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Abstract

We consider the problem of controlling optimally a delay jump
diffusion, i.e. a system described by a stochastic differential
equation with delay, driven by Brownian motions and
compensated Poisson random measures. Such delay systems
may occur in several situations, e.g. in finance and biology
where the growth of the state depends not only on the current
value of the state but also on previous state values.
We give both a sufficient and a necessary maximum principle
for such control problems. These maximum principles involve
backward stochastic differential equations (BSDEs) which are
”anticipative”, in the sense that they have a time-advanced
drift coefficient. We prove existence and uniqueness theorems
for such time-advanced BSDEs. The results are illustrated by
examples.
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1 INTRODUCTION

Let B(t) = B(t, ω) be a Brownian motion and
Ñ(dt, dz) := N(dt, dz)− ν(dz)dt, where ν is the Lévy measure of
the jump measure N(·, ·), be an independent compensated Poisson
random measure on a filtered probability space
(Ω,F , {Ft}0≤t≤T ,P).
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We consider a controlled stochastic delay equation of the form

dX (t) = b(t,X (t),Y (t),A(t), u(t), ω)dt

+ σ(t,X (t),Y (t),A(t), u(t), ω)dB(t)

+

∫
R
θ(t,X (t),Y (t),A(t), u(t), z , ω)Ñ(dt, dz) ; t ∈ [0,T ](1.1)

(1.2) X (t) = x0(t) ; t ∈ [−δ, 0],

where

(1.3) Y (t) = X (t − δ), A(t) =

∫ t

t−δ
e−ρ(t−r)X (r)dr ,

and δ > 0, ρ ≥ 0 and T > 0 are given constants.
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Here

b :[0,T ]× R× R× R× U × Ω→ R
σ :[0,T ]× R× R× R× U × Ω→ R

and
θ : [0,T ]× R× R× R× U × R0 × Ω→ R

are given functions such that, for all t, b(t, x , y , a, u, ·),
σ(t, x , y , a, u, ·) and θ(t, x , y , a, u, z , ·) are Ft-measurable for all
x ∈ R, y ∈ R, a ∈ R, u ∈ U and z ∈ R0 := R\{0}. The function
x0(t) is assumed to be continuous, deterministic.
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Let Et ⊆ Ft ; t ∈ [0,T ] be a given subfiltration of {Ft}t∈[0,T ],
representing the information available to the controller who decides
the value of u(t) at time t. For example, we could have
Et = F(t−c)+ for some given c > 0. Let U ⊂ R be a given set of
admissible control values u(t) ; t ∈ [0,T ] and let AE be a given
family of admissible control processes u(·), included in the set of
càdlàg, E-adapted and U-valued processes u(t) ; t ∈ [0,T ] such
that (1.1)-(1.2) has a unique solution X (·) ∈ L2(λ× P) where λ
denotes the Lebesgue measure on [0,T ].
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The performance functional is assumed to have the form
(1.4)

J(u) = E

[∫ T

0
f (t,X (t),Y (t),A(t), u(t), ω)dt + g(X (T ), ω)

]
; u ∈ AE

where f = f (t, x , y , a, u, ω) : [0,T ]×R×R×R×U ×Ω→ R and
g = g(x , ω) : R× Ω→ R are given C1 functions w.r.t. (x , y , a, u)
such that

E [

∫ T

0
{|f (t,X (t),A(t), u(t))|+

∣∣∣∣ ∂f

∂xi
(t,X (t),Y (t),A(t), u(t))

∣∣∣∣2}dt

+|g(X (T ))|+ |g ′(X (T ))|2] <∞ for xi = x , y , a and u.

Here, and in the following, we suppress the ω, for notational
simplicity.
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The problem we consider in this paper is the following:

Find Φ(x0) and u∗ ∈ AE such that

(1.5) Φ(x0) := sup
u∈AE

J(u) = J(u∗).

Any control u∗ ∈ AE satisfying (1.5) is called an optimal control.
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Variants of this problem have been studied in several papers.
Stochastic control of delay systems is a challenging research area,
because delay systems have, in general, an infinite-dimensional
nature. Hence, the natural general approach to them is
infinite-dimensional. For this kind of approach in the context of
control problems we refer to Chojnowska-Michalik (1978), Federico
(2009), Federico,Goldys and Gozzi (2009, 2009a) [1, 7, 8, 9] in the
stochastic Brownian case.
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Nevertheless, in some cases systems with delay can be reduced to
finite-dimensional systems, in the sense that the information we
need from their dynamics can be represented by a
finite-dimensional variable evolving in terms of itself. In such a
context, the crucial point is to understand when this finite
dimensional reduction of the problem is possible and/or to find
conditions ensuring that. There are some papers dealing with this
subject in the stochastic Brownian case: We refer to Kolmanovski
and Shaikhet (1996), Elsanousi,Ø. and Sulem (2000), Larssen
(2002), Larssen and Risebro (2003), Ø. and Sulem (2001)
[10, 6, 12, 13, 15]. The paper David (2008) [3] represents an
extension of Ø. and Sulem (2001)[15] to the case when the
equation is driven by a Lévy noise.
We also mention the paper El Karoui and Hamadène (2003) [5],
where certain control problems of stochastic functional differential
equations are studied by means of the Girsanov transformation.
This approach, however, does not work if there is a delay in the
noise components.
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Our approach in the current paper is different from all the above.
Note that the presence of the terms Y (t) and A(t) in (1.1) makes
the problem non-Markovian and we cannot use a (finite
dimensional) dynamic programming approach. However, we will
show that it is possible to obtain a (Pontryagin-Bismut-Bensoussan
type) maximum principle for the problem. To this end, we define
the Hamiltonian

