CONVEX RISK MEASURES UNDER MODEL UNCERTAINTY

Jocelyne Bion-Nadal CNRS-CMAP Ecole Polytechnique joint work with Magali Kervarec

Tamerza october 26, 2010

INTRODUCTION

DYNAMIC RISK MEASURES ON A FILTERED PROBABILITY SPACE $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}^+}, P)$ filtered probability space with a right continuous filtration.

- Coherent Dynamic Risk Measures: Delbaen (2002) and Artzner, Delbaen, Eber, Heat, Ku (2007)
- Convex dynamic risk measures considered in many papers, among them: Frittelli and Rosaza Gianin (2002), Klöppel, Schweizer (2007), Cheredito, Delbaen, Kupper (2006), Bion-Nadal (2008 and 2009), Föllmer and Penner (2006)
- g expectations or Backward Stochastic Differential Equations : Peng (2004), Rosazza Gianin (2004) and Barrieu El Karoui (2009)

Equivalence class of probability measures associated to a non dominated set of prol Regular convex risk measures on $C_b(\Omega)$

DYNAMIC RISK MEASURES

DYNAMIC RISK MEASURES:

on $L^{\infty}(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}^+}, P)$ (or $L^p(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}^+}, P)$, 1). $<math>\rho_{\sigma,\tau} : L^{\infty}(\Omega, \mathcal{F}_{\tau}, P) \to L^{\infty}(\Omega, \mathcal{F}_{\sigma}, P)$, satisfying monotonicity, convexity, translation invariance and continuity from above.

• Time Consistency :

$$\forall \nu \leq \sigma \leq \tau, \ \rho_{\nu,\tau}(X) = \rho_{\nu,\sigma}(-\rho_{\sigma,\tau}(X))$$

- Normalized ($\rho_{\sigma,\tau}(0) = 0$) time consistent dynamic risk measures have càdlàg paths (J B N 2009). Regularity is satisfied without the normalization assumption under some continuity assumption on the penalty,
- Families of dynamic risk measures constructed from right continuous BMO martingales generalizing B.S. D. E. and allowing for jumps. (J B N 2008 and 2009).

Equivalence class of probability measures associated to a non dominated set of prol Regular convex risk measures on $\mathcal{C}_b(\Omega)$

TIME CONSITENT DYNAMIC RISK MEASURES FROM BMO martingales

THEOREM

Let $(M_i)_{i\leq j}$ be strongly orthogonal right continuous BMO martingales. Let $\mathcal{M} = \{\sum H_i.M_i, H_i \text{ predictable}\}$. Let S be a stable subset of $\mathcal{Q}(\mathcal{M}) = \{Q_M \mid \frac{dQ_M}{dP} = \mathcal{E}(M) \mid M \in \mathcal{M}\}$. Let b_i be measurable on $\mathbf{R}^+ \times \Omega \times \mathbf{R}^i$ admitting a quadratic bound from below. For $\mathbf{M} = \sum H_i.M_i$,

$$\alpha_{\sigma,\tau}(Q_M) = E_{Q_M}(\int_{\sigma}^{\tau} b_i(s,\omega,H_1(\omega),..H_j(\omega))d[M_i,M_i]_s(\omega))|\mathcal{F}_{\sigma}\rangle$$

- If M_i are continuous
- or if the BMO norms of elements of S are bounded by $m < \frac{1}{16}$, $\rho_{\sigma,\tau}(X) = \text{esssup}_{Q_M \in S, Q_{M \mid \mathcal{F}_{\omega}}} = P(E_{Q_M}(-X \mid \mathcal{F}_{\sigma}) - \alpha_{\sigma,\tau}(Q_M))$

defines a time consistent dynamic risk measure.

BROWNIAN FILTRATION

These exemples generalize the B.S.D.E. (which are convex and translation invariant)

QUADRATIC BACKWARDS Every solution of a BSDE with a convex driver independent of *y* and quadratic in *z* admits a dual representation of the preceding form (Barrieu and El Karoui 2009).

