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Setting of the control problem and some references

Ergodic Control Problem

We address the following optimal control problem with

State equation

dX x ,u
t = (AX x ,u

t +F (X x ,u
t ))dt+G dWt +G R(ut), X x ,u

0 = x

Cost functional

J(x , u) = lim sup
T→∞

1

T
E
∫ T

0
L(X x ,u

s , us)ds.

Main features

ergodic cost functional

infinite dimensional equation (Banach space valued)

possibly degenerate G
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Setting of the control problem and some references

Very incomplete list of references

BSDEs and infinite horizon stochastic control

P. Briand and Y. Hu, J. Funct. Anal. (1998) (Finite
dimensions - all positive discounts)

M. Fuhrman and G. Tessitore, Ann. Probab. (2004) (Infinite
dimensions - only large discounts)

F. Masiero, A.M.O. (2007), (Banach spaces)
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Setting of the control problem and some references

Ergodic stochastic control

A. Bensoussan and J. Frehse, J. Reine Angew. Math. (1992)
(Finite dimensions, classical solutions of HJB)

M. Arisawa, P. L. Lions, Comm. Partial Differential Equations
(1998) (Finite dimensions, viscosity solutions of HJB)

B. Goldys and B. Maslowski, J. Math. Anal. Appl., (1999)
(Infinite dimensions, mild solutions of HJB, smoothing of
Kolmogorov semigroup)
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Forward Equation

Forward (state) equation

{
dXt = AXtdt + F (Xt)dt + GdWt , t ≥ 0,
X0 = x ∈ E .

E Banach, E ⊂ H Hilbert space H.

A generates a C0 semigroup in E that has an extension to H.

W is a cylindrical Wiener process in the Hilbert space Ξ

F : E → E is continuous and has polynomial growth.

A + F is strictly dissipative (with constant η).

G is bdd. Ξ→ H. The stochastic convolution

W A
t =

∫ t

0
S(t − s)GdWs , t ≥ 0,

has an E -continuous version with supt E|W A
t |2E <∞.
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Forward Equation

Results on the forward (state) equation

{
dX x

t = AX x
t dt + F (X x

t )dt + GdWt , t ≥ 0,
X x

0 = x ∈ E .

∀x ∈ E there exists a unique E continuous mild solution X x .

Moreover |X x1
t − X x2

t | ≤ e−ηt |x1 − x2| , t ≥ 0, x1, x2 ∈ E .

Finally supt E|X x
t |E ≤ C (1 + |x |).
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Ergodic BSDEs

Ergodic BSDEs (EBSDEs)

Y x
t = Y x

T +

∫ T

t
[ψ(X x

σ ,Z
x
σ )− λ] dσ−

∫ T

t
Z x
σ dWσ, 0 ≤ t ≤ T <∞,

or equivalently

−dY x
t = [ψ(X x

t ,Z
x
t )− λ] dt − Z x

t dWt

A solution is a triple (Y ,Z , λ).

λ is a real number.

Y is a real continuous prog. meas. process such that
E supt∈[0,T ] Y 2

s <∞, ∀T > 0

Z is a prog. meas. process with values in Ξ∗ such that
E
∫ T

0 |Zs |2Ξ∗ <∞, ∀T > 0 .
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Ergodic BSDEs

Main Result

Main Result

On the function ψ : E × Ξ∗ → R we assume:

|ψ(x , z)− ψ(x ′, z ′)| ≤ Kx |x − x ′|+ Kz |z − z ′|,
x , x ′ ∈ E , z , z ′ ∈ Ξ∗.

ψ( · , 0) is bounded.

Theorem (Existence of solutions for EBSDEs)

∃λ ∈ R;

∃v : E → R Lipschitz (v(0) = 0);

∃ζ : E → Ξ∗ measurable

such that if we set Ȳ x
t := v(X x

t ), Z̄ x
t := ζ(X x

t )

then (Ȳ x , Z̄ x , λ) is a solution of the EBSDE.
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Ergodic BSDEs

Proof of main result

Sketch of the proof

Considering with strictly monotonic drift α > 0:

Y x ,α
t = Y x ,α

T +

∫ T

t
(ψ(X x

σ ,Z
x ,α
σ )− αY x ,α

σ )dσ −
∫ T

t
Z x ,α
σ dWσ.

