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Abstract

This paper describes a new way to compute the optical flow based on
dyadic filtering and subsampling pyramids. It is based on the projection
of the optical flow equation on vectors of a wavelet basis. This algorithm
is thus of complexity O(N) if one image of the sequence has N pixels,
and opens the way to efficient and unexpensive optical flow computation.
Features of this algorithm include multiscale treatment of time aliasing
and estimation of illumination changes.
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Résumé

Ce rapport technique décrit une nouvelle de calcul du flot optique
d’une séquence d’images basée sur des pyramides de filtrage et de codage
en sous-bande. Elle consiste & projeter l'équation du flot optique sur
des vecteurs d’une base d’ondelettes. La complexité de cet algorithme
est donc désormais en O(N), o N est le nombre de points de chaque
image de la séquence. Cette méthode ouvre la voie d’un calcul rapide et
peu couteux du flot optique. L’algorithme est capable par son approche
multi-échelles de gérer ’aliasage temporel, et peut également mesurer des

variations d’illumination.

Mots-clés: Flot optique.

1 Introduction

Optic flow detection is an already widely studied problem whose goal is to
explain changes in an image sequence as a result of a motion field. Applications
range from moving image compression to real scene analysis and robotics.



Given an image sequence I;(z,y), the optical flow (vs,v,) has to match the
well known optical flow equation

oI, oI oI,
putini = 1
6wvw+6yvy+6t 0 (1)

No pointwise resolution of the optical flow equation is possible, since on each
location and each time, this would consist in solving a single scalar equation for
two scalar unknowns. This is the aperture problem.

1.1 Previous work

Horn & Schunck [13] [14] wrote a pioneering paper on the subject, in which they
add a smoothness constraint. Region-matching methods [2] differential methods
[14] [15] and spatiotemporal filtering methods [1] [6] [9] [11] [12] appeared, on
which Barron & al. made an extensive review [3]. Later, Burns & al. developed
a discrete wavelet spatiotemporal filtering technique [4], and Weber & Malik a
filtered differential method [20].

The only method that relies on dyadic filtering and subsampling schemes is
Burns & al.’s. However, their method relies on 3D wavelet transforms and re-
quires large sequences of consecutive pictures. The approach described hereafter
is a projected differential method, that relies on the analysis of 2 consecutive
pictures only, and on 2D wavelet transforms. Consequences are: a much faster
algorithm, that can even be used as such for disparity estimation in stereo vision.

1.2 Suggested solution

To get rid of this aperture problem, we suppose that we dispose of a discrete
wavelet basis (5,4 )ses,j, kb ez Of Lo(R?), where
Yipw = 2% (2 — k, 2y — k)

Jj is a resolution index, (k,%') is a 2-dimensional translation index and S is a set
of orientation indexes.

Example 1 An example basis of Lo(R?) that is widely used in image processing
is, given a scaling function ¢ and a wavelet ¥ in Ly(R), the one based on the
three following wavelet orientations:

PH(z,y) = Y()(y) (2)
Pzy) = ox)P(y) 3)
P(z,y) = P()Y(y) (4)

Given such a basis, for each resolution j and location (k, k'), assuming that v,
and vy are constant over the support of any ¢5,,, s € S, we do an inner product



of (1) with these wavelets, obtaining after an integration by parts a set of #S

equations
oL OV 0 s
<I,#>’Uz+<1, a];k >'Uy=a<.[, jkk’> (5)

in two unknowns: v, and v,. We write them in a condensed way as the system

Yy

In the example of the basis above, we obtain an overdetermined system of 3
equations. This approach is very close to Weber & Malik’s [20]. However, we
use in this paper a discrete set of measure functions in order to take advantage of
the computational efficiency of dyadic filter banks, no time filtering is required,
and thus no assumption on the time dependence of the optic flow is necessary.

1.3 Underlying assumption

The above equations hold only if the optical flow is nearly constant over the
support of the wavelets. This assumption is not new. Indeed, all optical flow
methods rely on an assumption on the space dependence of the optical flow.

Horn & Schunck suggest to find the most regular optical flow field matching
this optical flow condition. The smoothness measure is the integral

V= //(m)2 + (Vo) dzdy

Region based matching methods, as well as spatiotemporal filtering based
methods [4] [6] [9] [11] [12] [20] that are local filtering methods always rely on
the assumption that the optical flow is locally constant in space. The latter
methods even rely on the assumption that the optical flow is locally constant in
time.