NORMALIZED TIME CONSISTENT DYNAMIC RISK MEASURES IN A BROWNIAN FILTRATION For every normalized time consistent dynamic risk measure on the Brownian filtration the penalty term associated to $(\frac{dQ}{dP}) = \mathcal{E}(q.B)$ can be written:

$$c_{\sigma,\tau}(Q) = E_Q(\int_{\sigma}^{\tau} f(u,q_u) du | \mathcal{F}_{\sigma}) \ \forall 0 \le \sigma \le \tau$$

Delbaen Peng and Rosazza Gianin (2009)

MODEL UNCERTAINTY

FINANCIAL FRAMEWORK: No reference probability measure is given. Instead a weakly relatively compact set of probability measures is given. Motivations:

EXAMPLE OF UNCERTAIN VOLATILITY

$$dX_t^{\sigma} = b_t dt + \sigma_t dW_t \quad \sigma_t \in [\underline{\sigma}, \overline{\sigma}]$$

The set of the laws of X_t^{σ} : weakly relatively compact set \mathcal{P} of probability measures not all absolutely continuous with respect to some probability measure.

DENIS MARTINI (2006)

 $\Omega = C_0(\mathbf{R}^+, \mathbf{R}^d), B_t$ coordinate process.

 \mathcal{P} : weakly relatively compact set of orthogonal martingale measures for B_t Pricing function $\Lambda(f) = \sup_{P \in \mathcal{P}} E_P(f)$. Equivalence class of probability measures associated to a non dominated set of prol Regular convex risk measures on $C_b(\Omega)$

INTRODUCTION

S. PENG: G-EXPECTATIONS (2007), (2008)

G-expectation \mathbb{E} is defined on *Lip*, subset of $C_b(\Omega)$ using PDE. DENIS HU PENG (2010) Every *G* expectation admits the representation

$$\forall f \in Lip \quad \mathbb{E}(f) = \sup_{P \in \mathcal{P}^1} E_P(f)$$

 \mathcal{P}^1 is weakly relatively compact.

In both cases, $\Pi(f) = \sup_{P \in \mathcal{P}} E_P(f) \ \mathcal{P}$ weakly relatively compact. Π is sublinear monotone translation invariant and regular $\Pi(X_n) \to 0$ when $X_n \downarrow 0$.

SONER, TOUZI, ZHANG (2010), NUTZ (2010)

Same framework $\Omega = C_0(\mathbf{R}^+, \mathbf{R}^d)$, \mathcal{P} is a set of probability measures. $\Pi(f) = \sup_{P \in \mathcal{P}} E_P(f)$

- Either $f \in \mathcal{C}_b(\Omega)$ and \mathcal{P} is weakly relatively compact.
- Or $f \in \mathcal{UC}_b(\Omega)$ and no restriction on \mathcal{P} .

INTRODUCTION

REGULAR CONVEX RISK MEASURES ON $\mathcal{C}_b(\Omega)$

 Ω is a Polish space. For example $\Omega = C(\mathbf{R}^+, \mathbf{R}^d)$ or $\Omega = D([0, \infty[, \mathbf{R}^d)$ the space of càdlàg functions, endowed with the Skorokhod topology.

Regularity (for sublinear risk measures): $\rho(-X_n) \to 0$ when $X_n \downarrow 0$. Regularity \iff continuity with respect to a certain capacity *c*. If ρ is sublinear, $c(X) = \rho(-|X|)$ $c(f) = \sup_{P \in \mathcal{P}} E_P(|f|)) \mathcal{P}$ weakly relatively compact.

 $L^1(c)$ Banach space obtained by completion and separation of $\mathcal{C}_b(\Omega)$ for the semi-norm c.

 $L^1(c)$: introduced by Feyel and de la Pradelle (1989). Thus we study $L^1(c)$ and convex risk measures on $L^1(c)$. We prove that there is an equivalence class of probability measures canonically associated to ρ , characterizing the riskless elements.

OUTLINE

1 $L^1(c)$

- Topological properties of the dual space of $L^1(c)$
- Convex risk measures on $L^1(c)$
- 2 EQUIVALENCE CLASS OF PROBABILITY MEASURES ASSOCIATED TO A NON DOMINATED SET OF PROBABILITY MEASURES
- **3** REGULAR CONVEX RISK MEASURES ON $C_b(\Omega)$ • Examples

OUTLINE

1 $L^1(c)$

- Topological properties of the dual space of $L^1(c)$
- Convex risk measures on $L^1(c)$

2 Equivalence class of probability measures associated to a non dominated set of probability measures

3 Regular convex risk measures on C_b(Ω)
 • Examples

CAPACITY

 $\Omega:$ Polish space (metrizable and separable space and complete for some metric defining the topology)

 \mathcal{L} : linear vector subspace of $\mathcal{C}_b(\Omega)$ containing the constants, generating the topology of Ω and which is a vector lattice.