H : [0,T ]× R× R× R× U × R× R×R× Ω→ R

by

H(t, x , y , a, u, p, q, r(·), ω) = H(t, x , y , a, u, p, q, r(·)) = f (t, x , y , a, u)

+ b(t, x , y , a, u)p + σ(t, x , y , a, u)q +

∫
R0

θ(t, x , y , a, u, z)r(z)ν(dz);

(1.6)

where R is the set of functions r : R0 → R such that the last term
in (1.6) converges.
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We assume that b, σ and θ are C1 functions with respect to
(x , y , a, u) and that

E

[∫ T

0

{∣∣∣∣ ∂b

∂xi
(t,X (t),Y (t),A(t), u(t))

∣∣∣∣2 +

∣∣∣∣ ∂σ∂xi
(t,X (t),Y (t),A(t), u(t))

∣∣∣∣2

+

∫
R0

∣∣∣∣ ∂θ∂xi
(t,X (t),Y (t),A(t), u(t), z)

∣∣∣∣2 ν(dz)

}
dt

]
<∞

(1.7)

for xi = x , y , a and u.
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Associated to H we define the adjoint processes
p(t), q(t), r(t, z) ; t ∈ [0,T ], z ∈ R0, by the following backward
stochastic differential equation (BSDE):

dp(t) = µ(t)dt + q(t)dB(t) +

∫
R0

r(t, z)Ñ(dt, dz) ; t ∈ [0,T ]

p(T ) = g ′(X (T )),

(1.8)
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where

µ(t) = −∂H

∂x
(t,X (t),Y (t),A(t), u(t), p(t), q(t), r(t, ·))

− ∂H

∂y
(t + δ,X (t + δ),Y (t + δ),A(t + δ),

u(t + δ), p(t + δ), q(t + δ), r(t + δ, ·))χ[0,T−δ](t)

− eρt
(∫ t+δ

t

∂H

∂a
(s,X (s),Y (s),A(s), u(s), p(s), q(s), r(s, ·))e−ρsχ[0,T ](s)ds

)
.

(1.9)
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Note that this BSDE is anticipative, or time-advanced, in the sense
that the driver µ(t) contains future values of
X (s), u(s), p(s), q(s), r(s, ·) ; s ≤ t + δ.
In the case when there are no jumps and no integral term in (1.9),
anticipative BSDEs (ABSDEs for short) have been studied by Peng
and Yang (2009) [17], who prove existence and uniqueness of such
equations under certain conditions. They also relate a class of
linear ABSDEs to a class of linear stochastic delay control problems
with no delay in the noise coefficients. Thus, in our paper we
extend this relation to general nonlinear control problems and
general nonlinear ABSDEs by means of the maximum principle,
and throughout the discussion we include the possibility of delays
also in all the noise coefficients, as well as the possibility of jumps.
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2 A SUFFICIENT MAXIMUM PRINCIPLE

In this section we establish a maximum principe of sufficient type,
i.e. we show that - under some assumptions - maximizing the
Hamiltonian leads to an optimal control.
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THEOREM 2.1 [Sufficient maximum principle]

Let û ∈ AE with corresponding state processes X̂ (t), Ŷ (t), Â(t)
and adjoint processes p̂(t), q̂(t), r̂(t, z), assumed to satisfy the
ABSDE (1.8)-(1.9). Suppose the following hold:

(i) The functions x → g(x) and

(2.1) (x , y , a, u)→ H(t, x , y , a, u, p̂(t), q̂(t), r̂(t, ·))

are concave, for each t ∈ [0,T ], a.s.
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(ii)

E

[∫ T

0

{
p̂(t)2

(
σ2(t) +

∫
R0

θ2(t, z)ν(dz)

)
+X 2(t)

(
q̂2(t) +

∫
R0

r̂2(t, z)ν(dz)

)}
dt

]
<∞(2.2)

for all u ∈ AE .

(iii)

max
v∈U

E
[
H(t, X̂ (t), X̂ (t − δ), Â(t), v , p̂(t), q̂(t), r̂(t, ·)) | Et

]

= E
[
H(t, X̂ (t), X̂ (t − δ), Â(t), û(t), p̂(t), q̂(t), r̂(t, ·)) | Et

](2.3)

for all t ∈ [0,T ], a.s.