Lemma (Briand-Hu 1998, Royer 2004)

∃! solution (Y x ,α,Z x ,α) Y x ,α bounded cont., Z x ,α ∈ L2
P,loc.

Moreover |Y x ,α
t | ≤ M/α, P-a.s. for all t ≥ 0.

Define vα(x) = Y α,x
0 . Clearly, |vα(x)| ≤ M/α and Y α,x

t = vα(X x
t )
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Ergodic BSDEs

Proof of main result

Claim |vα(x)− vα(x ′)| ≤ Kx
η |x − x ′|, x , x ′ ∈ E .

Proof of claim Set
Ỹ = Y α,x − Y α,x ′ , Z̃ = Zα,x − Zα,x ′ ,

βt = ψ(X x′
t ,Zα,x

′
t )−ψ(X x′

t ,Zα,xt )

|Zα,x
t − Zα,x ′

t |2Ξ∗

(
Zα,x

t − Zα,x ′

t

)∗
, notice β bdd.

ft = ψ(X x
t ,Z

x ,α
t )− ψ(X x ′

t ,Z
x ,α
t ).

∃P̃ under which W̃t =
∫ t

0 βsds + Wt is a Wiener process.

=⇒ Ỹt = ỸT − α
∫ T
t Ỹσdσ +

∫ T
t fσdσ −

∫ T
t Z̃σdW̃σ.

=⇒ |Ỹt | ≤ e−α(T−t)ẼFt |ỸT |+ ẼFt
∫ T
t e−α(s−t)|fs |ds

Since Ỹ is bdd and |ft | ≤ Kxe−ηt |x − x ′| (by dissip.of forw. equat.)
if T →∞ we get |Ỹt | ≤ Kx(η + α)−1eαt |x − x ′|. �
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Ergodic BSDEs

Proof of main result

Proof of main result

Set vα(x) = vα(x)− vα(0),
We know |vα(x)| ≤ Kxη

−1|x |; α|vα(0)| ≤ M; {vα} unif. Lip.

=⇒ ∃αn ↘ 0 such that vαn(x)→ v(x), ∀x and αnvαn(0)→ λ.

Define Y
x ,α
t = Y x ,α

t − vα(0) = vα(X x
t ) and Y

x
= v(X x), then

E
∫ T

0
|Y x ,αn

t − Y
x
t |2dt → 0 and E|Y x ,αn

T − Y
x
T |2 → 0

By standard BSDE arguments ∃Z
x ∈ L2

P,loc(Ω; L2(0,∞; Ξ)) s. t.

E
∫ T

0
|Z x ,αn

t − Z
x
t |2Ξ∗dt → 0



Ergodic BSDEs and Ergodic Optimal Control

Ergodic BSDEs

Proof of main result

Finally we remark that Y
x ,α

verifies

Y
x ,α
t = Y

x ,α
T +

∫ T

t
(ψ(X x

σ ,Z
x ,α
σ )−αY

x ,α
σ −αvα(0))dσ−

∫ T

t
Z x ,α
σ dWσ.

Now we can pass to the limit as n→∞ to obtain

Y
x
t = Y

x
T +

∫ T

t
(ψ(X x

σ ,Z
x
σ)− λ)dσ −

∫ T

t
Z

x
σdWσ.

The construction of ζ : E → Ξ∗ such that Z
x
t = ζ(X x

t ),
exploits the fact that the same holds for Z

x ,α
. �
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Ergodic BSDEs

Remarks on uniqueness

Uniqueness of λ

The solution (Y
x
,Z

x
, λ) we have constructed verifies

|Y x
t | ≤ c |X x

t |.

If we require similar conditions then we immediately obtain
uniqueness of λ.

Theorem

Suppose that, for some x ∈ E , (Y ′,Z ′, λ′) is a solution of
(EBSDE) and verifies

|Y ′t | ≤ cx(|X x
t |+ 1), for all t ≥ 0.

Then λ′ = λ.
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Ergodic BSDEs

Remarks on uniqueness

Lack of uniqueness of EBSDEs

Clearly if (Y ,Z , λ) is a solution then (Y + c ,Z , λ) is a solution.

Even if we ask Y 0
0 = 0 the solution to EBSDE is, not unique.

If we do not require Yt = v(X x
t ), Zt = ζ(X x

t ) then can construct
several solutions of the above EBSDE (with Y and Z bounded).