CAPACITY

DEFINITION

a capacity on \mathcal{L} is a semi norm c defined on \mathcal{L} satisfying the following properties:

- monotonicity: $\forall f, g \in \mathcal{L}$ such that $|f| \leq |g|, c(f) \leq c(g)$
- regularity along sequences: for every sequence f_n ∈ L decreasing to 0, lim c(f_n) = 0

Equivalence class of probability measures associated to a non dominated set of prol Regular convex risk measures on $C_{b_i}(\Omega)$

Topological properties of the dual space of $L^{1}(c)$ Convex risk measures on $L^{1}(c)$

THE BANACH SPACE $L^1(c)$

EXTENSION OF THE CAPACITY Feyel and de la Predelle (1989) The semi-norm c is extended to all real functions on Ω :

$$\forall f \ l.s.c., \ f \ge 0, \ \ c(f) = \sup\{c(\phi) | 0 \le \phi \le f, \ \phi \in \mathcal{L}\}$$
(1)

$$\forall g, \ c(g) = \inf\{c(f) | f \ge |g|, f \ l.s.c.\}$$

$$(2)$$

THE BANACH SPACE $L^1(c)$ $\mathcal{L}^1(c)$: closure of \mathcal{L} in the set $\{g | c(g) < \infty\}$. $\mathcal{L}^1(c)$ contains $\mathcal{C}_b(\Omega)$. (Feyel and de la Pradelle)

Let $L^1(c)$ be the quotient of $\mathcal{L}^1(c)$ by the *c* null elements. $L^1(c)$ is a Banach space. Equivalence class of probability measures associated to a non dominated set of prol Regular convex risk measures on $C_h(\Omega)$

Topological properties of the dual space of $L^{1}(c)$ Convex risk measures on $L^{1}(c)$

The dual space of $L^1(c)$

PROPOSITION

Let c be a capacity on a Polish space Ω . Every continuous linear form L on $L^1(c)$ admits a representation:

$$L(f) = \int f d\mu \ \forall f \in L^1(c)$$
(3)

where μ is a regular bounded signed measure defined on a σ -algebra containing the Borel σ -algebra of Ω denoted $\mathcal{B}(\Omega)$. If L is a non negative linear form, the measure μ is non negative finite. Equivalence class of probability measures associated to a non dominated set of prol Regular convex risk measures on $C_{\beta}(\Omega)$

TOPOLOGICAL PROPERTIES OF THE DUAL SPACE OF $L^{1}(c)$

WEAK AND WEAK* TOPOLOGIES

Weak topology on M₊(Ω), the set of non negative finite measures on (Ω, B(Ω)):

coarsest topology for which the mappings

$$\mu \in \mathcal{M}_+(\Omega) \to \int f d\mu$$

are continuous for every given f in $C_b(\Omega)$.

• Weak* topology on $L^1(c)^*$: $\sigma(L^1(c)^*, L^1(c))$ topology i.e. coarsest topology for which the mappings

$$L \in L^1(c)^* \to L(X)$$

are continuous for every given X in $L^1(c)$.

 $L^{1}(c)$

Equivalence class of probability measures associated to a non dominated set of probability measures are class of $\mathcal{C}_h(\Omega)$

Topological properties of the dual space of $L^{1}(c)$ Convex risk measures on $L^{1}(c)$

TOPOLOGICAL PROPERTIES OF THE DUAL SPACE OF $L^{1}(c)$

PROPOSITION

Let c be a capacity on a Polish space Ω . On the non negative part K_+ of the unit ball of $L^1(c)^*$, the weak* topology coincides with the weak topology.

PROPOSITION

The set K_+ is compact metrizable for the weak* topology, as well as for the weak topology.

 $L^{1}(c)$

Equivalence class of probability measures associated to a non-dominated set of prol Regular convex risk measures on $C_b(\Omega)$ Topological properties of the dual space of $L^{1}(c)$ Convex risk measures on $L^{1}(c)$

CONVEX RISK MEASURES

DEFINITION

Let $\rho: L^1(c) \to \mathbf{R}$.

