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Introduction

Aim: Introduce a forward approach for a general class of fully
coupled FBSDEs

Result: System of forward equations where the coefficients depend
also on the terminal values of the solution
Conflict between forward and backward components partly
avoided
Purely probabilistic (random coefficients)
Allows to treat other types of non–classical forward–backward
equations
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Introduction
Alternative formulation of Brownian FBSDEs

Motivating observation

(Yt)0≤t≤T a semimartingale on (Ω,F , (Ft)0≤t≤T ,P) with
known terminal value YT = ξ ∈ L1(FT ).
Doob-Meyer decomposition:

Yt = Mt − Vt ,

M martingale, V cont. adapted process of finite variation.
If VT is integrable, then:

Mt = M(V , ξ)t = E [ξ + VT |Ft ] ∀ t ∈ [0,T ],

Yt = Y (V , ξ)t = E [ξ + VT |Ft ]− Vt ∀ t ∈ [0,T ]. (1.1)
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Formally: alternative formulation of Brownian FBSDEs

Probability space (Ω,F ,P) with a m-dim. BM W
(Ft)0≤t≤T corresponding augmented filtration
Classical fully coupled FBSDE of the form{

dYt = −f (t,Xt ,Yt ,Zt)dt + ZtdWt , YT = Φ(XT ),

dXt = µ(t,Xt ,Yt ,Zt)dt + σ(t,Xt ,Yt)dWt , X0 = x ,
(1.2)

where f : Ω× [0,T ]× Rn × Rd × Rd×m → Rd ,
µ : Ω× [0,T ]× Rn × Rd × Rd×m → Rn,
σ : Ω× [0,T ]× Rn × Rd → Rn×m, Φ : Ω× Rn → Rd .
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Alternative formulation of Brownian FBSDEs

Formally: alternative formulation of Brownian FBSDEs

Define an associated system of functional differential equations:{
dVt = f (t,Xt ,Y (V ,X )t ,Z (V ,X )t)dt,
dXt = µ(t,Xt ,Y (V ,X )t ,Z (V ,X )t)dt + σ(t,Xt ,Y (V ,X )t)dWt

(1.3)
with initial conditions V0 = 0, X0 = x , where

M(V ,X )t := E [Φ(XT ) + VT |Ft ],

Y (V ,X )t := E [Φ(XT ) + VT |Ft ]− Vt ,

Z (V ,X )t := DtM(V ,X )T = Dt(Φ(XT ) + VT ) ∀ t ∈ [0,T ].

(1.4)
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Setting

(Ω,F ,P) probability space with a m-dim. BM W , (Ft)0≤t≤T
with usual assumptions

C([0,T ],Rd ) := {V : Ω× [0,T ]→ Rd |V continuous and
adapted, E [maxj supt |V

j
t |2] <∞}

C0([0,T ],Rd ) := C([0,T ],Rd ) ∩ {V |V0 = 0}

M2([0,T ],Rd ) := {M : Ω× [0,T ]→ Rd |M square integrable
martingale on [0,T ]}
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Setting

‖V ‖C[0,T ] :=
√

E [sup0≤t≤T |Vt |2]

S([0,T ],Rd ) := C([0,T ],Rd )⊕M2([0,T ],Rd )

H2([0,T ],Rp) := {Z : Ω× [0,T ]→ Rp|Z predictable,
‖Z‖2

H2[0,T ] := E [
∫ T

0 |Zt |2dt] <∞}
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Fully coupled forward–backward stochastic dynamics

General filtration ⇒ No martingale representation!
⇒ Substitute Z by L(M), where L nonlinear functional
mapping M2([0,T ],Rd ) into p–dim. adapted processes
This leads us to the following generalization of (1.2):{

dYt = −f (t,Xt ,Yt , L(M)t)dt + dMt , YT = Φ(XT ),

dXt = µ(t,Xt ,Yt , L(M)t)dt + σ(t,Xt ,Yt)dWt , X0 = x .
(2.1)

A solution to (2.1) is then a triplet of adapted processes
(X ,Y ,M) satisfying the integral formulation of (2.1) and
such that M is a square-integrable martingale.
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Fully coupled forward–backward stochastic dynamics

Reduce the problem (2.1) to a system of functional differential
equations:{

dVt = f (t,Xt ,Y (V ,X )t , L(M(V ,X ))t)dt,
dXt = µ(t,Xt ,Y (V ,X )t , L(M(V ,X ))t)dt + σ(t,Xt ,Y (V ,X )t)dWt ,

(2.2)
with initial conditions V0 = 0, X0 = x .
Then: if (V ,X ) solves (2.2), (X ,Y (V ,X ),M(V ,X )) solves (2.1).
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Local existence and uniqueness

Derive sufficient conditions on the coefficients and on L to
guarantee existence and uniqueness of solutions

For short time intervals: existence and uniqueness under weak
assumptions on L
⇒ Possibility to treat other types of functionals L not fitting
in the classical framework
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Assumptions

Assumption (A1)
The coefficients f , µ, σ and Φ satisfy Assumption (A1) if there
exists a constant K > 0 such that:

(A1.1) For any (x , y , z) ∈ Rn × Rd × Rp, f (·, x , y , z), µ(·, x , y , z)
and σ(·, x , y) are F-adapted and Φ(·, x) is FT -measurable.