1.4 Road map

In this paper, we will respectively focus on time aliasing (section 2) to find out
at which scale a given displacement can be measured. In section 3, we will
describe the coarse to fine propagation. In section 4, we will show how to design
scale separable wavelets, so that the corresponding inner products that are the
coefficients of the local systems can be computed with pyramid filtering and
subsampling schemes. Section 5 will be devoted to numerical experimentation.

2 Time aliasing

The image sequence being sampled in time, the time derivatives of inner prod-
ucts like [ [ I;(z,y)¢(z,y)dzdy have to be estimated with finite differences.



The error of such estimations is high if the displacement (v, v,) between two
pictures I; and I;4; is large. This phenomenon has been pointed out by many
authors, and a multiscale approach is generally considered as the way to solve
this problem [2] [4] [17] [20].

2.1 Time aliasing error estimation

Examining the one-dimensional case, with a pattern I moving with velocity v,
we see indeed that the finite difference estimate

0

2 / I(x)()de = / (T (2) — I(2) (@) de

is valid for any image I iff

o9 (e )~ v(e)
or in Fourier domain
(&) = (€7 — 1) (¢)
Thus, the spectrum of 4 has to be included in an interval where approximation
ivé ~ et — 1 (7

is valid. For a 15% error, the spectrum of ¢ has to be in [-0.3/v,0.3/v]

We see that bigger displacements can only be detected with v measure func-
tion whose spectrum is narrow, and that are thus highly space correlated. As a
consequence, the space dependence of such measures must be coarser than for
smaller displacements. This is a general limitation for all linear filtering and
frequency based methods.

2.2 Higher order derivative approximation

A higher order finite difference estimate reduces significantly the impact of time
aliasing. It consists in estimating the flow in ¢ + 1/2 with

I o L+ Tip
Y e e

0
aIt+1/2 ~ Ly — I

This time, the spectrum of ) has to be included in an interval where ap-
proximation

eiv§/2 _ e—iv§/2

W€ = 2€ivg/2 T e ez

(8)
is valid. For a 15% relative error, this interval is [-1.23/v,1.23/v], and is sig-
nificantly larger than the previous one. Relative errors of approximations (7)
and (8) are compared in figure 1
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Figure 1: Compared relative errors (solid for (7), dashed for (8))

3 Flow estimation strategy

The flow estimation process is performed in a coarse to fine refinement. Coarser
scale measurements are less subject to time aliasing, but their space dependence
is also coarser. The algorithm should therefore try to rely as much as possible
on finer scale measurements as long as

e the space frequency content of the local texture allows it

e the real displacement is lower than the limit imposed by aliasing.

3.1 Solving an overconstrained system

The systems we build with our multiscale measures
Mg X = Y

are always overdetermined. This has two advantages: ensuring higher stability
to the flow estimation and giving a hint as whether the underlying assumption
of uniform translation is correct.

An overconstrained system at a given resolution M X = Yjr can be
solved in the least square sense. If M and Yjp are complex matrices, the
corresponding LS system is

M5 X =Y;i3 (9)

where
Mﬁci, = (%M]’kk/)T éRMjkk’ + (%Mjkkl)T%Mjkkl (10)
Yie = (RMjww)" RYjew + (SMjw) " SV (11)



3.2 Core algorithm

This suggests therefore to use the following strategy, based on measurements
Mk and Yigp, k€ {1,... ,Ny277} and k' € {1,...,N,277}, that is on com-
putation of coefficients < 01; /0t, i > < I, 67,/)3?“,/6:1: >and < Iy, 05y, /0y >.

1. for each j = —jmins-,0, for each k = 1.2 9z, k' = 1.2y, if
estimation at this location has been forbidden because of aliasing detected
at a coarser scale, go to 2. Else,

(a)

(b)

(c)
(d)

(e)

(f)

if the LS system is not well conditioned, ie
det M5 < 0, (tr ML5)3
add LS constraints from the next coarser scale:
s s s
ML «— ML +03Mf—1,k/2,k’/2
VI e Y
if the LS system is still not well conditioned, transfer coarser scale
estimations, if any:
Kijkk < Xj_1,k/2,80 /2 (12)
and go to alias-check.
compute X = (Mﬁci,)’le;i,.
if the bias || Mrr X — Ykrr || is higher than 02||Yjkr: ||, reject the mea-

sure: transfer coarser scale estimations as in (12) and go to alias-
check.

if the measured displacement is higher than « times the grid step,
reject the measure: transfer finer scale estimation, and forbid finer
scale estimation at this location and go to end (aliasing prohibits
flow estimation at this scale and thus on finer scales).

else accept the measure: set Xjp = X.