Then û(t) is an optimal control for the problem (1.5).
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Proof. Choose u ∈ AE and consider

(2.4) J(u)− J(û) = I1 + I2

where
(2.5)

I1 = E

[∫ T

0
{f (t,X (t),Y (t),A(t), u(t))− f (t, X̂ (t), Ŷ (t), Â(t), û(t))}dt

]

(2.6) I2 = E [g(X (T ))− g(X̂ (T ))].
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By the definition of H and concavity of H we have

I1 = E

[∫ T

0
{H(t,X (t),Y (t),A(t), u(t), p̂(t), q̂(t), r̂(t, ·))

− H(t, X̂ (t), Ŷ (t), Â(t), û(t), p̂(t), q̂(t), r̂(t, ·))

− (b(t,X (t),Y (t),A(t), u(t))− b(t, X̂ (t), Ŷ (t), Â(t), û(t)))p̂(t)

− (σ(t,X (t),Y (t),A(t), u(t))− σ(t, X̂ (t), Ŷ (t), Â(t), û(t)))q̂(t)

−
∫

R
(θ(t,X (t),Y (t),A(t), u(t), z)− θ(t, X̂ (t), Ŷ (t), Â(t), û(t), z))r̂(t, z)ν(dz)}dt

]
≤ E

[∫ T

0
{∂Ĥ

∂x
(t)(X (t)− X̂ (t)) +

∂Ĥ

∂y
(t)(Y (t)− Ŷ (t)) +

∂Ĥ

∂a
(t)(A(t)− Â(t))

+
∂H

∂u
(t)(u(t)− û(t))− (b(t)− b̂(t))p̂(t)− (σ(t)− σ̂(t))q̂(t)

−
∫

R
(θ(t, z)− θ̂(t, z))r̂(t, z)ν(dz)}dt

]
,

(2.7)
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where we have used the abbreviated notation

∂Ĥ

∂x
(t) =

∂H

∂x
(t, X̂ (t), Ŷ (t), Â(t), û(t), p̂(t), q̂(t), r̂(t, ·)),

b(t) = b(t,X (t),Y (t),A(t), u(t)),

b̂(t) = b(t, X̂ (t), Ŷ (t), Â(t), û(t) etc.
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Since g is concave we have, by (2.2),

I2 ≤ E [g ′(X̂ (T ))(X (T )− X̂ (T ))] = E [p̂(T )(X (T )− X̂ (T ))]

= E

[∫ T

0
p̂(t)(dX (t)− dX̂ (t)) +

∫ T

0
(X (t)− X̂ (t))dp̂(t)

+

∫ T

0
(σ(t)− σ̂(t))q̂(t)dt +

∫ T

0

∫
R

(θ(t, z)− θ̂(t, z))r̂(t, z)ν(dz)dt

]
= E

[∫ T

0
(b(t)− b̂(t))p̂(t)dt +

∫ T

0
(X (t)− X̂ (t))µ(t)dt

+

∫ T

0
(σ(t)− σ̂(t))q̂(t)dt +

∫ T

0

∫
R

(θ(t, z)− θ̂(t, z))r̂(t, z)ν(dz)dt

]
.

(2.8)
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Combining (2.4)-(2.8) we get, using that X (t) = X̂ (t) = x0(t) for
all t ∈ [−δ, 0],

J(u)− J(û) ≤ E

[∫ T

0

{
∂H

∂x
(t)(X (t)− X̂ (t)) +

∂H

∂y
(t)(Y (t)− Ŷ (t))

+
∂Ĥ

∂a
(t)(A(t)− Â(t)) +

∂Ĥ

∂u
(t)(u(t)− û(t)) + µ(t)(X (t)− X̂ (t))

}
dt

]

= E

[∫ T+δ

δ

{
∂Ĥ

∂x
(t − δ) +

∂Ĥ

∂y
(t)χ[0,T ](t) + µ(t − δ)

}
(Y (t)− Ŷ (t))dt

+

∫ T

0

∂Ĥ

∂a
(t)(A(t)− Â(t))dt +

∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]
.

(2.9)
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Using integration by parts and substituting r = t − δ, we get∫ T

0

∂Ĥ

∂a
(s)(A(s)− Â(s))ds

=

∫ T

0

∂Ĥ

∂a
(s)

∫ s

s−δ
e−ρ(s−r)(X (r)− X̂ (r))drds

=

∫ T

0

(∫ r+δ

r

∂Ĥ

∂a
(s)e−ρsχ[0,T ](s)ds

)
eρr (X (r)− X̂ (r))dr

=

∫ T+δ

δ

(∫ t

t−δ

∂Ĥ

∂a
(s)e−ρsχ[0,T ](s)ds

)
eρ(t−s)(X (t − δ)− X̂ (t − δ))dt.

