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Classical BSDEs

Classically, a BSDE is an equation of the form

Yt −
∫

]t ,T ]
F (ω,u,Yu,Zu)du +

∫
]t ,T ]

ZudWu = Q

where the solution pair (Y ,Z ) is adapted, Z is predictable and Q is
some FT -measurable random variable.

My interest is on generalising these equations to allow for different
types of filtrations and randomness.
Various generalisations of the filtration have been done (eg Jump
processes, Markov chains)
Various generalisations of this structure are possible (eg delay
equations, general semimartingale decompositions)
I seek to retain the structure, but work in a general filtration.
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BSDEs in Discrete time

My recent work has considered BSDEs in discrete time, finite state
systems

Yt −
∑

t≤u<T

F (ω,u,Yu,Zu) +
∑

t≤u<T

Zu∆Mu+1 = Q.

where M is a RN -valued martingale defining the filtration
Existence and comparison results can be obtained for these
equations
These equations form a complete representation of
time-consistent nonlinear expectations on L0(FT ).
Is there a way to unite this discrete time theory with the classical
one?
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BSDEs in general spaces

Today we will consider BSDEs where both the martingale and
driver terms can jump.
This will include, as special cases, both the discrete time and
continuous time theory of BSDEs
Very few assumptions are needed on the underlying probability
space.

Our first step is to state a general form of the Martingale
representation theorem...
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Theorem (Davis & Varaiya 1974)
Let (Ω,FT , {Ft}t∈[0,T ],P) be a filtered probability space. Suppose
L2(FT ) is separable. Then there exists a sequence of martingales
M1,M2... such that any martingale N can be written as

Nt = N0 +
∞∑

i=1

∫
]0,t]

Z i
udM i

u

for some predictable processes Z i , and

〈M1〉 � 〈M2〉 � ...

as measures on Ω× [0,T ].

i.e. 〈M i〉(A) = E [
∫

[0,T ] IAd〈M i〉] for A ⊆ Ω× [0,T ].
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We need an appropriate norm for {Z i}i∈N under which to consider
continuity of the driver F .

Definition
Let µ be a fixed deterministic nonnegative Stieltjes measure on [0,T ].
For each i ∈ N, let

〈M i〉t = mi,1
t + mi,2

t

where mi,1 (resp. mi,2) is absolutely continuous (resp. singular) with
respect to P× µ, as measures on P.
Then define ‖ · ‖Mt , the stochastic seminorm on infinite RK -valued
sequences, by

‖(z1, z2, ...)‖2Mt
=
∞∑

i=1

‖z i‖2
dmi,1

t
d(P× µt )

.
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This norm has some useful properties:

If µt = t and M i
t = Wt , then dmi,1

t
d(P×µt )

= 1, and so ‖z‖Mt ≡ ‖z‖`2 .

If the filtration has finite multiplicity, then all but finitely many of the
M i

t are zero, and this all degenerates to the Euclidean norm.
If ∑

i

∫
Z i

t dM i
t =

∑
i

∫
Z̃ i

t dM i
t ,

then ‖Zt − Z̃t‖Mt = 0, µ-a.e.
No matter our choice of µ,∫

]t ,T ]
E
[
‖Zu‖2Mu

]
dµ ≤ E

[∑
i

∫
]t ,T ]
‖Z i

t ‖2d〈M i〉t

]
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BSDEs in general spaces

Consider an equation of the form:

Yt −
∫

]t ,T ]
F (ω,u,Yu−,Zu)dµ+

∞∑
i=1

∫
]t ,T ]

Z i
udM i

u = Q

where
Q ∈ L2(FT ),
Y ∈ RK is adapted and supt∈[0,T ]{‖Yt‖2} <∞,

Zt ≡ (Z 1,Z 2, ...) is a sequence of predictable RK -valued
processes such that Z ∈ H2

M , that is

E

[∑
i

∫
]0,T ]
‖Z i

t ‖2d〈M i〉t

]
<∞

S.N. Cohen (Oxford) BSDEs in general spaces 25 October 2010 9 / 24



BSDEs in general spaces

Yt −
∫

]t ,T ]
F (ω,u,Yu−,Zu)dµ+

∞∑
i=1

∫
]t ,T ]

