Optimal profitability of an investment under uncertainty- A backward SDE approach

Boualem Djehiche KTH, Stockholm

(4回) (4回) (4回)

Position of the problem

Let Y^1 and Y^2 denote the expected profit and cost yields respectively. The constituants of these cash flows are

- (a) Per unit time dt, the profit yield is ψ^1 and the cost yield is ψ^2 ;
- (b) When exiting/abandoning the project at time t, the incurred cost is a(t) and the incurred profit is b(t) (usually $a \neq b$ but often non-negative).

Exit/abandonment strategy:

The decision to exit the project at time t, depends on whether

$$Y_t^1 \leq Y_t^2 - a(t) \; ext{ or } \; Y_t^2 \geq Y_t^1 + b(t).$$

If \mathcal{F}_t denotes the history of the project up to time t,

The expected profit yield, at time t, is

$$Y_t^1 = \text{ess sup}_{\tau \ge t} E^{\mathcal{F}_t} \left[\int_t^\tau \psi^1(s, Y_s^1) ds + (Y_\tau^2 - a(\tau)) \, \mathbb{1}_{[\tau < T]} + \xi^1 \mathbb{1}_{[\tau = T]} \right]$$

where, the sup is taken over all exit times τ from the project.

The optimal exit time related to the incurred cost $Y^2 - a$ should be

$$\tau_t^* = \inf\{s \ge t, \ Y_s^1 = Y_s^2 - a(s)\} \land T.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The expected cost yield at time t, is

$$Y_t^2 = \operatorname{ess inf}_{\sigma \ge t} E^{\mathcal{F}_t} \left[\int_t^{\sigma} \psi^2(s, Y_s^2) ds + \left(Y_{\sigma}^1 + b(\sigma)\right) \mathbf{1}_{[\sigma < T]} + \xi^2 \mathbf{1}_{[\sigma = T]} \right]$$

where, the inf is taken over all exit times σ from the project.

The optimal exit time related to the incurred profit $Y^1 + b$ should be

$$\sigma_t^* = \inf\{s \ge t, \ Y_s^2 = Y_s^1 + b(s)\} \wedge T.$$

・ロット (四) (日) (日)

Establish existence, uniqueness and continuity of (Y^1, Y^2) which solves the coupled system of Snell envelops

$$Y_{t}^{1} = \operatorname{ess \, sup}_{\tau \ge t} E^{\mathcal{F}_{t}} \left[\int_{t}^{\tau} \psi^{1}(s, Y_{s}^{1}) ds + (Y_{\tau}^{2} - a(\tau)) \mathbf{1}_{[\tau < T]} + \xi^{1} \mathbf{1}_{[\tau = T]} \right]$$

$$Y_{t}^{2} = \operatorname{ess \, inf}_{\sigma \ge t} E^{\mathcal{F}_{t}} \left[\int_{t}^{\sigma} \psi^{2}(s, Y_{s}^{2}) ds + (Y_{\sigma}^{1} + b(\sigma)) \mathbf{1}_{[\sigma < T]} + \xi^{2} \mathbf{1}_{[\sigma = T]} \right]$$

where, the sup and inf are taken over \mathcal{F}_t -stopping times.

Continuity insures optimality of the stopping times τ^* and σ^* .

$$\begin{split} Y_t^{1,i} &= \operatorname{ess} \, \sup_{\tau \ge t} \left(E^{\mathcal{F}_t} \left[\int_t^\tau \phi^i(s, Y_s^{1,i}) ds + \xi^{1,i} \mathbb{1}_{[\tau = T]} \right] \\ &+ E^{\mathcal{F}_t} \left[\left(\max_{j \ne i} (Y^{1,j} - a_{ij}(\tau)) \lor (Y_\tau^{2,i} - a_i(\tau)) \right) \mathbb{1}_{[\tau < T]} \right] \right), \\ Y_t^{2,i} &= \operatorname{ess} \, \inf_{\sigma \ge t} \left(E^{\mathcal{F}_t} \left[\int_t^\sigma \psi^i(s, Y_s^{2,i}) ds + \xi^i \mathbb{1}_{[\sigma = T]} \right] \\ &+ E^{\mathcal{F}_t} \left[\left(\min_{j \ne i} \left(Y_\sigma^{2,j} + b_{ij}(\sigma) \right) \land (Y_\sigma^{1,i} + b_i(\sigma)) \right) \mathbb{1}_{[\sigma < T]} \right] \right), \end{split}$$

where, the sup and inf are taken over \mathcal{F}_t -stopping times.