(2.10)
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Combining this with (2.9) and using (1.9) we obtain

J(u)− J(û) ≤

[∫ T+δ

δ

{
∂Ĥ

∂x
(t − δ) +

∂Ĥ

∂y
(t)χ[0,T ](t)

+

(∫ t

t−δ

∂Ĥ

∂a
(s)e−ρsχ[0,T ](s)ds

)
eρ(t−δ) + µ(t − δ)

}
(Y (t)− Ŷ (t))dt

+

∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]

= E

[∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]

= E

[∫ T

0
E

[
∂Ĥ

∂u
(t)(u(t)− û(t)) | Et

]
dt

]

= E

[∫ T

0
E

[
∂Ĥ

∂u
(t) | Et

]
(u(t)− û(t))dt

]
≤ 0.
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The last inequality holds because v = û(t) maximizes
E [H(t, X̂ (t), Ŷ (t), Â(t), v , p̂(t), q̂(t), r̂(t, ·) | Et ] for each
t ∈ [0,T ].

This proves that û is an optimal control. �
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3 A NECESSARY MAXIMUM PRINCIPLE

A drawback with the sufficient maximum principle in Section 2 is
the condition of concavity, which does not always hold in the
applications. In this section we will prove a result going in the
other direction. More precisely, we will prove the equivalence
between being a directional critical point for J(u) and a critical
point for the conditional Hamiltonian. To this end, we need to
make the following assumptions:
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(i) For all u ∈ AE and all bounded β ∈ AE there exists ε > 0 such
that

u + sβ ∈ AE for all s ∈ (−ε, ε).

(ii) For all t0 ∈ [0,T ] and all bounded Et0-measurable random
variables α the control process β(t) defined by

(3.1) β(t) = αχ[t0,T ](t) ; t ∈ [0,T ]

belongs to AE .

(iii) For all bounded β ∈ AE the derivative process

(3.2) ξ(t) :=
d

ds
X u+sβ(t) |s=0

exists and belongs to L2(λ× P).
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It follows from (1.1) that

dξ(t) =

(3.3)

{
∂b

∂x
(t)ξ(t) +

∂b

∂y
(t)ξ(t − δ) +

∂b

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂b

∂u
(t)β(t)

}
dt

+

{
∂σ

∂x
(t)ξ(t) +

∂σ

∂y
(t)ξ(t − δ) +

∂σ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂σ

∂u
(t)β(t)

}
dB(t)

+

∫
R0

{
∂θ

∂x
(t, z)ξ(t) +

∂θ

∂y
(t, z)ξ(t − δ)

+
∂θ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂θ

∂u
(t)β(t)

}
Ñ(dt, dz)

(3.4)
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where we for simplicity of notation have put

∂b

∂x
(t) =

∂b

∂x
(t,X (t),X (t − δ),A(t), u(t)) etc . . .

and we have used that

(3.5)
d

ds
Y u+sβ(t) |s=0=

d

ds
X u+sβ(t − δ) |s=0= ξ(t − δ)

and

d

ds
Au+sβ(t) |s=0=

d

ds

(∫ t

t−δ
e−ρ(t−r)X u+sβ(r)dr

)
|s=0

=

∫ t

t−δ
e−ρ(t−r) d

ds
X u+sβ(r) |s=0 dt =

∫ t

t−δ
e−ρ(t−r)ξ(r)dr .(3.6)
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Note that

(3.7) ξ(t) = 0 for t ∈ [−δ, 0].

THEOREM 3.1[Necessary maximum principle]

Suppose û ∈ AE with corresponding solutions X̂ (t) of (1.1)-(1.2)
and p̂(t), q̂(t), r̂(t, z) of (1.7)-(1.8) and corresponding derivative
process ξ̂(t) given by (3.2).
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Assume that

E

[∫ T

0
p̂2(t)

{(
∂σ

∂x

)2

(t)ξ̂2(t) +

(
∂σ

∂y

)2

(t)ξ2(t − δ)

+

(
∂σ

∂a

)2

(t)

(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂σ

∂u

)2

(t)

+

∫
R0

{(
∂θ

∂x

)2

(t, z)ξ̂2(t) +

(
∂θ

∂y

)2

(t, z)ξ̂2(t − δ)

+

(
∂θ

∂a

)2

(t, z)

(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂θ

∂u

)2

(t, z)

}
ν(dz)

}
dt

+

∫ T

0
ξ̂2(t)

{
q̂2(t) +

∫
R0

r̂2(t, z)ν(dz)

}
dt

]
<∞.

(3.8)
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Then the following are equivalent:

(i)
d

ds
J(û + sβ) |s=0= 0 for all bounded β ∈ AE .

(ii)E

[
∂H

∂u
(t, X̂ (t), Ŷ (t), Â(t), u, p̂(t), q̂(t), r̂(t, ·)) | Et

]
u=û(t)

= 0

a.s. for all t ∈ [0,T ].
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Proof. For simplicity of notation we write û = u, X̂ = X , p̂ = p,
q̂ = q and r̂ = r in the following.

