front of the linearradiative operator G, is repla
ed by 4σT0(x)3 whi
h arises from the linearizationof the nonlinear operator. Con
erning the homogenized problem (50), the onlynonlinearity appears in the homogenized di�usion tensor K∗ whi
h depends on
T 3

0 .6 Numeri
al resultsIn this se
tion we des
ribe some numeri
al experiments to study the asymptoti
behaviour of the heat transfer model (8) in the non-linear 
ase, i.e., when theradiation operator is de�ned as in Remark 2.2. Our goal is to show the e�
ien
yof the proposed homogenization pro
edure, to validate it by 
omparing there
onstru
ted solution of the homogenized model with the numeri
al solutionof the exa
t model (8) for smaller and smaller values of ǫ and to exhibit anumeri
al rate of 
onvergen
e in terms of ǫ. Our 
omputations do not take intoa

ount boundary layers nor the non os
illating part of the �rst-order 
orre
tor.All 
omputations have been done with the �nite element 
ode CAST3M [12℄developed at the Fren
h Atomi
 and Alternative Energy Commission (CEA).6.1 Changing variables for the numeri
al simulationUsually, in homogenization theory, a problem is homogenized in a �xed domain
Ω with 
ells of size ǫ whi
h tends to 0. However, in many pra
ti
al appli
ations(in
luding ours for nu
lear rea
tor physi
s), the size of the period is �xed (forphysi
al reasons or manufa
turing 
onstraints) and it is rather the total numberof 
ells, or equivalently the size of the domain, whi
h is in
reasing. Therefore,following [3℄ and [4℄, we pro
eed di�erently: we �x the size of the periodi
ity 
ell(independent of ǫ) and we in
rease the total number of 
ells, i.e., the size of theglobal domain Ω̂ = ǫ−1Ω =

∏2
j=1(0, Lj/ǫ) whi
h is of order ǫ−1. In other words,instead of using the ma
ros
opi
 spa
e variable x ∈ Ω, we use the mi
ros
opi
spa
e variable y = x/ǫ ∈ Ω̂. For any fun
tion u(x) de�ned on Ω, we introdu
ethe res
aled fun
tion û(y), de�ned on Ω̂ by

û(y) = u(ǫy) = u(x), (55)whi
h satis�es ∇yû(y) = ǫ(∇xu)(ǫy) = ǫ∇xu(x). All quantities de�ned in Ω̂ aredenoted with a hat ̂ and, for simpli
ity, we drop the dependen
e on ǫ. In thisnew frame of referen
e, the problem (8) be
omes





−div(K̂∇T̂ǫ) = ǫ2f̂ǫ in Ω̂S ,
−K̂∇T̂ǫ · nS = ǫ2ĥ

(
T̂ǫ − T̂gas

)
+ σGǫ(T̂ǫ) on Γ̂,

T̂ǫ = 0 on ∂Ω̂, (56)
24



where Ω̂S , Γ̂ and ∂Ω̂ are de�ned by the same 
hange of variables relating Ω and
Ω̂. The homogenized problem (50) be
omes

{
−div(K̂∗(T̂0

3
)∇T̂0) + ǫ2ĥ∗

(
T̂0 − T̂gas

)
= ǫ2f̂∗ in Ω̂,

T̂0 = 0 on ∂Ω̂. (57)The �rst order 
orre
tor T̂1(y) is
T̂1(y) = ǫT1(ǫy, y) =

2∑

i=1

∂T̂0

∂yi
(y)ωi(y) + ̂̃T1(y), (58)and the se
ond order 
orre
tor T̂2(y) is

T̂2(y) = ǫ2T2(ǫy, y)

= ǫ2T F
2 (y)F̂ (y) + ǫ2T H

2 (y)Ĥ(y)
(
T̂0(y) − T̂gas(y)

)

+
∑

i,j

∂2T̂0

∂yi∂yj
(y)θi,j(y) + ̂̃T2(y).