If we require Yt = v(X x
t ), Zt = ζ(X x

t ) with v and ζ continuous
and X x to be recursive (see [Seidler 1997])
then v can be characterized (as in [Goldys-Maslowski 1999]) by:

v(x) = inf
u

lim sup
r→0

lim sup
T→∞

E
∫ τT

r

0
[ψ(X x ,u

s , u(X x ,u
s ))− λ]ds.

where τT
r = inf{s ∈ [0,T ] : |X u,x

s | < r}.
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Optimal Ergodic Control

Optimal Ergodic Control problem

Let X x be the solution to equation

dX x
t = (AX x ,u

t + F (X x ,u
t ))dt + GdWt , X x ,u

0 = x

An admissible control u is a progressively measurable process with
values in a Borel subset U of a complete metric space.

The ergodic cost corresponding to u and the starting point x ∈ E is

J(x , u) = lim sup
T→∞

1

T
Eu,T

∫ T

0
L(X x

s , us)ds,

where
ρu
T = exp

(∫ T
0 R(us)dWs − 1

2

∫ T
0 |R(us)|2Ξ∗ds

)
, Pu

T = ρu
T P.

Where R : U → R, L : U × E → R with R, L bdd in u; L Lip. in x .
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Optimal Ergodic Control

Ergodic control and EBSDEs

We first define the Hamiltonian in the usual way

ψ(x , z) = inf
u∈U
{L(x , u) + zR(u)}, x ∈ E , z ∈ Ξ∗.

Under the present assumptions ψ is a Lipschitz function and
ψ(·, 0) is bounded thus the EBSDE

−dY x
t = [ψ(X x

t ,Z
x
t )− λ] dt − Z x

t dWt

has at least a solution (Y x ,Z x , λ)
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Optimal Ergodic Control

Synthesis of Optimal control

Theorem

Suppose that, for some x ∈ E , a triple (Y ,Z , λ) verifies EBSDE
and |Y x

t | ≤ cx(|X x
t |+ 1), for all t ≥ 0.

Then the following holds:

(i) For arbitrary control u we have J(x , u) ≥ λ and the equality
holds if and only if L(X x

t , ut) + ZtR(ut) = ψ(X x
t ,Zt).

(ii) If the infimum in the definition of ψ is attained at u = γ(x , z)
then the control ūt = γ(X x

t ,Zt) verifies J(x , ū) = λ.

Recall that λ is univocally determined.
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Differentiability

Differentiability and identification of Z

We recall that in the proof of the existence of EBSDE we have
constructed specific v : E → R and ζ : E → R such that if
Ȳ x

t = v(X x
t ), Z̄ x

t = ζ(X x
t ) then

−dȲ x
t =

[
ψ(X x

t , Z̄
x
t )− λ

]
dt − Z̄ x

t dWt

Theorem

If F and ψ are continuously Gâteaux differentiable then the
function v is continuously Gâteaux differentiable.

If ∃ a Banach space Ξ0 ⊂ Ξ, s. t. G : Ξ0 → E is bdd. (see
[Masiero]) then Z̄ x

t = ∇xv(X x
t )G .

Consequently the optimal feedback law for the ergodic control
problem becomes ū(x) = γ(x ,∇v(x)G )
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Differentiability

Other consequences of Identification

We introduce here the Kolmogorov semigroup corresponding to X :

Pt [φ](x) = Eφ(X x
t ); ∀φ : E → R with polynomial growth.

Definition

The semigroup (Pt)t≥0 is strongly Feller if

|Pt [φ](x)− Pt [φ](x ′)| ≤ kt‖φ‖0|x − x ′|.

Definition

F is genuinely dissipative if for all x , x ′ ∈ E , there exists
z∗ ∈ ∂|x − x ′| such that < F (x)− F (x ′), z∗ >≤ c |x − x ′|1+ε.
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Differentiability

Corollary

Suppose that F is continuously Gâteaux differentiable and that ψ
has linear growth in z with respect to the Ξ∗0 norm.

If the Kolmogorov semigroup (Pt) is strongly Feller then:

λ =

∫
E
ψ(x , ζ(x))µ(dx),

where µ is the unique invariant measure of X .

