Asymptotic Expansion of the Scattered Field by a Convex Grating at High Frequencies Toufic Abboud Centre de Mathematiques Appliquees, CNRS URA 756, Ecole Polytechnique, 91128 Palaiseau Cedex, France. Habib AMMARI Centre de Mathematiques Appliquees - CNRS URA 756, Ecole Polytechnique, 91128 Palaiseau Cedex, France. Gilles Lebeau Departement de Mathematiques, Bat 425, Universite de Paris-Sud, 91405 Orsay Cedex,France. We consider a layer of dielectric material with period $\delta$ covering a strictly convex perfectly conducting cylinder lit up by a TE or TM polarized incident {\it plane} wave with a wave number $k$ of order $\delta^{-1}$. In this Note, we derive geometric-optics solution out side transition regions, satisfying Helmholtz equation to arbitrarily order in $\delta$. We show that the first order approximation is solution of the infinite plane tangent grating diffraction problem. The whole paper is available as a compressed Postscript file by internet procedure FTP anonymous on host barbes.polytechnique.fr ( 129.104.4.100) in the directory pub/RI/1995 under the name abboud_ammari_lebeau_313.jan.ps.gz or by Xmosaic or any other www client via the CMAP www server "http://blanche.polytechnique.fr/"