An approach to fully coupled FBSDEs via functional differential equations

 $\begin{array}{c} Matteo \ Casserini^* \\ \text{joint work with Gechun Liang}^\dagger \end{array}$

*Department of Mathematics ETH Zürich

[†]Oxford-Man Institute

Workshop "New advances in BSDEs for financial engineering applications", Tamerza October 26, 2010

Outline

1 Brownian FBSDEs as functional differential equations

- 2 Fully coupled forward-backward stochastic dynamics
- 3 Existence and uniqueness of solutions
- 4 Related discretization algorithms for Brownian FBSDEs

Brownian FBSDEs as functional differential equations

Fully coupled forward–backward stochastic dynamics Existence and uniqueness of solutions Related discretization algorithms for Brownian FBSDEs

Outline

Introduction Alternative formulation of Brownian FBSDEs

1 Brownian FBSDEs as functional differential equations

2 Fully coupled forward–backward stochastic dynamics

3 Existence and uniqueness of solutions

4 Related discretization algorithms for Brownian FBSDEs

Introduction

Introduction Alternative formulation of Brownian FBSDEs

- Aim: Introduce a forward approach for a general class of fully coupled FBSDEs
- Result: System of forward equations where the coefficients depend also on the terminal values of the solution
 - Conflict between forward and backward components partly avoided
 - Purely probabilistic (random coefficients)
 - Allows to treat other types of non-classical forward-backward equations

Introduction Alternative formulation of Brownian FBSDEs

Motivating observation

• $(Y_t)_{0 \le t \le T}$ a semimartingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, P)$ with known terminal value $Y_T = \xi \in L^1(\mathcal{F}_T)$.

Doob-Meyer decomposition:

$$Y_t = M_t - V_t,$$

M martingale, V cont. adapted process of finite variation.
If V_T is integrable, then:

 $M_t = M(V,\xi)_t = E[\xi + V_T | \mathcal{F}_t] \quad \forall \ t \in [0, T],$ $Y_t = Y(V,\xi)_t = E[\xi + V_T | \mathcal{F}_t] - V_t \quad \forall \ t \in [0, T].$ (1.1)

Introduction Alternative formulation of Brownian FBSDEs

Motivating observation

- $(Y_t)_{0 \le t \le T}$ a semimartingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, P)$ with known terminal value $Y_T = \xi \in L^1(\mathcal{F}_T)$.
- Doob-Meyer decomposition:

$$Y_t = M_t - V_t,$$

M martingale, V cont. adapted process of finite variation.
If V_T is integrable, then:

 $M_t = M(V,\xi)_t = E[\xi + V_T | \mathcal{F}_t] \quad \forall \ t \in [0, T],$ $Y_t = Y(V,\xi)_t = E[\xi + V_T | \mathcal{F}_t] - V_t \quad \forall \ t \in [0, T].$ (1.1)

Introduction Alternative formulation of Brownian FBSDEs

Motivating observation

- $(Y_t)_{0 \le t \le T}$ a semimartingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, P)$ with known terminal value $Y_T = \xi \in L^1(\mathcal{F}_T)$.
- Doob-Meyer decomposition:

$$Y_t = M_t - V_t,$$

M martingale, V cont. adapted process of finite variation.
If V_T is integrable, then:

$$\begin{aligned} M_t &= M(V,\xi)_t = E[\xi + V_T | \mathcal{F}_t] \quad \forall \ t \in [0, T], \\ Y_t &= Y(V,\xi)_t = E[\xi + V_T | \mathcal{F}_t] - V_t \quad \forall \ t \in [0, T]. \end{aligned}$$

Introduction Alternative formulation of Brownian FBSDEs

Formally: alternative formulation of Brownian FBSDEs

 Probability space (Ω, F, P) with a m-dim. BM W (F_t)_{0≤t≤T} corresponding augmented filtration

Classical fully coupled FBSDE of the form

$$\begin{cases} dY_t = -f(t, X_t, Y_t, Z_t)dt + Z_t dW_t, & Y_T = \Phi(X_T), \\ dX_t = \mu(t, X_t, Y_t, Z_t)dt + \sigma(t, X_t, Y_t)dW_t, & X_0 = x, \\ (1.2) \end{cases}$$

here $f: \ \Omega \times [0, T] \times \mathbb{R}^n \times \mathbb{R}^d \times \mathbb{R}^{d \times m} \to \mathbb{R}^d,$