- ρ is monotonic if $\rho(X) \ge \rho(Y)$ for every $X, Y \in L^1(c)$, such that $X \le Y$.
- ρ is convex if for every $X, Y \in L^1(c)$, for every $0 \le \lambda \le 1$, $\rho(\lambda X + (1 - \lambda)Y \le \lambda \rho(X) + (1 - \lambda)\rho(Y)$
- *ρ* is translation invariant if *ρ*(*X* + *a*) = *ρ*(*X*) − *a* for every *X* ∈ *L*¹(*c*) and *a* ∈ *R*.

 ρ is a convex risk measure if it satisfies all these conditions.

DEFINITION

A convex risk measure ρ on $L^1(c)$ is normalized if $\rho(0) = 0$.

Equivalence class of probability measures associated to a non dominated set of prol Regular convex risk measures on $C_h(\Omega)$

Topological properties of the dual space of $L^{1}(c)$ Convex risk measures on $L^{1}(c)$

REPRESENTATION

Theorem

Assume that c is a capacity on a Polish space Ω . Let ρ be a convex risk measure on $L^1(c)$. Then, ρ is continuous and admits a representation of the form:

$$\forall X \in L^{1}(c), \ \rho\left(X\right) = \sup_{\mathcal{Q} \in \mathcal{P}'} \left(E_{\mathcal{Q}}[-X] - \alpha\left(\mathcal{Q}\right)\right) \tag{4}$$

where

$$\alpha\left(\mathcal{Q}\right) = \sup_{X \in L^{1}(c)} \left(E_{\mathcal{Q}}[-X] - \rho\left(X\right) \right) \tag{5}$$

 \mathcal{P}' is the set of probability measures on $(\Omega, \mathcal{B}(\Omega))$ belonging to $L^1(c)^*$.

 $L^{1}(c)$

Equivalence class of probability measures associated to a non dominated set of probability measures and $\mathcal{C}_b(\Omega)$

Topological properties of the dual space of $L^{1}(c)$ Convex risk measures on $L^{1}(c)$

RISK MEASURES REPRESENTED BY A WEAKLY RELATIVELY COMPACT SET OF PROBABILITY MEASURES

PROPOSITION

Let $\rho : L^1(c) \to \mathbf{R}$ be a normalized convex risk measure. The following conditions are equivalent:

• ρ is majorized by a sublinear risk measure

$$\forall X \in L^1(c), \, \sup_{\lambda > 0} \frac{\rho(\lambda X)}{\lambda} < \infty$$

- So there exits K > 0 such that $\forall X \in L^1(c), |\rho(X)| \le Kc(X)$
- ρ is represented by a set Q of probability measures in $L^1(c)^*$ relatively compact for the weak* topology, i.e.

$$\forall X \in L^{1}(c), \ \rho\left(X\right) = \sup_{Q \in \mathcal{Q}} \left(E_{Q}\left[-X\right] - \alpha\left(Q\right)\right) \tag{6}$$

 $L^{1}(c)$

Equivalence class of probability measures associated to a non-dominated set of probability measures and constant of the set of the

Topological properties of the dual space of $L^{1}(c)$ Convex risk measures on $L^{1}(c)$

RISK MEASURES REPRESENTED BY A WEAKLY RELATIVELY COMPACT SET OF PROBABILITY MEASURES

THEOREM

Let ρ be a convex risk measure on $L^1(c)$. Assume that ρ is represented by

$$\rho(X) = \sup_{Q \in \mathcal{Q}} (E_Q(-X) - \alpha(Q))$$

where Q is a set of probability measures in $L^1(c)^*$ relatively compact for the weak* topology. Let \overline{Q} be the closure of Q for the weak* topology. Then for every $X \in L^1(c)$, there is a probability measure $Q_X \in \overline{Q}$ such that

$$\rho(X) = E_{Q_X}(-X) - \alpha(Q_X) \tag{7}$$

Equivalence class of probability measures associated to a non dominated set of prol Regular convex risk measures on $C_{b_i}(\Omega)$

Topological properties of the dual space of $L^{1}(c)$ Convex risk measures on $L^{1}(c)$

