Ying Hu (IRMAR - Université Rennes 1)

joint work with

Arnaud Debussche (IRMAR, ENS Cachan) Marco Fuhrman (Politecnico Milano) Gianmario Tessitore (Bicocca Milano)

Tamerza, October 2010

Setting of the control problem and some references

Ergodic Control Problem

We address the following optimal control problem with

State equation

$$dX_t^{x,u} = (AX_t^{x,u} + F(X_t^{x,u}))dt + GdW_t + GR(u_t), \qquad X_0^{x,u} = x$$

Cost functional

$$J(x,u) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \int_0^T L(X_s^{x,u}, u_s) ds.$$

Main features

ergodic cost functional infinite dimensional equation (Banach space valued) possibly degenerate G

Setting of the control problem and some references

Very incomplete list of references

BSDEs and infinite horizon stochastic control

- P. Briand and Y. Hu, J. Funct. Anal. (1998) (Finite dimensions - all positive discounts)
- M. Fuhrman and G. Tessitore, Ann. Probab. (2004) (Infinite dimensions only large discounts)
- F. Masiero, A.M.O. (2007), (Banach spaces)

Setting of the control problem and some references

Ergodic stochastic control

- A. Bensoussan and J. Frehse, J. Reine Angew. Math. (1992) (Finite dimensions, classical solutions of HJB)
- M. Arisawa, P. L. Lions, Comm. Partial Differential Equations (1998) (Finite dimensions, viscosity solutions of HJB)
- B. Goldys and B. Maslowski, J. Math. Anal. Appl., (1999) (Infinite dimensions, mild solutions of HJB, smoothing of Kolmogorov semigroup)

Forward Equation

Forward (state) equation

$$\begin{cases} dX_t = AX_t dt + F(X_t) dt + G dW_t, \quad t \ge 0, \\ X_0 = x \in E. \end{cases}$$

E Banach, $E \subset H$ Hilbert space *H*.

• A generates a C_0 semigroup in E that has an extension to H.

- W is a cylindrical Wiener process in the Hilbert space Ξ
- $F: E \rightarrow E$ is continuous and has polynomial growth.
- A + F is strictly dissipative (with constant η).
- G is bdd. $\Xi \rightarrow H$. The stochastic convolution

$$W_t^A = \int_0^t S(t-s)GdW_s, \quad t \ge 0,$$

has an *E*-continuous version with $\sup_t \mathbb{E}|W_t^A|_E^2 < \infty$.

Forward Equation

Results on the forward (state) equation

$$\left\{ \begin{array}{ll} dX_t^{\times} = AX_t^{\times}dt + F(X_t^{\times})dt + GdW_t, \quad t \geq 0, \\ X_0^{\times} = x \in E. \end{array} \right.$$

- $\forall x \in E$ there exists a unique *E* continuous mild solution X^x .
- Moreover $|X_t^{x_1} X_t^{x_2}| \le e^{-\eta t} |x_1 x_2|, \ t \ge 0, \ x_1, x_2 \in E.$
- Finally $\sup_t \mathbb{E}|X_t^x|_E \leq C(1+|x|).$

Ergodic BSDEs

Ergodic BSDEs (EBSDEs)

$$Y_t^{\mathsf{x}} = Y_T^{\mathsf{x}} + \int_t^T \left[\psi(X_{\sigma}^{\mathsf{x}}, Z_{\sigma}^{\mathsf{x}}) - \lambda \right] d\sigma - \int_t^T Z_{\sigma}^{\mathsf{x}} dW_{\sigma}, \quad 0 \le t \le T < \infty,$$

or equivalently

$$-dY_t^{\mathsf{x}} = [\psi(X_t^{\mathsf{x}}, Z_t^{\mathsf{x}}) - \lambda] dt - Z_t^{\mathsf{x}} dW_t$$

A solution is a triple (Y, Z, λ) .

- λ is a real number.
- Y is a real continuous prog. meas. process such that $\mathbb{E}\sup_{t\in[0,T]}Y_s^2<\infty$, $\forall T>0$
- Z is a prog. meas. process with values in Ξ^* such that $\mathbb{E} \int_0^T |Z_s|_{\Xi^*}^2 < \infty$, $\forall T > 0$.