 $\sigma: \ \Omega \times [0,T] \times \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^{n \times m}, \ \Phi: \ \Omega \times \mathbb{R}^n \to \mathbb{R}^d.$

Introduction Alternative formulation of Brownian FBSDEs

Formally: alternative formulation of Brownian FBSDEs

- Probability space (Ω, \mathcal{F}, P) with a *m*-dim. BM W $(\mathcal{F}_t)_{0 \le t \le T}$ corresponding augmented filtration
- Classical fully coupled FBSDE of the form

$$\begin{cases} dY_t = -f(t, X_t, Y_t, Z_t)dt + Z_t dW_t, & Y_T = \Phi(X_T), \\ dX_t = \mu(t, X_t, Y_t, Z_t)dt + \sigma(t, X_t, Y_t)dW_t, & X_0 = x, \\ & (1.2) \end{cases}$$

where $f : \Omega \times [0, T] \times \mathbb{R}^n \times \mathbb{R}^d \times \mathbb{R}^{d \times m} \to \mathbb{R}^d, \\ \mu : \Omega \times [0, T] \times \mathbb{R}^n \times \mathbb{R}^d \times \mathbb{R}^{d \times m} \to \mathbb{R}^n, \end{cases}$

 $\sigma: \ \Omega \times [0,T] \times \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^{n \times m}, \ \Phi: \ \Omega \times \mathbb{R}^n \to \mathbb{R}^d.$

Formally: alternative formulation of Brownian FBSDEs

Define an associated system of functional differential equations:

$$\begin{cases} dV_t = f(t, X_t, Y(V, X)_t, Z(V, X)_t) dt, \\ dX_t = \mu(t, X_t, Y(V, X)_t, Z(V, X)_t) dt + \sigma(t, X_t, Y(V, X)_t) dW_t \\ \end{cases}$$
(1.3)

with initial conditions $V_0 = 0$, $X_0 = x$, where

$$M(V, X)_{t} := E[\Phi(X_{T}) + V_{T} | \mathcal{F}_{t}],$$

$$Y(V, X)_{t} := E[\Phi(X_{T}) + V_{T} | \mathcal{F}_{t}] - V_{t},$$

$$Z(V, X)_{t} := D_{t}M(V, X)_{T} = D_{t}(\Phi(X_{T}) + V_{T}) \quad \forall \ t \in [0, T].$$
(1.4)

Outline

Setting Fully coupled forward–backward stochastic dynamics

1 Brownian FBSDEs as functional differential equations

2 Fully coupled forward-backward stochastic dynamics

3 Existence and uniqueness of solutions

4 Related discretization algorithms for Brownian FBSDEs

Setting

Setting Fully coupled forward-backward stochastic dynamics

- (Ω, \mathcal{F}, P) probability space with a *m*-dim. BM *W*, $(\mathcal{F}_t)_{0 \le t \le T}$ with usual assumptions
- $\mathcal{C}([0, T], \mathbb{R}^d) := \{ V : \Omega \times [0, T] \to \mathbb{R}^d | V \text{ continuous and} \\ \text{adapted, } E[\max_j \sup_t |V_t^j|^2] < \infty \}$
- $C_0([0, T], \mathbb{R}^d) := C([0, T], \mathbb{R}^d) \cap \{V | V_0 = 0\}$

• $\mathcal{M}^2([0, T], \mathbb{R}^d) := \{ M : \Omega \times [0, T] \to \mathbb{R}^d | M \text{ square integrable}$ martingale on $[0, T] \}$

Setting Fully coupled forward-backward stochastic dynamics

Setting

•
$$\|V\|_{\mathcal{C}[0,T]} := \sqrt{E[\sup_{0 \le t \le T} |V_t|^2]}$$

•
$$\mathcal{H}^2([0,T],\mathbb{R}^p) := \{Z:\Omega \times [0,T] \to \mathbb{R}^p | Z \text{ predictable,} \\ \|Z\|^2_{\mathcal{H}^2[0,T]} := E[\int_0^T |Z_t|^2 dt] < \infty\}$$