REPRESENTATION WITH A COUNTABLE SET OF PROBABILITY MEASURES

THEOREM

Assume that c is a capacity on a Polish space Ω . Every convex risk measure on $L^1(c)$ can be represented by a countable set of probability measures $\{R_n, n \in N\}$ belonging to $L^1(c)^*$.

$$\forall X \in L^{1}(c), \ \rho\left(X\right) = \sup_{n \in \mathbb{N}} (E_{R_{n}}(-X) - \alpha(R_{n}))$$
(8)

where

$$\alpha\left(\mathbf{R}\right) = \sup_{X \in L^{1}(c)} \left(E_{\mathbf{R}}[-X] - \rho\left(X\right)\right) \tag{9}$$

OUTLINE

1 $L^1(c)$

- Topological properties of the dual space of $L^1(c)$
- Convex risk measures on $L^1(c)$

2 EQUIVALENCE CLASS OF PROBABILITY MEASURES ASSOCIATED TO A NON DOMINATED SET OF PROBABILITY MEASURES

3 Regular convex risk measures on C_b(Ω)
 • Examples

CAPACITY DEFINED FROM A WEAKLY RELATIVELY COMPACT SET OF PROBABILITY MEASURES

 \mathcal{P} weakly relatively compact set of probability measures. Capacity $c_{p,\mathcal{P}}$ defined on $\mathcal{C}_b(\Omega)$ by $c_{p,\mathcal{P}}(f) = \sup_{Q \in \mathcal{P}} E_Q(|f|^p)^{\frac{1}{p}}$

Lemma

For all X in
$$L^1(c_{p,\mathcal{P}})$$
, $c_{p,\mathcal{P}}(X) = \sup_{Q \in \mathcal{P}} E_Q(|X|^p)^{\frac{1}{p}}$.
There is $(Q_n)_{n \in \mathbb{N}}$ in \mathcal{P} such that $c_{p,\mathcal{P}}(X) = \sup_{n \in \mathbb{N}} E_{Qn}(|X|^p)$.

REMARK

It can happen that for a certain Borelian set A, the above equation is not satisfied for $X = 1_A$, i.e. $c_{p,\mathcal{P}}(1_A) \neq \sup_{Q \in \mathcal{P}} Q(A)^{\frac{1}{p}}$. (\geq is always satified) Example: $\Omega = [0, 1]$. Let $x_n \in]0, 1[$ be a sequence converging to 0. Let $A = [0, 1] - \{x_n, n \in N\}$. Let $Q_n = \delta_{x_n}$. Let $\mathcal{P} = \{Q_n, n \in N\}$. Then $c_{p,\mathcal{P}}(1_A) = 1$ and $\sup_{Q \in \mathcal{P}} Q(A)^{\frac{1}{p}} = 0$

 $\frac{1}{p}$

Equivalence class of probability measures associated to a non dominated set of probability measures are class of control Regular convex risk measures on $C_b(\Omega)$

CANONICAL CLASS OF PROBABILITY MEASURE ASSOCIATED TO $L^1(c_{p,\mathcal{P}})$

USUAL EQUIVALENCE CLASS OF MEASURES

A non negative measure ν on $(\Omega, \mathcal{B}(\Omega)$ belongs to the (usual) equivalence class of the probability measure *P* if and only if

$$\forall A \in \mathcal{B}(\Omega), \ P(A) = 0 \iff \nu(A) = 0$$

Or equivalently if $\nu \in (L^1(\Omega, \mathcal{B}(\Omega), P))^*$,

$$P \sim \nu \iff [\forall X \in L^1(\Omega, \mathcal{B}(\Omega), P)_+, X = 0 \iff \nu(X) = \int X d\nu = 0]$$

EQUIVALENCE CLASS OF PROBABILITY MEASURES ASSOCIATED TO A NON DOMINATED SET OF PROBABILITY MEASURES

EQUIVALENCE RELATION ON $\mathcal{M}^+(c_p)$

When \mathcal{P} is fixed, write c_p instead of $c_{p,\mathcal{P}} \mathcal{M}^+(c_p)$: set of non negative finite measures on $(\Omega, \mathcal{B}(\Omega))$ defining an element of $L^1(c_p)^*$. Define on $\mathcal{M}^+(c_p)$ the relation \mathcal{R}_{c_p} by

$$\mu \mathcal{R}_{c_p} \nu \iff (10)$$

$$\forall X \in L^1(c_p), X \ge 0, \quad \{\mu(X) = 0 \iff \nu(X) = 0\}$$

Lemma

 \mathcal{R}_{c_p} defines an equivalence relation on $\mathcal{M}^+(c_p)$.