└─ Main Result

Main Result

On the function $\psi: \mathbf{E} \times \Xi^* \to \mathbb{R}$ we assume:

■
$$|\psi(x,z) - \psi(x',z')| \le K_x |x-x'| + K_z |z-z'|, x, x' \in E, z, z' \in \Xi^*.$$

Theorem (Existence of solutions for EBSDEs)

 $\exists \lambda \in \mathbb{R};$

$$\exists v: E \to \mathbb{R} \text{ Lipschitz } (v(0) = 0);$$

• $\exists \zeta : E \to \Xi^*$ measurable

such that if we set $ar{Y}^{ imes}_t := v(X^{ imes}_t), \ ar{Z}^{ imes}_t := \zeta(X^{ imes}_t)$

then $(\bar{Y}^x, \bar{Z}^x, \lambda)$ is a solution of the EBSDE.

Proof of main result

Sketch of the proof

Considering with strictly monotonic drift $\alpha > 0$:

$$Y_t^{x,\alpha} = Y_T^{x,\alpha} + \int_t^T (\psi(X_\sigma^x, Z_\sigma^{x,\alpha}) - \alpha Y_\sigma^{x,\alpha}) d\sigma - \int_t^T Z_\sigma^{x,\alpha} dW_\sigma.$$

Lemma (Briand-Hu 1998, Royer 2004)

 $\exists ! \text{ solution } (Y^{x,\alpha}, Z^{x,\alpha}) Y^{x,\alpha} \text{ bounded cont., } Z^{x,\alpha} \in L^2_{\mathcal{P}, \mathrm{loc}}.$

Moreover $|Y_t^{x,\alpha}| \leq M/\alpha$, \mathbb{P} -a.s. for all $t \geq 0$.

Define $v^{\alpha}(x) = Y_0^{\alpha,x}$. Clearly, $|v^{\alpha}(x)| \leq M/\alpha$ and $Y_t^{\alpha,x} = v^{\alpha}(X_t^x)$

Ergodic BSDEs

Proof of main result

Claim
$$|v^{\alpha}(x) - v^{\alpha}(x')| \leq \frac{K_x}{\eta}|x - x'|, \qquad x, x' \in E.$$

Proof of claim Set

$$\tilde{Y} = Y^{\alpha,x} - Y^{\alpha,x'}, \quad \tilde{Z} = Z^{\alpha,x} - Z^{\alpha,x'}, \quad \beta_t = \frac{\psi(X_t^{x'}, Z_t^{\alpha,x'}) - \psi(X_t^{x'}, Z_t^{\alpha,x})}{|Z_t^{\alpha,x} - Z_t^{\alpha,x'}|_{\Xi^*}^2} \left(Z_t^{\alpha,x} - Z_t^{\alpha,x'}\right)^*, \text{ notice } \beta \text{ bdd.}$$

$$f_t = \psi(X_t^x, Z_t^{x,\alpha}) - \psi(X_t^{x'}, Z_t^{x,\alpha}).$$

 $\exists \tilde{\mathbb{P}} \text{ under which } \tilde{W}_t = \int_0^t \beta_s ds + W_t \text{ is a Wiener process.}$

$$\implies \tilde{Y}_t = \tilde{Y}_T - \alpha \int_t^T \tilde{Y}_\sigma d\sigma + \int_t^T f_\sigma d\sigma - \int_t^T \tilde{Z}_\sigma d\tilde{W}_\sigma.$$

$$\implies |\tilde{Y}_t| \le e^{-\alpha(T-t)} \tilde{\mathbb{E}}^{\mathcal{F}_t} |\tilde{Y}_T| + \tilde{\mathbb{E}}^{\mathcal{F}_t} \int_t^T e^{-\alpha(s-t)} |f_s| ds$$

Since \tilde{Y} is bdd and $|f_t| \leq K_x e^{-\eta t} |x - x'|$ (by dissip.of forw. equat.) if $T \to \infty$ we get $|\tilde{Y}_t| \leq K_x (\eta + \alpha)^{-1} e^{\alpha t} |x - x'|$. \Box