Fully coupled forward-backward stochastic dynamics

General filtration ⇒ No martingale representation!
 ⇒ Substitute Z by L(M), where L nonlinear functional mapping M²([0, T], ℝ^d) into p-dim. adapted processes

■ This leads us to the following generalization of (1.2):

 $\begin{cases} dY_t = -f(t, X_t, Y_t, L(M)_t)dt + dM_t, & Y_T = \Phi(X_T), \\ dX_t = \mu(t, X_t, Y_t, L(M)_t)dt + \sigma(t, X_t, Y_t)dW_t, & X_0 = x. \end{cases}$ (2.1)

A solution to (2.1) is then a triplet of adapted processes (X, Y, M) satisfying the integral formulation of (2.1) and such that M is a square-integrable martingale.

Fully coupled forward-backward stochastic dynamics

- General filtration ⇒ No martingale representation!
 ⇒ Substitute Z by L(M), where L nonlinear functional mapping M²([0, T], ℝ^d) into p-dim. adapted processes
- This leads us to the following generalization of (1.2):

$$\begin{cases} dY_t = -f(t, X_t, Y_t, L(M)_t)dt + dM_t, & Y_T = \Phi(X_T), \\ dX_t = \mu(t, X_t, Y_t, L(M)_t)dt + \sigma(t, X_t, Y_t)dW_t, & X_0 = x. \end{cases}$$
(2.1)

A solution to (2.1) is then a triplet of adapted processes (X, Y, M) satisfying the integral formulation of (2.1) and such that M is a square-integrable martingale.

Fully coupled forward-backward stochastic dynamics

- General filtration ⇒ No martingale representation!
 ⇒ Substitute Z by L(M), where L nonlinear functional mapping M²([0, T], ℝ^d) into p-dim. adapted processes
- This leads us to the following generalization of (1.2):

$$\begin{cases} dY_t = -f(t, X_t, Y_t, L(M)_t)dt + dM_t, & Y_T = \Phi(X_T), \\ dX_t = \mu(t, X_t, Y_t, L(M)_t)dt + \sigma(t, X_t, Y_t)dW_t, & X_0 = x. \end{cases}$$
(2.1)

A solution to (2.1) is then a triplet of adapted processes (X, Y, M) satisfying the integral formulation of (2.1) and such that M is a square-integrable martingale.

Fully coupled forward-backward stochastic dynamics

Reduce the problem (2.1) to a system of functional differential equations:

$$\begin{cases} dV_t = f(t, X_t, Y(V, X)_t, L(M(V, X))_t) dt, \\ dX_t = \mu(t, X_t, Y(V, X)_t, L(M(V, X))_t) dt + \sigma(t, X_t, Y(V, X)_t) dW_t, \end{cases}$$
(2.2)

with initial conditions $V_0 = 0$, $X_0 = x$. Then: if (V, X) solves (2.2), (X, Y(V, X), M(V, X)) solves (2.1).

Outline

Local existence and uniqueness Global solution

1 Brownian FBSDEs as functional differential equations

2 Fully coupled forward–backward stochastic dynamics

3 Existence and uniqueness of solutions

4 Related discretization algorithms for Brownian FBSDEs

Local existence and uniqueness Global solution

Local existence and uniqueness

- Derive sufficient conditions on the coefficients and on *L* to guarantee existence and uniqueness of solutions
- For short time intervals: existence and uniqueness under weak assumptions on L
 ⇒ Possibility to treat other types of functionals L not fitting in the classical framework

Local existence and uniqueness Global solution

Local existence and uniqueness

- Derive sufficient conditions on the coefficients and on *L* to guarantee existence and uniqueness of solutions
- \blacksquare For short time intervals: existence and uniqueness under weak assumptions on L

 \Rightarrow Possibility to treat other types of functionals *L* not fitting in the classical framework

Assumptions

Assumption (A1)

The coefficients f, μ , σ and Φ satisfy Assumption (A1) if there exists a constant K > 0 such that:

