Kinetic formulation for chromatography and some other hyperbolic systems F. James Y.-J. Peng B. Perthame Departement de Mathematiques, Faculte des Sciences, Universite d'Orleans, BP 6759, 45067 Orleans Cedex 2, FRANCE Abstract We present several new examples of kinetic formulations for some hyperbolic systems, which is to write an equation for a whole family of entropies. It appears that, in fact, several families of entropies can be represented in such a way. For instance, in the NxN chromatography case, we obtain N+1 kinetic representations from which we recover the invariant regions and the stability for weakly convergent initial data by a compensated compactness argument, including the non-strictly hyperbolic case. Resume Nous presentons quelques nouveaux exemples de formulations cinetiques de systemes hyperboliques, ce qui consiste a ecrire une equation pour toute une famille d'entropies. Il apparait qu'en fait plusieurs familles differentes peuvent se representer ainsi. Par exemple, dans le cas du systeme NxN de la chromatographie, nous obtenons N+1 representations cinetiques. Nous retrouverons ainsi les zones invariantes et la stabilite, pour des donnees initiales convergeant faiblement, grace a un argument de compacite par compensation, incluant le cas non-strictement hyperbolique. Key-words : hyperbolic systems - kinetic equations - entropy - compensated compactness - chromatography. Mots cles : systemes hyperboliques - equations cinetiques - entropies - compacite par compensation - chromatographie. AMS Class numbers : 35L65, 35L67, 35Q20 The whole paper is available as a compressed Postscript file by internet procedure FTP anonymous on host barbes.polytechnique.fr ( 129.104.4.100) in the directory pub/RI/1993 under the name james_al_289.nov.93.ps.gz