Ergodic BSDEs

Proof of main result

Proof of main result

Set
$$\overline{v}^{\alpha}(x) = v^{\alpha}(x) - v^{\alpha}(0)$$
,
We know $|\overline{v}^{\alpha}(x)| \leq K_{x}\eta^{-1}|x|$; $\alpha|v^{\alpha}(0)| \leq M$; $\{\overline{v}^{\alpha}\}$ unif. Lip.
 $\implies \exists \alpha_{n} \searrow 0$ such that $\overline{v}^{\alpha_{n}}(x) \rightarrow \overline{v}(x)$, $\forall x$ and $\alpha_{n}\overline{v}^{\alpha_{n}}(0) \rightarrow \lambda$.
Define $\overline{Y}_{t}^{x,\alpha} = Y_{t}^{x,\alpha} - v^{\alpha}(0) = \overline{v}^{\alpha}(X_{t}^{x})$ and $\overline{Y}^{x} = \overline{v}(X^{x})$, then
 $\mathbb{E} \int_{0}^{T} |\overline{Y}_{t}^{x,\alpha_{n}} - \overline{Y}_{t}^{x}|^{2} dt \rightarrow 0$ and $\mathbb{E}|\overline{Y}_{T}^{x,\alpha_{n}} - \overline{Y}_{T}^{x}|^{2} \rightarrow 0$

By standard BSDE arguments $\exists \overline{Z}^{\times} \in L^{2}_{\mathcal{P}, \mathrm{loc}}(\Omega; L^{2}(0, \infty; \Xi))$ s. t.

$$\mathbb{E}\int_0^T |Z_t^{x,\alpha_n} - \overline{Z}_t^x|_{\Xi^*}^2 dt \to 0$$

Ergodic BSDEs

Proof of main result

Finally we remark that $\overline{Y}^{x,\alpha}$ verifies

$$\overline{Y}_t^{x,\alpha} = \overline{Y}_T^{x,\alpha} + \int_t^T (\psi(X_\sigma^x, Z_\sigma^{x,\alpha}) - \alpha \overline{Y}_\sigma^{x,\alpha} - \alpha v^\alpha(0)) d\sigma - \int_t^T Z_\sigma^{x,\alpha} dW_\sigma.$$

Now we can pass to the limit as $n \to \infty$ to obtain

$$\overline{Y}_t^{\mathsf{x}} = \overline{Y}_T^{\mathsf{x}} + \int_t^T (\psi(X_{\sigma}^{\mathsf{x}}, \overline{Z}_{\sigma}^{\mathsf{x}}) - \overline{\lambda}) d\sigma - \int_t^T \overline{Z}_{\sigma}^{\mathsf{x}} dW_{\sigma}.$$

The construction of $\zeta : E \to \Xi^*$ such that $\overline{Z}_t^x = \zeta(X_t^x)$, exploits the fact that the same holds for $\overline{Z}^{x,\alpha}$. \Box

Ergodic BSDEs

Remarks on uniqueness

Uniqueness of λ

The solution $(\overline{Y}^{x}, \overline{Z}^{x}, \lambda)$ we have constructed verifies

 $|\overline{Y}_t^{\mathsf{x}}| \leq c |X_t^{\mathsf{x}}|.$

If we require similar conditions then we immediately obtain uniqueness of $\boldsymbol{\lambda}.$

Theorem

Suppose that, for some $x \in E$, (Y', Z', λ') is a solution of (EBSDE) and verifies

$$|Y'_t| \le c_x(|X^x_t|+1), \text{ for all } t \ge 0.$$

Then $\lambda' = \lambda$.

Ergodic BSDEs

Remarks on uniqueness

Lack of uniqueness of EBSDEs

Clearly if (Y, Z, λ) is a solution then $(Y + c, Z, \lambda)$ is a solution.

Even if we ask $Y_0^0 = 0$ the solution to EBSDE is, not unique.

If we do not require $Y_t = v(X_t^{\times})$, $Z_t = \zeta(X_t^{\times})$ then can construct several solutions of the above EBSDE (with Y and Z bounded).

If we require $Y_t = v(X_t^{\times})$, $Z_t = \zeta(X_t^{\times})$ with v and ζ continuous and X^{\times} to be recursive (see [Seidler 1997]) then v can be characterized (as in [Goldys-Maslowski 1999]) by:

$$v(x) = \inf_{u} \limsup_{r\to 0} \limsup_{T\to\infty} \mathbb{E} \int_{0}^{\tau_{r}^{T}} [\psi(X_{s}^{x,u}, u(X_{s}^{x,u})) - \lambda] ds.$$

where $\tau_r^T = \inf\{s \in [0, T] : |X_s^{u, x}| < r\}.$

Optimal Ergodic Control problem

Let X^{\times} be the solution to equation

$$dX_t^{\times} = (AX_t^{\times,u} + F(X_t^{\times,u}))dt + GdW_t, \qquad X_0^{\times,u} = x$$

An admissible control u is a progressively measurable process with values in a Borel subset U of a complete metric space.

