Quadratic BSDEs Revisited: A Forward Point of View

Tamerza, Octobre 2010

Nicole El Karoui and Pauline Barrieu

(UPMC/Ecole Polytechnique, Paris) and (LSE, London)

with the financial support of the chair "Risques financiers" de la "Fondation du Risque".

25 octobre 2010 (미) (문) (문) (문) (문) (문) (문)

Plan

1 Motivation

- Quadratic BSDEs
- Quadratic semimartingale
- Algebric characterisation

2 Exponential transformation and Entropic process

3 Quadratic variation estimates

4 Quadratic BSDEs

Motivation

 Quadratic BSDE's appear naturally in a lot of optimization problems

- Mean variance problems
- Utility maximization
- Risk sensitive problem
- Large deviations....
- From the seminal paper of Kobylanski (2000) on bounded solutions, different extensions are provided, in particular by many people in the audience
 - We use many ideas from Briand and Hu (2006), where bounded assumption are relaxed.
 - See also the very interesting paper of Tevzadze (2008).
- Need of unified point of view on estimates and convergence results.

(日) (日) (日) (日) (日) (日) (日) (日)

Definition of Quadratic BSDE

- Probability space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t))$ with continuous martingales
- A coefficient g(t, y, z) with good measurability and a terminal condition ξ_T

The equation

- ► An equation $-dY_t = g(t, Y_t, Z_t)dt Z_t dW_t$, $Y_T = \xi_T$, where W is a d-dimensional BM
- A solution is a pair (Y, Z) ∈ ℝ × ℝ^d of adapted processes such that the paths of Y are continuous, and ∫₀^T |Z_t|²dt < ∞, ∫₀^T |g(t, Y_t, Z_t)|dt < ∞, ℙ-a.s</p>

The quadratic case

► Quadratic BSDE= quadratic coefficient= $d\mathbb{P} \otimes dt$ -a.s. $|g(., t, y, z)| \leq Q(t, y, z) \equiv 1/\delta |l_t| + c_t |y| + \frac{\delta}{2} |z|^2$,

Quadratic semimartingale : Definition

BSDEs : a forward point of view

- More flexible point of view, localization technique may be used Definition A quadratic semimartingale is a continuous process $Y_{.} = Y_{0} - V + M$ satisfying the constraint :
 - Structure condition Q(Λ, C, δ) : There exist two adapted increasing processes (Λ, C) and δ > 0 s.t.

 $dIVI_t \ll 1/\delta d\Lambda_t + |Y_t| dC_t + \frac{\delta}{2} d\langle M \rangle_t, \quad \mathbb{P}-\text{a.s.},$

- V is a predictable process with finite total variation $\left|V\right|$
- M is a local martingale with quadratic variation $\langle M \rangle$
- $\bullet\,\ll$ stands for the absolute continuity of increasing processes.

(日本本語を本語を本語をます)

Typical examples

Notation : $\mathcal{Q}(0,0,\delta) = q_{\delta}$, and $q(M) = -\frac{1}{2}\langle M \rangle = -\underline{q}(M)$, and $r_t(r_0,M) = r_0 + M_t - \frac{1}{2}\langle M \rangle_t = r_0 + r_t(M)$

Example of *q*-semimartingale or BSDEs

- ► Log of exponential martingale is a *q*-semimartingale $\mathcal{E}(M) = \exp(M - \frac{1}{2}\langle M \rangle) = \exp(r(M))$
- Entropic process : If $\xi_T \in \mathbb{L}^1_{exp}$, $\rho_t(\xi_T) = \ln \mathbb{E}[\exp(\xi_T) | \mathcal{F}_t] = \rho_0(\xi_T) + r_t(M)$ and $\mathcal{E}(M)$ is a u.i. martingale

Example of -q-BSDEs

- ▶ $\underline{r}_t(M) = -r_t(-M)$ is a -q-semimartingale, and if $-\xi_T \in \mathbb{L}^1_{exp}$, $\underline{r}_t(\xi_T) = -\rho_t(-\xi_T) = \underline{\rho}_0(\xi_T) r_t(-M)$ is a solution.
 - $\mathcal{E}(-M)$ is u.i integrable, but in general $\mathcal{E}(M)$ is not
 - True if $|\xi_{\mathcal{T}}| \in \mathbb{L}^1_{exp}$

Basic properties of quadratic quasimartingale

Definition A quadratic submartingale is a continuous semimartingale $X = X_0 + M - V$ such that $-V + \frac{1}{2} \langle M \rangle_{.} = A_{.}$ is a predictable increasing process. Equivalently, $X = X_0 + r_t(M) + A$

Properties Let Y be a $\mathcal{Q}(\Lambda, C, \delta)$ -semimartingale.