CANONICAL EQUIVALENCE CLASS OF PROBABILITY MEASURES ASSOCIATED TO $c_{p,\mathcal{P}}$

THEOREM

 Ω Polish space. \mathcal{P} weakly relatively compact. There is a unique \mathcal{R}_{c_p} equivalence class in $\mathcal{M}^+(c_p)$ such $\mu \in \mathcal{M}^+(c_p)$ belongs to this class if and only if

$$\forall X \in L^1(c_p), X \ge 0, \qquad \{\mu(X) = 0\} \iff \{X = 0 \text{ in } L^1(c_p)\}$$

This class is referred as the canonical c_p -class. For every countable weakly relatively compact set $\{Q_n, n \in N\}$ such that for every $X \in L^1(c_p) c_p(X) = \sup_{n \in \mathbb{N}} (E_{Q_n}(|X|^p))^{\frac{1}{p}}$, for $\alpha_n > 0$ such that $\sum_{n \in \mathbb{N}} \alpha_n = 1$ the probability measure $\sum_{n \in \mathbb{N}} \alpha_n Q_n$ belongs to the canonical c_p -class. Equivalence class of probability measures associated to a non dominated set of prol Regular convex risk measures on $C_b(\Omega)$

THE CANONICAL c_p -CLASS

PROPERTY

Let *P* be a probability measure belonging to the canonical c_p -class. Let *X* be an element of $L^1(c_p)$. Then $X \ge 0$ (for the order in $L^1(c_p)$) if and only $X \ge 0$ *P* a.s.

REMARK

When $\mathcal{P} = \{P\}$ the canonical c_p -class is the restriction to $\mathcal{M}^+(c_p)$ of the usual equivalence class of the probability measure P. When \mathcal{P} is a finite set, $\mathcal{P} = \{P_1, ..., P_n\}$ the canonical c_p -class is the restriction to $\mathcal{M}^+(c_p)$ of the equivalence class (in the usual sense) of the

probability measure $P = \frac{\sum_{1 \le i \le n} P_i}{n}$.

OUTLINE

1 $L^1(c)$

- Topological properties of the dual space of $L^1(c)$
- Convex risk measures on $L^1(c)$
- 2 Equivalence class of probability measures associated to a non dominated set of probability measures

3 REGULAR CONVEX RISK MEASURES ON $C_b(\Omega)$ • Examples

Examples

REGULARITY

 \mathcal{L} : linear vector subspace of $\mathcal{C}_b(\Omega)$ containing the constants, generating the topology of Ω and which is a vector lattice.

DEFINITION

- A sublinear risk measure ρ on \mathcal{L} is regular if for every decreasing sequence X_n of elements of \mathcal{L} with limit 0, $\rho(-X_n)$ tends to 0.
- A normalized convex risk measure is uniformly regular if for all X $\sup_{\lambda>0} \frac{\rho(\lambda X)}{\lambda} < \infty$, and for every decreasing sequence X_n of elements of \mathcal{L} with limit 0, $\frac{\rho(-\lambda X_n)}{\lambda}$ converges to 0 uniformly in $\lambda > 0$.

LEMMA

Let ρ be a normalized convex risk measure uniformly regular. $\rho_{\min}(X) = \sup_{\lambda>0} \frac{\rho(\lambda X)}{\lambda}$ defines a regular sublinear risk measure. It is the minimal sublinear risk measure on \mathcal{L} majorizing ρ . Equivalence class of probability measures associated to a non dominated set of prob Regular convex risk measures on $C_b(\Omega)$

Examples

EXTENSION OF A RISK MEASURE

Lemma

 ρ : normalized convex risk measure uniformly regular on \mathcal{L} . $c_{\rho}(X) = \rho_{\min}(-|X|)$ defines a capacity on \mathcal{L} . ρ (resp ρ_{\min})has a unique continuous extension into a normalized convex risk measure $\overline{\rho}$ (resp a sublinear risk measure $\overline{\rho}_{\min}$)on $L^{1}(c_{\rho})$. $\overline{\rho}$ is majorized by $\overline{\rho}_{\min}$.