(9)

if the measurement displacement (vg,vy) is higher than o /2 times the
grid step, we keep the measure, but forbid finer scale estimation at
this location. Go to end.

2. transfer coarser scale estimation as in (12), and also forbid finer scale
estimation (at this location,).

3. (end of the loop in j, k and k').

Remark 1 Forbidding finer scale estimation when at scale j and location (k, k')
consists in prohibiting estimations for J = j+ 1 and K = 2k —1...2k and
K' = 2k —1...2k. This is propagated recursively through the scales by the
algorithm above.



4 Wavelet design

4.1 Scale separability

We want here scale separable wavelets, ie wavelets 1)® matching equations like

+oo
den =Tm (52) (13)
j=1

because then, computing coefficients like < I, @bj-kk, > can be done with a fast
filtering and subband coding scheme [7] [16].

We will show in this section how to have scale separable analytic wavelets
(and why we need such wavelets), and that derivatives of scale separable func-
tions are also scale separable. All our 2D wavelets will be tensor products of 1D
functions thus also separable in z and y.

4.2 Extinction and analytic wavelets

If we use classical 2D real valued wavelets defined as tensor products (equa-
tions 2-4) of one dimensional real wavelets ¢ and ¢ whose spectra are displayed
in (2.c-d), numerical experimentation gives very poor and unstable results. A
one dimensional approach shows that such a velocity estimation consists in writ-
ing

N 2 [ L(z)¢(z — z0)d
V) = o o — a0V

If ¢ is real valued, the denominator and the numerator in (14) both oscillate
like cosine functions in zg. The relative error can thus be very high when the
denominator vanishes. We call this extinction after a similar phenomenon in
light interference in physics.

If however we replace ¢ with its analytic part

W = P+ h*
2
where h(z) = 1/nz is the Hilbert filter, the denumerator and numerator in (14)
will now oscillate like complex exponential funtions when ¢ varies, and thus be
of almost constant modulus. The relative error will therefore keep low at any
time.

Analytic measure functions are also used in spatiotemporal filtering tech-
niques, where velocity tuned filters are analytic [9]. Note, however, that the
Hilbert transform is also used to make filters direction selective and not ana-
lytic [4] [19]. Psychophysical evidence also supports the use of analytic wavelets.
Daugman [8] identified a pair of (real valued) Gabor filters with a /2 phase
shift between them

(14)

(15)

i = e~ (X=X0)*/20 0os ko X

fo = e~ (X=X0)*/20 gin kX
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Figure 2: ¢, 1 and their Fourier transforms

Such a pair can equivalently be seen as a single complex filter

f= ef(X7X0)2/2aeik.X (16)
that now has a non-symmetric spectrum, and is thus an approximation of an
analytic transform of f;. We will show in the next subsection how to design

such a function in a filtering and subband coding framework, without using a
costly Hilbert transform.

4.3 One dimensional analytic wavelet design

We can start from any filter pair mo and m; defining a scaling function and a
wavelet as

() ﬁmo (%) (17)

i = m(§)s(3) (18)

¢, ¥ and their Fourier transforms are displayed in (2.a-d), for filters

3cosHE — 25cos3E + 150 cosé + 128
mo(§) =
256
mi(§) = mo(§+m)
If ms is a Deslauriers-Dubuc interpolation filter, such that
ma(§) + ma(E+m) =1

then #(£) = (€)ma(£/2—7/4) is a good approximation of )+ (€), since most
of the negative frequency peak of 1) is cancelled by a vanishing my(£). Again,
¢# is displayed in figure 3 for ma = mg. The remaining negative frequency
content of ¥# is not 0, but is less than 2% of ¥#’s total Ly norm.