(59)Finally, the homogenization approximation Tǫ(x) ≃ T0(x) + ǫT1(x, x/ǫ) +
ǫ2T2(x, x/ǫ) be
omes

T̂ǫ(y) ≃ T̂0(y) + T̂1(y) + T̂2(y). (60)6.2 Algorithm and 
omputational parametersOur proposed algorithm for the homogenization pro
ess is the following.1. Solve the 2 �rst order 
ell problems (51) for a range of values of T̂0.Uniqueness of the solution ωi is insured by requiring that ∫

Y

ωi(x, y) dy =

0.2. Compute the homogenized 
ondu
tivity (as a fun
tion of temperature)and the homogenized thermal sour
e and heat ex
hange 
oe�
ient.3. Solve the homogenized problem (50) by a �xed point algorithm.4. Compute the �rst order 
orre
tor T̂1(y) =

2∑

i=1

∂T̂0

∂yi
(y)ωi(T̂0

3
, y).5. Solve the 6 se
ond order 
ell problems (52), (53), (54) for the homogenizedtemperature T̂0. 25



Figure 3: Support of the thermal sour
e (bla
k) in the referen
e 
ell Y S (gray)perforated by holes (white).6. Compute the se
ond order 
orre
tor
T̂2(y) = ǫ2T F

2 (y)F̂ (y)+ǫ2T H
2 (y)Ĥ(y)(T̂0(y)−T̂gas(y))+

2∑

i,j=1

∂2T̂0

∂yi∂yj
(y)θi,j(y).Although we did not write it expli
itly, all 
orre
tors depend on T̂0

3.7. Re
onstru
t an approximate solution: T̂0(y) + T̂1(y) + T̂2(y).We now give our 
omputational parameters for a referen
e 
omputation 
or-responding to ǫ = ǫ0 = 1
4 . The geometry 
orresponds to a 
ross-se
tion ofa typi
al fuel assembly for a gas-
ooled nu
lear rea
tor (see [22℄ for furtherreferen
es). The domain is Ω̂ = ǫ−1Ω =

∏2
j=1(0, Lj/ǫ), with, for j = 1, 2,

Lj/ǫ = Njℓj where N1 = 3, N2 = 4 and ℓ1 = 0.04m, ℓ2 = 0.07m. Ea
h period-i
ity 
ell 
ontains 2 holes (see Figure 2), the radius of whi
h is equal to 0.0035m.Note that the unit 
ell is not a square but a re
tangle of aspe
t ratio 4/7. Theemissivity of the holes boundaries is equal to e = 1. We enfor
e periodi
 bound-ary 
onditions in the x1 dire
tion and Diri
hlet boundary 
onditions in the otherdire
tion whi
h are given by T̂ǫ(y) = 800K on y2 = 0m and T̂ǫ(y) = 1200K on
y2 = L2/ǫ = 0.28m. Although the referen
e 
ell is heterogeneous in the sensethat it is made of at least two materials (graphite and the nu
lear fuel), forsimpli
ity we assume that the 
ondu
tivity tensor K is 
onstant and isotropi
:its value is 30Wm−1K−1. Similarly, the thermal ex
hange 
oe�
ient h is also
onstant throughout the domain. The physi
al value of the thermal ex
hange
oe�
ient is ǫ20ĥ = 500 W.m−2.K−1, whi
h takes into a

ount the res
alingpro
ess adopted in Subse
tion 6.1. Hen
e ĥ = 8000 W.m−2.K−1.The os
illating thermal sour
e is given by f#(y) = 7MW/m3 in disks stri
tlyin
luded in Y S (with the same size as the holes) su
h that we have a sour
e be-tween ea
h two �uid holes (in a 
he
kerboard pattern, see Figure 3). The sour
e26