(1日) (日) (日)

Problem III. When pension schemes are also considered

The constituants of the cash flows Y^1 and Y^2 also include the *prospective bonus reserve (or bonus potential)* i.e. future pension payments that are not guaranteed (see e.g. Møller and Steffensen (2007)).

The amount to be maximized (or minimized) in each time interval $[t_j, t_{j+1}]$ is

$$g(t_{j+1})(B(t_{j+1})-B(t_j)),$$

where,

- ► B(t_{j+1}) B(t_j) is the return that should match the prospective reserve (bonus),
- g(t) is some coefficient that should reflect the distribution of bonuses at the end of the period. It should be adapted to the "backward" history *F*^B_{t,T} generated by (B(T) − B(r), t ≤ r ≤ T).

The accumulated bonus potential during [0, T] is then

$$\sum_{i=0}^{n-1} g(t_{j+1})(B(t_{j+1}) - B(t_j))$$

where, $t_0 = 0 < t_1 < \ldots < t_n = T$.

Taking the limit, we obtain the backward stochastic integral

$$\int_0^T g(s) \overleftarrow{dB}(s).$$

An extended Snell envelop formulation

Given two independent Brownian motions W and B, establish existence, uniqueness and continuity of (Y^1, Y^2) , adapted to $\mathcal{F}_t^W \vee \mathcal{F}_{t,T}^B$, which solves the coupled system of Snell envelops.

$$Y_t^1 = \operatorname{ess sup}_{\tau \ge t} \left(E^{\mathcal{G}_t} \left[\int_t^{\tau} \psi^1(s, Y_s^1) ds + \int_t^{\tau} g^1(s, Y_s^1) \overleftarrow{dB}(s) \right] \right. \\ \left. + E^{\mathcal{G}_t} \left[\left(Y_{\tau}^2 - a(\tau) \right) \mathbf{1}_{[\tau < T]} + \xi^1 \mathbf{1}_{[\tau = T]} \right] \right),$$

$$Y_t^2 = \operatorname{ess inf}_{\sigma \ge t} \left(E^{\mathcal{G}_t} \left[\int_t^{\sigma} \psi^2(s, Y_s^2) ds + \int_t^{\sigma} g^2(s, Y_s^2) \overleftarrow{dB}(s) \right] \right. \\ \left. + E_t^{\mathcal{G}} \left[\left(Y_{\sigma}^1 + b(\sigma) \right) \mathbf{1}_{[\sigma < T]} + \xi^2 \mathbf{1}_{[\sigma = T]} \right] \right).$$

where, $\mathcal{G}_t = \mathcal{F}_t^W \vee \mathcal{F}_{0,T}^B$, and the sup and inf are taken over \mathcal{G}_t -stopping times.

(周) (王) (王)

The set up

- $W := (W_t)_{0 \le t \le T}$ a Brownian motion on a probability space (Ω, \mathcal{F}, P) .
- $(\mathcal{F}_t^W)_{0 \le t \le T}$ the completed natural filtration of W.
- X := (X_t)_{0≤t≤T} a diffusion process which stands for factors which determine the price of the underlying commodity we wish to control such as e.g. the price of electricity in the energy market.

- S² denotes the set of all right-continuous with left limits processes Y satisfying E (sup_{t∈[0,T]} |Y_t²|) < ∞.</p>
- M^{d,2} denotes the set of *F*-adapted and *d*-dimensional processes Z such that E (∫₀^T |Z_s|²ds) < ∞.</p>
- ► A⁺ denotes the set of right-continuous with left limits and increasing processes K.
- A^{+,2} the subset of A⁺ consisting of all the processes K satisfying, in addition, E(K²_T) < ∞.</p>

By El-Karoui *et al.* '97, (Y^1, Y^2) should solve the following system of RBSDEs:

$$\begin{cases} Y_t^1 = \xi^1 + \int_t^T \psi^1(s, Y_s^1) ds + (K_T^1 - K_t^1) - \int_t^T Z_s^1 dW_s, \\ Y_t^2 = \xi^2 + \int_t^T \psi^2(s, Y_s^2) ds - (K_T^2 - K_t^2) - \int_t^T Z_s^2 dW_s, \\ Y_t^1 \ge Y_t^2 - a(t), \quad Y_t^2 \le Y_t^1 + b(t), \quad 0 \le t \le T, \\ \int_0^T (Y_t^1 - (Y_t^2 - a(t))) dK_t^1 = 0, \quad \int_0^T (Y_t^1 + b(t) - Y_t^2) dK_t^2 = 0. \end{cases}$$