(A1.2) For every t ∈ [0,T ], (x , y , z), (x ′, y ′, z ′) ∈ Rn × Rd × Rp,

|f (t, x , y , z)− f (t, x ′, y ′, z ′)| ≤ K (|x − x ′|+ |y − y ′|+ |z − z ′|),
|Φ(x)− Φ(x ′)| ≤ K |x − x ′|,

|µ(t, x , y , z)− µ(t, x , y ′, z ′)| ≤ K (|y − y ′|+ |z − z ′|),
|σ(t, x , y)− σ(t, x ′, y ′)|2 ≤ K (|x − x ′|2 + |y − y ′|2).
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Assumptions

Assumption (A1)
(A1.3) For every t ∈ [0,T ], (y , z) ∈ Rd × Rp, x , x ′ ∈ Rn,

(x − x ′)T(µ(t, x , y , z)− µ(t, x ′, y , z)) ≤ K |x − x ′|2.

(A1.4) For every t ∈ [0,T ], (x , y , z) ∈ Rn × Rd × Rp,

|f (t, x , y , z)| ≤ K (1 + |x |+ |y |+ |z |),
|Φ(x)| ≤ K (1 + |x |),

|µ(t, x , y , z)| ≤ K (1 + |x |+ |y |+ |z |),
|σ(t, x , y)| ≤ K (1 + |x |+ |y |).

(A1.5) The functions u 7→ µ(t, u, y , z) is continuous for all
t ∈ [0,T ], (y , z) ∈ Rd × Rp.
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Assumptions

Assumption (A2)
The functional L satisfies Assumption (A2) if there exists a
constant K > 0 such that:

(A2.1) L maps M2([0,T ],Rd ) into O([0,T ],Rp), where
O([0,T ],Rp) ∈

{
H2([0,T ],Rp), C([0,T ],Rp)

}
.

(A2.2) L is bounded and Lipschitz continuous, i.e.

‖L(M)‖O[0,T ] ≤ K‖M‖C[0,T ],

‖L(M)− L(M ′)‖O[0,T ] ≤ K‖M −M ′‖C[0,T ] ∀ M,M ′ ∈M2.
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Examples for L

Example (1)
(Ft)0≤t≤T augmented filtration generated by W
Choose O([0,T ],Rp) = H2([0,T ],Rd×m)

L :M2([0,T ],Rd )→ H2([0,T ],Rd×m) defined via the Itô
representation theorem, i.e.

M i
t = E [M i

t ] +
m∑

j=1

∫ t

0
L(M)i ,j

s dW j
s , i = 1, . . . , d .

Classical fully coupled FBSDEs (L(M(X ,V )) = Z (X ,V ))
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Examples for L

Example (2)
(Ft)0≤t≤T with usual assumptions
Choose O([0,T ],Rp) = H2([0,T ],Rd×m)

L :M2([0,T ],Rd )→ H2([0,T ],Rd×m) given by the
integrand process in the orthogonal decomposition w.r.t. W ,
i.e.

M i
t = E [M i

t ] +
m∑

j=1

∫ t

0
L(M)i ,j

s dW j
s + (M ′)i

t , i = 1, . . . , d .

Matteo Casserini (Gechun Liang) Fully coupled BSDEs: a functional differential approach 19/32



Brownian FBSDEs as functional differential equations
Fully coupled forward–backward stochastic dynamics

Existence and uniqueness of solutions
Related discretization algorithms for Brownian FBSDEs

Local existence and uniqueness
Global solution

Examples for L

Example (3)
(Ft)0≤t≤T quasi-left continuous
For M ∈M2([0,T ],R) consider the decomposition

M = Mc + Md

Mc continuous martingale null at 0, Md purely discontinuous
martingale
Choose O([0,T ],Rp) = C([0,T ],Rd ).
L :M2([0,T ],Rd )→ C([0,T ],Rd ) defined by

L(M)i
t :=

√
〈(Mc)i , (Mc)i〉t , i = 1, . . . , d .
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Existence of local solutions

Theorem

Under the assumptions (A1) and (A2) there is a constant τK so
that, for T ≤ τK , (2.2) admits a unique solution (X ,V ) satisfying

‖X‖C[0,T ] + ‖V ‖C[0,T ] <∞.

Moreover, the solution processes V and X are continuous.
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Sketch of proof
Define the mapping L : C([0,T ],Rn)× C([0,T ],Rd ) →
C([0,T ],Rn)× C([0,T ],Rd ) by L(X ,V ) := (X̃ , Ṽ ), where X̃
solution of the forward SDE{

X̃0 = x ,
dX̃t = µ(t, X̃t ,Y (V ,X )t , L(M(V ,X ))t)dt + σ(t, X̃t ,Y (V ,X )t)dWt ,

whereas Ṽ is explicitly given by

Ṽt =

∫ t

0
f (s, X̃s ,Y (V ,X )s , L(M(V ,X ))s)ds.