If, in addition F is genuinely dissipative then v is bounded.
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Ergodic H.J.B. Equations

Ergodic H.J.B. Equations

If Ȳ x
0 = v(x) is differentiable (v , λ) is a mild solution of the

“ergodic” Hamilton-Jacobi-Bellman equation:

Lv(x) + ψ (x ,∇v(x)G ) = λ, x ∈ E ,

where L is formally defined by

Lf (x) =
1

2
Tr
(
GG ∗∇2f (x)

)
+〈Ax ,∇f (x)〉E ,E∗+〈F (x) ,∇f (x)〉E ,E∗ .

By mild solution we mean that for all 0 < t < T it holds

v(x) = PT−t [v ] (x)+

∫ T

t
(Pτ−t [ψ(·,∇v (·) G )] (x)− λ) dτ, x ∈ E .
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Example

Example

We consider, for t ∈ [0,T ] and ξ ∈ [0, 1], the equation:
dtX u (t, ξ) =

[
∂2

∂ξ2 X u (t, ξ) + f (ξ,X u (t, ξ)) + χ[a,b](ξ)u (t, ξ)
]

dt

+χ[a,b](ξ) (ξ) Ẇ (t, ξ) dt,
X u (t, 0) = X u (t, 1) = 0,
X u (t, ξ) = x0 (ξ) ,

(1)
where 0 ≤ a ≤ b ≤ 1 and Ẇ (t, ξ) is a space-time white noise on
[0,T ]× [0, 1].

We introduce the cost functional

J (x , u) = lim sup
T→∞

1

T
E
∫ T

0

∫ 1

0
l (ξ,X u

s (ξ) , us(ξ))µ (dξ) ds (2)

Here µ is a finite regular measure on [0, 1].
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Example

An admissible control u (τ, ξ) is a predictable process such that for
all τ ≥ 0, and P-a.s. u (τ, ·) ∈ U := {v ∈ C ([0, 1]) : |v (ξ)| ≤ δ}

We suppose the following:

f : [0, 1]× R −→ R is continuous and for every ξ ∈ [0, 1],
f (ξ, · ) is decreasing in x .
Moreover |f (ξ, x) | ≤ C (1 + |x |)m.

l : [0, 1]× R× U → R is continuous and bounded.

x0 ∈ C ([0, 1]).



Ergodic BSDEs and Ergodic Optimal Control

Coupling Method

Weak dissipative assumption

Let us now suppose that F is Lipschitz, bounded and Gâteaux
differentiable (of class G1) and G is invertible.
We assume that there exists k > 0 such that

〈Ax , x〉 ≤ −k|x |2H ∀x ∈ D(A)

Main tool: Coupling estimate (see, e.g. Hairer and Mattingly,
Annals of Mathematics 2006).
Recurrence property: Da Prato and Zabczyk 1992.
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Coupling Method

Basic coupling estimate

Theorem

Let Υ : H → H be a bounded Lipschitz map H → H and let Xx be
the strong solution of the equation{

dXx
t = AXx

t dt + Υ(Xx
t )dt + GdWt , t ≥ 0,

Xx
0 = x ∈ H.

(3)

Then there exist ĉ > 0 and η̂ > 0 such that for all φ ∈ Bb(H) with
supx∈H |φ(x)| ≤ 1∣∣Pt [φ](x)− Pt [φ](x ′)

∣∣ ≤ ĉ(1 + |x |2 + |x ′|2)e−η̂t (4)

where Pt [φ](x) = Eφ(Xx
t ) is the Kolmogorov semigroup associated

to equation (3).
We stress the fact that ĉ and η̂ depend on Υ only through
supx∈H |Υ(x)|.
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Coupling Method

bounded and measurable drift

Corollary

Relation (4) can be extended to the case in which Υ is only
bounded and measurable, and there exists a uniformly bounded
sequence of Lipschitz functions {Υn}n≥1 (i.e. ∀n,Υn is Lipschitz
and supn supx |Υn(x)| <∞) such that

lim
n

Υn(x) = Υ(x), ∀x ∈ H

(in this case the solution of equation (3) has to be intended the
weak sense).
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Coupling Method

Theorem

Assume that Υ : H → H can be approximated (in the sense of poi
ntwise convergence) by a uniformly bounded sequence of Lipschitz
functions {Υn}n≥1 .
Then the solution of equation (3) is recurrent in the sense that for
all Γ ∈ H, Γ open:

lim
T→∞

P̂{∃t ∈ [0,T ] : X̂ x
t ∈ Γ} = 1.