向下 イヨト イヨト

We solve a more general problem and make the following assumptions:

(B1) For each i = 1, 2, the process ψ^i depends on $(t, \omega, Y_t^i, Z_t^i)$. Moreover, $(t, \omega, y, z) \rightarrow \psi^i(t, \omega, y, z)$'s are Lipschitz continuous with respect to y and z and satisfy,

$$E\left(\int_0^T |\psi^i(t,0,0,0)|^2 ds\right) < \infty$$

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

(B2) The obstacles a and b are continuous and in S^2 . Moreover, they admit a semimartingale decomposition:

$$a(t)=a(0)+\int_0^t U^1_sds+\int_0^t V^1_sdB_s,$$

(to insure continuity of the minimal solution!)

$$b(t)=b(0)+\int_0^t U_s^2ds+\int_0^t V_s^2dB_s,$$

(to insure continuity of the maximal solution!)

for some \mathcal{F}^{W} -prog. meas. processes U^1, V^1, U^2 and V^2 . (B3) $\xi^{i'}$ s are in $L^2(\mathcal{F}_T^W)$ and satisfy

$$\xi^1 - \xi^2 \ge max\{-a(T), -b(T)\}, \quad P - a.s.$$

Let the coefficients $(\psi^1, \psi^2, a, b, \xi^1, \xi^2)$ satisfy Assumptions **(B1)**-(**B3**). Then the system of RBSDEs admits a minimal and a maximal \mathcal{F}^W -prog. meas. solutions $(Y^1, Y^2, Z^1, Z^2, K^1, K^2)$ and $(\bar{Y}^1, \bar{Y}^2, \bar{Z}^1, \bar{Z}^2, \bar{K}^1, \bar{K}^2)$, respectively, which are in $(\mathcal{S}^2)^2 \times (\mathcal{M}^{d,2})^2 \times (\mathcal{A}^{+,2})^2$.

Moreover,

- ► the processes Yⁱ and Yⁱ, i = 1,2 are P-a.s. continuous and admit the above Snell representations.
- the random times τ* and σ* defined above and associated with either Yⁱ or Y
 ⁱ, are optimal stopping times.

A minimal solution through the increasing sequences scheme

Start with the pair $(Y^{1,0}, Z^{1,0})$ that solves uniquely the BSDE

$$Y_t^{1,0} = \xi^1 + \int_t^T \psi^1(s, Y_s^{1,0}, Z_s^{1,0}) ds - \int_t^T Z_s^{1,0} dW_s.$$

and introduce the following system of RBSDEs

$$\begin{cases} dY_{s}^{2,n+1} = \psi^{2}(s, Y_{s}^{2,n+1}, Z_{s}^{2,n+1})ds - dK_{s}^{2,n+1} - Z_{s}^{2,n+1}dW_{s}, \\ dY_{s}^{1,n+1} = \psi^{1}(s, Y_{s}^{1,n+1}, Z_{s}^{1,n+1})ds + dK_{s}^{1,n+1} - Z_{s}^{1,n+1}dW_{s}, \\ Y_{s}^{2,n+1} \leq Y_{s}^{1,n} + b(s), \quad Y_{s}^{1,n+1} \geq Y_{s}^{2,n+1} - a(s), \quad 0 \leq s \leq T, \\ \int_{0}^{T} (Y_{t}^{1,n+1} - (Y_{t}^{2,n+1} - a(t))dK_{t}^{1,n+1} = 0, \quad Y_{T}^{1,n+1} = \xi^{1}; \\ \int_{0}^{T} (Y_{t}^{1,n} + b(t) - Y_{t}^{2,n+1})dK_{t}^{2,n+1} = 0, \quad Y_{T}^{2,n+1} = \xi^{2}. \end{cases}$$

This sequence of solutions satisfies the following properties:

- ► For any $n \ge 0$, both $(Y^{1,n}, Z^{1,n}, K^{1,n})$ and $(Y^{2,n+1}, Z^{2,n+1}, K^{2,n+1})$ exist and are in $S^2 \times \mathcal{M}^{d,2} \times \mathcal{A}^{+,2}$.
- The two sequences (Y^{1,n})_{n≥0} and (Y^{2,n})_{n≥1} are increasing in n, meaning that for all n ≥ 0,

$$Y_t^{1,n} \leq Y_t^{1,n+1} \quad \text{and} \quad Y_t^{2,n+1} \leq Y_t^{2,n+2} \; \textit{P-a.s. and for all t.}$$

► the limit process (Y¹, Y²) of (Y^{1,n}_t, Y^{2,n}_t) is continuous, a minimal solution of our system of RBSDEs and admits a Snell envelop representation.