- ► The role of δ : $\forall \lambda \neq 0$, λY is a $Q(\Lambda, C, \frac{\delta}{|\lambda|})$ -semimartingale, and $M^{\lambda Y} = \lambda M^{Y}$.
- $\lambda Y_{.} \frac{1}{2}\lambda(\lambda 1)\langle M \rangle_{.}$ is a $\mathcal{Q}(\lambda \Lambda, C, \delta)$ -semimartingale
- ▶ Property of |Y_.| :
 - Let ϵ be a predictable process such that $|\epsilon| = 1, a.s.$. Then the process $Y^{\epsilon} = \epsilon \cdot Y = Y_0 + \int_0^{\cdot} \epsilon_s \, dY_s$ is a $\mathcal{Q}(\Lambda, C, \delta)$ -semimartingale.

(日) (日) (日) (日) (日) (日) (日) (日)

(日) (日) (日) (日) (日) (日) (日) (日)

Basic properties of quadratic quasimartingale

- In particular, taking $\epsilon^{s} = \operatorname{sign}(Y)$, and denoting by L(Y) the local time of Y. at 0, the process $|Y_{\cdot}| - L(Y) - 2(Y_{0})^{-} = \epsilon^{s} \cdot Y$ is a $\mathcal{Q}(\Lambda, C, \delta)$ -semimartingale.
- If Y. is a Q-quasimartingale, then |Y| is a Q-submartingale.
- ► Structure simplification Put $X^{\Lambda,C}_{\cdot}(Y) = Y + \Lambda + |Y| * C$, $\bar{X}^{\Lambda,C}_{\cdot}(Y) = e^{C_{\cdot}}|Y| + e^{C_{\cdot}} * \Lambda$.
 - The processes $X^{\Lambda,C}(\delta Y)$ and $X^{\Lambda,C}(-\delta Y)$ are Q-submartingales.
 - The process $\bar{X}^{\Lambda,C}(|\delta Y|)$ is a Q-submartingale.

Characterisation of quadratic semimartingales via exponential transformation

Motivation For any $Y \in \mathcal{Q}(\Lambda, C)$, $Y = X^{\Lambda, C}(Y) + X^{\Lambda, C}(-Y)$ where $X^{\Lambda, C}(Y)$ and $X^{\Lambda, C}(-Y)$ are \mathcal{Q} - submartingales. Main result : Converse Property

Let $K_{.}$ be a continuous increasing process

▶ If there exist two ladlag processes with $\underline{X} + \overline{X} = K$ such that $\exp(\underline{X})$ and $\exp(\overline{X})$ are submartingales

the both processes $(\underline{X}, \overline{X})$ are continuous processes, and the process $Y = \overline{X} - K$ is a Q(K)-semimartingale.

- Not sufficient to show that $K = \Lambda + Y + |Y| * C$.
- In place, use the processes

$$U_t^{\Lambda,C}(e^Y) = e^{Y_t} + \int_0^t e^{Y_s} d\Lambda_s + \int_0^t e^{Y_s} |Y_s| \, dC_s$$

(日) (日) (日) (日) (日) (日) (日) (日)

(日) (日) (日) (日) (日) (日) (日) (日)

Proof

From the quadratic submartingale decomposition

$$\overline{X}_{.} = \overline{X}_{0} + \overline{M}_{.} - \frac{1}{2} \langle \overline{M} \rangle_{.} + \overline{A}_{.} \quad \text{and} \quad \underline{X}_{.} = \underline{X}_{0} + \underline{M}_{.} - \frac{1}{2} \langle \underline{M} \rangle_{.} + \underline{A}_{.}$$