Thanks to the way ¢# is defined, inner products [ I(z)y# (z)dz can be
computed like [ I(z)y(z)dz with a filtering and subband coding scheme with a
single additional discrete filtering step.
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Figure 3: Approximation 1# of ¢+ and its Fourier transform

4.4 Derivative wavelets and corresponding filters

If a function f is an infinite convolution of discrete filters
. +oo f
F©) = 1[I m; (2—J>
j=1

which is the case of ¢ and 1# defined above, a corresponding filter sequence to
define f' is the following:

Nje) = WY if j > 2
Ni(§) = (e =1)N(§)

because then
+oo € . -
1IN (2—]) =i¢f=f

Thus derivatives of scale separable functions are scale separable, which will be
very useful for our purpose.



4.5 Two-dimensional analytic wavelets

Two dimensional wavelet shapes are defined as tensor products of one dimen-
sional wavelets. Thus, we define ¥*, s =1...5, as

PHa,y) = v (@)e(y)
V(z,y) = pla)(y)
W (z,y) = ¥ (@)*(y)
PHzy) = T (@)0#(y)
YO (z,y) ()Y (y)

The same way the partial derivatives of ¥°, s = 1,...5 can be written as tensor
products of scale separable one dimensional functions defined in subsections 4.3
and 4.4.

5 Numerical experimentation

The algorithm was implemented as a matlab script, and run on several picture
sequences from Barron & al.’s.

5.1 True sequences

Image sequences were downloaded from Barron & al.’s ftp site at csd.uwo.ca.
The algorithm was tested on the rubik sequence (a rubik’s cube on a rotating
plate), the taxi sequence (where three vehicles are moving respectivement to-
wards East, West and Northwest) and the nasa sequence, which a is zoom on a
Coke can.
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5.2 Synthetic sequences

Again sequences provided by Barron & al were used to check the new algorithm.
Comparative results are provided on table 1. Numerical results are always given
for the whole picture size, unless otherwise stated.

The main weakness of the approach suggested in this paper is “border effect”
that reduces accuracy of the optic flow estimation near the boundaries. Yosemite
estimation was therefore cropped of 5% (resp. 6.25%) of the total width (height)
of the image, at each border to get the “cropped” error estimation displayed in
table. Note that the density is then related to the total surface of the original
pictures.
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Sequences Authors Estimation error Density
average std. dev.
Transl. tree Heeger 4.53 241 57.8 %
Fleet & Jepson (7 = 2.5) 0.32 0.38 74.5 %
Fleet & Jepson (7 = 1.0) 0.25 0.21 26.8 %
Weber & Malik 0.49 0.35 96.8 %
Bernard 1.42 0.53 52.6 %
Yosemite Heeger 10.51 12.11 15.2 %
Fleet & Jepson (1 = 2.5) 4.25 11.34 34.1 %
Fleet & Jepson (7 = 1.25) 5.28 14.34 30.6 %
Weber & Malik 4.31 8.66 64.2 %
Bernard 9.6 11.9 473 %
Bernard (borders cropped) 7.2 7.2 413 %

Table 1: Error and estimation density comparison of several methods

Method Frames
Burns & al 64
Fleet & Jepson 21 or 15
Weber & Malik 10
Bernard 2

Table 2: Number of frames required to compute an optical flow map
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5.3 Illumination estimation

Using a new optical flow equation

oI, oI, oI,

S, + 2t 2t T
5z Ty vt T M

where A is the logarithmic derivative of the illumination factor, using an ad-
ditional wavelet shape ¥°(z,y) = ¢(z)p(y) of nonzero integral, we can now
perform illumination change measurements, ie estimate a new unknow param-
eter .

A synthetic sequence (moving white noise, with increasing illumination of
gaussian shape) was created. Three pictures of the sequence (figure 4) and the
corresponding measured flow and illumination map (figure 5) are displayed.

(a) image 1 (b) image 2 (c) image 3

Figure 4: Moving random pattern with varying illumination

(a) flow (b) light log. derivative

Figure 5: Measured flow and illumination change
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Conclusion

The method presented in this paper is an improvement of the existing ones in
terms of reduced computational complexity. This reduction is gained because

e the algorithm is completely time-local. Only two frames are required to
compute an optical flow map (see table 2).

e the pyramid filtering and subsampling scheme structure allows to measure
displacements at several scales without massive convolutions. As an ex-
ample, flow estimations (translating tree) were performed with a matlab
script in less than 20 seconds on an HP-9000 workstation.
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