In particular, setting τ x = inf{t : |X̂ x
t | < ε}, then ∀ε > 0,

limT→∞ P̂{τ x < T} = 1.

Proof: Doob’s Method.
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Coupling Method

Approximation

Let now ψ : H × Ξ∗ → R continuous, with

|ψ(x , 0)| ≤ `; |ψ(x , z)− ψ(x , z ′)| ≤ `|z − z ′| (5)

and let α > 0 be fixed.
We consider the following (decoupled) forward-backward system
(with infinite horizon):

dX x
t = AX x

t dt + F (X x
t )dt + GdWt , t ≥ 0,

−dY α,x
t = ψ(X x

t ,Z
α,x
t )dt − αY α,x

t dt − Zα,x
t dWt , t ≥ 0,

X̂ x
0 = x ∈ H.

(6)
As it is well known the BSDE in the above system admits a unique
solution with Y α,x bounded. In particular |Y α,x

t | ≤ `/α.
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Coupling Method

Main Estimates

Theorem

There exists a constant c(`, ĉ , η̂) > 0 such that for all x , x ′ ∈ H

|vα(x)− vα(x ′)| ≤ c(1 + |x |2 + |x ′|2); (7)

and for all x ∈ H,

|∇vα(x)| ≤ c(1 + |x |2). (8)

We stress the fact that c > 0 is independent of α.
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Coupling Method

Proof of Theorem

Set

Υ̃α(x) =


ψ(x ,∇vα(x)G )− ψ(x , 0)

|∇vα(x)G |2
(∇vα(x)G )∗ if ∇vα(x)G 6= 0

0 if ∇vα(x)G = 0.

Then
ψ(X x

t ,Z
α,x
t ) = ψ(X x

t , 0) + Υ̃α(X x
t )Zα,x

t .

Υ̃α is the pointwise limit of a uniformly bounded sequence of
Lipschitz functions.
For all T > 0, the couple of processes (Y α,x ,Zα,x) is a solution to
the following finite horizon linear BSDE, t ∈ [0,T ],{
−dY α,x

t = ψ(X x
t , 0)dt + Υ̃α(X x

t )Zα,x
t dt − αY α,x

t dt − Zα,x
t dWt ,

Y α,x
T = vα(X x

T ).
(9)
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Coupling Method

Since Υ̃α is bounded for all T > 0 there exists a unique probability
P̂α,x ,T such that

Ŵ α,x
t =

∫ t

0
γ̂α(X x

s )ds + Wt

is a P̂α,x ,T -Wiener process for t ∈ [0,T ]. Consequently we have

vα(x) = Êα,x ,T
[

e−αT vα(X x
T ) +

∫ T

0
e−αsψ(X x

s , 0)ds

]
where Êα,x ,T denotes the expectation with respect to P̂α,x ,T .
Letting T →∞, as |vα(x)| ≤ l

α , we get

vα(x) = lim
T→∞

Êα,x ,T
[∫ T

0
e−αsψ(X x

s , 0)ds

]
.
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Coupling Method

Key Idea

We rewrite the forward equation (3) with respect to Ŵ α,x it turns
out that X x verifies{

dX x
t = AX x

t dt + F (X x
t )dt + G Υ̃α(X x

t )dt + G Ŵ α,x
t ,

X̂ x
0 = x ∈ H.

(10)

We denote by Pα the associated Kolmogorov semigroup, i.e.,

Pαt [φ](x) = Êα,x ,tφ(X x
t ).

Applying Theorem with Υα = F + G Υ̃α (which is also the
pointwise limit of a sequence of Lipschitz functions), we obtain

|vα(x)− vα(x ′)| ≤
∫ ∞

0
e−αt

∣∣Pαt [ψ(·, 0)](x)− Pαt [ψ(·, 0)](x ′)
∣∣ dt

≤ ĉ l

η̂
(1 + |x2|+ |x ′|2)
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Coupling Method

To prove (ii), let us set

v̄α(x) = vα(x)− vα(0).

Then, Ȳ α,x
t = Y α,x

t − Y α,0
0 = v̄α(X x

t ) is the unique solution of the
finite horizon BSDE{
−dȲ α,x

t = ψ(X x
t ,Z

α,x
t )dt − αȲ α,x

t − αvα(0)dt − Zα,x
t dWt ,

Y α,x
1 = v̄α(X x

1 ).