- By uniqueness of the predictable decomposition of X and −X,
 <u>M</u> = -M

 and so (<u>M</u>) = (M
 and A
 A
 A

 Since (M) and K
 are continuous, both increasing processes A
 and A
 are also continuous and then X
 and X
 .
- From Radon-Nikodym's Theorem, $d\overline{A}_t = \alpha_t d(\frac{1}{2} \langle M \rangle_t + K_t)$ with $0 \le \alpha_t \le 2$. Substituting \overline{A} into the decomposition of Y, we get

 $dY_t = -(1 - \alpha_t)d(\frac{1}{2}\langle M \rangle_t + K_t) + dM_t$. with $|1 - \alpha_t| \le 1$ Therefore, Y is a Q(K, 0, 1)-semimartingale.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Plan

2 Exponential transformation and Entropic process Uniform integrability and Inequalities

3 Quadratic variation estimates

4 Quadratic BSDEs

The class (\mathcal{D}_{exp}) and Inequalities I

Definition of the class (\mathcal{D}_{exp})

- ► The "class (D)", ((D) for Doob)=Optional process X, s.t |X| is dominated by a u.i martingale.
- X such that $\exp(|X|)$ is in class (\mathcal{D}) is in the class (\mathcal{D}_{exp}) .
- ► (D)-submartingales S are characterized by "submartingale inequalities"

for $\sigma \leq \tau \leq T$, $S_{\sigma} \leq \mathbb{E}[S_{\tau}|\mathcal{F}_{\sigma}]$, a.s..

(日) (日) (日) (日) (日) (日) (日) (日)

If S is positive, X_i = ln S_i verifies the so-called *entropic* inequalities : X_σ ≤ ρ_σ(X_τ) a.s.

(日) (日) (日) (日) (日) (日) (日) (日)

Submartingale Inequalities and Characterization I

$\mathcal Q$ semimartingales characterization.

An optional process X with $\exp(|X_{\tau}|) \in \mathbb{L}^1$ is a Q-semimartingale in (\mathcal{D}_{\exp}) if and only if $\underline{\rho}_{\sigma}(X_{\tau}) \leq X_{\sigma} \leq \rho_{\sigma}(X_{\tau})$ a.s.

 $\mathcal{Q}(\Lambda, C)$ semimartingales characterization. : (Briand and Hu) Assume $\bar{X}_{T}^{\Lambda, C}(|Y_{T}|) = e^{C_{T}}|Y_{T}| + \int_{0}^{T} e^{C_{s}} d\Lambda_{s}$ in \mathbb{L}_{exp}^{1} and

- $|Y_t| \le \rho_t(e^{C_{t,T}}|Y_T| + \int_t^T e^{C_{t,s}} d\Lambda_s) = \ln \Phi_t(|Y_T|)$
- ► or equivalently exp(e^{Ct}|Yt| + ∫^t₀ e^{Cs} dΛs) is a (D) submartingale

(日) (日) (日) (日) (日) (日) (日) (日)

Submartingale Inequalities and Characterization II

- $\Phi_{\cdot}(|Y_{\mathcal{T}}|)$ and $U_{\cdot}^{\Lambda,C}(\Phi(|Y_{\mathcal{T}}|))$ are (\mathcal{D}) -supermartingales.
- any Y s.t e^{|Y|} ≤ Φ_t(|Y_T|) is a Q(Λ, C) semimartingale if and only if U^{Λ,C}(e^Y) and U^{Λ,C}(e^{-Y}) satisfies submartingale inequalities.
- Y is said to be in $S_Q(|\mathcal{Y}_T|, \Lambda, C)$

Plan

2 Exponential transformation and Entropic process

- 3 Quadratic variation estimates
- 4 Quadratic BSDEs

(日) (日) (日) (日) (日) (日) (日) (日)

Quadratic variation estimates I

Theorem

Let $Y_{\cdot} \in \mathcal{S}_Q(|\eta_T|, \Lambda, C)$, and $\bar{X}_T^{\Lambda, C}(|Y_T|) = e^{C_T}|\eta_T| + \int_0^T e^{C_s} d\Lambda_s$.