A maximal solution through the decreasing sequences scheme

Start with the pair $(\bar{Y}^{2,0}, \bar{Z}^{2,0})$ that solves the standard BSDE

$$ar{Y}_t^{2,0} = \xi^2 + \int_t^T \psi^2(s, ar{Y}_s^{2,0}, ar{Z}_s^{2,0}) ds - \int_t^T ar{Z}_s^{2,0} dW_s,$$

and introduce the following system of RBSDEs

$$\begin{aligned} f = \psi^{1}(s, \bar{Y}_{s}^{1,n+1}, \bar{Z}_{s}^{1,n+1}) ds + d\bar{K}_{s}^{1,n+1} - \bar{Z}_{s}^{1,n+1} dW_{s}, \\ d\bar{Y}_{t}^{2,n+1} &= \psi^{2}(s, \bar{Y}_{s}^{2,n+1}, \bar{Z}_{s}^{2,n+1}) ds - d\bar{K}_{s}^{2,n+1} - \bar{Z}_{s}^{2,n+1} dW_{s}, \\ \bar{Y}_{s}^{1,n+1} &\geq \bar{Y}_{s}^{2,n} - a(s), \quad \bar{Y}_{s}^{2,n+1} \leq \bar{Y}_{s}^{1,n+1} + b(s), \ 0 \leq s \leq T, \\ \int_{0}^{T} (\bar{Y}_{t}^{1,n+1} - (\bar{Y}_{t}^{2,n} - a(t)) d\bar{K}_{t}^{1,n+1} = 0, \quad \bar{Y}_{T}^{1,n+1} = \xi^{1}, \\ \int_{0}^{T} (\bar{Y}_{t}^{1,n+1} + b(t) - \bar{Y}_{t}^{2,n+1}) d\bar{K}_{t}^{2,n+1} = 0, \quad \bar{Y}_{T}^{2,n+1} = \xi^{2}. \end{aligned}$$

This sequence of solutions satisfies the following properties.

- ► For any $n \ge 0$, both $(\bar{Y}^{2,n}, \bar{Z}^{2,n}, \bar{K}^{2,n})$ and $(\bar{Y}^{1,n+1}, \bar{Z}^{1,n+1}, \bar{K}^{1,n+1})$ exist and are in $S^2 \times \mathcal{M}^{d,2} \times \mathcal{A}^{+,2}$.
- The two sequences (Y
 ^{1,n})_{n≥1} and (Y^{2,n})_{n≥0} are decreasing in n, meaning that for all n ≥ 0,

$$\bar{Y}_t^{1,n+1} \geq \bar{Y}_t^{1,n+2} \quad \text{and} \quad \bar{Y}_t^{2,n} \geq \bar{Y}_t^{2,n+1} \; \; \textit{P-a.s. and for all } t.$$

► the limit process (\$\vec{Y}^1\$, \$\vec{Y}^2\$) of (\$\vec{Y}^{1,n}_t\$, \$\vec{Y}^{2,n}_t\$) is continuous, a maximal solution of our system of RBSDEs and admits a Snell envelop representation.

Assume

▶
$$\psi^1(t, \omega, y) = y$$
 and $\psi^2(t, \omega, y) = 2y$,
▶ $a = b = 0$ and $\xi^1 = \xi^2 = 1$.

The corresponding system of BSDEs is

$$\begin{cases} Y_t^1 = 1 + \int_t^T Y_s^1 ds - \int_t^T Z_s^1 dW_s + (K_T^1 - K_t^1), \\ Y_t^2 = 1 + 2\int_t^T Y_s^2 ds - \int_t^T Z_s^2 dW_s - (K_T^2 - K_t^2), \\ Y_t^1 \ge Y_t^2, \quad t \le T, \\ \int_0^T (Y_s^1 - Y_s^2) d(K_s^1 + K_s^2) = 0. \end{cases}$$

(1日) (日) (日)

It can be ckecked that

$$\left(e^{T-t}, e^{T-t}, 0, 0, 0, e^{T}(1-e^{-t})\right)$$

and

$$\left(e^{2(T-t)}, e^{2(T-t)}, 0, 0, \frac{1}{2}e^{2T}(1-e^{-2t}), 0)\right)$$

are solutions of the system of BSDEs.