Note that in particular, in the above equation, |αvα(0)| ≤ l . By
Bismut-Elworthy’s formula, v̄α is of class G1 and there exists a
constant c(l , ĉ , η̂) > 0 independent of α such that
|∇vα(x)| ≤ c(1 + |x |2), and the conclusion follows.
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Coupling Method

Existence of solutions for EBSDEs

Theorem

∃λ ∈ R;

∃v : E → R locally Lipschitz (v(0) = 0);

∃ζ : E → Ξ∗ measurable

such that if we set Ȳ x
t := v(X x

t ), Z̄ x
t := ζ(X x

t )

then (Ȳ x , Z̄ x , λ) is a solution of the EBSDE.
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Coupling Method

Uniqueness of Markovian solution

We prove that the Markovian solution is unique.

Theorem

Let (v , ζ), (ṽ , ζ̃) two couples of functions with v , ṽ : H → R,
continuous, with |v(x)| ≤ c(1 + |x |2), |ṽ(x)| ≤ c(1 + |x |2),
v(0) = ṽ(0) = 0 and ζ, ζ̃ continuous from H to Ξ∗ endowed with
the weak∗ topology verifying |ζ(x)| ≤ c(1 + |x |2),
|ζ̃(x)| ≤ c(1 + |x |2).
Assume that for some constants λ, λ̃ and all x ∈ H,
(v(X x

t ), ζ(X x
t ), λ), (ṽ(X x

t ), ζ̃(X x
t ), λ̃) verify the EBSDE, then

λ = λ̃, v = ṽ , ζ = ζ̃.



Ergodic BSDEs and Ergodic Optimal Control

Coupling Method

Proof: Part 1

The equality λ = λ̃ comes from Girsanov’s transformation.
Then let Ȳ x

t = v(X x
t )− ṽ(X x

t ), Z̄ x
t = ζ(X x

t )− ζ̃(X x
t ) and Υ̃ be

defined by linearization. We have

−dȲ x
t = Υ̃(X x

t )Z̄ x
t dt − Z̄ x

t dWt = −Z̄ x
t dW ′

t

where W ′
t = −

∫ t
0 Υ(X x

s )ds + Wt is a Wiener process in [0,T]
under the probability P̄x ,T .
Moreover, under P̄x ,T , X x satisfies equation (3), in [0,T ], with, as
before Υ = G Υ̃ + F . Thus, it holds that for all p ≥ 1, and all
x ∈ H

Ēx ,T |X x
t |p ≤ c(1 + |x |p),∀0 ≤ t ≤ T ,

where c > 0 depends on p, γ,M and l |G |+ supx |F (x)|, and is
independent of T . Thus the growth conditions on ζ and ζ̃ implies
that, for all T > 0, Ēx ,T

∫ T
0 |Z̄

x
t |2dt <∞.
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Proof: Part 2: Recurrence property

Let τ = inf{t : |X x
t | < ε} then for all T > 0

Ȳ x
0 = Ēx ,T Ȳ x

T∧τ .

For any δ > 0, there exists ε > 0 such that |v(x)− ṽ(x)| ≤ δ if
|x | ≤ ε. Then for a constant c > 0,

|Ȳ x
0 | = |Ēx ,T Ȳ x

T∧τ | ≤ Ēx ,T |Ȳ x
τ |1{τ<T} + Ēx ,T |Ȳ x

T |1{τ≥T}

≤ δ +
(
P̄x ,T{τ ≥ T}

)1/2 (
Ēx ,T{|Ȳ x

T |2}
)1/2

≤ δ +
(
P̄x ,T{τ ≥ T}

)1/2 (
Ēx ,T{1 + |X x

T |4}
)1/2

.

Noting that, by recurrence, limT→∞ P̄x ,T{τ ≥ T} = 0 and sending
T to ∞ in the last inequality, we obtain that |Ȳ x

0 | ≤ δ an d the
claim follows from the arbitrarity of δ.


	Setting of the control problem and some references
	Forward Equation
	Ergodic BSDEs
	Main Result
	Proof of main result
	Remarks on uniqueness

	Optimal Ergodic Control
	Differentiability
	Ergodic H.J.B. Equations
	Example
	Coupling Method