- ► Let $p^{\eta} = \sup\{p; \mathbb{E}[\exp(p\bar{X}_{T}^{C})] < +\infty\}$. Then $p^{\eta} \ge 1$ and $\forall p \in [1, p^{\eta}[, \mathbb{E}[\langle M \rangle_{T}^{p}] \le (2p)^{p} \mathbb{E}[\exp(p\bar{X}_{T}^{C})].$
- If for any S ≤ T, Φ_{S,T}(|η_T|) is bounded, then the martingale M is in BMO.

Sketch proof

- ► From Kobylanski, if $v(x) = e^x 1 x$, and $V_t^{\Lambda,C}(e^{|Y|}) = v(|Y_t|) + \int_0^t v'(|Y_s|)(d\Lambda_s + |Y_s|dC_s)$, then $V_t^{\Lambda,C}(e^{|Y|}) - \frac{1}{2}\langle M \rangle_t$ is a (\mathcal{D})-submartingale.
- Neveu-Garsia Lemma

(日) (日) (日) (日) (日) (日) (日) (日)

Neveu-Garsia Lemma I

The Lemma Let A_{\cdot} a predictable increasing process and U a random variable, positive and integrable. Assume that for $S \leq T$, $\mathbb{E}[A_T - A_S \mathbf{1}_{\{0 < S \leq T\}} | \mathcal{F}_S] \leq \mathbb{E}[U \mathbf{1}_{\{S < T\}} | \mathcal{F}_S]$,

- $\blacktriangleright \quad \forall r \ge 1, \quad \mathbb{E}[A_T^r] \le r^r \mathbb{E}[U^r)]$
- ▶ More generally, for any convex function F s.t $p = \sup_{x>0}(x(\ln F)'(x)) < +\infty,$ $\mathbb{E}[F(A_T)] \leq \mathbb{E}[F(pU)].$

 $\begin{array}{l} \hline \text{Total Variation Estimates The total variation of } V \text{ s.t.} \\ Y = Y_0 + M - V \text{ satisfies for } 1 \leq p < p^{\eta} \\ \mathbb{E}[|V|_T^p] \leq (2p)^p \mathbb{E}\big[\exp(p\bar{X}_T^C)\big], \end{array} \end{array}$

Strong convergence of martingale parts I

Theorem

Assume the sequence (Y_{\cdot}^{n}) of $S_{Q}(|\eta_{T}|, \Lambda, C)$ -quasimartingales to be a Cauchy sequence for the a.s. uniform convergence, i.e. $\sup_{t \leq T} |Y_{t}^{n} - Y_{t}^{n+p}|$ tends to 0 almost surely when $n \to \infty$. Different types of convergence hold true for the processes $(M_{\cdot}^{n}, V_{\cdot}^{n})$ of the decomposition $Y_{\cdot}^{n} = Y_{0}^{n} + M_{\cdot}^{n} - V_{\cdot}^{n}$ Martingales convergence

- ► The sequence of martingales (Mⁿ) converges to a continuous martingale M in ℍ¹.
- If, for some p > 1, X
 ^{Λ,C}_T(|η_T|) ∈ L^p_{exp}, the sequence of martingales (Mⁿ) converges to a continuous martingale M_i in H^{2p}.
- If Φ(|η_T|) is bounded, the sequence of martingales (Mⁿ) converges to a continuous martingale M_− in the BMO-space.

Semimartingale convergence

Theorem

- ► The sequence (Vⁿ) converges uniformly to a finite variation process V satisfying the structure condition Q(Λ, C) at least in L¹.
- The sequence of S_Q(|η_T|, Λ, C)-quasimartingales(Yⁿ) converges to the continuous quadratic S_Q(|η_T|, Λ, C)-quasimartingale Y = Y₀ + M − V.