・ロン ・回と ・ヨン・

æ

Theorem. Assume that

(i) the mappings ψ^1 and ψ^2 do not depend on (y, z), i.e., $\psi_i := (\psi_i(t, \omega))$, i = 1, 2,

(ii) the barriers a and b satisfy

$$P-a.s. \int_0^T 1_{[a(s)=b(s)]} ds = 0.$$

Then, the solution of the system of BSDE's is unique.

・同下 ・ヨト ・ヨト

When the dependence of (Y^1, Y^2) on the sources of uncertainty (the diffusion process $X^{t,x}$) is explicit, we can show that there exists two deterministic functions u^1 and u^2 such that

$$Y_s^1 = u^1(s, X_s^{t,x}), \quad Y_s^2 = u^2(s, X_s^{t,x}),$$

and are viscosity solutions of the following system of variational inequalities:

$$\begin{cases} \min\{u^{1}(t,x) - u^{2}(t,x) + a(t,x), -\mathcal{G}u^{1}(t,x) - \psi^{1}(t,x,u^{1}(t,x))\} = 0\\ \max\{u^{2}(t,x) - u^{1}(t,x) - b(t,x), -\mathcal{G}u^{2}(t,x) - \psi^{2}(t,x,u^{2}(t,x))\} = 0\\ u^{1}(\mathcal{T},x) = g^{1}(x), \quad u^{2}(\mathcal{T},x) = g^{2}(x). \end{cases}$$

Through a counter-example, we can show that the system may have infinitely many solutions.

An SPDE related to Problem III

Within the framework in Matoussi & Stoica (2010), solutions $(Y^1, Z^1, K^1, Y^2, Z^2, K^2)$ of Problem II are related to weak solutions $(u^1(t, \omega, x), \nu^1(\omega, dt, dx), u^2(t, \omega, x), \nu^2(\omega, dt, dx))$ of the following SPDE with inter-connected obstacles: $(\phi_t(x) \text{ being a test function})$

$$\begin{aligned} &(u_t^i, \phi_t) - (\xi^i, \phi_T) + \int_t^T \left[(u_s^i, \partial_s \phi_s) + (\nabla u_s^i, \nabla \phi_s) \right] ds, \quad i = 1, 2, \\ &= \int_t^T (\psi_s^i, \phi_s) ds + \int_t^T (g_s^i, \phi_s) dB(s) + \int_{[t,T] \times R} \phi_s \nu^i (ds, dx), \\ &\int_{[0,T] \times R} (\bar{u}_s^1 - (\bar{u}_s^2 - a(s)) \nu^1 (ds, dx) = 0, \quad a.s. \\ &\int_{[0,T] \times R} (\bar{u}_s^1 + b(s) - \bar{u}_s^2) \nu^2 (ds, dx) = 0, \quad a.s. \\ &u_t^1 \ge u_t^2 - a(t), \quad u_t^2 \le u_t^1 + b(t), \quad dP \otimes dt \otimes dx. \\ &u^i(T, x) = \xi^i(x), \quad i = 1, 2. \end{aligned}$$

with, (\bar{u}^1, \bar{u}^2) being a quasi-continuous version of (u^1, u^2) , where,

- (u¹, u²) belongs to some appropriate space and is predictable w.r.t. (𝓕^B_{t,𝔅})_t.
- $\nu^i(ds, dx)$'s are random regular measures on $(0, T) \times R$.

Essentially, the regular random measures $\nu^i, i = 1, 2$ are obtained through the relation

$$\int_0^T \int_R \varphi(t,x) \nu^i (dtdx) = E \int_0^T \varphi(t,W_t) dK_t^i,$$

for all test functions φ . The expectation is taken w.r.t. the probability measure carrying the Browinan motion W.

- BD, S. Hamadène and M-E. Morlais (2010): Optimal stopping of expected profit and cost yields in an investment under uncertainty (*To appear in Stochastics*).
- R. Ben Abdellah, BD, S. Hamadène (2010): Backward SPDEs with inter-connected obstacles (in preparation).

(ロ) (同) (E) (E) (E)