The ergodic cost corresponding to u and the starting point $x \in E$ is

$$J(x,u) = \limsup_{T\to\infty} \frac{1}{T} \mathbb{E}^{u,T} \int_0^T L(X_s^x, u_s) ds,$$

where

 $\rho_T^u = \exp\left(\int_0^T R(u_s) dW_s - \frac{1}{2} \int_0^T |R(u_s)|_{\Xi^*}^2 ds\right), \quad \mathbb{P}_T^u = \rho_T^u \mathbb{P}.$ Where $R: U \to \mathbb{R}, L: U \times E \to \mathbb{R}$ with R, L bdd in u; L Lip. in x. Optimal Ergodic Control

Ergodic control and EBSDEs

We first define the Hamiltonian in the usual way

$$\psi(x,z) = \inf_{u \in U} \{L(x,u) + zR(u)\}, \qquad x \in E, \ z \in \Xi^*.$$

Under the present assumptions ψ is a Lipschitz function and $\psi(\cdot,0)$ is bounded thus the EBSDE

$$-dY_t^{\mathsf{x}} = [\psi(X_t^{\mathsf{x}}, Z_t^{\mathsf{x}}) - \lambda] dt - Z_t^{\mathsf{x}} dW_t$$

has at least a solution $(Y^{\times}, Z^{\times}, \lambda)$

Optimal Ergodic Control

Synthesis of Optimal control

Theorem

Suppose that, for some $x \in E$, a triple (Y, Z, λ) verifies EBSDE and $|Y_t^x| \le c_x(|X_t^x|+1)$, for all $t \ge 0$.

Then the following holds:

(i) For arbitrary control u we have $J(x, u) \ge \lambda$ and the equality holds if and only if $L(X_t^x, u_t) + Z_t R(u_t) = \psi(X_t^x, Z_t)$.

(ii) If the infimum in the definition of ψ is attained at $u = \gamma(x, z)$ then the control $\bar{u}_t = \gamma(X_t^x, Z_t)$ verifies $J(x, \bar{u}) = \lambda$.

Recall that λ is univocally determined.

└─ Differentiability

Differentiability and identification of Z

We recall that in the proof of the existence of EBSDE we have constructed specific $v : E \to \mathbb{R}$ and $\zeta : E \to \mathbb{R}$ such that if $\bar{Y}_t^x = v(X_t^x)$, $\bar{Z}_t^x = \zeta(X_t^x)$ then

$$-dar{Y}_t^{ imes} = \left[\psi(X_t^{ imes},ar{Z}_t^{ imes}) - \lambda
ight]dt - ar{Z}_t^{ imes}dW_t$$

Theorem

If F and ψ are continuously Gâteaux differentiable then the function v is continuously Gâteaux differentiable.

If \exists a Banach space $\Xi_0 \subset \Xi$, s. t. $G : \Xi_0 \to E$ is bdd. (see [Masiero]) then $\overline{Z}_t^{\times} = \nabla_{\times} v(X_t^{\times})G$.

Consequently the optimal feedback law for the ergodic control problem becomes $\bar{u}(x) = \gamma(x, \nabla v(x)G)$

└─ Differentiability

Other consequences of Identification

We introduce here the Kolmogorov semigroup corresponding to X:

 $P_t[\phi](x) = \mathbb{E}\phi(X_t^x); \quad \forall \phi: E \to \mathbb{R} \text{ with polynomial growth.}$

Definition

The semigroup $(P_t)_{t\geq 0}$ is strongly Feller if

$$|P_t[\phi](x) - P_t[\phi](x')| \le k_t \|\phi\|_0 |x - x'|.$$

Definition

F is genuinely dissipative if for all $x, x' \in E$, there exists $z^* \in \partial |x - x'|$ such that $\langle F(x) - F(x'), z^* \rangle \leq c |x - x'|^{1+\epsilon}$.

└─ Differentiability

Corollary

Suppose that F is continuously Gâteaux differentiable and that ψ has linear growth in z with respect to the Ξ_0^* norm.

If the Kolmogorov semigroup (P_t) is strongly Feller then:

$$\lambda = \int_{E} \psi(x, \zeta(x)) \mu(dx),$$

where μ is the unique invariant measure of X.

If, in addition F is genuinely dissipative then v is bounded.