is set to zero elsewhere. There is no ma
ros
opi
 variation of the thermal sour
e.In other words, from de�nition (23) we assume F (x) = 1 in Ω. The physi
alvalue of the thermal sour
e is ǫ20f̂# = 7MW/m3. Hen
e f̂# = 112MW/m3.Remark that it is only for the referen
e 
omputation ǫ0 = 1/4 that f̂# and
ĥ are equal to their physi
al values. While the res
aled 
oe�
ients f̂# and ĥare varying with ǫ, the original 
oe�
ients f# and h are independent of ǫ. Thefa
t that the numeri
al values of ǫ2f̂# and ǫ2ĥ are not the physi
al ones for
ǫ 6= ǫ0 = 1/4 is not a problem, sin
e our 
onvergen
e study (as ǫ goes to 0) ispurely a numeri
al veri�
ation of our mathemati
al result.All 
omputations are performed with re
tangular Q1 �nite elements (4 nodesin 2D). A boundary integral method is used for the radiative term (whi
h in-volves a dense matrix 
oupling all nodes on the surfa
e en
losing the holes).The typi
al number of nodes for the 2D 
ell problem is 1 061 (from whi
h 72are on the radiative boundary γ); it is 656 for the homogenized problem (whi
hhas no radiative term); it is 12 249 for the original problem (8) with ǫ = ǫ0 = 1

4(from whi
h 864 are on the radiative boundary Γǫ).Remark 6.1. Sin
e the thermal ex
hange 
oe�
ient h is 
onstant the se
ond-order 
orre
tor T H
2 vanishes. The other se
ond-order 
orre
tor ∂2cT0

∂yi∂yj
(y)θi,j(y)is small sin
e the homogenized solution T̂0 is slowly varying and its se
ond-orderderivatives is of order ǫ2. The only term whi
h is not negligible is ǫ2T F
2 (y)F̂ (y)if the sour
e term is large (this is the only 
orre
tor term depending on thesour
e term as already said in Remark 3.4). The importan
e of ǫ2T F
2 (y)F̂ (y)
an be 
he
ked on Figures 15, 16 and 17 whi
h are plotted for three di�erentorders of magnitude of the sour
e term.6.3 Simulation resultsWe start this se
tion by 
omparing, in the referen
e 
on�guration ǫ = ǫ0 = 1/4,the dire
t solution of the problem (8) in the non-linear 
ase, with the solution ofthe homogenized problem (50) plus the 
orre
tors T̂1 and T̂2. The homogenizedproblem parameters are

f̂∗(x) = F̂ ∗ =
1

|Y |

∫

Y S

f#(y)dy = 17, 8174 MW/m3,

ĥ∗(x) = Ĥ∗ =
|Γ|
|Y | ĥ = 0, 319383 MW.m−2.K−1.To 
ompute the homogenized 
ondu
tivity, we 
ompute the solutions of the
ell problems (51) what we plot in Figure 4 for an homogenized temperature

T0 = 800K. Re
all that, in the non linear 
ase, the solutions of the 
ell problemsdepend on the ma
ros
opi
 temperature. These solutions of (51) are uniquelydetermined be
ause we 
hoose them being of zero average in the 
ell.The 
ell solutions allow us to evaluate the homogenized 
ondu
tivity whi
hturns out to numeri
ally be a diagonal tensor (at least for temperatures T0 ≤27



Figure 4: Solutions of the �rst order 
ell problems (51) for T̂0 = 800K: ω1 (left),
ω2 (right).

Figure 5: Homogenized 
ondu
tivity as a fun
tion of the ma
ros
opi
 tempera-ture T0: K̂∗
11(left), K̂∗

22(right).
1E + 05K with a pre
ision on 14 digits). However, for larger (extreme) tem-peratures, K̂∗ is not any longer a diagonal tensor [3℄ sin
e the unit 
ell is nota square but a re
tangle of aspe
t ratio 4/7. The diagonal entries of K̂∗ are28



plotted on Figure 5 and two typi
al values are
K̂∗(T̂0 = 50K) =

(
25.907 0.
0. 25.914

)
, K̂∗(T̂0 = 20000K) =

(
49.801 0.
0. 49.781

)
.