Z i
udM i

u = Q

Also,
µ is a deterministic Stieltjes measure on [0,T ]. For simplicity,
assume µ is nonnegative.
F is a progressively measurable function such that F (ω, t ,0,0) is
µ-square-integrable.
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Existence result

Theorem
Suppose F is firmly Lipschitz, that is, there exists a constant c and a
map c(·) : [0,T ]→ [0, c] such that

‖F (ω, t , y , z)− F (ω, t , y ′, z′)‖2 ≤ ct‖y − y ′‖2 + c‖z− z′‖2Mt

and
ct (∆µt )

2 < 1.

Then the BSDE has a unique solution, (up to indistinguishability if
dµ � dt).

S.N. Cohen (Oxford) BSDEs in general spaces 25 October 2010 11 / 24



As the discrete time BSDE can be embedded in continuous time,
and the necessary and sufficient condition for existence in
discrete time is that y 7→ y − F (ω, t , y , z) is a bijection, the
classical requirement of Lipschitz continuity is clearly insufficient.
On the other hand, if µ is continuous, then these assumptions are
simply classical Lipschitz continuity.
By the use of the Radon-Nikodym theorem for measures on
Ω× [0,T ], the requirement that µ is deterministic and nonnegative
is somewhat flexible, as exceptions can be instead incorporated
into F .
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From a mathematical perspective, this unites the theory of BSDEs
in discrete and continuous time.
From a modelling perspective, it allows us to build models without
quasi-left-continuity.

For interest rate modelling, when central bank decisions are
announced on certain dates.
For evaluating contracts where some counterparty decisions must
be made on a certain date.

Allowing these discontinuities is one step closer to a general
semimartingale theory of BSDEs.

We now proceed to the proof of existence and uniqueness.
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Definition (Stieltjes-Doleans-Dade Exponentials)
For any cadlag function of finite variation ν, let

E(ν; t) = eνt
∏

0≤s≤t

(1 + ∆νs)e−∆νs .

and if ∆νs < 1 a.s.

ν̃t = νt +
∑

0≤s≤t

(∆νs)2

1−∆νs
and E(−ν; t) = E(ν̃; t)−1.

Lemma (Backwards Grönwall inequality with jumps)
For semimartingales u, w, a finite-variation process ν with ∆νs < 1
a.s., if

dut ≥ −utdνt + dwt

then
d(utE(ν̃; t)) ≥ (1−∆νt )

−1E(ν̃; t−)dwt .
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Lemma (Bound on BSDE solutions)
Let Y be a solution to a BSDE with firm Lipschitz driver, and let
Z ∈ H2

M . Then E [supt∈[0,T ]{‖Yt‖2}] <∞ if and only if∫
]0,T ]

E [‖Yt−‖2]dµ <∞.

Lemma (BSDEs, no dependence on Y , Z)

Let F : Ω× [0,T ]→ RK . Then a BSDE with driver F has a solution.

Proof.
Simple application of martingale representation theorem.
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Bound on solutions

Assume µT ≤ 1 and ct ∆µt < 1. We have the following bound:

Lemma
For two BSDEs with solutions Y ,Y ′, etc. let δY := Y − Y ′,
δZ := Z− Z′, δ2ft = F (ω, t ,Y ′t−,Z

′
t )− F ′(ω, t ,Y ′t−,Z

′
t ).

For meas. x ,w : [0,T ]→ [0,∞] with ∆µt ≤ x−1
t , any A ∈ B([0,T ]),∫

A
dE [‖δYt‖2] ≥ −

∫
A

E [‖δYt‖2]dυt −
∫

A
E [‖δ2ft‖2](1−∆υt )dπt

+ E

[∑
i

∫
A
‖δZ i

t‖2(1−∆υt )dρi
t

]
.

dυt = [(x−1
t −∆µt )(1 + wt )ct + xt ]dµt

dπt = [(x−1
t −∆µt )(1 + w−1

t )](1−∆υt )
−1dµt

dρi
t = [1− (x−1

t −∆µt )(1 + wt )c](1−∆υt )
−1d〈M i〉t
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Sketch proof of existence theorem

Under the assumption µT ≤ 1, and ct (∆µt ) < 1,
Note that as ct (∆µt ) is summable and strictly bounded by 1, it is
bounded by 1− ε
Use Picard iteration on Z , (easy, convergence in equivalent norm at
rate 1/2)
Then iterate on Y , (harder, convergence rate 1− ε2/8)

Use a measure-change argument to separate [0,T ] into a finite
sequence of pieces of size < 1, use backward induction to
establish result.