Ergodic H.J.B. Equations

If $\bar{Y}_0^x = v(x)$ is differentiable (v, λ) is a mild solution of the "ergodic" Hamilton-Jacobi-Bellman equation:

$$\mathcal{L}\mathbf{v}(\mathbf{x}) + \psi(\mathbf{x}, \nabla \mathbf{v}(\mathbf{x})\mathbf{G}) = \lambda, \quad \mathbf{x} \in \mathbf{E},$$

where $\boldsymbol{\mathcal{L}}$ is formally defined by

$$\mathcal{L}f(x) = \frac{1}{2} Tr\left(GG^* \nabla^2 f(x) \right) + \langle Ax, \nabla f(x) \rangle_{E,E^*} + \langle F(x), \nabla f(x) \rangle_{E,E^*}.$$

By mild solution we mean that for all 0 < t < T it holds

$$v(x) = P_{T-t}[v](x) + \int_t^T (P_{\tau-t}[\psi(\cdot, \nabla v(\cdot) G)](x) - \lambda) d\tau, \quad x \in E.$$

Example

Example

We consider, for $t \in [0, T]$ and $\xi \in [0, 1]$, the equation:

$$\begin{cases} d_{t}X^{u}(t,\xi) = \left[\frac{\partial^{2}}{\partial\xi^{2}}X^{u}(t,\xi) + f(\xi, X^{u}(t,\xi)) + \chi_{[a,b]}(\xi)u(t,\xi)\right] dt \\ + \chi_{[a,b]}(\xi)(\xi)\dot{W}(t,\xi) dt, \\ X^{u}(t,0) = X^{u}(t,1) = 0, \\ X^{u}(t,\xi) = x_{0}(\xi), \end{cases}$$

$$(1)$$

where $0 \le a \le b \le 1$ and $\dot{W}(t,\xi)$ is a space-time white noise on $[0, T] \times [0, 1]$.

We introduce the cost functional

$$J(x,u) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \int_0^T \int_0^1 I(\xi, X_s^u(\xi), u_s(\xi)) \, \mu(d\xi) \, ds \quad (2)$$

Here μ is a finite regular measure on [0, 1].

An admissible control $u(\tau,\xi)$ is a predictable process such that for all $\tau \geq 0$, and \mathbb{P} -a.s. $u(\tau,\cdot) \in U := \{v \in C([0,1]) : |v(\xi)| \leq \delta\}$

We suppose the following:

- $f:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and for every $\xi \in [0,1]$, $f(\xi, \cdot)$ is decreasing in x. Moreover $|f(\xi, x)| \le C(1 + |x|)^m$.
- $I : [0,1] \times \mathbb{R} \times \mathcal{U} \to \mathbb{R}$ is continuous and bounded. • $x_0 \in C([0,1]).$

Weak dissipative assumption

Let us now suppose that F is Lipschitz, bounded and Gâteaux differentiable (of class G^1) and G is invertible. We assume that there exists k > 0 such that

$$\langle Ax, x \rangle \leq -k |x|_{H}^{2} \quad \forall x \in D(A)$$

Main tool: Coupling estimate (see, e.g. Hairer and Mattingly, Annals of Mathematics 2006).

Recurrence property: Da Prato and Zabczyk 1992.

Basic coupling estimate

Theorem

Let $\Upsilon : H \to H$ be a bounded Lipschitz map $H \to H$ and let X^{\times} be the strong solution of the equation

$$\begin{cases} d\mathbf{X}_t^{\mathsf{x}} = A\mathbf{X}_t^{\mathsf{x}} dt + \Upsilon(\mathbf{X}_t^{\mathsf{x}}) dt + G dW_t, \quad t \ge 0, \\ \mathbf{X}_0^{\mathsf{x}} = x \in H. \end{cases}$$
(3)

Then there exist $\hat{c} > 0$ and $\hat{\eta} > 0$ such that for all $\phi \in B_b(H)$ with $\sup_{x \in H} |\phi(x)| \le 1$

$$\mathcal{P}_{t}[\phi](x) - \mathcal{P}_{t}[\phi](x') \Big| \leq \hat{c}(1 + |x|^{2} + |x'|^{2})e^{-\hat{\eta}t}$$
(4)

where $\mathcal{P}_t[\phi](x) = \mathbb{E}\phi(\mathbf{X}_t^x)$ is the Kolmogorov semigroup associated to equation (3). We stress the fact that \hat{c} and $\hat{\eta}$ depend on Υ only through $\sup_{x \in H} |\Upsilon(x)|$.

bounded and measurable drift

Corollary

Relation (4) can be extended to the case in which Υ is only bounded and measurable, and there exists a uniformly bounded sequence of Lipschitz functions $\{\Upsilon_n\}_{n\geq 1}$ (i.e. $\forall n, \Upsilon_n$ is Lipschitz and $\sup_n \sup_x |\Upsilon_n(x)| < \infty$) such that

$$\lim_{n} \Upsilon_n(x) = \Upsilon(x), \quad \forall x \in H$$

(in this case the solution of equation (3) has to be intended the weak sense).