Figure 6: Solution T F
2 of the se
ond order 
ell problem (52).By a �xed point algorithm (the homogenized 
ondu
tivity K̂∗ is evaluatedwith the previous iterate for the temperature), we solve the homogenized prob-lem (it requires of the order of 5 iterates). By a Newton method we solve alsothe dire
t model (56) (it requires of the order of 15 iterates). The solutions ofthe se
ond order 
ell problems (52) and (54) are displayed on Figures 6 and7. We 
hoose the unknown additive 
onstant for these solutions in su
h a waythat they are almost equal to zero on the holes' boundaries. Sin
e the ex
hange
oe�
ient h is 
onstant, the other se
ond order 
ell problem (53) does not needto be solved: its solution is always zero.In Figure 8 we plot the dire
t, homogenized and re
onstru
ted solutions
omputed for a value of ǫ = ǫ0 = 1/4. The re
onstru
ted solution T̂0 + T̂1is a better approximation of the true solution T̂ǫ than the mere homogenizedsolution T̂0. Clearly the re
onstru
ted solution T̂0 + T̂1 + T̂2 is a mu
h betterapproximation than T̂0 + T̂1, espe
ially in the region between holes where largetemperature gradients o

ur from the sour
e supports to the holes. Even more
onvin
ingly, we display the modules of the temperature gradients in Figure 9and the modules of the gradient error approximations in Figure 10.29



Figure 7: Solutions θi,j , i, j = 1, 2, of the se
ond order 
ell problem (54).Remark 6.2. To justify (at least numeri
ally) our 
hoi
e of negle
ting T̃1 in there
onstru
tion pro
ess (60), following the notations of Remark 4.1, we 
omputethe parameters cijk, di, mi and gi whi
h appear in the equation for T̃1. Their30



Figure 8: Dire
t solution T̂ǫ (top left), homogenized solution T̂0 (top right ),
T̂0 + T̂1 (bottom left) and T̂0 + T̂1 + T̂2 (bottom right).values are equal to

31



Figure 9: Modules of the solution gradients in Ω̂: |∇T̂ǫ| (top left), |∇T̂0| (topright), |∇(T̂0 + T̂1)| (bottom left) and |∇(T̂0 + T̂1 + T̂2)| (bottom right).
c111 = -2.42128E-10 m1 = 0.
c112 = 3.37167E-10 m2 = 0.
c121 = -3.11185E-21
c122 = -1.49058E-21 d1 = 0.
c211 = 2.32272E-21 d2 = 0.
c212 = -4.46678E-23
c221 = -2.42128E-10 g1 = 0.
c222 = 3.37167E-10 g2 = 0.32



Figure 10: Modules of the solution gradients error in Ω̂: |∇T̂ǫ − ∇(T̂0 + T̂1)|(left) and |∇T̂ǫ −∇(T̂0 + T̂1 + T̂2)| (right).Together with a homogeneous Diri
hlet boundary 
ondition, it implies that T̃1,solution of (49), is approximately zero.

Figure 11: From left to right, the line segments D1, D′
1, D′′

1 and P1 for ǫ = 1/4.In order to better show the in�uen
e of the se
ond order 
orre
tor T2 weplot the di�erent solutions, exa
t T̂ǫ, homogenized T̂0, �rst order approxi-33



mation (T̂0 + T̂1) and se
ond order approximation (T̂0 + T̂1 + T̂2) on vari-ous line segments for ǫ = 1/4. On Figure 11 we plot the pro�le segments:
D1 = (a1; a2) with a1 = (L1/2, 0) and a2 = (L1/2, L2/ǫ), D′

1 = (a′
1; a

′
2) with

a′
1 = a1 and a′

2 = (L1/2, 3L2/5ǫ), D′′
1 = (a′′

1 ; a′′
2) with a′′

1 = (L1/2, 7L/16ǫ) and
a′′
2 = (L1/2, 9L/16ǫ), P1 = (b1; b2) with b1 = (1.75263E − 02, 2.0625E − 02/ǫ)and b2 = (8.72628E − 02, 4.5375E − 02/ǫ). Along D1 (and its subsets D′

1 and
D′′

1 ) there is no sour
e term: thus the in�uen
e of T2 is almost negligible (seeFigure 12). Along P1 the sour
e term is os
illating from 0 to its nominal value:the in�uen
e of T2 is dramati
 (see Figure 15).