(A1.1) For any $(x, y, z) \in \mathbb{R}^n \times \mathbb{R}^d \times \mathbb{R}^p$, $f(\cdot, x, y, z)$, $\mu(\cdot, x, y, z)$ and $\sigma(\cdot, x, y)$ are \mathbb{F} -adapted and $\Phi(\cdot, x)$ is \mathbb{F}_T -measurable. (A1.2) For every $t \in [0, T]$, $(x, y, z), (x', y', z') \in \mathbb{R}^n \times \mathbb{R}^d \times \mathbb{R}^p$,

$$egin{aligned} |f(t,x,y,z)-f(t,x',y',z')|&\leq \mathcal{K}(|x-x'|+|y-y'|+|z-z'|),\ &|\Phi(x)-\Phi(x')|&\leq \mathcal{K}|x-x'|,\ &|\mu(t,x,y,z)-\mu(t,x,y',z')|&\leq \mathcal{K}(|y-y'|+|z-z'|),\ &|\sigma(t,x,y)-\sigma(t,x',y')|^2&\leq \mathcal{K}(|x-x'|^2+|y-y'|^2). \end{aligned}$$

Assumptions

Assumption (A1)

(A1.3) For every
$$t \in [0, T]$$
, $(y, z) \in \mathbb{R}^d imes \mathbb{R}^p$, $x, x' \in \mathbb{R}^n$,

$$(x-x')^{\mathrm{T}}(\mu(t,x,y,z)-\mu(t,x',y,z))\leq K|x-x'|^2.$$

(A1.4) For every $t \in [0, T]$, $(x, y, z) \in \mathbb{R}^n \times \mathbb{R}^d \times \mathbb{R}^p$,

$$egin{aligned} |f(t,x,y,z)| &\leq \mathcal{K}(1+|x|+|y|+|z|), \ |\Phi(x)| &\leq \mathcal{K}(1+|x|), \ |\mu(t,x,y,z)| &\leq \mathcal{K}(1+|x|+|y|+|z|), \ |\sigma(t,x,y)| &\leq \mathcal{K}(1+|x|+|y|). \end{aligned}$$

(A1.5) The functions $u \mapsto \mu(t, u, y, z)$ is continuous for all $t \in [0, T]$, $(y, z) \in \mathbb{R}^d \times \mathbb{R}^p$.

Assumptions

Local existence and uniqueness Global solution

Assumption (A2)

The functional *L* satisfies Assumption (A2) if there exists a constant K > 0 such that:

(A2.1) L maps $\mathcal{M}^2([0, T], \mathbb{R}^d)$ into $\mathcal{O}([0, T], \mathbb{R}^p)$, where $\mathcal{O}([0, T], \mathbb{R}^p) \in \{\mathcal{H}^2([0, T], \mathbb{R}^p), \mathcal{C}([0, T], \mathbb{R}^p)\}.$

(A2.2) L is bounded and Lipschitz continuous, i.e.

$$\begin{split} \|L(M)\|_{\mathcal{O}[0,T]} &\leq K \|M\|_{\mathcal{C}[0,T]}, \\ \|L(M) - L(M')\|_{\mathcal{O}[0,T]} &\leq K \|M - M'\|_{\mathcal{C}[0,T]} \quad \forall \ M, M' \in \mathcal{M}^2. \end{split}$$

Examples for L

Local existence and uniqueness Global solution

Example (1)

- $(\mathcal{F}_t)_{0 \le t \le T}$ augmented filtration generated by W
- Choose $\mathcal{O}([0, T], \mathbb{R}^p) = \mathcal{H}^2([0, T], \mathbb{R}^{d \times m})$
- L: M²([0, T], ℝ^d) → H²([0, T], ℝ^{d×m}) defined via the Itô representation theorem, i.e.

$$M_t^i = E[M_t^i] + \sum_{j=1}^m \int_0^t L(M)_s^{i,j} dW_s^j, \quad i = 1, \dots, d.$$

• Classical fully coupled FBSDEs (L(M(X, V)) = Z(X, V))

Examples for L

Local existence and uniqueness Global solution

Example (2)

- $(\mathcal{F}_t)_{0 \leq t \leq T}$ with usual assumptions
- Choose $\mathcal{O}([0, T], \mathbb{R}^p) = \mathcal{H}^2([0, T], \mathbb{R}^{d \times m})$
- L: M²([0, T], ℝ^d) → H²([0, T], ℝ^{d×m}) given by the integrand process in the orthogonal decomposition w.r.t. W, i.e.

