FAST AND ACCURATE MULTICOMPONENT TRANSPORT PROPERTY EVALUATION



                        (1,2,3)                        (3)
           Alexandre ERN            Vincent GIOVANGIGLI



(1):  CERMICS-ENPC, La Courtine, 93167 Noisy-Le-Grand Cedex, France
(2):  Yale University, Department of Mechanical Engineering, USA
(3):  CMAP-CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France



Key Words: Kinetic theory, transport coefficients,
           iterative methods, computational cost, 
           approximate expressions, polyatomic gas mixtures.




We investigate iterative methods for solving linear systems
arising from the kinetic theory and providing transport coefficients
of dilute polyatomic gas mixtures.
These linear systems are obtained in their naturally constrained,
singular, and symmetric form, using the formalism
of Waldmann and Trubenbacher.
The transport coefficients associated with the systems
obtained by Monchick, Yun, and Mason are also recovered, if two misprints are
corrected in the work of these authors.
Using the recent theory of Ern and Giovangigli, all the transport
coefficients are expressed as convergent series.
By truncating these series, new, accurate, approximate expressions 
are obtained for all the transport coefficients.
Finally, the computational efficiency of the present transport algorithms
in multicomponent flow applications is illustrated with several
numerical experiments.

Rapport interne CMAP 320, Mai 1995
Journal of Computational Physics, 1995, sous presse.


E-mail:  ern@cmapx.polytechnique.fr
         giovangi@cmapx.polytechnique.fr