Suppose (i) holds. Then
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0 =
d

ds
J(u + sβ) |s=0

=
d

ds
E

[∫ T

0
f (t,X u+sβ(t),Y u+sβ(t),Au+sβ(t), u(t) + sβ(t))dt + g(X u+sβ(T ))

]
|s=0

= E

[∫ T

0

{
∂f

∂x
(t)ξ(t) +

∂f

∂y
(t)ξ(t − δ) +

∂f

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dt +

∂f

∂u
(t)β(t)

}
dt + g ′(X (T ))ξ(T )

]
(3.9)
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= E

[∫ T

0

{
∂H

∂x
(t)− ∂b

∂x
(t)p(t)− ∂σ

∂x
(t)q(t)−

∫
R

∂θ

∂x
(t, z)r(t, z)ν(dz)

}
ξ(t)dt

+

∫ T

0

{
∂H

∂y
(t)− ∂b

∂y
(t)p(t)− ∂σ

∂y
(t)q(t)−

∫
R

∂θ

∂y
(t, z)r(t, z)ν(dz)

}
ξ(t − δ)dt

+

∫ T

0

{
∂H

∂a
(t)− ∂b

∂a
(t)p(t)− ∂σ

∂a
(t)q(t)−

∫
R

∂θ

∂a
(t, z)r(t, z)ν(dz)

}(∫ t

t−δ
e−ρ(t−r)ξ(r)dr

)
dt

+

∫ T

0

∂f

∂u
(t)β(t)dt + g ′(X (T ))ξ(T )

]
.

(3.10)
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By (3.3),

E [g ′(X (T ))ξ(T )] = E [p(T )ξ(T )] =

E

[∫ T

0
p(t)dξ(t) +

∫ T

0
ξ(t)dp(t)

+

∫ T

0
q(t)

{
∂σ

∂x
(t)ξ(t) +

∂σ

∂y
(t)ξ(t − δ)

+
∂σ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂σ

∂u
(t)β(t)

}
dt

+

∫ T

0

∫
R

r(t, z)

{
∂θ

∂x
(t, z)ξ(t) +

∂θ

∂y
(t, z)ξ(t − δ)

+
∂θ

∂a
(t, z)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr

+
∂θ

∂u
(t)β(t)

}
ν(dz)dt

]
(3.11)
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= E

[∫ T

0
p(t)

{
∂b

∂x
(t)ξ(t) +

∂b

∂y
(t)ξ(t − δ) +

∂b

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂b

∂u
(t)β(t)

}
dt

+

∫ T

0
ξ(t)µ(t)dt

+

∫ T

0
q(t)

{
∂σ

∂x
(t)ξ(t) +

∂σ

∂y
(t)ξ(t − δ) +

∂σ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂σ

∂u
(t)β(t)

}
dt

+

∫ T

0

∫
R

r(t, z)

{
∂θ

∂x
(t, z)ξ(t) +

∂θ

∂y
(t, z)ξ(t − δ) +

∂θ

∂a
(t, z)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr

+
∂θ

∂u
(t, z)β(t)

}
ν(dz)dt

]
(3.12)
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Combining (3.9) and (3.12) we get

0 = E

[∫ T

0
ξ(t)

{
∂H

∂x
(t) + µ(t)

}
dt +

∫ T

0
ξ(t − δ)

∂H

∂y
(t)dt

+

∫ T

0

(∫ t

t−δ
e−ρ(t−r)ξ(r)dr

)
∂H

∂a
(t)dt +

∫ T

0

∂H

∂u
(t)β(t)dt

]
= E

[∫ T

0
ξ(t)

{
∂H

∂x
(t)− ∂H

∂x
(t)− ∂H

∂y
(t + δ)χ[0,T−δ](t)

−eρt
(∫ t+δ

t

∂H

∂a
(s)e−ρsχ[0,T ](s)ds

)}
dt +

∫ T

0
ξ(t − δ)

∂H

∂y
(t)dt

+

∫ T

0

(∫ s

s−δ
e−ρ(s−t)ξ(t)dt

)
∂H

∂a
(s)ds +

∫ T

0

∂H

∂u
(t)β(t)dt

]
(3.13)
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= E

[∫ T

0
ξ(t)

{
−∂H

∂y
(t + δ)χ[0,T−δ](t)− eρt

(∫ t+δ

t

∂H

∂a
(s)e−ρsχ[0,T ](s)ds

)}
dt

+

∫ T

0
ξ(t − δ)

∂H

∂y
(t)dt

+eρt
∫ T

0

(∫ t+δ

t

∂H

∂a
(s)e−ρsχ[0,T ](s)ds

)
ξ(t)dt +

∫ T

0

∂H

∂u
(t)β(t)dt

]

= E

[∫ T

0

∂H

∂u
(t)β(t)dt

]
,

(3.14)

where we again have used integration by parts.
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If we apply (3.14) to

β(t) = α(ω)χ[s,T ](t)

where α(ω) bounded and Et0-measurable, s ≥ t0, we get

E

[∫ T

s

∂H

∂u
(t)dt α

]
= 0.

Differentiating with respect to s we obtain

E

[
∂H

∂u
(s)α

]
= 0.

Since this holds for all s ≥ t0 and all α we conclude that

E

[
∂H

∂u
(t0) | Et0

]
= 0.