This also relaxes to assuming ct (∆µt )
2 < 1.
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Comparison results

With our existence theory, we now wish to be able to compare
solutions to BSDEs.

As our martingales can jump, we need to be careful.
A comparison result is closely related to a nonlinear no-arbitrage
result, so similar language may be helpful.

For simplicity, we shall consider the scalar case only.
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Balanced drivers

Definition
Let F be such that for any square-integrable Y , any Z,Z′ ∈ H2

M ,

−
∫

]0,t]
[F (ω,u,Yu−,Zu)− F (ω,u,Yu−,Z′u)]dµu

+
∑

i

∫
]0,t]

[(Z )i
u − (Z ′)i

u]dM i
u

has an equivalent martingale measure. Then F shall be called
balanced.

Classically, this can be shown through a Girsanov transformation.
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Comparison Theorem

Theorem
Let (Y ,Z) and (Y ′,Z′) be the solutions to two BSDEs with drivers F ,F ′

and terminal conditions Q,Q′. Then if
Q ≥ Q′ a.s.
F (ω, t ,Y ′t−,Z

′
t ) ≥ F ′(ω, t ,Y ′t−,Z

′
t ) µ× P-a.s. and

F is balanced
It follows that Yt ≥ Y ′t for all t . The strict comparison also applies.
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Sketch proof

Omit ω, t for clarity. Decompose Y − Y ′ into the differences based on
Q −Q′ (nonnegative),
F (Y ′,Z′)− F ′(Y ′,Z′) (nonnegative),
F (Y ′,Z)− F (Y ′,Z′) (equivalent martingale measure),
F (Y ,Z)− F (Y ′,Z) (remainder).

By assumption and the existence of a martingale measure P̃, this
implies

Yt − Y ′t − EP̃

[∫
]t ,T ]

F (Yu−,Zu)− F (Y ′u−,Zu)dµ

∣∣∣∣∣Ft

]
≥ 0

Lipschitz continuity and a growth bound yields the result.
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These conditions are the natural extension of the requirements in
discrete time, which can be shown to be (loosely) necessary for
the general result to hold.
As the comparison theorem is the non-linear version of a
no-Arbitrage result, it is natural to think of it in terms of
equivalent-martingale-measures.
This also indicates that, perhaps with generalisation to local- or
σ-martingales, it may be the most general condition to use.
The various classical examples of the comparison theorem can all
be seen to be special cases of this requirement.
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Nonlinear Expectations

We can now construct examples of nonlinear expectations in these
general probability spaces.

Theorem
Let F be a firmly Lipschitz driver. Define Et (Q) = Yt , where Y is the
solution to the BSDE with driver F , terminal value Q. Then

Es(Et (Q)) = Es(Q) for all t ≥ s.
IAEt (IAQ) = IAEt (Q) for all A ∈ Ft .
If F is balanced, then Q ≥ Q′ a.s. implies Et (Q) ≥ Et (Q′).
If F (ω, t , y ,0) = 0 then Et (Q) = Q for all Q ∈ L2(Ft ).
If F is independent of y, then Et (Q + q) = Et (Q) + q for all
q ∈ L2(Ft ).
If F is balanced and concave, then E is concave.
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Conclusions

We have presented a theory of BSDEs in general probability spaces
Our only assumption is that L2(FT ) is separable.
This unites the discrete and continuous theories of BSDEs.
We have conditions for existence of unique solutions of BSDEs in
this context, based on Lipschitz continuity.
We have a version of the comparison theorem for this situation.
This allows modelling of various situations with less continuity
than classically required.
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