Theorem

Assume that $\Upsilon : H \to H$ can be approximated (in the sense of pointwise convergence) by a uniformly bounded sequence of Lipschitz functions $\{\Upsilon_n\}_{n\geq 1}$. Then the solution of equation (3) is recurrent in the sense that for all $\Gamma \in H$, Γ open:

$$\lim_{\Gamma\to\infty}\hat{\mathbb{P}}\{\exists t\in[0,T]:\hat{X}_t^{\times}\in\Gamma\}=1.$$

In particular, setting $\tau^{x} = \inf\{t : |\hat{X}_{t}^{x}| < \epsilon\}$, then $\forall \epsilon > 0$, $\lim_{T \to \infty} \hat{\mathbb{P}}\{\tau^{x} < T\} = 1$.

Proof: Doob's Method.

Approximation

Let now $\psi: \mathcal{H} \times \Xi^* \to \mathbb{R}$ continuous, with

$$|\psi(x,0)| \le \ell; \qquad |\psi(x,z) - \psi(x,z')| \le \ell |z-z'| \tag{5}$$

and let $\alpha > 0$ be fixed.

We consider the following (decoupled) forward-backward system (with infinite horizon):

$$\begin{cases} dX_t^x = AX_t^x dt + F(X_t^x) dt + GdW_t, & t \ge 0, \\ -dY_t^{\alpha,x} = \psi(X_t^x, Z_t^{\alpha,x}) dt - \alpha Y_t^{\alpha,x} dt - Z_t^{\alpha,x} dW_t, & t \ge 0, \\ \hat{X}_0^x = x \in H. \end{cases}$$
(6)

As it is well known the BSDE in the above system admits a unique solution with $Y^{\alpha,x}$ bounded. In particular $|Y_t^{\alpha,x}| \le \ell/\alpha$.

Main Estimates

Theorem

There exists a constant $c(\ell, \hat{c}, \hat{\eta}) > 0$ such that for all $x, x' \in H$

$$|v^{\alpha}(x) - v^{\alpha}(x')| \le c(1 + |x|^2 + |x'|^2);$$
(7)

and for all $x \in H$,

$$|\nabla v^{\alpha}(x)| \leq c(1+|x|^2). \tag{8}$$

We stress the fact that c > 0 is independent of α .

Coupling Method

Proof of Theorem

Set

$$\tilde{\Upsilon}^{\alpha}(x) = \begin{cases} \frac{\psi(x, \nabla v^{\alpha}(x)G) - \psi(x, 0)}{|\nabla v^{\alpha}(x)G|^{2}} \left(\nabla v^{\alpha}(x)G\right)^{*} & \text{if } \nabla v^{\alpha}(x)G \neq 0\\\\ 0 \text{ if } \nabla v^{\alpha}(x)G = 0. \end{cases}$$

Then

$$\psi(X_t^x, Z_t^{\alpha, x}) = \psi(X_t^x, 0) + \tilde{\Upsilon}^{\alpha}(X_t^x) Z_t^{\alpha, x}.$$

 $\tilde{\Upsilon}^{\alpha}$ is the pointwise limit of a uniformly bounded sequence of Lipschitz functions.

For all T > 0, the couple of processes $(Y^{\alpha,x}, Z^{\alpha,x})$ is a solution to the following finite horizon linear BSDE, $t \in [0, T]$,

$$\begin{cases} -dY_t^{\alpha,x} = \psi(X_t^x, 0)dt + \tilde{\Upsilon}^{\alpha}(X_t^x)Z_t^{\alpha,x}dt - \alpha Y_t^{\alpha,x}dt - Z_t^{\alpha,x}dW_t, \\ Y_T^{\alpha,x} = v^{\alpha}(X_T^x). \end{cases}$$
(9)