This shows that (i) ⇒ (ii).
Conversely, since every bounded β ∈ AE can be approximated by
linear combinations of controls β of the form (3.2), we can prove
that (ii) ⇒ (i) by reversing the above argument. �
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4 TIME-ADVANCED BSDE’S WITH JUMPS

We now study time-advanced backward stochastic differential
equations driven both by Brownian motion B(t) and compensated
Poisson random measures Ñ(dt, dz).
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4.1 Framework

Given a positive constant δ, denote by D([0, δ],R) the space of all
càdlàg paths from [0, δ] into R. For a path X (·) : R+ → R, Xt will
denote the function defined by Xt(s) = X (t + s) for s ∈ [0, δ]. Put
H = L2(ν). Consider the L2 spaces V1 := L2([0, δ], ds) and
V2 := L2([0, δ]→ H, ds). Let

F : R+ × R× R× V1 × R× R× V1 ×H×H× V2 × Ω→ R

be a predictable function. Introduce the following Lipschitz
condition: There exists a constant C such that

|F (t, p1, p2, p, q1, q2, q, r1, r2, r , ω)− F (t, p̄1, p̄2, p̄, q̄1, q̄2, q̄, r̄1, r̄2, r̄ , ω)|
≤ C (|p1 − p̄1|+ |p2 − p̄2|+ |p − p̄|V1 + |q1 − q̄1|+ |q2 − q̄2|+ |q − q̄|V1

+ |r1 − r̄1|H + |r2 − r̄2|H + |r − r̄ |V2 .
(4.1)
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4.2 Existence and uniqueness (part 1)

We first consider the following time-advanced backward stochastic
differential equation in the unknown Ft adapted processes
(p(t), q(t), r(t, z)):

dp(t) = F
(
t, p(t), p(t + δ)χ[0,T−δ](t), ptχ[0,T−δ](t), q(t), q(t + δ)χ[0,T−δ](t),

qtχ[0,T−δ](t), r(t), r(t + δ)χ[0,T−δ](t), rtχ[0,T−δ](t)
)

dt

+ q(t)dB(t) +

∫
R

r(t, z)Ñ(dt, dz) ; t ∈ [0,T ]

(4.2)

(4.3) p(T ) = G ,

where G is a given Ft-measurable random variable.
Note that the time-advanced BSDE (1.8)-(1.9) for the adjoint
processes of the Hamiltonian is of this form.
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For this type of time-advanced BSDEs we have the following result:

Theorem
Assume that E [G 2] <∞ and that condition (4.1) is satisfied.
Then the BSDE (4.2)-(4.3) has a unique solution
p(t), q(t), r(t, z)) such that

(4.4) E

[∫ T

0

{
p2(t) + q2(t) +

∫
R

r2(t, z)ν(dz)

}
dt

]
<∞.
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Moreover, the solution can be found by inductively solving a
sequence of BSDEs backwards as follows:

STEP 0:

In the interval [T − δ,T ] we let p(t), q(t) and r(t, z) be defined as
the solution of the classical BSDE

dp(t) = F (t, p(t), 0, 0, q(t), 0, 0, r(t, z), 0, 0) dt

+ q(t)dB(t) +

∫
R

r(t, z)Ñ(dt, dz) ; t ∈ [T − δ,T ](4.5)

(4.6) p(T ) = G .
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STEP k ; k ≥ 1:

If the values of (p(t), q(t), r(t, z)) have been found for
t ∈ [T − kδ,T − (k − 1)δ], then if t ∈ [T − (k + 1)δ,T − kδ] the
values of p(t + δ), pt , q(t + δ), qt , r(t + δ, z) and rt are known and
hence the BSDE

dp(t) = F (t, p(t), p(t + δ), pt , q(t), q(t + δ), qt , r(t), r(t + δ), rt) dt

+ q(t)dB(t) +

∫
R

r(t, z)Ñ(dt, dz) ; t ∈ [T − (k + 1)δ,T − kδ]

(4.7)

(4.8) p(T − kδ) = the value found in Step k − 1

has a unique solution in [T − (k + 1)δ,T − kδ].
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We proceed like this until k is such that
T − (k + 1)δ ≤ 0 < T − kδ and then we solve the corresponding
BSDE on the interval [0,T − kδ].

Proof. The proof follows directly from the above inductive
procedure. The estimate (4.4) is a consequence of known
estimates for classical BSDEs (Pardoux-Peng). �
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4.3 Existence and uniqueness (part 2)

Next, consider the following backward stochastic differential
equation in the unknown Ft-adapted processes (p(t), q(t), r(t, x)):

dp(t) = F (t, p(t), p(t + δ), pt , q(t), q(t + δ), qt , r(t), r(t + δ), rt)dt

+ q(t)dBt +

∫
R

r(t, z)Ñ(dt, dz), t ∈ [0,T ]

(4.9)

(4.10) p(t) = G (t), t ∈ [T ,T + δ].

where G is a given FT -measurable stochastic process.
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Theorem

Assume E [supT≤t≤T+δ |G (t)|2] <∞ and that the condition (4.1)
is satisfied. Then the backward stochastic differential equation
(4.9) admits a unique solution (p(t), q(t), r(t, z)) such that

E [

∫ T

0
{p2(t) + q2(t) +

∫
R

r2(t, z)ν(dz)}dt] <∞.
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Proof

Step 1.