DEFINITION

Let $X \in C_b(\Omega)$, X is riskless if for all $\lambda > 0$, $\rho(\lambda X) \le 0$. For $X \le 0$ this is equivalent to $\rho(\lambda X) = 0$ for every $\lambda > 0$

REPRESENTATION OF UNIFORMLY REGULAR CONVEX RISK MEASURES

THEOREM

Let ρ be a normalized uniformly regular convex risk measure on \mathcal{L} . Then ρ extends uniquely to $\mathcal{C}_b(\Omega)$. There is a countable weakly relatively compact set $\{Q_n, n \in N\}$ such that

$$\forall X \in \mathcal{C}_b(\Omega) \ \rho(X) = \sup_{n \in \mathbb{N}} (E_{Q_n}(-X) - \alpha(Q_n))$$
(11)

Furthermore for $\alpha_n > 0$ such that $\sum_{n \in \mathbb{N}} \alpha_n = 1$ the probability measure $P = \sum_{n \in \mathbb{N}} \alpha_n Q_n$ characterizes the riskless non positive elements of $C_b(\Omega)$, that is $X \leq 0$ is riskless iff X = 0 P a.s. For every $X \in C_b(\Omega)$, there is a probability measure Q_X in the weak closure of $\{Q_n, n \in \mathbb{N}\}$, such that

$$\rho(X) = E_{\mathcal{Q}_X}(-X) - \alpha(\mathcal{Q}_X) \tag{12}$$

Examples

G-EXPECTATIONS

 $\Omega = \mathcal{C}_0([0, T], \mathbb{R}^d)$, G-expectations where introduced by S. Peng (2007). From Denis Hu and Peng (2009) $\mathbb{E}(f) = \sup_{P \in \mathcal{P}} E_P(f)$ \mathcal{P} is weakly relatively compact $\rho(f) = \mathbb{E}(-f)$ is a sublinear regular risk measure on $\mathcal{C}_b(\Omega)$.

PROPOSITION

There is a countable weakly relatively compact set $\{Q_n, n \in N\}$ of probability measures, $Q_n \in \mathcal{P}$ such that

$$\forall X \in \mathcal{C}_b(\Omega) \ \mathbb{E}(X) = \sup_{n \in \mathbb{N}} E_{\mathcal{Q}_n}(X)$$
(13)

Let $P = \sum_{n \in N^*} \alpha_n Q_n$ ($\alpha_n > 0$ and $\sum \alpha_n = 1$). For all $f \ge 0$ in $C_b(\Omega)$, $\mathbb{E}(f) = 0$ iff f = 0 P a.s. For every $X \in C_b(\Omega)$, there is a probability measure Q_X in the weak closure of $\{Q_n, n \in N^*\}$, such that $\mathbb{E}(X) = E_{Q_X}(X)$. $\Omega = \mathcal{C}_0([0, T], \mathbb{R}^d)$ $\mathcal{C}_b(\Omega), \mathcal{P} \text{ IS WEAKLY RELATIVELY COMPACT}$ $\Pi(f) = \sup_{P \in \mathcal{P}} E_P(f) \text{ or } \rho(f) = \sup_{P \in \mathcal{P}} E_P(-f) \text{ All our previous results}$ apply. Framework considered in Denis and Martini, also in Soner Touzi Zhang.

Examples

 $\mathcal{UC}_b(\Omega)$, \mathcal{P} IS NOT NECESSARILY WEAKLY RELATIVELY COMPACT Framework considered by Soner Touzi Zhang, and Nutz.

 $n(f) = \sup_{P \in \mathcal{P}} E_P(|f|)$ is a semi-norm.

The closure of $\mathcal{UC}_b(\Omega)$ for the semi-norm *n* leads to a separable Banach space $L^1(n)$.

Thus the unit ball of the dual space is metrizable compact for the weak* topology. Notice that in this case the unit ball itself and not only its non negative part is metrizable compact. Therefore we get similar results: The norm on $L^1(n)$ can be defined using a numerable subset in \mathcal{P} , there is a canonical class of probability measures...