$$M_t^i = E[M_t^i] + \sum_{j=1}^m \int_0^t L(M)_s^{i,j} dW_s^j + (M')_t^i, \quad i = 1, \dots, d.$$

Examples for L

Example (3)

- $(\mathcal{F}_t)_{0 \le t \le T}$ quasi-left continuous
- For $M \in \mathcal{M}^2([0, T], \mathbb{R})$ consider the decomposition

$$M = M^c + M^d$$

 M^c continuous martingale null at 0, M^d purely discontinuous martingale

• Choose $\mathcal{O}([0, T], \mathbb{R}^p) = \mathcal{C}([0, T], \mathbb{R}^d)$. $L : \mathcal{M}^2([0, T], \mathbb{R}^d) \to \mathcal{C}([0, T], \mathbb{R}^d)$ defined by

$$L(M)_t^i := \sqrt{\langle (M^c)^i, (M^c)^i \rangle_t}, \quad i = 1, \dots, d.$$

Local existence and uniqueness Global solution

Existence of local solutions

Theorem

Under the assumptions (A1) and (A2) there is a constant τ_K so that, for $T \leq \tau_K$, (2.2) admits a unique solution (X, V) satisfying

 $\|X\|_{\mathcal{C}[0,T]} + \|V\|_{\mathcal{C}[0,T]} < \infty.$

Moreover, the solution processes V and X are continuous.

Sketch of proof

Sketch of proof

Define the mapping $\mathbb{L} : \mathcal{C}([0, T], \mathbb{R}^n) \times \mathcal{C}([0, T], \mathbb{R}^d) \rightarrow \mathcal{C}([0, T], \mathbb{R}^n) \times \mathcal{C}([0, T], \mathbb{R}^d)$ by $\mathbb{L}(X, V) := (\widetilde{X}, \widetilde{V})$, where \widetilde{X} solution of the forward SDE

$$\begin{cases} \widetilde{X}_0 = x, \\ d\widetilde{X}_t = \mu(t, \widetilde{X}_t, Y(V, X)_t, L(M(V, X))_t) dt + \sigma(t, \widetilde{X}_t, Y(V, X)_t) dW_t, \end{cases}$$

whereas \widetilde{V} is explicitly given by

$$\widetilde{V}_t = \int_0^t f(s, \widetilde{X}_s, Y(V, X)_s, L(M(V, X))_s) ds.$$

(X, V) solves (2.2) if and only if it is a fixed point of \mathbb{L} .

Global solution

Local existence and uniqueness Global solution

- Extension of the local solutions to global ones: still work in progress
- The study of the simple decoupled case suggests that additional assumptions on L are needed!
- For $[T_2, T_1] \subset [0, T]$, define the restriction $L_{[T_2, T_1]}$ from $\mathcal{M}^2([T_2, T_1], \mathbb{R}^d)$ to $\mathcal{O}([T_2, T_1], \mathbb{R}^m)$ by

$$L_{[T_2,T_1]}(N)_t := L(\widetilde{N})_t, \quad N \in \mathcal{M}^2([T_2,T_1],\mathbb{R}^d),$$

where $\widetilde{N}_t := E[N_{T_1}|\mathcal{F}_t]$, $t \in [0, T]$, is the extension of N to $\mathcal{M}^2([0, T], \mathbb{R}^d)$.

Global solution

Local existence and uniqueness Global solution

- Extension of the local solutions to global ones: still work in progress
- The study of the simple decoupled case suggests that additional assumptions on *L* are needed!
- For $[T_2, T_1] \subset [0, T]$, define the restriction $L_{[T_2, T_1]}$ from $\mathcal{M}^2([T_2, T_1], \mathbb{R}^d)$ to $\mathcal{O}([T_2, T_1], \mathbb{R}^m)$ by

 $L_{[\mathcal{T}_2,\mathcal{T}_1]}(N)_t := L(\widetilde{N})_t, \quad N \in \mathcal{M}^2([\mathcal{T}_2,\mathcal{T}_1],\mathbb{R}^d),$

where $\widetilde{N}_t := E[N_{T_1}|\mathcal{F}_t]$, $t \in [0, T]$, is the extension of N to $\mathcal{M}^2([0, T], \mathbb{R}^d)$.