Since $\tilde{\Upsilon}^{\alpha}$ is bounded for all T > 0 there exists a unique probability $\hat{\mathbb{P}}^{\alpha,x,T}$ such that

$$\hat{W}^{lpha, imes}_t = \int_0^t \hat{\gamma}^lpha(X^{ imes}_s) ds + W_t$$

is a $\hat{\mathbb{P}}^{\alpha,x,\mathcal{T}}$ -Wiener process for $t \in [0,\mathcal{T}]$. Consequently we have

$$v^{\alpha}(x) = \hat{\mathbb{E}}^{\alpha,x,T} \left[e^{-\alpha T} v^{\alpha}(X_T^x) + \int_0^T e^{-\alpha s} \psi(X_s^x,0) ds \right]$$

where $\hat{\mathbb{E}}^{\alpha,x,T}$ denotes the expectation with respect to $\hat{\mathbb{P}}^{\alpha,x,T}$. Letting $T \to \infty$, as $|v^{\alpha}(x)| \leq \frac{l}{\alpha}$, we get

$$v^{\alpha}(x) = \lim_{T \to \infty} \hat{\mathbb{E}}^{\alpha, x, T} \left[\int_0^T e^{-\alpha s} \psi(X_s^x, 0) ds \right]$$

Key Idea

We rewrite the forward equation (3) with respect to $\hat{W}^{\alpha,x}$ it turns out that X^x verifies

$$\begin{cases} dX_t^{\times} = AX_t^{\times}dt + F(X_t^{\times})dt + G\tilde{\Upsilon}^{\alpha}(X_t^{\times})dt + G\hat{W}_t^{\alpha,\times}, \\ \hat{X}_0^{\times} = x \in H. \end{cases}$$
(10)

We denote by \mathcal{P}^{α} the associated Kolmogorov semigroup, i.e.,

$$\mathcal{P}_t^{\alpha}[\phi](x) = \hat{\mathbb{E}}^{\alpha, x, t} \phi(X_t^x).$$

Applying Theorem with $\Upsilon^{\alpha} = F + G \tilde{\Upsilon}^{\alpha}$ (which is also the pointwise limit of a sequence of Lipschitz functions), we obtain

$$\begin{split} |v^{\alpha}(x) - v^{\alpha}(x')| &\leq \int_{0}^{\infty} e^{-\alpha t} \left| \mathcal{P}_{t}^{\alpha}[\psi(\cdot,0)](x) - \mathcal{P}_{t}^{\alpha}[\psi(\cdot,0)](x') \right| dt \\ &\leq \frac{\hat{c}I}{\hat{\eta}} (1 + |x^{2}| + |x'|^{2}) \end{split}$$

To prove (ii), let us set

$$\overline{v}^{lpha}(x) = v^{lpha}(x) - v^{lpha}(0).$$

Then, $\bar{Y}_t^{\alpha,x} = Y_t^{\alpha,x} - Y_0^{\alpha,0} = \bar{v}^{\alpha}(X_t^x)$ is the unique solution of the finite horizon BSDE

$$\begin{cases} -d\bar{Y}_t^{\alpha,x} = \psi(X_t^x, Z_t^{\alpha,x})dt - \alpha\bar{Y}_t^{\alpha,x} - \alpha v^{\alpha}(0)dt - Z_t^{\alpha,x}dW_t, \\ Y_1^{\alpha,x} = \bar{v}^{\alpha}(X_1^x). \end{cases}$$

Note that in particular, in the above equation, $|\alpha v^{\alpha}(0)| \leq I$. By Bismut-Elworthy's formula, \bar{v}^{α} is of class \mathcal{G}^1 and there exists a constant $c(I, \hat{c}, \hat{\eta}) > 0$ independent of α such that $|\nabla v^{\alpha}(x)| \leq c(1 + |x|^2)$, and the conclusion follows.

Existence of solutions for EBSDEs

Theorem

 $\exists \lambda \in \mathbb{R}; \\ \exists \forall v : E \to \mathbb{R} \text{ locally Lipschitz } (v(0) = 0); \\ \exists \zeta : E \to \Xi^* \text{ measurable} \\ \text{such that if we set } \bar{Y}_t^x := v(X_t^x), \ \bar{Z}_t^x := \zeta(X_t^x)$

then $(\bar{Y}^{\times}, \bar{Z}^{\times}, \lambda)$ is a solution of the EBSDE.

Uniqueness of Markovian solution

We prove that the Markovian solution is unique.