Assume F is independent of p1, p2 and p. Set
q0(t) := 0, r0(t, x) = 0. For n ≥ 1, define (pn(t), qn(t), rn(t, x))
to be the unique solution to the following backward stochastic
differential equation equation:

dpn(t) = F (t, qn−1(t), qn−1(t + δ), qn−1
t , rn−1(t, ·), rn−1(t + δ, ·), rn−1

t (·))dt

+ qn(t)dBt + rn(t, z)Ñ(dt, dz), t ∈ [0,T ]

(4.11)

pn(t) = G (t) t ∈ [T ,T + δ].
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The existence and uniqueness of the solution of above equation is
well known.
We then show that (pn(t), qn(t), rn(t, x)) forms a Cauchy
sequence.
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Step 2. General case

Let p0(t) = 0. For n ≥ 1, define (pn(t), qn(t), rn(t, z)) to be the
unique solution to the following BSDE:

dpn(t) = F (t, pn−1(t), pn−1(t + δ), pn−1
t , qn(t), qn(t + δ), qn

t , r
n(t, ·), rn(t + δ, ·), rn

t (·))dt

+ qn(t)dBt + rn(t, z)Ñ(dt, dz),

(4.12)

pn(t) = G (t); t ∈ [T ,T + δ].
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The existence of (pn(t), qn(t), rn(t, z)) is proved in Step 1.
By similar arguments as above, we deduce after some
computations that

E [

∫ T

0
|pn+1(s)− pn(s)|2ds] ≤ eCNT T n

n!
.

By this inequality and a similar argument as in Step 1, it can be
shown that (pn(t), qn(t), rn(t, z)) converges to some limit
(p(t), q(t), r(t, z)), which is the unique solution of equation (4.9).

�
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Theorem 4.3

Assume E
[
supT≤t≤T+δ |G (t)|2α

]
<∞ for some α > 1 and that

the following condition holds:

|F (t, p1, p2, p, q1, q2, q, r1, r2, r)− F (t, p̄1, p̄2, p̄, q̄1, q̄2, q̄, r̄1, r̄2, r̄)|
≤ C (|p1 − p̄1|+ |p2 − p̄2|+ sup

0≤s≤δ
|p(s)− p̄(s)|+ |q1 − q̄1|

+ |q2 − q̄2|+ |q − q̄|V1 + |r1 − r̄1|H + |r2 − r̄2|H + |r − r̄ |V2 .
(4.13)

Then the BSDE (4.9) admits a unique solution (p(t), q(t), r(t, z))
such that

E

[
sup

0≤t≤T
|p(t)|2α +

∫ T

0
{q2(t) +

∫
R

r2(t, z)ν(dz)}dt

]
<∞.
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Proof

Step 1.

Assume F is independent of p1, p2 and p. In this case the
condition above reduces to assumption (4.1). By the Step 1 in the
proof of Theorem 4.1, there is a unique solution
(p(t), q(t), r(t, z)) to equation (4.9).
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Step 2. General case

Let p0(t) = 0. For n ≥ 1, define (pn(t), qn(t), rn(t, z)) to be the
unique solution to the following BSDE:

dpn(t) =F (t, pn−1(t), pn−1(t + δ), pn−1
t , qn(t), qn(t + δ), qn

t , r
n(t, ·), rn(t + δ, ·), rn

t (·))dt

+ qn(t)dBt + rn(t, z)Ñ(dt, dz),

(4.14)

pn(t) = G (t), t ∈ [T ,T + δ].

By Step 1, (pn(t), qn(t), rn(t, z)) exists. We then proceed to show
that (pn(t), qn(t), rn(t, z)) forms a Cauchy sequence.
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After some computations we end up with the estimate

E

[∫ T

0
sup

t≤s≤T
|pn+1(s)− pn(s)|2αds

]
≤ eCNT T n

n!
.

Using this inequality and a similar argument as in Step 1, we can
show that (pn(t), qn(t), rn(t, z)) converges to some limit
(p(t), q(t), r(t, z)), which is the unique solution of equation (4.9).

�
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Finally we give a result when the coefficient f is independent of z
and r .

Theorem 4.4

Assume that E

[
sup

T≤t≤T+δ
|G (t)|2

]
<∞ and that F satisfies

(4.15)
|F (t, y1, y2, p)−F (t, ȳ1, ȳ2, p̄)| ≤ C (|y1−ȳ1|+|y2−ȳ2|+ sup

0≤s≤δ
|p(s)−p̄(s)|).