(X ,V ) solves (2.2) if and only if it is a fixed point of L.
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Global solution

Extension of the local solutions to global ones: still work in
progress
The study of the simple decoupled case suggests that
additional assumptions on L are needed!
For [T2,T1] ⊂ [0,T ], define the restriction L[T2,T1] from
M2([T2,T1],Rd ) to O([T2,T1],Rm) by

L[T2,T1](N)t := L(Ñ)t , N ∈M2([T2,T1],Rd ),

where Ñt := E [NT1 |Ft ], t ∈ [0,T ], is the extension of N to
M2([0,T ],Rd ).
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Global solution

Assumption (A2’)
We say that L satisfies (A2’) if it satisfies (A2) as well as

(A2.3) (Local-in-time property) For 0 ≤ T2 < T1 ≤ T and
M ∈M2([0,T ],Rd ),

L(M) = L[T2,T1](M̂) on (T2,T1), where M̂ = M
∣∣
[T2,T1]

.

(A2.4) (Differential property) For 0 ≤ T2 < T1 ≤ T and
N ∈M2([T2,T1],Rd ),

L[T2,T1](N − NT2) = L[T2,T1](N) on (T2,T1).

Matteo Casserini (Gechun Liang) Fully coupled BSDEs: a functional differential approach 24/32



Brownian FBSDEs as functional differential equations
Fully coupled forward–backward stochastic dynamics

Existence and uniqueness of solutions
Related discretization algorithms for Brownian FBSDEs

Local existence and uniqueness
Global solution

Global solution

Main idea: Derive some uniform estimates for the solution
over short time intervals, extend the solution to any time
interval while still keeping that estimate.
Well known from classical theory ([Delarue], [Zhang]):
additional assumptions on the coefficients are needed.
It can be proven that, under the assumption (A2’) on L and
under the same assumptions on the coefficients as in [Delarue]
or [Zhang], the system (2.2) has a unique solution on any
time interval
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over short time intervals, extend the solution to any time
interval while still keeping that estimate.
Well known from classical theory ([Delarue], [Zhang]):
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Brownian FBSDEs

The functional differential equation approach and the related
contraction mapping opens the door to a new class of
discretization algorithms.
Assume we have a classical FBSDE in a Brownian filtration:{

dYt = −f (t,Xt ,Yt ,Zt)dt + ZtdWt , YT = Φ(XT ),

dXt = µ(t,Xt ,Yt ,Zt)dt + σ(t,Xt ,Yt)dWt , X0 = x .

⇔
{

dVt = f (t,Xt ,Y (V ,X )t ,Z (V ,X )t)dt,
dXt = µ(t,Xt ,Y (V ,X )t ,Z (V ,X )t)dt + σ(t,Xt ,Y (V ,X )t)dWt .
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Numerical approximation

π = (t0, · · · , tN) partition of [0,T ]. For p ∈ N, define V π,p and
Xπ,p recursively on π by V π,0 ≡ 0, Xπ,0 ≡ x and

Xπ,p+1
0 = x , V π,p+1

0 = 0,
Xπ,p+1

ti+1 = Xπ,p+1
ti + µ(ti ,Xπ,p+1

ti ,Y (V π,p,Xπ,p)ti ,Z (V π,p,Xπ,p)ti )∆ti

+ σ(ti ,Xπ,p+1
ti ,Y π,p(V ,X )ti )(∆Wti )

T ,

V π,p+1
ti+1 = V π,p+1

ti + f (ti ,Xπ,p+1
ti ,Y (V π,p,Xπ,p)ti ,Z (V π,p,Xπ,p)ti )∆ti

for i = 0, · · · ,N − 1 and p ≥ 1, where

Y (V π,p,Xπ,p)ti = E [Φ(Xπ,p
T ) + V π,p

T |Fti ]− V π,p
ti ,

Z (V π,p,Xπ,p)ti =
1

∆ti
E
[
Y (V π,p,Xπ,p)ti+1(∆Wti )

T |Fti

]
.
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Numerical approximation

Motivated by the continuous time results

Advantage: Avoid the nesting of conditional expectations
(arising in most numerical approaches to BSDEs), thus
reducing the amplification of the error.

Conjecture: the algorithm converges to the true solution of
the FBSDE
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The decoupled case

The convergence can easily be proved in the decoupled case:

Theorem
Assume that f , µ, σ and Φ are Lipschitz in the space variables and
1/2-Hölder in the time variable. Then there is a constant C,
depending only on the Lipschitz constants involved and the
dimension of the problem, such that

sup
0≤t≤T

E [|Vt−V p,π
t |2]+ sup

0≤t≤T
E [|Xt−X p,π

t |2] ≤ C
(
|π|+

(1
2+C |π|

)p)
.
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Thank you for your attention!
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