Theorem

Let (v, ζ) , $(\tilde{v}, \tilde{\zeta})$ two couples of functions with $v, \tilde{v} : H \to \mathbb{R}$, continuous, with $|v(x)| \leq c(1 + |x|^2)$, $|\tilde{v}(x)| \leq c(1 + |x|^2)$, $v(0) = \tilde{v}(0) = 0$ and ζ , $\tilde{\zeta}$ continuous from H to Ξ^* endowed with the weak* topology verifying $|\zeta(x)| \leq c(1 + |x|^2)$, $|\tilde{\zeta}(x)| \leq c(1 + |x|^2)$. Assume that for some constants λ , $\tilde{\lambda}$ and all $x \in H$, $(v(X_t^x), \zeta(X_t^x), \lambda)$, $(\tilde{v}(X_t^x), \tilde{\zeta}(X_t^x), \tilde{\lambda})$ verify the EBSDE, then $\lambda = \tilde{\lambda}, v = \tilde{v}, \zeta = \tilde{\zeta}$.

Proof: Part 1

The equality $\lambda = \tilde{\lambda}$ comes from Girsanov's transformation. Then let $\bar{Y}_t^x = v(X_t^x) - \tilde{v}(X_t^x)$, $\bar{Z}_t^x = \zeta(X_t^x) - \tilde{\zeta}(X_t^x)$ and $\tilde{\Upsilon}$ be defined by linearization. We have

$$-d\bar{Y}_t^{\times} = \tilde{\Upsilon}(X_t^{\times})\bar{Z}_t^{\times}dt - \bar{Z}_t^{\times}dW_t = -\bar{Z}_t^{\times}dW_t'$$

where $W'_t = -\int_0^t \Upsilon(X^x_s) ds + W_t$ is a Wiener process in [0,T]under the probability $\overline{\mathbb{P}}^{x,T}$. Moreover, under $\overline{\mathbb{P}}^{x,T}$, X^x satisfies equation (3), in [0, T], with, as before $\Upsilon = G\widetilde{\Upsilon} + F$. Thus, it holds that for all $p \ge 1$, and all $x \in H$

$$ar{\mathbb{E}}^{x, \mathcal{T}} | X_t^x |^{oldsymbol{
ho}} \leq c(1+|x|^{oldsymbol{
ho}}), orall 0 \leq t \leq \mathcal{T},$$

where c > 0 depends on p, γ, M and $I|G| + \sup_x |F(x)|$, and is independent of T. Thus the growth conditions on ζ and $\tilde{\zeta}$ implies that, for all T > 0, $\mathbb{E}^{x,T} \int_0^T |\bar{Z}_t^x|^2 dt < \infty$.

Proof: Part 2: Recurrence property

Let $\tau = \inf\{t : |X_t^x| < \epsilon\}$ then for all T > 0

$$\bar{Y}_0^x = \bar{\mathbb{E}}^{x,T} \bar{Y}_{T\wedge\tau}^x.$$

For any $\delta > 0$, there exists $\epsilon > 0$ such that $|v(x) - \tilde{v}(x)| \le \delta$ if $|x| \le \epsilon$. Then for a constant c > 0,

$$\begin{split} |\bar{Y}_{0}^{x}| &= |\bar{\mathbb{E}}^{x,T} \bar{Y}_{T \wedge \tau}^{x}| \leq \bar{\mathbb{E}}^{x,T} |\bar{Y}_{\tau}^{x}| \mathbf{1}_{\{\tau < T\}} + \bar{\mathbb{E}}^{x,T} |\bar{Y}_{T}^{x}| \mathbf{1}_{\{\tau \geq T\}} \\ &\leq \delta + \left(\bar{\mathbb{P}}^{x,T} \{\tau \geq T\}\right)^{1/2} \left(\bar{\mathbb{E}}^{x,T} \{|\bar{Y}_{T}^{x}|^{2}\}\right)^{1/2} \\ &\leq \delta + \left(\bar{\mathbb{P}}^{x,T} \{\tau \geq T\}\right)^{1/2} \left(\bar{\mathbb{E}}^{x,T} \{1 + |X_{T}^{x}|^{4}\}\right)^{1/2} \end{split}$$

Noting that, by recurrence, $\lim_{T\to\infty} \overline{\mathbb{P}}^{x,T} \{ \tau \geq T \} = 0$ and sending T to ∞ in the last inequality, we obtain that $|\overline{Y}_0^x| \leq \delta$ and the claim follows from the arbitrarity of δ .