Figure 12: Di�erent solutions along the line segment D1.Sin
e there are not mu
h variations between the di�erent solutions in Figure12, we display two di�erent zooms in Figures 13 and 14. On the sub-segment
D′′

1 (in the middle of the domain Ω̂) the se
ond order approximation is betterthan the �rst order one, as we 
ould expe
t (see Figure 14). However, on thesub-segment D′
1 (
lose to the boundary of Ω̂) the se
ond order 
orre
tor T̂2adds an additional error 
lose the boundary y2 = 0 sin
e it does not satisfy ahomogeneous Diri
hlet boundary 
ondition (see Figure 13).To 
he
k that the importan
e of the se
ond order 
orre
tor is dire
tly linkedto the amplitude of the sour
e term (as is obvious in view of the 
ell problem(52) for T F

2 ), we re-do the same plot of Figure 15 with a di�erent magnitudeof the sour
e term. Not surprisingly, when f̂ǫ = 0 MW/m3 there are almostno di�eren
es between the di�erent approximations (see Figure 16), while for
f̂ǫ = 16000 MW/m3, the se
ond order approximation is the only one to follow
losely the true solution (see Figure 17). For more numeri
al results (di�erent34



Figure 13: Di�erent solutions along the line segment D′
1.

Figure 14: Di�erent solutions along the line segment D′′
1 .values of ǫ, di�erent values of ĥǫ, et
.), we refer the interested reader to [22℄.Eventually, to 
he
k the 
onvergen
e of the homogenization pro
ess and to35



Figure 15: Di�erent solutions along the line segment P1 for f̂ǫ = 112 MW/m3.

Figure 16: Di�erent solutions along P1 for f̂ǫ = 0 MW/m3.obtain a numeri
al speed of 
onvergen
e as the small parameter ǫ goes to 0, wedisplay in Figure 18 the relative errors (61) on the temperature, as fun
tions36



Figure 17: Di�erent solutions along P1 for f̂ǫ = 16000 MW/m3.of ǫ on a log-log s
ale. In pra
ti
e, the limit as ǫ goes to 0 is obtained byin
reasing the number of 
ells and we obtain the following sequen
e of values:
ǫ = 1/4, 1/8, 1/12, 1/16, 1/20, 1/24, 1/28, 1/32, 1/36.We 
ompare the obtained errors (61) with the slopes of ǫ, ǫ2 and ǫ3.






ERR(T )0 =

∥∥∥T̂ǫ(y) − (T̂0(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

,

ERR(T )1 =

∥∥∥T̂ǫ(y) − (T̂0(y) + T̂1(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

,

ERR(T )2 =

∥∥∥T̂ǫ(y) − (T̂0(y) + T̂1(y) + T̂2(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

,

(61)
On
e again we re
all that our re
onstru
tions (T̂0 + T̂1) and (T̂0 + T̂1 + T̂2) donot feature any boundary layers nor non-os
illating 
orre
tor terms.The error ERR(T )0 behaves like ǫ as we 
an expe
t. Although, we 
ould notprove rigorously anything about ERR(T )1 and ERR(T )2, we 
he
k on Figure18 that they both behave as ǫ2. This impli
itly implies that the �rst orderboundary layer is indeed negligible. Although ERR(T )2 has the same slope as
ERR(T )1 on Figure 18, it is mu
h smaller.37



Figure 18: Relative temperature errors as a fun
tion of ǫ.As a 
on
lusion of our numeri
al analysis, we 
laim that, even if the se
ondorder 
orre
tor T2 does not improve the 
onvergen
e order of the homogeniza-tion pro
ess, for a �xed value of ǫ it improves the qualitative behavior of there
onstru
ted solution and it de
reases the relative error all the more when thesour
e term is lo
ally varying with a large amplitude. In industrial pra
ti
e, ǫ isnever going to zero, so these two a
hievements are more than enough to justifythe use of the se
ond order 
orre
tor in the numeri
al homogenization of theheat transfer problem (8). Re
all that 
omputing a �rst-order, or even se
ond-order, re
onstru
ted homogenized solution is mu
h 
heaper than 
omputing adire
t solution of the original problem sin
e the latter one requires a very �nemesh of size smaller than ǫ.Referen
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