Global solution

Local existence and uniqueness Global solution

- Extension of the local solutions to global ones: still work in progress
- The study of the simple decoupled case suggests that additional assumptions on *L* are needed!
- For $[T_2, T_1] \subset [0, T]$, define the restriction $L_{[T_2, T_1]}$ from $\mathcal{M}^2([T_2, T_1], \mathbb{R}^d)$ to $\mathcal{O}([T_2, T_1], \mathbb{R}^m)$ by

$$L_{[T_2,T_1]}(N)_t := L(\widetilde{N})_t, \quad N \in \mathcal{M}^2([T_2,T_1],\mathbb{R}^d),$$

where $\widetilde{N}_t := E[N_{T_1}|\mathcal{F}_t]$, $t \in [0, T]$, is the extension of N to $\mathcal{M}^2([0, T], \mathbb{R}^d)$.

Local existence and uniqueness Global solution

Global solution

Assumption (A2')

We say that L satisfies (A2') if it satisfies (A2) as well as

(A2.3) (Local-in-time property) For $0 \le T_2 < T_1 \le T$ and $M \in \mathcal{M}^2([0, T], \mathbb{R}^d)$,

$$L(M) = L_{[T_2,T_1]}(\widehat{M})$$
 on (T_2,T_1) , where $\widehat{M} = M|_{[T_2,T_1]}$.

(A2.4) (Differential property) For $0 \le T_2 < T_1 \le T$ and $N \in \mathcal{M}^2([T_2, T_1], \mathbb{R}^d)$,

$$L_{[T_2,T_1]}(N - N_{T_2}) = L_{[T_2,T_1]}(N)$$
 on (T_2,T_1) .

Global solution

- Main idea: Derive some uniform estimates for the solution over short time intervals, extend the solution to any time interval while still keeping that estimate.
- Well known from classical theory ([Delarue], [Zhang]): additional assumptions on the coefficients are needed.
- It can be proven that, under the assumption (A2') on L and under the same assumptions on the coefficients as in [Delarue] or [Zhang], the system (2.2) has a unique solution on any time interval

Global solution

- Main idea: Derive some uniform estimates for the solution over short time intervals, extend the solution to any time interval while still keeping that estimate.
- Well known from classical theory ([Delarue], [Zhang]): additional assumptions on the coefficients are needed.
- It can be proven that, under the assumption (A2') on L and under the same assumptions on the coefficients as in [Delarue] or [Zhang], the system (2.2) has a unique solution on any time interval

Global solution

- Main idea: Derive some uniform estimates for the solution over short time intervals, extend the solution to any time interval while still keeping that estimate.
- Well known from classical theory ([Delarue], [Zhang]): additional assumptions on the coefficients are needed.
- It can be proven that, under the assumption (A2') on L and under the same assumptions on the coefficients as in [Delarue] or [Zhang], the system (2.2) has a unique solution on any time interval

Outline

Fully coupled FBSDEs The decoupled case

1 Brownian FBSDEs as functional differential equations

2 Fully coupled forward–backward stochastic dynamics

3 Existence and uniqueness of solutions

4 Related discretization algorithms for Brownian FBSDEs

Brownian FBSDEs

Fully coupled FBSDEs The decoupled case

The functional differential equation approach and the related contraction mapping opens the door to a new class of discretization algorithms.

Assume we have a classical FBSDE in a Brownian filtration:

$$\begin{cases} dY_t = -f(t, X_t, Y_t, Z_t)dt + Z_t dW_t, \quad Y_T = \Phi(X_T), \\ dX_t = \mu(t, X_t, Y_t, Z_t)dt + \sigma(t, X_t, Y_t)dW_t, \quad X_0 = x. \end{cases}$$
$$\Leftrightarrow \begin{cases} dV_t = f(t, X_t, Y(V, X)_t, Z(V, X)_t)dt, \\ dX_t = \mu(t, X_t, Y(V, X)_t, Z(V, X)_t)dt + \sigma(t, X_t, Y(V, X)_t)dW_t. \end{cases}$$

