sur ce site

Accueil du site > Résumés des séminaires > Labo > Poisson noise reduction with non-local PCA

Poisson noise reduction with non-local PCA

Photon limitations arise in spectral imaging, nuclear medicine, astronomy and night vision. The Poisson distribution used to model this noise has variance equal to its mean so blind application of standard noise removals methods yields significant artifacts. Recently, overcomplete dictionaries combined with sparse learning techniques have become extremely popular in image reconstruction. The aim of the present work is to demonstrate that for the task of image denoising, nearly state-of-the-art results can be achieved using small dictionaries only, provided that they are learned directly from the noisy image. To this end, we introduce patch-based denoising algorithms which performs an adaptation of PCA (Principal Component Analysis) for Poisson noise. We carry out a comprehensive empirical evaluation of the performance of our algorithms in terms of accuracy when the photon count is very low. The results reveal that, despite its simplicity, PCA-flavored denoising appears to be competitive with other state-of-the-art denoising algorithms. Joint work with C-A. Deledalle, R. Willett and Z. Harmany.

CMAP UMR 7641 École Polytechnique CNRS, Route de Saclay, 91128 Palaiseau Cedex France, Tél: +33 1 69 33 46 23 Fax: +33 1 69 33 46 46