Sketch of the proof($B^{i,j} = |V^i| + |V^j|$)

$$\begin{split} & \mathbb{E}\big[\langle M_{\sigma,T}^{i,j} \rangle \,|\, \mathcal{F}_{\sigma}\big] \leq \mathbb{E}\big[\max|Y_{\sigma,T}^{i,j}|^2 \,\mathbf{1}_{\{\sigma < T\}}|\, \mathcal{F}_{\sigma}] + \mathbb{E}\big[\int_{\sigma}^{T}\max|Y_{\sigma,s}^{i,j}|\, dx \\ & \leq \mathbb{E}\big[(\max|Y_{T}^{i,j}|^2 + \max|Y_{T}^{i,j}|B_{T}^{i,j}) \,\mathbf{1}_{\{\sigma < T\}}|\, \mathcal{F}_{\sigma}\big] \end{split}$$

+ Neveu-Garsia Lemma

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Monotone convergence I

Theorem

Let assume the sequence (Y^n) to be a monotone sequence of $S_Q(|\eta_T|, \Lambda, C)$ -quasimartingales converging almost surely to a process Y. Then, Y is continuous, the convergence is uniform and all properties given in previous Theorem hold true.

Plan

2 Exponential transformation and Entropic process

- 3 Quadratic variation estimates
- 4 Quadratic BSDEs

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ヨ = のへで

Quadratic BSDEs I

- ► An equation $-dY_t = g(t, Y_t, Z_t)dt Z_t dW_t$, $Y_T = \xi_T$, where W is a d-dimensional BM
- ► Quadratic BSDE= quadratic coefficient= $d\mathbb{P} \otimes dt$ -a.s. $|g(., t, y, z)| \leq Q(t, y, z) \equiv 1/\delta |I_t| + c_t |y| + \frac{\delta}{2} |z|^2$,

The "linear" case $|g(.,t,y,z)| \leq |l_t| + c_t |y| + k_t |z|$

Main observation

 $\mathsf{Linear} \Rightarrow \mathsf{quadratic}$

• $k_t|z| \leq \frac{1}{2}(\frac{1}{\varepsilon}|k_t|^2 + \varepsilon(|z|^2))$

(日) (日) (日) (日) (日) (日) (日) (日)

Strongly Quadratic BSDEs I

- ► Let g be a coefficient satisfying $g(t, y, z) = f(t, y, z) + \frac{\delta}{2}|z|^2$, where $f(t, y, z) \le l_t + c_t|y| + k|y|$.
- Assume that X
 _T = exp((δ + ε)(e^C_T|ξ_T| + ∫₀^T e^{C_s}(l_s + ½k_ε²)ds is finite,

and let
$$\phi_t^{\epsilon} = \rho_{\delta+\epsilon,t} (e_{t,T}^{C} | \xi_T | + \int_t^T e^{C_{t,s}} (l_s + \frac{1}{2} k_{\epsilon}^2) ds)$$

Then, there exists a maximal solution of the BSDEs satisfying $Y \leq \phi^{\epsilon}$ obtained from the linear growth BSDEs with generator $g_n = f(t, y, z) + \frac{\delta}{2} |z| \inf(|z|, n)$

The General Existence result I

Theorem

Assume that $\mathbb{E}[\bar{X}_T = \exp(p(\delta(e_T^C|\xi_T| + \int_0^T e^{C_s}(I_s ds)ds)])$ is finite, and let $\phi_t = \rho_{\delta,t}(e_{t,T}^C|\xi_T| + \int_t^T e^{C_{t,s}}ss(I_s ds))$

- The strongly quadratic growth coefficient gⁿ defined as : gⁿ(t, y, z) = g(t, y, z) ∨ (−c_l + ac − δ n |z| + δ/2 |z|²) are decreasing to g
- There exists a minimal solution (Yⁿ, Zⁿ) dominated by φ_t −dYⁿ_t = gⁿ(t, Yⁿ_t, Zⁿ_t)dt − Zⁿ_tdW_t and the sequence Yⁿ is decreasing.
- There exists a minimal solution (Y, Z) dominated by φ to the BSDE,

$$-dY_t = g(t, Y_t, Z_t)dt - Z_t dW_t.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Perspectives

- ▶ With Anis and his PhD-student, Quadratic BSDEs with jumps
- Different extensions and BMO case
- Optimisation problems

Thanks to Mingyou XU for very stimulating discussions

Thank you for your attention