Fully coupled FBSDEs The decoupled case

Numerical approximation

 $\pi = (t_0, \cdots, t_N)$ partition of [0, T]. For $p \in \mathbb{N}$, define $V^{\pi, p}$ and $X^{\pi, p}$ recursively on π by $V^{\pi, 0} \equiv 0$, $X^{\pi, 0} \equiv x$ and

$$\begin{split} X_{0}^{\pi,p+1} &= x, \quad V_{0}^{\pi,p+1} = 0, \\ X_{t_{i+1}}^{\pi,p+1} &= X_{t_{i}}^{\pi,p+1} + \mu(t_{i}, X_{t_{i}}^{\pi,p+1}, Y(V^{\pi,p}, X^{\pi,p})_{t_{i}}, Z(V^{\pi,p}, X^{\pi,p})_{t_{i}}) \Delta t_{i} \\ &+ \sigma(t_{i}, X_{t_{i}}^{\pi,p+1}, Y^{\pi,p}(V, X)_{t_{i}})(\Delta W_{t_{i}})^{T}, \\ V_{t_{i+1}}^{\pi,p+1} &= V_{t_{i}}^{\pi,p+1} + f(t_{i}, X_{t_{i}}^{\pi,p+1}, Y(V^{\pi,p}, X^{\pi,p})_{t_{i}}, Z(V^{\pi,p}, X^{\pi,p})_{t_{i}}) \Delta t_{i} \\ \text{for } i = 0, \cdots, N-1 \text{ and } p \geq 1, \text{ where} \\ Y(V^{\pi,p}, X^{\pi,p})_{t_{i}} &= E[\Phi(X_{T}^{\pi,p}) + V_{T}^{\pi,p}|\mathcal{F}_{t_{i}}] - V_{t_{i}}^{\pi,p}, \\ Z(V^{\pi,p}, X^{\pi,p})_{t_{i}} &= \frac{1}{\Delta t_{i}} E\left[Y(V^{\pi,p}, X^{\pi,p})_{t_{i+1}}(\Delta W_{t_{i}})^{T}|\mathcal{F}_{t_{i}}\right]. \end{split}$$

Fully coupled FBSDEs The decoupled case

Numerical approximation

Motivated by the continuous time results

- Advantage: Avoid the nesting of conditional expectations (arising in most numerical approaches to BSDEs), thus reducing the amplification of the error.
- Conjecture: the algorithm converges to the true solution of the FBSDE

Fully coupled FBSDEs The decoupled case

Numerical approximation

- Motivated by the continuous time results
- Advantage: Avoid the nesting of conditional expectations (arising in most numerical approaches to BSDEs), thus reducing the amplification of the error.
- Conjecture: the algorithm converges to the true solution of the FBSDE

Fully coupled FBSDEs The decoupled case

Numerical approximation

- Motivated by the continuous time results
- Advantage: Avoid the nesting of conditional expectations (arising in most numerical approaches to BSDEs), thus reducing the amplification of the error.
- Conjecture: the algorithm converges to the true solution of the FBSDE

The decoupled case

Fully coupled FBSDEs The decoupled case

The convergence can easily be proved in the decoupled case:

Theorem

Assume that f, μ , σ and Φ are Lipschitz in the space variables and 1/2-Hölder in the time variable. Then there is a constant C, depending only on the Lipschitz constants involved and the dimension of the problem, such that

$$\sup_{0 \le t \le T} E[|V_t - V_t^{p,\pi}|^2] + \sup_{0 \le t \le T} E[|X_t - X_t^{p,\pi}|^2] \le C\left(|\pi| + \left(\frac{1}{2} + C|\pi|\right)^p\right)$$

Some references

Christian Bender and Jianfeng Zhang.

Time discretization and Markovian iteration for coupled FBSDEs. *Ann. Appl. Probab.*, 18(1):143–177, 2008.

M. Casserini and G. Liang.

A functional differential equation approach to the numerical solution of BSDEs.

Working paper, 2010.

G. Liang, T. Lyons, and Z. Qian.

Backward stochastic dynamics on a filtered probability space.

Working paper, 2009.

Jianfeng Zhang.

The wellposedness of FBSDEs.

Discrete Contin. Dyn. Syst. Ser. B, 6(4):927-940 (electronic), 2006.

Thank you for your attention!