Then the backward stochastic differential equation (4.9) admits a
unique solution.
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5 EXAMPLES

Example 5.1 (Optimal consumption from a cash flow with delay)

Let α(t), β(t) and γ(t, z) be given bounded adapted processes,

α(t) deterministic. Assume that

∫
R
γ2(t, z)ν(dz) <∞. Consider a

cash flow X 0(t) with the dynamics, for t ∈ [0,T ],
(5.1)

dX 0(t) = X 0(t − δ)

[
α(t)dt + β(t)dB(t) +

∫
R
γ(t, z)Ñ(dt, dz)

]
and such that

(5.2) X 0(t) = x0(t) > 0 ; t ∈ [−δ, 0],

where x0(t) is a given bounded deterministic function.
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Suppose that at time t ∈ [0,T ] we consume at the rate c(t) ≥ 0,
a càdlàg adapted process. Then the dynamics of the corresponding
net cash flow X (t) = X c(t) is

dX (t) = [X (t − δ)α(t)− c(t)]dt + X (t − δ)β(t)dB(t)(5.3)

+ X (t − δ)

∫
R
γ(t, z)Ñ(dt, dz) ; t ∈ [0,T ](5.4)

(5.5) X (t) = x0(t) ; t ∈ [−δ, 0].
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Let U1(t, c, ω) : [0,T ]× R+ × Ω→ R be a given stochastic utility
function satisfying the following conditions

t → U1(t, c , ω) is Ft-adapted for each c ≥ 0,

c → U1(t, c , ω) is C1,
∂U1

∂c
(t, c , ω) > 0,

c → ∂U1

∂c
(t, c, ω) is strictly decreasing

lim
c→∞

∂U1

∂c
(t, c, ω) = 0 for all t, ω ∈ [0,T ]× Ω.(5.6)
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Put v0(t, ω) =
∂U1

∂c
(t, 0, ω) and define

(5.7) I (t, v , ω) =


0 if v ≥ v0(t, ω)(
∂U1

∂c
(t, ·, ω)

)−1

(v) if 0 ≤ v < v0(t, ω)
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Suppose we want to find a consumption rate ĉ(t) such that

(5.8) J(ĉ) = sup{J(c) ; c ∈ A}

where

J(c) = E

[∫ T

0
U1(t, c(t), ω)dt + kX (T )

]
.

Here k > 0 is constant and A is the family of all càdlàg,
Ft-adapted processes c(t) ≥ 0 such that E [|X (T )|] <∞.
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In this case the Hamiltonian given by (1.6) gets the form

H(t, x , y , a, u, p, q, r(·), ω) = U1(t, c , ω) + (α(t)y − c)p

+ yβ(t)q + y

∫
R
γ(t, z)r(z)ν(dz).(5.9)

Maximizing H with respect to c gives the following first order
condition for an optimal ĉ(t):

(5.10)
∂U1

∂c
(t, ĉ(t), ω) = p(t).
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The time-advanced BSDE for p(t), q(t), r(t, z) is, by (1.8)-(1.9),

dp(t) =

−
{
α(t)p(t + δ) + β(t)q(t + δ) +

∫
R
γ(t, z)r(t + δ, z)ν(dz)

}
χ[0,T−δ](t)dt

+ q(t)dB(t) +

∫
R

r(t, z)Ñ(dt, dz) ; t ∈ [0,T ].

(5.11)

(5.12) p(T ) = k.
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Since k is deterministic, we can choose q = r = 0 and
(5.11)-(5.12) becomes

(5.13) dp(t) = −α(t)p(t + δ)χ[0,T−δ](t)dt ; t < T

(5.14) p(t) = k for t ∈ [T − δ,T + δ].

To solve this we introduce

h(t) := p(T − t) ; t ∈ [−δ,T ].

Then

dh(t) = −dp(T − t) = α(T − t)p(T − t + δ)dt

= α(T − t)p(T − (t − δ))dt = α(T − t)h(t − δ)dt(5.15)

for t ∈ [0,T ], and

(5.16) h(t) = p(T − t) = k for t ∈ [−δ, 0].
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This determines h(t) inductively on each interval
[jδ, (j + 1)δ] ; j = 1, 2, . . . , as follows:

If h(s) is known on [(j − 1)δ, jδ], then for t ∈ [jδ, (j + 1)δ] we have

(5.17) h(t) = h(jδ)+

∫ t

jδ
h′(s)ds = h(jδ)+

∫ t

jδ
α(T−s)h(s−δ)ds.
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We have proved:

PROPOSITION 5.1

(Optimal consumption rate in a stochastic system with delay)

The optimal consumption rate ĉδ(t) for the problem (5.3)-(5.5),
(5.8) is given by

(5.18) ĉδ(t) = I (t, hδ(T − t), ω),

where hδ(·) = h(·) is determined by (5.16)-(5.17).
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REMARK 5.2

Assume that α(t) = α > 0 for all t ∈ [0,T ]. Then we see by
induction on (5.17) that

0 ≤ δ1 < δ2 ⇒ hδ1(t) > hδ2(t) for all t ∈ (0,T ]

and hence, perhaps suprisingly,

0 ≤ δ1 < δ2 ⇒ ĉδ1(t) < ĉδ2(t) for all t ∈ [0,T ).

Thus the optimal consumption rate increases if the delay increases.
The explanation for this may be that the delay postpones the
negative effect on the growth of the cash flow caused by the
consumption.
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